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We develop several nonperturbative approximations for studying the dynamics of a supersymmetric
O�N� model which preserve supersymmetry. We study the phase structure of the vacuum in both the
leading order in large-N approximation as well as in the Hartree approximation, and derive the finite
temperature renormalized effective potential. We derive the exact Schwinger-Dyson equations for the
superfield Green functions and develop the machinery for going beyond the next to leading order in
large-N approximation using a truncation of these equations which can also be derived from a two-particle
irreducible effective action.
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I. INTRODUCTION

Theories with supersymmetry (SUSY) have been very
attractive to theoretical physicists because they solve the
problem of taming the quadratic divergences associated
with mass renormalization of scalar fields [1]. This can-
cellation of mass corrections when one includes the related
boson and fermion loops is most apparent in the superspace
formulation of supersymmetry. If supersymmetry turns out
to be a good representation of reality, it would be nice to
have approximate analytical methods of understanding the
phase structure and dynamics of these theories. Recent
advances in approximation schemes to field theory have
shown that approximations based on two-particle irreduc-
ible (2-PI) effective actions [2– 4] have the potential of
leading to thermalization of quantum fields [5–10]. These
approximations also allow one to study the dynamics of
phase transitions when the appropriate order parameter is
found. What we would like to show here is that the meth-
odology used in obtaining the aforementioned approxima-
tions in scalar field theories can easily be generalized to the
supersymmetric extension of the theory. In fact, when the
superspace formalism is in terms of polynomial interac-
tions of scalar superfields, standard field theory approxi-
mations such as large-N expansions [2,11,12], Hartree
approximations [13–18] and their resummations via self-
consistent Schwinger-Dyson equation methods (or effec-
tive 2-PI actions) automatically preserve supersymmetry at
zero temperature.

The new feature in this work that differentiates it from
our previous studies of scalar �4 field theory [9,10,19,20]
is that the superfields now depend on anticommuting
Grassmann variables as well as the usual space-time coor-
dinates and the action includes integration not only over
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Minkowski space (here 2� 1 dimensional) but also over
the two-component Majorana spinor � of Grassmann co-
ordinates. The superfields contain both bosonic and fermi-
onic degrees of freedom with the interactions dictated by
the need for invariance under the supersymmetry
transformations.

At finite temperature, supersymmetry is softly broken
[21]. However this occurs in a way which does not affect
the cancellation of ultraviolet divergences, since the finite
temperature modifications of the superpropagators only
affect the infrared physics. Thus the use of supergraphs
maintains its usefulness even at finite temperature.

The model we will study is theO�N� supersymmetric �4

model, which is actually a scalar�6 field theory interacting
with fermions in a manner consistent with SUSY. This
model has recently been studied by Moshe and Zinn-
Justin [22] (referred to as MZJ in what follows) and by
Feinberg, Moshe, Smolkin, and Zinn-Justin [23] in 2� 1
dimensions at finite temperature in the leading order in
large-N approximation. Their interest was mainly in the
spontaneous breakdown of scale invariance but they also
found an interesting phase structure which depended on the
sign of the renormalized mass parameter as well as the
value of the renormalized coupling constant. In this work
we will formulate the same model in a slightly more
convenient way using the Hubbard-Stratonovich formal-
ism. We will compare the leading order in large-N approxi-
mation to the Hartree approximation. We will find that
although the two approximations lead to identical dynam-
ics when the expectation value of � is zero, the ground
states found in these two approximations are quite different
and lend themselves to exploring different types of phase
transitions. In both approximations the vacuum is degen-
erate. For some choices of the parameters one finds in both
approximations that the states with zero and nonzero ex-
pectation values of � can coexist. This possibility leads to
interesting dynamical questions of how an initial state
prepared at high temperature and then allowed to expand
would choose one or the other vacuum. In this paper we
-1 © 2006 The American Physical Society
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also derive the exact Schwinger-Dyson equations for the
superfields in terms of the auxiliary fields with a future goal
of doing dynamical simulations as well as studying
whether the vacuum degeneracy gets lifted.

In what follows we will use as much as possible the
notation of earlier studies of the phase structure of these
models which is found in the work of Moshe and Zinn-
Justin [22] and Shifman, Vainshtein, and Voloshin [24].
The paper is organized as follows. In Sec. II we discuss the
minimal supersymmetric action and derive the large-N and
Hartree approximations. We also derive the exact
Schwinger-Dyson equations and derive two related ap-
proximations that resum the next to leading order
large-N approximation. In Sec. III we derive the effective
potential for both the leading-order large-N and Hartree
approximations and discuss the phase structure of the
vacuum as well as the behavior of the effective potential
at finite temperature. We summarize our results in Sec. IV.
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FIG. 1 (color online). Plot of the classical potential for N � 1
as a function of � for the case � � 1, �0 � 1.
II. MINIMAL SUPERSYMMETRIC ACTION

The minimal action for N commuting superfields in d
space-time dimensions for 2 � d � 3 is given by

S��� �
Z
ds
�
1

2
� �D�i�s�� 	 �D�i�s��

� 2NW ���s�=
����
N
p
�

�
; (1)

where s � �x�; �a� with � � 0; . . . ; d� 1 and a � 1; 2
and where we have used a summation convention for the
N superfields with i � 1; . . . ; N. The integration measure
ds is given by

ds � ddxd2� � ddxd ��1d�1=2 � iddxd�2d�1: (2)

The superfields �i�s� can be expanded into commuting
and anticommuting components. We write

�i�s� � �i�x� � �� 	  i�x� �
1
2

�� 	 �Fi�x�: (3)

The superfields commute at the same superspace point.
Superderivative spinors are defined by

D � � �@� i@6 	 �; �D � �@� i �� 	 @6 ; (4)

where @ and �@ are Grassmann derivatives with respect to �
and �� respectively. Properties of the superderivatives are
further discussed in Appendix B.

For the O�N� model, we choose a superpotential of the
form:

2NW ���s�=
����
N
p
� �

�
8N
��2

i �s� � N�
2
0�

2; (5)

where �0 is a constant (non-Grassmann). This potential is
fourth order in the superfields but sixth order in the scalar
fields. In terms of component fields, the action (1) becomes
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S��; ; F� �
1

2

Z
ddx

�
�@��i�x���@��i�x�� � F2

i �x�

�
�
N
X�x��i�x�Fi�x� � � i�x�

	 �i�ij�
�@� �Mij� 	  j�x�

�
; (6)

where

X�x� �
1

2

�X
j

�2
j �x� � N�

2
0

�
;

Mij�x� �
�

8N
�4�ijX�x� ��i�x��j�x��:

(7)

We see here that Fi�x� is not a dynamical variable. Varying
the action with respect to Fi�x� gives the constraint:

Fi�x� � �
�

2N
X�x��i�x�: (8)

Using this result, the action (6) becomes

S��; � �
1

2

Z
ddxf�@��i�x���@��i�x�� � 2V���

� � i�x� 	 �i�ij��@� �Mij� 	  j�x�g; (9)

where

V��� �
�2

8N2 X
2�x��2X�x� � N�2

0�: (10)

A graph of the classical scalar potential V��� for N � 1,
� � 1, and �0 � 1, as a function of � is shown in Fig. 1.
The curve is symmetric about the origin, with two mini-
ma’s at � � 0 and � � �0.
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A. Large-N approximation

As is well known from scalar field theories, if one wants
to perform a large-N approximation, it is easier to count
powers of 1=N by introducing a composite field ��x�. In
general, this can be done for an arbitrary polynomial
Lagrangian by introducing a functional delta function of
the type: Z

d��
�
��x� �

�
2N

�2
i �x�

�
� 1 (11)

into the path integral. This is the strategy used by MZJ: The
�-function constraint is implemented by introduction a
second field [e.g. L�x�] in a functional integral representa-
tion of the � function. This leads to a Lagrange multiplier
term in the action of the formZ

dxL�x�
�
��x� �

�
2N

�2
i �x�

�
; (12)

and an additional path integration over the field L�x�. Thus
the MZJ approach leads to having two auxiliary fields ��x�
and L�x� in addition to the original N scalars.

