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Multidimensional mSUGRA likelihood maps
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We calculate the likelihood map in the full 7-dimensional parameter space of the minimal super-
symmetric standard model assuming universal boundary conditions on the supersymmetry breaking terms.
Simultaneous variations of m0, A0, M1=2, tan�, mt, mb and �s�MZ� are applied using a Markov chain
Monte Carlo algorithm. We use measurements of b! s�, �g� 2�� and �DMh

2 in order to constrain the
model. We present likelihood distributions for some of the sparticle masses, for the branching ratio of
B0
s ! ���� and for m~� �m�0

1
. An upper limit of 2� 10�8 on this branching ratio might be achieved at

the Tevatron, and would rule out 29% of the currently allowed likelihood. If one allows for non-thermal-
neutralino components of dark matter, this fraction becomes 35%. The mass ordering allows the important
cascade decay ~qL ! �0

2 !
~lR ! �0

1 with a likelihood of 24� 4%. The stop-coannihilation region is
highly disfavored, whereas the light Higgs region is marginally disfavored.
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I. INTRODUCTION

Weak-scale supersymmetry provides a well-documented
solution to the technical hierarchy problem [1], which is
particularly difficult to solve in a perturbatively calculable
model. Specializing to a minimal extension of the standard
model, the minimal supersymmetric standard model
(MSSM), one can provide a weakly interacting massive
particle dark matter candidate, provided R-parity is re-
spected by the model. Examples of dark matter candidates
are the gravitino [2,3], the axino [4] and the lightest
neutralino [5], the subject of much recent investigation
[6–11]. The general MSSM is rather complicated due to
the large number of free parameters in the supersymmetric
(SUSY) breaking sector. However, the observed rareness
of flavor changing neutral currents (FCNCs) suggests that
the vast majority of parameter space for general SUSY
breaking terms is ruled out. Particular patterns of SUSY
breaking parameters can postdict small enough FCNCs: for
instance flavor universality. One highly studied subset of
such terms is that of mSUGRA, often called the con-
strained minimal supersymmetric standard model. In
mSUGRA, at some high energy scale (typically taken to
be the scale of unification of electroweak gauge couplings),
all of the SUSY breaking scalar mass terms are assumed to
be equal to m0, the scalar trilinear terms are set to A0 and
the gaugino masses are set equal (M1=2). These are indeed
strong assumptions, but they have several advantages for
phenomenological analysis as the number of independent
SUSY breaking parameters is much reduced. Indeed, as-
suming that the MSSM is the correct model, the initial data
from the Tevatron or Large Hadron Collider (LHC) are
likely to contain only a few relevant observables and so one
may be able to fit against a simple SUSY breaking model
as an example [12]. As the data become more accurate and
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additional relevant observables are measured, the lack of a
good fit would propel extensions of the simple model. One
may then start to consider patterns of nonuniversality, for
instance. For the rest of this paper though, given the lack of
data to the contrary, we will assume mSUGRA. Aside from
the universal soft terms m0; A0;M1=2, other nonstandard
model mSUGRA input parameters are taken to be tan�, the
ratio of the two Higgs vacuum expectation values, and the
sign of � (a parameter that appears in the Higgs potential
of the MSSM).

When combined with large scale structure data, the
Wilkinson microwave anisotropy probe (WMAP) [13,14]
has placed stringent constraints upon the dark matter relic
density �DMh

2. A common assumption, which we will
adhere to here, is that the neutralino makes up the entire
cold dark matter relic density. The prediction of the relic
density of dark matter in the MSSM depends crucially
upon annihilation cross sections, since in the early universe
SUSY particles will annihilate in the thermal bath. Regions
of mSUGRA that are compatible with the WMAP con-
straint often predict some of the following annihilation
channels [15]:
(i) S
-1
tau (~�) coannihilation [16] at small m0 where the
lightest stau is quasidegenerate with the lightest
neutralino (�0

1).

