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Influence of finite chemical potential on the critical number of fermion flavors in QED3
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Based on the rainbow approximation of Dyson-Schwinger equation and the assumption that the inverse
dressed fermion propagator at finite chemical potential is analytic in the neighborhood of � � 0, A new
method for calculating the dressed fermion propagator at finite chemical potential in QED3 is developed.
From this the effects of the chemical potential on the critical number of the fermion flavors is evaluated.
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I. INTRODUCTION

Quantum electrodynamics in (2� 1) dimensions
(QED3) is a well studied field-theoretical model. It exhibits
several interesting features, similar to quantum chromody-
namical (QCD), for instance dynamical chiral symmetry
breaking (DCSB) [[1–14]] and confinement [[15–17]].
Moreover, it is superrenormalizable so that it is not
plagued with ultraviolet divergences. Thus, QED3 is an
ideal model to study nonperturbative phenomena. In addi-
tion, QED3 can be applied in condense matter physics to
unpuzzle some realistic microscopic mechanisms
[[18,19]]. Especially, since the discovery of the high-Tc
superconductivity, QED3 have attracted more attention. It
is general believed that QED3 with N flavors can be
regarded as a possible effective theory for high-Tc super-
conductivity in underdoped cuprates [[20–26]].

As is well known, the Lagrangian of QED3 with N
fermion flavors in Euclidean space is

L �
XN
i�0

� i�i@6 � eA6 � i �
1

4
F2
�� �

1

2�
�@�A��

2: (1)

This Lagrangian has chiral symmetry in the absence of
mass term m0

�  . However, chiral symmetry is broken
spontaneously due to the generation of a fermion mass,
i.e. dynamical chiral symmetry breaking. Several research
works show that DCSB occurs when the number of the
fermion flavor N is less than a critical number Nc
[[3,9,10]].

The above result holds at zero density but is expected to
change when the density is nonzero. Since high-Tc super-
conductivity is discovered in condense matter systems
where the density is not zero, one should consider the
influence of the density or chemical potential. Therefore,
it is very interesting to study the effects of the chemical
potential on the critical number of the fermion flavors.

In this paper, the relation between the critical number of
the fermion flavors Nc and the chemical potential � is
investigated by analyzing the Dyson-Schwinger equation
address: zonghs@chenwang.nju.edu.cn
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(DSE) for the self-energy in the rainbow approximation of
the fermion propagator. We shall see thatNc decreases with
the increasing chemical potential.
II. THE FERMION PROPAGATOR AT FINITE
CHEMICAL POTENTIAL

In Euclidean space, the Lagrangian of massless QED3

with N fermion flavors at finite chemical potential � reads,
ignoring the issues discuss in [16],

L �
XN
i�0

� i�i@6 � eA6 ���3� i �
1

4
F2
�� �

1

2�
�@�A��

2;

(2)

where the 4� 1 spinor  i represent the fermion field and
i � 1; . . . ;N are flavor indices. The term �� � �3 shows
the influence of chemical potential �.

In order to motivate our new method for calculating the
dressed fermion propagator at finite chemical potential, let
us first recall the methods adopted in the previous litera-
tures [27–29]. As just described in Eq. (2), the introduction
of chemical potential to Euclidean QED3 breaks the origi-
nal O�3� symmetry to O�2�. In this case, the most general
form for the dressed fermion propagator at finite chemical
potential reads (due to the presence of medium)

Ŝ�1��;p� � i ~� � ~pA�p2; u � p� ���3C�p2; u � p�

�B�p2; u � p� ���3 ~� � ~pD�p
2; u � p�;

(3)

where ui�i � 1; 2; 3� denotes the relative velocity of the
medium which in the rest frame of the medium can be
written as ui � �~0; 1�. Substituting Eq. (3) into the DSE
satisfied by the dressed fermion propagator at finite chemi-
cal potential and by means of suitable projection procedure
(multiplying by appropriate gamma matrices and then
taking the trace), the four independent scalar function
A�p2; u � p�, B�p2; u � p�, C�p2; u � p�, and D�p2; u � p�
are found to satisfy a coupled set of Dyson-Schwinger
equations in QED3. In principle, for a given model
fermion-boson vertex, one can numerically solve these
-1 © 2006 The American Physical Society
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coupled DSE. However, the numerical solution turns out to
be rather difficult in practice (the last term on the right
hand of Eq. (3) was dropped in Refs. [28,29]). In order to
avoid the difficulty of numerically solving the four inde-
pendent coupled integral equations in QED3, here we shall
adopt a new method for calculating the dressed fermion
propagator at finite chemical potential.