However, for quartic scalar interactions, it is simpler to
use the Hubbard-Stratonovich transformation to convert
the quartic term into a Gaussian at the cost of only one
additional auxiliary field and one additional path integra-
tion, using the identity:Z

d� exp
�
�

1

2
�G�1�� j�

�

� exp
�
1

2
jGj�

1

2
Tr�lnG�1�

�
; (13)

with j being proportional to �2
i �x�. The same trick applies

to the superfield case with the generalization being that x is
replaced by the superspace variable s. Thus we will in-
troduce a commuting composite superfield ��s� by sub-
tracting from the action (1) a term of the form:

Z
ds

N
2�

�
��s� �

�
2N

�XN
j�1

�2
j �s� � N�

2
0

��
2
: (14)

This leads to an equivalent action given by

S��;�;J;K� �
Z
ds
�
1

2
�� �D�i�s�� 	 �D�i�s�� ���s��

2
i �s��

�
N
�

�
�2�s�

2
� 2���s�

�

� Ji�s��i�s� �K�s���s�
�
; (15)

where 2� � ���2
0=2 (� has units of mass). One of the

things we will show is that the action (15) reproduces the
results of MZJ and leads to a simpler formula for the
corrections to large-N. The supergenerating functional
Z�J; K� is defined by the path integral:
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Z�J;K� � expfiW�J; K�g

�
Z
d�
Y
i

Z
d�i expfiS��; �; J; K�g: (16)

Average values of the superfields are obtained by differen-
tiation of the supergenerating functional:

h�i�s�i �
1

iZ
@Z�J; K�
@Ji�s�

�
@W�J; K�
@Ji�s�

;

h��s�i �
1

iZ
@Z�J; K�
@K�s�

�
@W�J;K�
@K�s�

:

(17)

We introduce an inverse Green function G�1
ij ����s; s� by

G�1
ij ����s; s

0� � � �D 	D� ��s���ij��s; s
0�; (18)

so that the Green function Gij����s; s
0� satisfies the super-

differential equation:

� �D 	D� ��s��Gij�s; s
0� � �ij��s; s

0�: (19)

Integrating by parts, the action (15) can be written as

S��; �; J; K� � �
1

2

Z
ds
Z
ds0�i�s�G

�1
ij ����s; s

0��j�s
0�

�
Z
ds
�
N
�

�
�2�x; ��

2
� 2���x; ��

�

� Ji�s��i�s� � K�s���s�
�
: (20)

The action (20) is quadratic in the fields �i�s� so we can
integrate them out of the generating functional. This gives

Z�J;K� �N
Z
d� expfiS0��; J; K�g; (21)

where N is a constant and

S0��; J; K� �
Z
ds
�
�
N
�

�
�2�s�

2
� 2���s�

�
� K�s���s�

�
iN
2

lnfG�1
ii ����s; s�g

�

�
1

2

Z
ds
Z
ds0Ji�s�Gij����s; s

0�Jj�s�: (22)

The integral over ��s� in (21) is now done by the method of
steepest descent. We expand the exponent about a super-
field �0:

S0��;J;K��S0��0;J;K��
Z
ds���s���0�s��




�
@S0��;J;K�
@��s�

�
�0

�
1

2

Z
ds



Z
ds0���s���0�s�����s0���0�s0��




�
@2S0��;J;K�
@��s�@��s0�

�
�0

�			 ; (23)
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where we choose �0 such that the linear term vanishes.
This gives the stationary condition:

�0�s� � 2��
�
2

�
1

N
�2
i ��0; J��s� �Gii��0��s; s�=i

�

�
�
N
K�s�: (24)

Evaluated at K�s� � 0, Eq. (24) is the supergap equation.
Here we have defined �i��0; J��s�, which is a functional of
�0 and J, as the solution of the integral equation:

�i��0; J��s� �
Z
ds0Gij��0��s; s0�Jj�s0�: (25)

We have the remaining action, which is given by

W�J; K� � W0�J; K� �
i
2

Z
ds lnfD�1�s; s�g � 	 	 	 ; (26)

where

W0�J;K� �
Z
ds
�
�
N
�

�
�2

0�s�
2
� 2��0�s�

�
� K�s��0�s�

�
iN
2

ln�G�1
ii ��0��s; s��

�

�
1

2

Z
ds
Z
ds0Ji�s�Gij��0��s; s0�Jj�s�; (27)

and where

D�1�s; s0� �
1

N

�
@2S0��; J; K�
@��s�@��s0�

�
�0

� D�1
0 �s; s

0� ��0�s; s0�; (28)

with

D�1
0 �s; s

0� � �
1

�
��s; s0�; (29)

and

�0�s; s0� �
1

N
�i��0��s�Gij��0��s; s0��j��0��s0�

�
1

2i
Gij��0��s; s0�Gji��0��s0; s�: (30)

The vertex function is given by a Legendre transformation:

���; �� � W�J; K� �
Z
dsfJi�s��i�s� � K�s���s�g;

(31)

where

�i�s� �
@W�J; K�
@Ji�s�

� �i��0��s� �
1

N
�1i�s� � 	 	 	 ;

��s� �
@W�J; K�
@K�s�

� �0�s� �
1

N
�1�s� � 	 	 	 :

(32)

So, to first order in 1=N, we find the effective action:
016007
���; �� � �
1

2

Z
ds
Z
ds0f�i�s�G�1

ij ����s; s
0��j�s0�g

�
Z
ds
�
N
�

�
�2�s�

2
� 2���s�

�
�
iN
2


 ln�G�1
ii ����s; s�� �

i
2

ln�D�1����s; s��
�
;

(33)

which is the classical action plus the trace-log terms.
We list again here the superequations to be solved in

first-order large-N. We set the currents to zero, and arrive
at the following equations:

� �D 	D� ��s���i�s� � 0; (34a)

� �D 	D� ��s��Gij�s; s0� � �ij��s; s0�; (34b)

��s� � 2��
�
2
��2

i �s�=N �Gii�s; s�=i�: (34c)

From Eq. (33), for N � 1, the effective large-N super-
potential is given by

VN��;���
Z
d2�

�
�

1

2
� �� 	��F2�

1

2
��2�

1

�

�
�2

2
�2��

�

�
i
2

Tr�lnG�1��;���
�
; (35)

where the first term comes from the kinetic part of the
energy.