(ii) P
seudoscalar Higgs (A0) funnel region at large

tan�> 45 where two neutralinos annihilate
through an s-channel A0 resonance [17,18].
(iii) L
ight CP-even Higgs (h0) region at low M1=2

where two neutralinos annihilate through an
s-channel h0 resonance [17,19].
(iv) F
ocus point [20–22] at largem0 where a significant
Higgsino component leads to efficient neutralino
annihilation into gauge boson pairs.
© 2006 The American Physical Society
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(v) S
top-coannihilation [23–25] at large ��A0�, where
the lightest stop is close in mass to the lightest
neutralino.
Many pre-WMAP analyses focused on the so-called bulk
region [17]. The bulk region is continuously connected to
the stau coannihilation region at low m0 and M1=2. There
are two reasons why the bulk region has shrunk in size
when one takes the current constraints into account: the
WMAP constraint upon the relic density has ruled much of
the region out, and the new low value of the top mass mean
that the MSSM Higgs mass predictions are sometimes too
low for low m0 and M1=2 and are ruled out by LEP2
constraints. The (now reduced) bulk region will make an
implicit appearance in our results, and we will comment
upon this fact later.

Several authors [8,26–31] have asked how the annihi-
lation cross section can be constrained by collider mea-
surements in order to provide a more solid prediction of the
relic density. This would then be fed into a cosmological
model in order to predict �DMh2 for comparison with the
value derived from cosmological observation, allowing a
test of cosmological assumptions (and the assumption that
there is only one component of cold dark matter). Of
course, colliders could not unambiguously identify the
lightest observed SUSY particle as the dark matter since
it could always decay unobserved outside the detector. It
would therefore be interesting to combine collider infor-
mation with that derived from a possible future direct
detection [32] of dark matter, providing corroboration
and additional empirical information. Before such obser-
vations are made, however, we may ask how well current
data constrain models of new physics.

This question has been addressed many times for
mSUGRA by using the dark matter constraint. Most of
the analyses (see, for example [6,7,33–38]) fix all but two
parameters and examine constraints upon the remaining 2
dimensional (2D) slice of parameter space. The dark matter
relic density constraint is the most limiting, but the branch-
ing ratio of the decay b! s� and the anomalous magnetic
moment of the muon �g� 2�� also rule part of the pa-
rameter space out. Recent upper bounds from the Tevatron
experiments on the branching ratio Bs ! ���� [39] have
the potential to restrict mSUGRA in the future, but the
analysis of Ref. [40] shows that the resulting constraints
currently subsumed within other constraints. In the above
analyses, limits are typically imposed separately, each to
some prescribed confidence level. Such analyses have the
advantage of being quite transparent: it is fairly easy to see
which constraint rules out which part of parameter space.
However, they have the disadvantages of not properly
describing the combination of likelihoods coming from
different experimental constraints and of having to assume
ad hoc values for several input parameters. In particular, as
well as the soft SUSY breaking input parameters, the
bottom mass mb, the strong structure constant �S�MZ�
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and the top mass mt can all have a strong effect on
mSUGRA predictions. A large random scan of flavor
diagonal MSSM space involving 105 points that pass vari-
ous prescribed constraints was presented in Ref. [41], how-
ever the sampling of the 20D parameter space was
necessarily sparse. The analysis is also subject to the
limitation that likelihoods have not been combined; instead
the measurements have been used as cuts to discard points.
In Ref. [9], the likelihood from the observables is calcu-
lated, properly combining different constraints, but again
1D and 2D slices through parameter space were taken. Of
course the time taken to efficiently sample from a like-
lihood distribution using the naive method (a scan) scales
like a power law with respect to the number of parameters,
meaning that in practice even a high resolution 3D scan is
difficult. By parametrizing lines in 2D that are consistent
with the WMAP dark matter constraint and scanning in
two other parameters, the analysis of Ref. [11] calculates
the �2 statistic for the 2D part of a 3D parameter space
which is consistent with the WMAP constraint on the dark
matter relic density. The predicted value of �DMh

2 is not
combined in the �2 with the other observables for this
analysis, and the parameter tan� must be fixed. As the
authors note [11], parts of the scan were sparse. In
Ref. [42], a scan was performed which included variations
of A0 and tan� as well as other mSUGRA parameters. It is
clear from this paper that the WMAP-allowed region (ex-
pressed in the M1=2-m0 plane) becomes much larger from
the A0 variations. No likelihood distribution was given.