In the lattice treatment of finite-density QCD it is gen-
erally believed that physical quantities are analytic in the
neighborhood of � � 0 and two kinds of methods, i.e the
Taylor expansion in powers of � and analytic continuation
from simulations at imaginary � are adopted [30–32]. We
expect that this is also the case in QED3. Thus it is
interesting to study the full fermion propagator at finite
chemical potential by assuming its analyticity property.
According to this assumption, we can expand the full
inverse fermion propagator at finite chemical potential,
Ŝ�1��;p� in powers of � as follows:

Ŝ�1��;p� � Ŝ�1��;p�j��0 �
@Ŝ�1��;p�

@�

����������0
�

�
1

2!

@2Ŝ�1��;p�

@�2

����������0
�2 � � � �

�
1

n!

@nŜ�1��;p�
@�n

����������0
�n � � � �

� ��0� � ��1��p���
1

2!
��2��p��2 � � � �

�
1

n!
��n��p� � � � � ; (4)

where ��0�;��1� and ��n� are defined as

��0��p� � Ŝ�1��;p�j��0 � S�1�p�

� i� � pA�p2� � B�p2�; (5)

��1��p� �
@Ŝ�1��;p�

@�

����������0
; (6)

��n��p� �
@nŜ�1��;p�

@�n

����������0
: (7)

Obviously, Eq. (4) is only valid within the radius of con-
016004
vergence of � expansion and may be inadequate at large
values of �, particularly near any critical one.

Using the Lagrangian in Eq. (2) and adopting the rain-
bow approximation, we can get the DSE for the inverse
fermion propagator at nonzero �

Ŝ�1��;p� � i� � p���3

�
Z d3k

�2��3
��Ŝ��; k���D���q�: (8)

with q � p� k and e2 � 1. It should be noted here that
the photon propagator D���q� does not evolve with �
(where we have assumed that the effect of chemical po-
tential on the photon propagator arising through fermion
loops is small in comparison with that on the fermion
propagator. This is a commonly used approximation in
calculating the dressed fermion propagator at finite chemi-
cal potential [27–29,33]).

Applying the differential operation @
@� on both sides of

Eq. (8), we get

@Ŝ�1��;p�
@�

� ��3 �
Z d3k

�2��3
��

@Ŝ��; k�
@�

��D���q�

� ��3 �
Z d3k

�2��3
��Ŝ��; k�

@Ŝ�1��; k�
@�

� Ŝ��; k���D���q�; (9)

where we have employed the following identity:

@Ŝ��; k�
@�

� �Ŝ��; k�
@Ŝ�1��; k�

@�
Ŝ��; k�: (10)

Setting � � 0, Eq. (9) is reduced to an integral equation
satisfied by ��1�,

��1��p� � ��3 �
Z d3k

�2��3
��S�k��

�1��k�S�k���D���q�:

(11)

Applying the differential operation @
@� on both sides of

Eq. (9) successively n�n 	 2� times and subsequently set-
ting � � 0, we obtain the following:
��n��p� �
@nŜ�1��;p�

@�n j��0 �
Z d3k

�2��3
��

�
@n�1

@�n�1

�
Ŝ��; k�

@Ŝ�1��; k�
@�

Ŝ��; k�
������������0

��D���q�: (12)
For instance, when n � 2, we have the following:
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��2��p� �
Z d3k

�2��3
��

�
@
@�

�
Ŝ��; k�

@Ŝ�1��; k�
@�

Ŝ��; k�
������������0

��D���q�

�
Z d3k

�2��3
��Ŝ�0; k��

�2��k�Ŝ�0; k���D���q� � 2
Z d3k

�2��3
��Ŝ�0; k��

�1��k�Ŝ�0; k���1��k�Ŝ�0; k���D���q�; (13)
where we have used Eq. (10).
In the following, we will discuss the relation between

@nŜ�1�p�
@��ip3�

n and ��n��p� and show that they are equal to each
other under the rainbow approximation and the assumption
that the photon propagator is �-independent.