B. Hartree equations

In this section, we develop the Hartree equations for this
system. We start with the action given in Eq. (1):

S����
Z
ds
�
1

2
� �D�i�s�� 	 �D�i�s���

�
8N
��2

j �s��N�
2
0�

2

�
:

(36)

The equations of motion are given by

� �DD� 2���i�s� �
�

2N
�2
j �s��i�s� � Ji�s�; (37)

where Ji�s� is an external supercurrent, and where we have
again set 2� � ���2

0=2. Considering this as an operator
equation and taking expectation values gives the classical
equation:

� �DD� 2��h�i�s�i �
�

2N
h�2

j �s��i�s�i � Ji�s�: (38)

The Hartree approximation sets the third order connected
Green function to zero:

@Gij�s; s
0�

@Jk�s
00�
� 0: (39)

So this means that the third order correlator is
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h�2
j �s��i�s�i � �h�j�s�i

2 �Gjj�s; s�=i�h�i�s�i

� 2Gij�s; s�h�j�s�i=i: (40)

So the equations of motion become��
�DD�

�
2N
�h�k�s�i2 �Gkk�s; s�=i� � 2�

�
�ij

�
�
N
Gij�s; s�=i

�
h�j�s�i � 0; (41)

and��
�DD�

�
2N
�h�l�s�i2 �Gll�s; s�=i� � 2�

�
�ij

�
�
N

�i�s��j�s�
�
Gjk�s

0; s00�

�
�
N
Gij�s; s�Gjk�s; s0�=i � �ik��s; s0�: (42)

For N � 1, these equations reduce to�
�DD�

�
2
��2�s� � 3G�s; s�=i� � 2�

�
��s� � 0; (43)

and�
�DD�

3�
2
��2�s� �G�s; s�=i� � 2�

�
G�s; s0� � ��s; s0�:

(44)

We now notice that these equations of motion are gener-
ated from an action, given by

SH��; �� � �
Z
ds
�
1

2
��s�� �DD� ��s����s�

�
�
4

�4�s� �
1

3�
��2�s�=2� 2���s��

�
i
2

Trfln� �DD� ��s��g
�
; (45)

where ��s� is an auxiliary superfield. The equation of
motion generated from this action is given by

� �DD� ��s� � ��2�s����s� � 0; (46a)

� �DD� ��s��G�s; s0� � ��s; s0�; (46b)

��s� � 2�� �3�=2���2�s� �G�s; s�=i� (46c)

and agrees with Eqs. (43) and (44). The effective Hartree
superpotential is then given by

VH��; �� �
Z
d2�

�
�

1

2
� �� 	 ��F2 �

1

2
��2 �

�
4

�4 �
1

3�




�
�2

2
� 2��

�
�
i
2

Tr�lnG�1��; ���
�
: (47)

We notice from Eqs. (46a) and (46b) that the effective
mass of the propagator is different than the effective mass
for the time evolution of the scalar field ��s�. At large N
016007
this distinction vanishes, and the Hartree reduces to the
large-N expansion. However for the case we will study in
detail here, N � 1, the differences between the two ap-
proximations are significant. In purely scalar �4�x� field
theory the two approximations led to qualitatively different
physics. Because of the extra term in the action propor-
tional to �4 for the Hartree approximation, the phase
structures in the two approximations are quite different
for N � 1. For the Hartree approximation it has been
shown that the Hartree approximation leads to a first-order
phase transition as we increase the temperature [25],
whereas in the leading-order large-N approximation the
transition is of second order [26]. We expect (and we will
find) that for the SUSY �6 theory the two approximations
also lead to qualitatively different phase structure.

C. Schwinger-Dyson equations and the 2-PI effective
action

We develop in this section the coupled supersymmetric
Schwinger-Dyson equations for the O�N� model. We first
rewrite Eq. (20) in an extended field scheme:

S��; J� �
Z
ds
�
�

1

2

Z
ds0�a�s���1

ab �s; s
0��b�s0�

�
1

6
�abc�a�s��b�s��c�s� � Ja�s��a�s�

�
:

(48)

In the rest of this section, we have suppressed the super-
coordinates. In this extended scheme, a � �0; i�, with i �
1; 2; . . . ; N, and we define the extended vectors:

�a � ��;�1;�2; . . . ;�N�; Ja � �J0; J1; J2; . . . ; JN�;

(49)

where J0 � K � N�=�, and

��1
ab �

D�1 0
0 G�1

ij

 !
; (50)

where D�1 � �N=� and G�1
ij � �D 	D�ij. The introduc-

tion of a composite field � enables us to use a cubic
supersymmetric interaction rather than the usual quartic
term, at the expense of an additional dimension for the
superfield vector �a. For our case, �abc is fully symmetric,
and given by

�0ij � �i0j � �ij0 � �ij; (51)

with all other values zero. The equation of motion for the
quantum operators �̂a is given by

��1
ab �̂b �

1
2�abc�̂b�̂c � Ja: (52)

The supergenerating functional is given by the path
integral (21), which we write as

Z�J� � eiW�J� �
Z
d�eiS��;J�: (53)
-5
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Expectation values of the closed-time-path ordered product
of n field operators are given by

hT f�̂a�̂b 	 	 	gi �
1

inZ
@nZ�J�

@Ja@Jb 	 	 	
: (54)

The n-point connected supergreen functions are defined by

Gab			�J� �
@nW�J�

@Ja@Jb 	 	 	
: (55)

Here Gab			�J� is fully symmetric with respect to the inter-
change of arguments. In particular for n � 1:

�a�J� � Ga�J� �
@W�J�
@Ja

; (56)

which is the average value of the field when evaluated at
J � 0. The vertex function ���� is defined by the
Legendre transformation:

���� � W�J� � Ja�a: (57)

In analogy to the supergreen functions, the n-point con-
nected supervertex functions are then defined by

�ab			��� � �
@n����

@�a@�b 	 	 	
: (58)

In particular for n � 1:

Ja��� � ��a��� � �
@����

@�a
: (59)

The two-point supergreen functional is the inverse of the
two-point supervertex functional. Using the chain rule, we
find

Gab�J��bc�����
@2W�J�
@Ja@Jb

@2����

@�b@�c
�
@�b�J�
@Ja

@Jc
@�b

��ac:

(60)

Differentiating (60) with respect to �d gives

@Gab�J�
@�d

�bc��� �Gab�J��dbc��� � 0:

Using (60) gives

@Gae�J�
@�d

� �Gab�J��dbc���Gce�J�: (61)

The Schwinger-Dyson hierarchy of coupled equations is
generated by taking the expectation value of the closed-
time-path ordered product of Eq. (52). We find

��1
ab �b �

1

2
�abc��b�c �Gbc�J�=i�

� Ja��� � ��a��� � �
@����

@�a
: (62)

When evaluated at J � 0, Eq. (62) is the equation of
motion for the fields �a. Differentiation of Eq. (62) with
016007
respect to �b gives

�ab��� � �
@2����

@�a@�b
� ���1

ab ��� �
��ab���; (63)

where, from (61):

���1
ab ��� � ��1

ab � �abc�c;

��ab��� �
i
2
�aa0b0Ga0a00 �J�Gb0b00 �J��a00b00b���:

(64)

The three-point supervertex function can now be computed
by differentiating (63). We find

�abc��� � �
@2����

@�a@�b@�c
� �abc �

@ ��ab���

@�c
: (65)

The bare vertex approximation (BVA) keeps only the first
term in this equation, in which case, we find for the self-
energy