Baltz and Gondolo [43] demonstrated that a Markov
chain Monte Carlo (MCMC) algorithm efficiently samples
from the mSUGRA parameter space, rendering 4D scans in
m0; A0;M1=2; tan� feasible. However, they were interested
in which parts of parameter space are compatible with the
WMAP measurement of �DMh2 and what the prospects
are for direct detection there, not in the likelihood distri-
bution. In order to increase the efficiency of their parame-
ter sampling, they changed the simple ‘‘Metropolis-
Hastings’’ MCMC algorithm in order to achieve a better
efficiency. As the authors state in their conclusions, this has
the consequence that caution must be exercised when
trying to interpret their results as a likelihood distribution.
Indeed, we will show in a toy model that changes to the
MCMC algorithm like the ones that Baltz and Gondolo
made can alter the sampling from a distribution.

It is our purpose here to utilize the MCMC algorithm in
such a way as to reliably calculate the combined likelihood
of mSUGRA in the full dimensionality of its parameter
space, thereby extending the previous studies. We will then
be able to infer what is known about the multidimensional
parameter space, including important variations of the SM
quantities. These results will have implications for collider
searches and rare decays.

In Sec. II, we briefly review the MCMC algorithm. We
present the implementation used in the present paper to
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calculate the likelihood maps of mSUGRA parameter
space and then demonstrate that the results are convergent
using a particular statistical test. In Sec. III, we present the
likelihood distributions and derived quantities of the 7D
mSUGRA parameter space. In Sec. IV, we illustrate the
effects of theoretical uncertainties in the sparticle spectrum
calculation and, in Sec. V, possible effects from allowing
an additional non-thermal-neutralino component to the
relic density are explored. A summary and conclusions
are presented in Sec. VI. In the appendix, we demonstrate
with two different toy models that the algorithm used by
Baltz and Gondolo may not provide a sampling propor-
tional to the likelihood of the parameter space.
II. IMPLEMENTATION OF THE MCMC
ALGORITHM

A. Likelihoods

Some readers might be unfamiliar with the use of sta-
tistics in this paper, and so we include some comments on
how to interpret them. The likelihood is not dependent
upon any priors. The likelihood L � p�djm� is the proba-
bility density function (pdf) of reproducing data d assum-
ing some mSUGRA model m. In p�djm�, the model m is
specified by the mSUGRA input parameters and so p�djm�
has a dependence upon them. p�djm� is related to the pdf of
the model being the one chosen by nature, given the data,
by an application of Bayes’ theorem:

p�mjd� � p�djm�
p�m�
p�d�

; (1)

where p�m� is the probability of the model being correct
(the prior) and p�d� is the total probability of the data being
reproduced, integrating over all possible models. p�d� is
practically impossible to estimate, so we cannot get the
quantity that one really wishes to estimate, p�mjd�.
However, we may compare the relative probabilities of
two different models m1 and m2 (corresponding here to
different points of mSUGRA space) by applying Eq. (1) for
each model, implying that

p�m1jd�
p�m2jd�

�
p�djm1�p�m1�

p�djm2�p�m2�
: (2)

We note here the appearance of the infamous prior distri-
butions p�m1�; p�m2�. If one assumes that the ratio of these
two priors is one (that no region of parameter space is more
likely than any other), one may interpret the likelihood
ratio of two different points in mSUGRA space as the ratio
of probabilities of the models, given the data. In this paper
however, we provide likelihood distributions. If the reader
prefers a different ratio of priors to one, they must con-
volute the likelihood density we give with their preferred
ratio of pdfs.
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B. The MCMC algorithm