Now we will prove that the equation is tenable at n � 1,
i.e.,

��1��p� �
@S�1�p�
@��ip3�

: (14)

Setting � � 0 and then applying the differential opera-
tion @

@��ip3�
on both sides of Eq. (8), we obtain
016004
@S�1�p�
@��ip3�

� ��3 �
Z d3k

�2��3
��S�k���

@D���q�

@��ip3�

� ��3 �
Z d3k

�2��3
��S�k���

@D���q�

@��ik3�

� ��3 �
Z d3k

�2��3
��

@S�k�
@��ik3�

��D���q�;

(15)
where we have used integration by parts. Making use of an
identity to analogous Eq. (10), we can rewrite Eq. (15) as
@S�1�p�
@��ip3�

� ��3 �
Z d3k

�2��3
��S�k�

@S�1�k�
@��ik3�

S�k���D���q�: (16)

From Eqs. (11) and (16), we see that ��1��p� and @S�1�p�
@��ip3�

satisfy identical integral equation and are therefore equal to each
other, so the so-called vector Ward identity hold.

Applying the differential operation @
@��ip3�

on both sides of Eq. (16), we obtain

@2S�1�p�

@��ip3�
2
�
Z d3k

�2��3
��

�
S�k�

@S�1�k�
@��ik3�

S�k�
�
��
@D���q�

@��ip3�
� �

Z d3k

�2��3
��S�k�

S�1�k�
@��ik3�

S�k���
@D���q�

@��ik3�

�
Z d3k

�2��3
��

@
@��ik3�

�
S�k�

@S�1�k�
@��ik3�

S�k�
�
��D���q�

�
Z d3k

�2��3
��S�k�

@2S�1�k�

@��ik3�
2 S�k���D���q� � 2

Z d3k

�2��3
��S�k�

@S�1�k�
@��ik3�

S�k�
@S�1�k�
@��ik3�

S�k���D���q�: (17)

Comparing Eqs. (13) and (17), we find that ��2��p� � @S�1�p�
@��ip3�

2 comes into existence, too.

The general case can be proved by induction. Assuming

��n��p� �
@nS�1�p�
@��ip3�

n ; (18)

holds for n 
 m�m 	 2�. Then we have

��m�1��p� �
@m�1Ŝ�1��;p�

@�m�1

����������0
�
Z d3k

�2��3
��

�
@m

@�m

�
Ŝ��; k�

@Ŝ�1��; k�
@�

Ŝ��; k�
������������0

��D���q�

�
Z d3k

�2��3
��Ŝ��; k�

@m�1Ŝ�1��; k�

@�m�1 Ŝ��; k�
����������0

��D���q�

�
Z d3k

�2��3
��f

�
@mŜ�1��; k�

@�m ; � � � ;
@Ŝ�1��; k�

@�
; Ŝ��; k�

�����������0
��D���q�

�
Z d3k

�2��3
��S�k��

�m�1��k�S�k���D���q� �
Z d3k

�2��3
��f��

�m��k�; � � � ;��1��k�; S�k����D���q�; (19)

and
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@m�1S�1�p�

@��ip3�
m�1 �

Z d3k

�2��3
��

�
S�k�

@S�1�k�
@��ik3�

S�k�
�
��
@mD���q�

@��ip3�
m

�
Z d3k

�2��3
��

@m

@��ik3�
m

�
S�k�

@S�1�k�
@��ik3�

S�k�
�
��D���q�

�
Z d3k

�2��3
��S�k�

@m�1S�1�k�

@��ik3�
m�1 S�k���D���q�

�
Z d3k

�2��3
��h

�
@mS�1�k�
@��ik3�

m ;
@m�1S�1�k�

@��ik3�
m�1 ; � � � ;

@S�1�k�
@��ik3�

; S�k�
�
��D���q�; (20)

It is apparent that f���m��k�; � � � ;��1��k�; S�k�� and h�@
mS�1�k�
@��ik3�

m ; � � � ; @S
�1�k�

@��ik3�
; S�k�� have identical structures. According to the

induction hypothesis, we see that �m�1�p� and @m�1S�1�p�
@��ip3�

m�1 satisfy the same integral equation and are therefore equal.
Form Eq. (4) and the above results, we can write

Ŝ�1��;p� � ��0� � ��1���
1

2!
��2��2 � � � � � ��n��n � � � �

� S�1�p� �
@S�1�p�
@��ip3�

��
1

2!

@2S�1�p�

@��ip3�
2 �

2 � � � � �
1

n!

@nS�1�p�
@��ip3�

n � � � �

� S�1�p� �
@S�1�p�
@p3

�i�� �
1

2!

@2S�1�p�

@�p3�
2 �i��

2 � � � � �
1

n!