�� BVA
ab ��� �

i
2
�aa0b0Ga0a00 �J�Gb0b00 �J��a00b00b: (66)

Using this approximation to the full self-energy, we invert
Eq. (63) by multiplying by ��aa0 ���Gbb0 �J� to give the
integral equation:

Gab�J� � ��ab��� � ��aa0 ���
��BVA
a0b0 ���Gb0b�J�; (67)

which is to be solved self-consistently for Gab�J�. The
hierarchy of coupled green function equations have now
been truncated. The BVA approximation is a conserving
approximation in that an action can be constructed, using
the methods of Cornwall, Jackiw, and Tomboulis [2],
which reproduces these coupled equations. This action is
given by

S��; G� � Sclass��� �
i
2

Trfln� ���1�g

�
i
2

Trfln� ���1���G� 1�g � �2�G�; (68)

where, in the BVA,

�2�G� � �
1

12
�abcGaa0Gbb0Gcc0�a0b0c0 : (69)

Varying this action with respect to � and G independently
leads to the BVA equations. The natural 2-PI expansion
would consist of taking higher and higher loops in �2 (the
lowest being two loops). However if one wants to further
keep only terms in �2 to a particular order in 1=N then one
needs to realize that the � and� pieces ofG have different
N dependence as seen in Eqs. (49) and (50). This is
discussed in detail in Ref. [8]

III. EFFECTIVE POTENTIAL

In this section, we derive effective potentials for the
large-N and Hartree approximations in the vacuum at T �
0 and for finite temperature.
-6
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We consider here the spatially homogeneous case where
the average superfields depend only on time, and require
the average Fermi field to vanish. Thus we write

�i�t; �� � �i�t� �
1
2

�� 	 �Fi�t�; (70)

��t; �� � 2��t� � �� 	 �R�t�: (71)

A. Supergreen function

The two-point supergreen function G�s; s0� is of the
form:

Gij�s; s
0� � g0ij�x; x

0� � 1
2�

�� 	 �� ��0 	 �0�g1ij�x; x
0� � ��

	 g2ij�x; x0� 	 �0 �
1
4�

�� 	 ��� ��0 	 �0�g3ij�x; x0�:

(72)

The generalized Ward-Takahashi identity states that

�Q�Q0�Gij�s; s0� � 0: (73)

Here Q and Q0 are the supercharge operators, given by

Q � � �@� i@6 	 �; Q0 � �@0 � i@6 0 	 �0: (74)

Equation (73) requires that

g2ij�x
0; x� � �g1ij�x; x

0� � i@6 g0ij�x; x
0�; (75a)

g2ij�x; x0� � �g1ij�x; x0� � i@6 0g0ij�x; x0�; (75b)

g3ij�x; x0� � �i@6 g1ij�x; x0� � i@6 0g2ij�x0; x�; (75c)

g3ij�x; x
0� � �i@6 0g1ij�x; x

0� � i@6 g2ij�x; x
0�; (75d)

from which we obtain

g3ij�x; x
0� � @�@0�g0ij�x; x

0�; (76)

and

1

2
f �� 	 g2ij�x; x0� 	 �0 � ��0 	 g2ij�x0; x� 	 �g

� �� �� 	 �0�g1ij�x; x0� � �� 	
i
2
�@6 � @6 0� 	 �0g0ij�x; x0�:

(77)

So using (76) and (77), if G�s; s0� satisfies the Ward-
Takahashi identity, it must be of the general form:
016007
G�s;s0��
�
1�

i
2

�� 	 �@6 �@6 0� 	�0 �
1

4
� �� 	�� 	 � ��0 	�0�@�@0�

�


g0ij�x;x
0��

1

2
f �� 	��2 �� 	�0 � ��0 	�0gg1ij�x;x

0�

(78)

or

G�s; s0� � exp
�
i
2

�� 	 �@6 � @6 0� 	 �0
�
g0ij�x; x

0�

�
1

2
�2��� �0�g1ij�x; x0�: (79)

The supergreen function satisfies an equation of the form:

� �D 	D� ��t��Gij�s; s
0� � �ij��s; s

0�; (80)

from which we find the component equations:

���m2�t��g0ij�x; x
0� � �ij��x; x

0�;

�i@6 � ��t��g2ij�x; x0� � �ij��x; x0�;
(81)

with m2�t� � �2�t� � R�t�. g1ij�x; x0� and g3ij�x; x0� can be
found from Eqs. (75). We will use these results below.

B. Large-N approximation

In the large-N approximation, the gap Eq. (34c) be-
comes

��t� � �� ��=4N���2
i �t� � g0ii�t; t�=i�; (82a)

R�t� � ��=2N�f��t���2
i �t� � g0ii�t; t�=i�

� Tr�g2ii�t; t��=ig: (82b)

Here, we have used Fi�t� � ��t��i�t�.
In the vacuum where �i��� and ���� depend only on �,

the supergreen function can easily be computed in terms of
� and R. Performing a Wick rotation to Euclidean coor-
dinates, we set

Gij�s; s
0�=i �

Z d3k

�2	�3
~Gij�k; �; �0�e�ik	�x�x

0�: (83)

Using Eq. (80), we find ~Gij�k; �; �0� � �ij ~G�k; �; �0�, with
~G�k; �; �0� �
�� 	 �ik6 � �� 	 �0

k2 � �2 �
1� 1

2 �
�� 	 �� ��0 	 �0��� 1

4 �
�� 	 ��� ��0 	 �0��k2 � �2�

k2 � �2 � R
: (84)
The diagonal elements are given by

~G ii�k; �; �� �
1� �� 	 ��

k2 � �2 � R
�

�� 	 ��

k2 � �2 ; (85)

independent of i. We identify the boson mass with m ����������������
�2 � R

p
and the fermion mass with �. The gap equa-

tions (82) become
����
�
4

�
�2�

Z � d3k

�2	�3
1

k2��2�R

�
; (86a)

R�
�
2
�
�
�2�

Z d3k

�2	�3

�
1

k2��2�R
�

1

k2��2

��
: (86b)

Here we have introduced a three-dimensional cutoff � to
-7
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make Eq. (86a) finite. Because of the magic of supersym-
metry, Eq. (86b) is finite.

For d � 3 we renormalize Eq. (86a) by subtracting it
about the point k2 � 0 with a renormalized constant �R
defined by

�R � ��
�
4

Z � d3k

�2	�3
1

k2 : (87)

This gives the renormalized gap equation:

� � �R �
�
4

�
�2 �

1

4	
jmj

�
; (88)

where m2 � �2 � R. Equation (86b) is finite, and yields

R �
�
2
�
�
�2 �

1

4	
�jmj � j�j�

�
: (89)

Multiplying Eq. (88) by 2�, and subtracting it from
Eq. (89) gives

R � 2�����R� �
�

8	
�j�j; (90)

which relates R to �.
From Eq. (35), and using (70) and (71), and the renor-

malization prescription (87), the large-N effective poten-
tial for N � 1 is given by

VN��;F; �; R� � Vc��;F; �; R� � Vq��; R�; (91)

where the classical part is given by

Vc��;F; �; R� � ��F�
1

2
F2 �

1

2
R�2 �

2

�
R��R � ��

(92)

and the quantum part by

Vq��; R� �
Z
d2�Wq��; R; ��; (93)

with

Wq��; R; �� �
1

2

Z d3k

�2	�3

�
ln�G�1�k; �; ��� �

����

k2

�
:

(94)

At the minimum of the potential, F � ��. Evaluating (92)
at this value of F yields

Vc��;�; R� �
1

2
m2�2 �

2

�
R��R � ��; (95)

where we have again set m2 � �2 � R. For Wq��; R�, it is
easier to first evaluate:

�Wq��; R; ��

�����
�

1

2

Z d3k

�2	�3

�
~G�k; �; �� �

1

k2

�

� W0��; R� �
1

2
�� 	 �W1��; R�: (96)

Using (85), we find
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W0��; R� �
1

2

Z d3k

�2	�3

�
1

k2 � �2 � R
�

1

k2

�
� �

1

8	
jmj;

(97)

and

W1��; R� �
Z d3k

�2	�3

�
�

k2 � �2 � R
�

�

k2 � �2

�

� �
�

4	
�jmj � j�j�: (98)

Now since ����; R� � 2��� �� 	 ��R, we have

�Wq��; R; �� � �W0��; R� �
1
2

�� 	 �W1��; R�


 ��2��� �� 	 ��R�

� 2W0��; R���� ��

	 ��W0��; R��R�W1��; R����: (99)

For the effective potential, we only need the last term. So
we now want to find a common function Vq��; R� such that

@Vq��; R�

@R
� W0��; R�;

@Vq��; R�

@�
� W1��; R�:

Such a function is given by

Vq��; R� � �
1

12	
�jmj3 � j�j3�: (100)

So from (95) and (100) the effective potential is given by

VN��;�;R��
1

2
m2�2�

2

�
R��R����

1

12	
�jmj3�j�j3�:

(101)

The minimum of the potential is at the point ��;�; R�
defined by the equations:

@VN��;�; R�
@�

�
@VN��;�; R�

@�
�
@VN��;�; R�

@R
� 0:

The first partial derivative gives the requirement:

m2� � 0; (102)

so the minimum of the potential is at eitherm2 � 0 or� �
0. The last two partial derivatives give the two gap equa-
tions:

� � �R �
�
4

�
�2 �

1

4	
jmj

�
; (103a)

R �
�
2
�
�
�2 �

1

4	
�jmj � j�j�

�
: (103b)

Using (103a) to eliminate the 2��R � ��=� term in
Eq. (101), we find that at the minimum of the potential,

VN��;�;m� �
1

2
�2�2 �

1

24	
�jmj � j�j�2�jmj � 2j�j�;

(104)

in agreement with MZJ [22] [Eq. (2.19)]. For any value of
-8
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�, the minimum of the potential is when jmj � j�j, that is
when R � 0, in which case either � � 0 or � � m � 0. In
both cases, VN��;�;m� � 0.

A given renormalized theory is specified by the parame-
ters �R and �. We therefore have the following possibil-
ities:
(1) W
FIG. 2
�R on
hen � � 0 (the unbroken symmetry case), at the
minimum of the potential, �must satisfy Eq. (103a):

� � �R � j�j��=�c�; (105)

where we have set �c � 16	. If � > 0 then we have
that

� � �R=�1� �=�c�; (106)

which is satisfied for �R > 0 and for all � > 0, with
mass � given by (106). If � < 0 then from (105), we
have that

� � �R=�1� �=�c�; (107)

which can be satisfied in two ways: either (a) �R >
0 and � > �c, in which case the vacuum is degen-
erate with � masses given by Eqs. (106) and (107),
or (b)�R < 0 and �c > �> 0, with �mass given by
(107).
(2) W
hen� � 0 (the broken-symmetry case), then � �
m � 0, which leads to the constraint:

�R �
�
4
�2 � 0: (108)

Since � > 0, this means that broken symmetry can
occur only when �R < 0. The broken-symmetry
vacuum will be degenerate with the symmetric vac-
uum when �c > �> 0.
In all cases, the effective potential VN � 0 at the mini-
mum. We summarize these large-N results in Fig. 2.

The effective potential at finite temperature is worked
out in Appendix C. From Eq. (C29), we have
φ =

φ =
ρ = ρ_ λ( c) < 0

φ = 0, < 0, cµ λ < λR

φ = 0, < 0, cµ λ > λR
ρ = 0

µR 0=

φ = 0, < 0, cµ λ < λR
ρ = 0

(color online). Phase structure of the supersymmetric O�N�
the x axis and � > 0 on the y axis, and have defined ����c�
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VN��;�; R;
� �
1

2
m2�2 �

2

�
R��R � ��

�
1

12	
�jmj3 � j�j3� �

1




Z �1
0

kdk
2	


 ln
�

1� exp��
!k�

1� exp��
!0k�

�
: (109)

At the minimum of the potential, � and R satisfy the gap
equations (C15) and (C16) at finite temperature:

���R�
�
4

�
�2�

jmj
4	
�

1

2	

ln�1�exp��
jmj��

�
; (110a)

R�
�
2
�
�
�2�

1

2	

fln�2sinh�
jmj=2��

� ln�2cosh�
j�j=2��g
�
: (110b)

Noting that R � m2 � �2, these two equations can be
combined to give m2 as a function of � :

m2 � 3�2 � 2��R �
�

8	
j�j�

�
�

4	

ln�1� exp��
j�j��; (111)

so that at the minimum, the potential can be written as

VN��;�;m;
� �
1

2
�2�2 �

1

24	
�jmj � j�j�2�jmj � 2j�j�

�
m2 � �2

4	

ln�1� exp��
jmj��

�
1




Z �1
0

kdk
2	

ln
�

1� exp��
!k�

1� exp��
!0k�

�
:

(112)

This result was previously obtained as Eq. (3.17) in MZJ.
 0, > 0, > cµ λ λR ρ = ρ λ+( c) > 0

ρ = ρ_ λ( c) < 0

 0, > 0, cµ λ < λR ρ = ρ λ+( c) > 0

λ = λc

model at zero temperature in the large-N approximation. We plot
� �R=�1� �=�c�.
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C. Hartree approximation

For the Hartree approximation, the gap equation (46c)
becomes

��t� � �� 3�=4��2�t� � g0�t; t�=i�; (113a)

R�t� � 3�=2
�
��t���2�t� � g0�t; t�=i�

�
�
2
�4 � Tr�g2�t; t��=i

�
: (113b)

Here, we have set N � 1. The Green function in the
vacuum is the same as in the large-N approximation, and
is given by Eq. (84). So the gap equations in the vacuum are
given by

� � ��
3�
4

�
�2 �

Z � d3k

�2	�3
1

k2 � �2 � R

�
; (114a)

R �
3�
2
�
�
�2 �

�
2
�4 �

Z d3k

�2	�3




�
1

k2 � �2 � R
�

1

k2 � �2

��
: (114b)

We renormalize Eq. (114a) by subtracting it about the
point k2 � 0 with a renormalized constant �R defined by

�R � ��
3�
4

Z � d3k

�2	�3
1

k2 : (115)

This gives the renormalized gap equation:

� � �R �
3�
4

�
�2 �

1

4	
jmj

�
; (116)

where m2 � �2 � R. Equation (114b) is finite, and yields

R �
3�
2
�
�
�2 �

1

4	
�jmj � j�j�

�
�

3�2

4
�4: (117)