@nS�1�p�
@�p3�

n �i��
n � � � �

� S�1� ~p; p3 � i�� � S�1�~p� � i� � ~pA�~p2� � B�~p2�; (21)
where ~p � � ~p; p3 � i��. Comparing Eq. (21) with Eq. (3)
obtained from general Lorentz structure analysis, we see
that the function D�p2; u � p� vanishes and the other two
functions A�p2; u � p� and C�p2; u � p� are not indepen-
dent under the rainbow approximation and the assumption
that the photon propagator is �-independent. Therefore,
the number of independent functions contained in the
dressed fermion propagator at finite � is reduced from 4
to 2.

Equation (21) clearly shows that under the rainbow
approximation and the assumption that the photon propa-
gator is �-independent there are only two independent
Lorentz structures in the dressed fermion propagator at
finite chemical potential and furthermore the dressed fer-
mion propagator at finite � can be obtained by making the
substitution p3 ! p3 � i� in the dressed fermion propa-
gator at � � 0 (In QCD a similar result for the dressed
quark propagator at finite chemical potential was also
obtained in Ref. [33]). This feature obviously facilitates
the numerical calculations considerably.

III. NUMERICAL CALCULATIONS OF FERMION
PROPAGATOR AT FINITE CHEMICAL

POTENTIAL

The photon propagator and its Dyson-Schwinger equa-
tion reads

D���q� �
��� � �1� ��q�q�=q

2

q2 ���q2�
; (22)
016004
����q2� � �N
Z d3k

�2��3
Tr�S�k���S�q� k����; (23)

with the relation between the vacuum polarization ��q2�
and ����q2�

����q
2� �

�
��� �

q�q�
q2

�
��q2�; (24)

where � is the gauge parameter. For convenience, we will
employ Landau gauge in the following.

Using Eqs. (8) and (21)–(24), we obtain the coupled DS
equations in QED3 at finite chemical potential.

A�~p2� � 1�
1

4ep2

Z d3k

�2��3
Tr�i�� � ~p���Ŝ��; k�

� ��D���p� k��

� 1�
2ep2

Z d3k

�2��3

�
A2�~k2��~p � q��~k � q�=q2

�A2�~k2�~k2 � B2�~k2���q2 ���q2��
(25)

B�~p2� �
1

4

Z d3k

�2��3
Tr���Ŝ��; k���D���q��

�
Z d3k

�2��3
2B�~k�

�A2�~k2�~k2 � B�~k2���q2 ���q2��
:

(26)
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��q2� � 2N
Z d3k

�2��3

�
A�k2�A�p2��2k2 � 4�k � q� � 6�k � q�2=q2�

�A2�k2�k2 � B2�k2���A2�p2�p2 � B2�p2��
;

(27)

where q � p� k. Here we note that the derivation of
Eq. (27) involves some mathematical tricks. For more de-
tails we refer the readers to Ref. [9]. If � is set to be zero,
Eqs. (25) and (26) reduce to the corresponding equations at
zero chemical potential. This is just what one would expect
in advance.

It is well known that under certain conditions there are
two solutions for the above equations, the Nambu solution
and the Wigner solution . If Eqs. (25)–(27) has only trivial
solution, i.e the Wigner solution, then the fermions remain
massless and DCSB will not occur. T. Appelquist, et al.
found that Eq. (26) has only Wigner solution when N is
larger than Nc �

32
�2 ’ 3:24 [3].

In principle, A�~p2� and B�~p2� can be obtained by nu-
merically solving Eqs. (25)–(27) by iteration method just
as one solves the corresponding set of coupled equations at
� � 0. However, the numerical solution for Eqs. (25)–(27)
by iteration turns out to be rather difficult in practice.

INFLUENCE OF FINITE CHEMICAL POTENTIAL ON . . .
016004
Because of the presence of the � in the third component
of the momentum variable, the number of arguments of the
dressed fermion propagator and the independent integra-
tion dimension in Eqs. (25) and (26) is larger than those at
zero chemical potential and this fact makes it difficult to
find a stationary solutions by means of iteration method.
This situation forces us to seek another effective method
instead of the iteration method to solve Eqs. (25)–(27).

Applying the differential operation @
@�p3�

on both sides of
Eq. (8) at � � 0, we get

@S�1�p�
@p3

� i�3 �
Z d3k

�2��3
��S�k���

@�D���q��

@p3
: (28)

Similarly, applying the differential operation @
@�p3�

on both
sides of Eq. (28) �n� 1��n 	 2� times, we obtain the
following:

@nS�1�p�
@�p3�

n
� �

Z d3k

�2��3
��S�k���

@n�D���q��

@�p3�
n (29)

Using Eqs. (8), (22), (28), and (29), the full inverse
fermion propagator at finite chemical potential can be
written as
Ŝ�1��;p� � i� � ~pA�~p2� � B�~p2�

� S�1�p� �
@S�1�p�
@p3

�i�� �
1

2!

@2S�1�p�

@�p3�
2 �i��

2 � � � � �
1

n!

@nS�1�p�
@�p3�

n �i��
n � � � �

� S�1�p� ���3 �
Z d3k

�2��3
��S�k���

�@D���q�

@�p3�
3 i�� � � � �

1

n!

@nD���q�

@�p3�
n �i��

n � � � �

�

� S�1�p� ���3 �
Z d3k

�2��3
��S�k����D���~p� k� �D���p� k��

� i� � ~p�
Z d3k

�2��3
��S�k���D���~p� k�: (30)
At this point some remarks concerning the derivation of
Eq. (30) are in order. Equation (30) is formally obtained
from the Dyson-Schwinger equation in rainbow truncation
at zero chemical potential (Eq. (8) with � � 0) by replac-
ing p by ~p � � ~p; p3 � i�� (analytical continuation to
complex values of p3) and the whole procedure seems
trivial. Here we would like to point out that this is not so.
The reason is twofold. First, as a first step, one should
prove (under certain assumptions) that the dressed fermion
propagator at finite � can be obtained from the one at � �
0 by the substitution p3 ! p3 � i� as shown in Eq. (21)
and then derive Eq. (30) as we did above, otherwise the
expression Ŝ�1�~p� � i� � ~pA�~p2� � B�~p2� does not repre-
sent the dressed fermion propagator at finite� and Eq. (30)
is physically irrelevant. Second, if one directly obtains
Eq. (30) from the quark DSE at � � 0 by the substitution
p! ~p � � ~p; p3 � i��, one needs to assume that S�1�p�
and

R d3k
�2��3

��S�k���D���p� k� are analytic functions of
p3(at least in some domain of the complex p3 plain). The
analyticity of S�1�p� is expected to hold but the analyticity
of

R d3k
�2��3

��S�k���D���p� k� needs justification. The
usual argument resorting to the differentiation lemma in
complex analysis [34] depends on the properties of S�k�
and D���p� k� and is difficult to implement directly. Our
derivations (Eq. (28) to Eq. (30)) have avoided this and
provides a direct proof.

From the above equation it is clearly seen that the whole
nontrivial �-dependence of the fermion propagator is de-
termined by the �-dependence of D���~p� k�, while the
i� � ~p term only gives the trivial �-dependence. Here we
warn the reader that the introduction of �-dependence in
D���~p� k� is only a mathematical trick and the function
-5



FENG, HOU, HE, SUN, AND ZONG PHYSICAL REVIEW D 73, 016004 (2006)
D���~p� k� should not be interpreted as the actual �
dependent photon propagator.

Using Eq. (30), Eqs. (25) and (26) can be rewritten as

A�~p2� � 1�
2ep2

Z d3k

�2��3

�
A2�k2��~p � q̂��k � q̂�=q̂2

�A2�k2�k2 � B2�k2����q̂2 ���q̂2��
; (31)
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
10

-10
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-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

<
Ψ

Ψ
>

µ

N

 µ=0

 µ=10-5

 µ=10-4

 µ=10−3

FIG. 1. The dependence of the fermion condensate h �  i� on
N for several values of �.
B�~p2� �
Z d3k

�2��3
2B�k2�

�A2�k2�k2 � B2�k2���q̂2 ���q̂2��
;

(32)

with q̂ � ~p� k. By means of the mathematical trick illus-
trated in Eq. (30), we have shown that Eqs. (25) and (26) is
equivalent to Eqs. (31) and (32) and thus reduced the hard
problem of numerically solving the coupled set of DSEs
satisfied by A�~p2� and B�~p2� (Eqs. (25) and (26)) using
iteration methods into the much easier one of simple
integration (Eqs. (31) and (32)).