From Eq. (47), and using (70) and (71), and the renor-
malization prescription (115), the Hartree effective poten-
tial for N � 1 is given by

VH��;F; �; R� � Vc��;F; �; R� � Vq��; R�: (118)

The classical part is now given by

Vc��;F; �; R� � ��F�
1

2
F2 �

1

2
R�2 �

�
2
F�3

�
2

3�
R��R � ��: (119)

The quantum part is the same as in the large-N case and is
given by Eq. (100). So the effective potential in the vacuum
for the Hartree approximation is given by
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VH��;F; �; R� � ��F�
1

2
F2 �

1

2
R�2 �

�
2
F�3

�
2

3�
R��R � �� �

1

12	
�jmj3 � j�j3�:

(120)

The minimum of the potential is when

F � ���
�
2
�3; (121)

at which point, the effective potential is given by

VH��;�;R� �
1

2
m2�2�

�
2
��4�

�2

8
�6�

2

3�
R��R� ��

�
1

12	
�jmj3� j�j3�: (122)

Minimizing with respect to � and R again gives the gap
equations, (116) and (117). At the minimum, the effective
potential can be written as

VH��;�� �
1

2
�2�2 �

�
2
��4 �

�2

8
�6

�
1

24	
�jmj � j�j�2�jmj � 2j�j�; (123)

where we note the terms proportional to �4 and�6 present
in the Hartree potential in contrast with the leading-order
large-N result [see Eq. (104)]. This is because the Hartree
approximation sums all the bubble graphs in all the chan-
nels available in the scattering of 4 and 6 particles. For
example, in purely scalar O�N� �4 theory, when we con-
sider scattering of a�i particle with a�j particle (i � j) in
the Hartree approximation, the scattering graphs consist of
N sums of dressed bubble chain diagrams in the t channel
and one set of bubble chains in each of the s and u
channels. However, in the leading-order large-N approxi-
mation, one ignores the s and u channel diagrams and just
obtains the t channel exchange of the composite field � ( �
�i�i� propagator, which is the sum of all the bubble
graphs. The SUSY �4 theory includes both quartic and
sextic scattering of scalars and again when N � 1 in the
Hartree approximation, more channels contribute than at
large-N. If one calculated the Hartree phase diagram for
arbitrary N, we would find that the phase diagram result
would interpolate between the N � 1 result presented here
for the Hartree approximation and the leading-order
large-N result. This is because the Hartree approximation
becomes exact (and equivalent to the leading-order large-N
expansion) as N ! 1. One gets a smooth change (with
1=N) from the graphs that are important at N � 1 to the
reduced number of graphs contributing at large N.

The minimum of (123) with respect to � occurs when

@VH��;��
@�

�

�
�2 � 2���2 �

3

4
�2�4

�
� � 0; (124)

which gives the solutions � � 0 and � � ��, where
-10
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�2
� �

2j�j
�

; �2
� �

2j�j
3�

: (125)

Unlike Eq. (102) we notice that spontaneous symmetry
breaking does not lead to massless particles. This apparent
defect in the case of the Hartree approximation of theO�N�
model has been discussed extensively in the literature; a
review of the literature and the solution of how to restore
the Goldstone theorem in this approximation has recently
been given in Refs. [27,28].

When � � 0, the minimum of the potential is

VH�� � 0� �
1

24	
�jmj � j�j�2�jmj � 2j�j�; (126)

which will reach its lowest value for m � j�j, or R � 0.
When � � 0, Eq. (125) requires that the minimum occurs
at positive �, so that at the minimum

VH�� � 0; �� � VH�� � 0; �� �
�2

9

�
�2 �

2�
�

�
: (127)

From this we determine

VH���; �� � VH�� � 0; ��; (128)

VH���; �� � VH�� � 0; �� �
4�3

27�
: (129)

We conclude that an absolute minimum is located at ��,
which has the same energy as the minimum at � � 0.

When � � 0, the phase structure of the vacuum in the
Hartree approximation is the same as in the leading-order
large-N case, with the replacement �! 3�. When � � 0,
however, the phase structure in the Hartree approximation
φ = 0,

ρ = ρ_ λ( c) < 0

φ = 0,

φ = 0, < 0, 3 cµ λ < λR φ = 0,

φ = 0, < 0, 3 c/2µ λ < λR

φ = 0,

ρ = ρ_ λ( c) < 0
φ = 0, < 0, 3 cµ λ < λR

ρ = −2 ρ_ λ( c/2) > 0

φ = 0,

µR 0=

FIG. 3 (color online). Phase structure of the supersymmetric O�N�
�R on the x axis and � > 0 on the y axis, and have defined here, th
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is different. We have

m � � �
2�R

�3��=�8	� � 1
> 0; (130)

which can be satisfied if either �R > 0 and 3� > �c=2 �
8	, or �R < 0 and � < �c=2.

So, even though the phase structure of the leading-order
large-N and the Hartree approximation for N � 1 obey the
same equations when the symmetry is not broken, for the
broken-symmetry case the two theories are quite different.
The Hartree approximation yields finite masses for the
fermion and boson masses, whereas in the leading-order
large-N the particles are massless in the broken-symmetry
phase for N � 1. Furthermore the degenerate ground-state
structure differs in the two theories. We summarize the
Hartree results in Fig. 3.

For completeness, we note here that the effective poten-
tial at finite temperature in the Hartree approximation is
obtained as

VH��;�;R;
��
1

2
m2�2�

�
2
��4�

�2

8
�6�

2

3�
R��R���


�
1

12	
�jmj3�j�j3��

1




Z �1
0

kdk
2	


 ln
�

1�exp��
!k�

1�exp��
!0k�

�
: (131)

At the minimum of the potential, � and R satisfy the finite
temperature gap equations:
> 0, 3 > cµ λ λR ρ = ρ λ+( c) > 0

ρ = ρ_ λ( c) < 0

> 0, 3 cµ λ < λR

> 0, 3 cµ λ < λR

ρ = ρ λ+( c) > 0

> 0, 3 c/2µ λ < λR
ρ = −2 ρ_ λ( c/2) > 0

ρ = ρ λ+( c) > 0

> 0, 3 c/2µ λ > λR
ρ = −2 ρ_ λ( c/2) > 0

3 cλ = λ

3 c/2λ = λ

model at zero temperature in the Hartree approximation. We plot
e notation ����c� � �R=�1� 3�=�c�.
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� � �R �
3�
4

�
�2 �

jmj
4	
�

1

2	

ln�1� exp��
jmj��

�
;

(132a)

R �
3�
2
�
�
�2 �

�
2
�4 �

1

2	

fln�2 sinh�
jmj=2��

� ln�2 cosh�
j�j=2��g
�
: (132b)