Just as pointed out above, it is not difficult to numeri-
cally solve Eqs. (25)–(27) at � � 0 by iteration method to
obtain A�p2�, B�p2� and ��q�. Subsequently we use the
� � 0 solution for A�p2�, B�p2� and ��q� to obtain the
wave-function renormalization factor A�~p2� and self-
energy B�~p2� at � � 0 using Eqs. (31) and (32). Here
one encounters the problem of how to determine ��q̂2�
in the numerical calculation of Eqs. (31) and (32). Our
method is to use the method of curve fitting to get an
analytical formula for ��q2� from its numerical solution
obtained by solving Eqs. (25)–(27) at � � 0. Once the
analytical formula for ��q2� is obtained one directly ob-
tains ��q̂2� by analytic continuation q! q̂ � ~p� k. In
order to check the consistency of our procedure, we have
substituted the obtained form of A�~p2�, B�~p2� and ��q̂2�
into Eqs. (25)–(27) to see whether they indeed satisfy this
set of equations. We have checked some discrete momen-
tum values � ~p; p3� for fixed N and � and found that they
indeed satisfy Eqs. (25)–(27).

In principle one could alternatively use the method of
curve fitting to determine the analytical forms of A�p2� and
B�p2� from their numerical solutions and then get A�~p2�
and B�~p2� by analytic continuation. However, such a fitting
procedure for A�p2� and B�p2� turns out to be much more
complicated than that for ��q2�, so in order to improve the
accuracy of numerical computation, we adopt the former
method in this paper.

Let us now consider the DCSB phase. Here B�p2�> 0 at
� � 0, which is a solution of Eq. (32) at N <Nc and � �
0. The originally massless bare fermion can acquire a
dynamical mass through nonperturbative effects. An order
parameter for DCSB is the chiral condensate h �  iwhich is
016004
trivially obtained from the fermion propagator S�x� via:

h �  i � �RefTr�Ŝ�x � 0��g

� 4
Z d3k

�2��3
Re
�

B�~k2�

A2�~k2�~k2 � B2�~k2�

�
: (33)

The typical behaviors of the fermion condensate for
several values of small chemical potential � are plotted
in Fig. 1. We observe that for all values of chemical
potential h �  i� decreases monotonically as N increases
and goes to zero when N approaches a critical number Nc.
For different ranges of N, h �  i� shows different behaviors
with �. When N < 0:5, h �  i� increases with � increas-
ing. When 0:5<N < 2:25, h �  i� almost does not change
with �. Finally, when N > 2:25, h �  i� decreases with �
increasing. For N near Nc, it can be clearly seen that the
larger � is, the more rapidly h �  i� decreases with N
increasing. This shows clearly that the critical number of
fermion flavor Nc decreases as � increases.

In order to further illustrate the influence of the chemical
potential � on the fermion condensate, we take the ratio of

h �  i� for�> 0 to h �  i0 and plot the dependence of
h �  i�
h �  0i

on N for several values of � in Fig. 2.

From Fig. 2, we can see that when 0:5<N < 2:25
h �  i�
h �  i0

almost keeps constant, whereas in the two ends (N < 0:5
and N > 2:25) the chemical potential � has very large
influence (about a factor of 2.5 in the left end and a factor

of 10 in the right end) on h
�  i�
h �  i0

. In physical applications of

QED3 (such as high-Tc superconductivity), the fermion
number N is 1 or 2 and one therefore concludes that the
small chemical potential has little influence on the fermion
condensate. It should be noted that our numerical results is
only valid for small values of chemical potential. This is
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FIG. 2. The dependence of h
�  i�
h �  i0

on N for several values of �.
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because we ignore the influence of the chemical potential
� on the photon propagator while the actual photon propa-
gator should be� dependent due to fermion vacuum polar-
izations. As such it may be inadequate at large value of �.

IV. CONCLUSION

Ignoring the influence of the chemical potential� on the
photon propagator and working in the rainbow approxima-
016004
tion of DS equations, we first prove, using the method of
Taylor-expansion in terms of chemical potential �, that the
fermion propagator at nonzero chemical potential can be
written as Ŝ�1�p� � i� � ~pA�~p2� � B�~p2�. Using this
form, we provide a general recipe to calculate the chemical
potential dependence of the dressed fermion propagator
under the rainbow approximation to the DS equation. This
approach has the advantage that the dressed fermion propa-
gator at finite chemical potential can be obtained directly
from the one at zero chemical potential without the neces-
sity of numerically solving the corresponding coupled
integral equations by iteration methods. This feature facil-
itates numerical calculations considerably. From this it is

found that h
�  i�
h �  i0

decreases monotonically as N increases.

With the chemical potential � increasing, the ratio of the
fermion condensate decreases near Nc. This shows that Nc
decreases with � increasing.
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