Finally, at the minimum, the potential can be written as

Veff��;�;m;
� �
1

2
�2�2 �

�
2
��4 �

�2

8
�6 �

1

24	


 �jmj � j�j�2�jmj � 2j�j� �
m2 � �2

4	



 ln�1� exp��
jmj�� �
1




Z �1
0

kdk
2	


 ln
�

1� exp��
!k�

1� exp��
!0k�

�
: (133)
IV. CONCLUSIONS

We have computed the effective potentials for a three-
dimensional supersymmetric �4 model in the large-N and
Hartree approximations at zero temperature and at finite
temperature. Both models lead to a rich degenerate ground-
state structure. We find that the ground state preserves
supersymmetry but can have different structure depending
on the choice of coupling constant, renormalized mass and
the approximation scheme. One interesting choice of pa-
rameters leads to the coexistence of a phase with broken
and unbroken O�N� symmetries (or parity symmetry if
N � 1). The existence of this situation leads to the inter-
esting question of which vacuum an initial state prepared at
high temperature will relax into. This will be the subject of
a future investigation. Another interesting question is
whether the resummed next to leading order in large-N
approximation obtained from the self-consistent
Schwinger-Dyson equations will lift the degeneracy of
the vacuum. The main point of this paper was to present
the conceptual (and calculational) framework for doing
dynamical simulations in supersymmetric quantum field
theories.
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APPENDIX A: MAJORANA REPRESENTATION IN
2� 1 DIMENSIONS

In three dimensions, we can choose the Dirac �matrices
to satisfy a two-dimensional Clifford algebra:
016007
f��; ��g � ���� � ���� � 2���; (A1)

with ��� � diag�1;�1;�1�. The Majorana representation
in 2� 1 dimensions is given by the choices:

�0 � ��0�y � 
2 �
0 �i
i 0

� �
; (A2)

�1 � ���1�y � i
3 �
i 0
0 �i

� �
; (A3)

�2 � ���2�y � i
1 �
0 i
i 0

� �
: (A4)

With these choices, ����
 � ���, and ����y � �����T ,
which is just the opposite of the situation for the Weyl
representation. 
, �5, the Hermitian conjugate (C) and
complex conjugate (Ĉ) operations are defined by


��
 � ����y; (A5)

�5���5 � ���; (A6)

C��C�1 � �����T � ����y; (A7)

Ĉ��Ĉ�1
� �����
 � ��: (A8)

From which we take


��
�y ���
�T���
�
 ��
��1��0�
0 �i
i 0

� �
;

(A9)

�5���5�y ���5�T���5�
 ���5��1���0�1�
0 1
1 0

� �
;

(A10)

C ��C�y ���C�T���C�
 ��C��1�
�
0 �i
i 0

� �
;

(A11)

Ĉ � �Ĉ�y � �Ĉ�T � �Ĉ�
 � �Ĉ��1 � C
 �
1 0
0 1

� �
:

(A12)

With these selections, �5, 
, and C obey the relations:

f�5; 
g � �
;C� � fC; �5g � 0: (A13)

These commutation and anticommutation relations differ
from the situation in 3� 1 dimensions. We write a two-
component spinor  and � �  y
 as

 �
 1

 2

� �
; � � i 
2; �i 



1

� 	
: (A14)

Then a Majorana spinor satisfies

 �  c � Ĉ 
 �  
; (A15)
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which means that Majorana spinors are real,  
1 �  1 and
 
2 �  2.
APPENDIX B: MAJORANA GRASSMANN
QUANTITIES

In the Majorana representation, we define a real two-
component column Majorana Grassmann spinor � by

� �
�1

�2

� �
; (B1)

with �1 and �2 real. The imaginary two-component row
spinor �� is defined by

�� � �T
 � i�2;�i�1 � ��1; ��2;
� 	� 	

(B2)

where ��1 � i�2 and ��2 � �i�1 are imaginary Grassmann
variables. In component notation, we have

�� b � �a
ab and �b � ��a
ab: (B3)

The Grassmann variables all anticommute:

f�a; �bg � f�a; ��bg � f ��a; �bg � f ��a; ��bg � 0: (B4)

This means that �2
a � 0 and ��2

a � 0 (no sum over a re-
quired here). We find the useful relations:

�� 	 � � i��2�1 � �1�2� � �2i�1�2;

��a�b �
1
2

�� 	 ��ab:
(B5)

Grassmann derivative operators are defined by

@a �
@
@�a

and �@a �
@

@ ��a
; (B6)

so that @1 and @2 are real and �@1 � �i@2 and �@2 � i@1 are
imaginary. We follow convention and reverse the definition
of row and column matrices for the derivatives, and write

�@ �
�@1
�@2

� �
and @ � @1@2� � � �@T
: (B7)

In component notation, we have

@b � �@a
ab and �@b � @a
ab: (B8)

So we find

@a�b � �@a ��b � �ab; @a ��b � 
ab; �@a�b � 
ba;

(B9)

so that �� is not independent of �. The differential operators
obey the following anticommutator relations:

f@a; @bg � f �@a; �@bg � f@a; �@bg � 0: (B10)

This means that @2
a � 0 and �@2

a � 0 (no sum over a re-
quired here). We also have

f@a; �bg � f �@a; ��bg � �ab; f@a; ��bg � 
ab;

f �@a; �bg � 
ba:
(B11)
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It is useful to define the integration measure with a factor of
i=2 so that we have the relations:

d2� �
1

2
d ��1d�1 �

i
2
d�2d�1;Z

d2� �
Z
d2��a � 0;

Z
d2� ��a�b �

1

2
�ab;Z

d2� �� 	 � � 1:

(B12)

With this convention, the Grassmann two-dimensional
delta function for two anticommuting Grassmann quanti-
ties is given by

�2��� �0� � � ��� ��0� 	 ��� �0�

� �� 	 �� �� 	 �0 � ��0 	 �� ��0 	 �0

� �� 	 �� 2 �� 	 �0 � ��0 	 �0: (B13)

If � and � are two anticommuting Majorana Grassmann
spinors, we have the useful identities:

�� 	� � �� 	 �; �� 	 �� 	� � � �� 	 �� 	 �; (B14)

�� a�b � �a;b� �� 	 ��=2; �� 	 �� 	 � � 0; (B15)

@a� �� 	 �� � �@a ��b��b � ��b�@a ��b� � �2 ��a; (B16)

�@ a� �� 	 �� � � �@a ��b��b � ��b� �@a ��b� � �2�a; (B17)

�@ 	 �@�� �� 	 �� � 4: (B18)

The supercharge generators Q and �Q and the superderiva-
tive operators D and �D are defined by

Q � � �@� i@6 	 �; D � � �@� i@6 	 �;

�Q � �@� i �� 	 @6 ; �D � �@� i �� 	 @6 ;
(B19)

where we have used the Dirac slash notation, @6 � ��@�.
The Q operators obey the superalgebra:

fQa; �Qbg � �2i����ab@�; fQa;Qbg � 0;

f �Qa; �Qbg � 0:
(B20)

Thus we find

Q 	Q � �Q 	 �Q � 0;

Q 	 �Q� �Q 	Q � �2iTrf��g@� � 0:
(B21)

The D operators satisfy a similar superalgebra but with a
reversed sign:

fDa; �Dbg � 2i����ab@�; fDa;Dbg � 0;

f �Da; �Dbg � 0:
(B22)
-13
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So we find

D 	D � �D 	 �D � 0;

D 	 �D� �D 	D � 2iTrf��g@� � 0:
(B23)

The Q and D operators anticommute:

fDa;Qbg � f �Da; �Qbg � fDa; �Qbg � f �Da;Qbg � 0:

(B24)

The operators Q and D are related by

Q � D� 2 �@; �Q � �D� 2@: (B25)

We also find

�D 	D � ��@� i �� 	 ��@�� 	 � �@� i�� 	 �@��

� �@ 	 �@� i�@ 	 �� 	 �� �� 	 �� 	 �@�@�

� �� 	 �� 	 �� 	 �@�@�

� �@ 	 �@� 2i �� 	 �� 	 �@@� � � �� 	 ���; (B26)

where @ 	 �@ � @1
�@1 � @2

�@2 and � � @2
t � @

2
x. From

Eq. (B13), we find

�D 	D���; �0� � �4ei ��	@6 	�0 : (B27)
APPENDIX C: TEMPERATURE DEPENDENT
SUPERGREEN FUNCTIONS

We use a complex time formalism for the temperature
dependent Green functions. The superperiodic boundary
condition on the superfield is then given by

�i�x; 
; �� � �i�x; 0;���: (C1)

So the fields and Green functions can be expanded in a
Fourier series for the imaginary time variable, and a
Fourier integral for the space variable. We consider here
only spacial homogeneous systems. Thus for the fields, we
write

��x; �;�� �
Z d2k

�2	�2
eik	x




X�1
n��1

�
~�n�k�e

i!n�

� �� 	 ~ n�k�e
i!0n��

1

2
� �� 	�� ~Fn�k�e

i!n�
�
; (C2)

where 
 � 1=kBT and !n and !0n are the Bose and Fermi
Matsubara frequencies:

!n � 	2n=
; for boson fields;

!0n � 	�2n� 1�=
; for Fermi fields:
(C3)

The Green functions are expanded according to
016007
G�x;�;�;x0;�0;�0��
Z d2k

�2	�2
1






X�1

n��1

~Gn�k;�;�0�ei�k	�x�x0��!n����0��:

(C4)

~Gn�k; �; �0� satisfies

��@ 	 �@� 2i �� 	 k6 0n 	 �@� �� 	 �k2
n � �����


 ~Gn�k; �; �0� � �2��� �0�: (C5)

Here k�n � �!n;k� and k0�n � �!0n;k� are the Euclidean
vectors, with k6 � ���kn�� and k6 0 � ���k0n��. We find

~Gn�k;�;�0�� �� 	
ik6 0n��

k02n ��
2 	�

0

�
1� 1

2�
�� 	�� ��0 	�0��� 1

4
�� 	� ��0 	�0�k2

n��2�

k2
n��

2�R

(C6)

in agreement with MZJ [22] [Eq. (2.7)]. The diagonal
elements of ~Gn�k; �; �0� are given by

~Gn�k; �; �� �
1� �� 	 ��

k2
n � �2 � R

�
�� 	 ��

k02n � �2 : (C7)

We define

!k �
��������������������������
k2 � �2 � R

q
; (C8)

!0k �
�����������������
k2 � �2

q
: (C9)

Then the sum over n is given by

X�1
n��1

1

!2
n �!

2
k

�



2!k
coth�
!k=2�

�



2!k
�1� 2n��
!k��;

X�1
n��1

1

!02n �!
02
k

�



2!0k
tanh�
!0k=2�

�



2!0k
�1� 2n��
!

0
k��;

(C10)

where we have n��x� � �ex � 1��1. So

1




X�1
n��1

~Gn�k; �; �� �
coth�
!k=2�

2!k
� ��

	 �
�
� coth�
!k=2�

2!k

�
� tanh�
!0k=2�

2!0k

�
: (C11)
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For the large-N approximation, the thermal gap equation
becomes

���� � 2��
�
2

X
i

�2
i ��� �

�
2

Z d2k

�2	�2

�
coth�
!k=2�

2!k

� �� 	 �
�
� coth�
!k=2�

2!k
�
� tanh�
!0k=2�

2!0k

��
;

(C12)

from which we find, for N � 1,

� � ��
�
4
�2 �

�
4

Z � d2k

�2	�2
coth�
!k=2�

2!k
; (C13a)

R �
�
2
�F�

�
2

Z d2k

�2	�2

�
� coth�
!k=2�

2!k

�
� tanh�
!0k=2�

2!0k

�
: (C13b)

Here we have used a finite cutoff � so as to make the
integral in Eq. (C13a) finite. We renormalize this by defin-
ing

�R � ��
�
4

Z �

0

kdk
2	

1

2
�����
k2
p ; (C14)

so that Eq. (C13a) becomes

� � �R �
�
4
�2 �

�
8	


ln�2 sinh�
m=2��; (C15)

where again m2 � �2 � R. Equation (C13b) is finite, and
becomes

R �
�
2
�F�

��
4	


fln�2 sinh�
m=2��

� ln�2 cosh�
�=2��g:

Multiplying (C15) by 2� and subtracting it from (C16)
yields

R � �
�
2����R� �

�
4	


ln�2 cosh�
�=2��
�
; (C16)

along the line where F � ��.
The effective potential at finite temperature for large-N

is written as the sum of two terms:

Veff��;F;�; R;
� � Vc��;F;�; R� � Vq��; R;
�;

(C17)

where the classical part is given by

Vc��;F;�; R� � ��F�
1

2
F2 �

1

2
R�2 �

2

�
R��R � ��:

(C18)

At the minimum, where F � ��, Vc��;��;�; R� be-
016007
comes

Vc��;�; R� �
1

2
m2�2 �

2

�
R��R � ��: (C19)

For the quantum part Vq��; R�, we define Wq��; R; �� by

Vq��; R;
� �
Z
d2�Wq��; R; �;
�: (C20)

For d � 3, Wq��; R; �� is given by

Wq��; R; �;
� �
1

8	

Z 1
0
kdk

�
1

i


X�1
n��1

ln� ~G�1
n �k; �; ���

�
����

2
�����
k2
p

�
: (C21)

Again, we can write

�Wq��; R; �;
�

�����
� W0��; R;
� �

1

2
�� 	 �W1��; R;
�;

(C22)

with

W0��; R;
� � �
1

4	

ln�2 sinh�
m=2��; (C23)

and

W1��; R;
� � �
N�

2	

fln�2 sinh�
m=2��

� ln�2 cosh�
�=2��g: (C24)

Again, we have

����; R� � 2��� �� 	 ��R; (C25)

so

�Wq��; R; �;
� � 2W0��; R���� �� 	 ��W0��; R;
��R

�W1��; R;
����: (C26)

We now want to find a common function Vq��; R;
� such
that

@Vq��; R;
�

@R
� W0��; R;
�;

@Vq��; R;
�

@�
� W1��; R;
�:

(C27)

We can use the following identities:
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�n��
!k�

!k
�

1



@
@�
fln�1� exp��
!k��g;

�n��
!
0
k�

!0k
� �

1



@
@�
fln�1� exp��
!0k��g;

n��
!k�

2!k
�

1



@
@R
fln�1� exp��
!k��g:

So the function we seek is

Vq��; R;
� �
1

12	
�j�j3 � jmj3� �

1

2	




Z �1

0
kdk ln�1� exp��
!k��

�
1

2	


Z �1
0

kdk ln�1� exp��
!0k��:

(C28)
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Thus the effective potential at finite temperature and along
the line F � �� is given by

Veff��;�;R;
��
1

2
m2�2�

2

�
R��R���

�
1

12	
�j�j3�jmj3�

�
1

2	


Z �1
0

kdkln�1�exp��
!k��

�
1

2	


Z �1
0

kdkln�1�exp��
!0k��:

(C29)
This expression agrees with Eq. (101) in the vacuum when
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