We now briefly review the Metropolis MCMC algo-
rithm, but for a more thorough explanation, see
Refs. [43,44]. Other adaptive scanning algorithms have
recently been suggested in the context of high energy
physics [45,46] but (although they can be very useful for
other purposes) they do not yield a likelihood distribution.
A Markov chain consists of a list of parameter points (x�t�)
and associated likelihoods [L�t� � L�x�t��]. Here t labels
the link number in the chain. Given some point at the end
of the Markov chain (x�t�), the Metropolis-Hastings algo-
rithm involves randomly picking another potential point
(x�t�1�) (typically in the vicinity of x�t�) using some pro-
posal pdf Q�x; x�t��. If L�t�1� >L�t�, the new point is
appended onto the chain. Otherwise, the proposed point
is accepted with probability L�t�1�=L�t� and, if accepted,
added to the end of the chain. If the point x�t�1� is not
accepted, the point x�t� is copied onto the end of the chain
instead.

Providing ‘‘detailed balance’’ is satisfied, it can be
shown [44] that the sampling density of points in the chain
is proportional to the target distribution (in this case, the
likelihood) as the number of links goes to infinity. In the
context of this analysis, detailed balance states that for any
two points xa;xb
Q�xa; xb�L�xb� � Q�xb; xa�L�xa�; (3)
i.e. the probability of sampling a point xa from the like-
lihood distribution and then making a transition to xb be
equal to the probability of sampling xb and making a
transition to xa.

The Metropolis-Hastings MCMC algorithm is typically
much more efficient than a straightforward scan forD> 3;
the number of required steps scales roughly linearly withD
rather than as a power law. The sampling is in principle
independent of the form of Q as t! 1 as long as it is
bigger than zero everywhere. However, Q must be chosen
with some care: since in practice we can only sample a
finite number of points, the choice of the form of Q can
determine whether the entire parameter space is sampled
and how quickly convergence is reached.

Baltz and Gondolo used a geometrical model for Q:
choosing a random distance from the point x�t� and using
a direction that was calculated from the positions of pre-
vious points in the chain. The width of the random radius
pdf was calculated depending upon previous points in the
chain in order to increase the efficiency of the calculation,
aiming to accept roughly 25% of potential points. Either of
these changes upsets detailed balance and may spoil the
sampling. We demonstrate in the appendix with toy models
that the width changing modification gives a sampling that
is not proportional to the target density.
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TABLE I. Parameter ranges considered.

Parameter Range

sign��� �1
A0 �2 TeV–2 TeV
m0 60 GeV–2 TeV
M1=2 60 GeV–2 TeV
tan� 2–60

TABLE II. Lower bounds applied to sparticle mass predictions
in GeV.

m�0
1

37 m��1
67.7 m~g 195 m~�1

76
m~lR

88 m~t1 86.4 m~b1
91 m~qR 250

m~�e;� 43.1
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C. Parameter ranges

On general naturalness grounds,1 we expect m0 and
M1=2 to not be too large: less than, say, 2 TeV. mSUGRA
is ruled out by negative results in sparticle searches for
m0 < 60 GeV or M1=2 < 60 GeV. �> 0 is favored by the
measurement of the anomalous magnetic moment of the
muon. tan� is bounded from below by negative searches at
LEP2 for h0 (and perturbativity of the top Yukawa cou-
pling) and from above by perturbativity of the Yukawa
couplings up to the unification scale.

Upper bounds upon m0 can exclude the focus-point
region, which, in our calculation, is at much higher values
of m0 	O�8� TeV. It has been argued that a quantitative
measure of fine-tuning in the focus-point region is not too
large [20,21], however the fine-tuning of the top-quark
Yukawa coupling is enormous [47]. This makes the
focus-point regime practically impossible to reliably cal-
culate starting from mSUGRA inputs. Tiny higher order
effects in the top Yukawa coupling strongly change the
position of the focus-point regime in mSUGRA parameter
space. In Ref. [47], it is demonstrated that the focus-point
regime moves in the m0 direction by several TeV depend-
ing on how exactly the highest order top-quark Yukawa
radiative corrections are calculated. Because the calcula-
tion cannot be controlled with the current state-of-the-art
calculations of the top Yukawa coupling, we will exclude
the focus-point regime from this analysis by placing an
appropriate upper bound upon m0. Here, we restrict the
parameter space to that shown in Table I.

D. Observables and constraints

We calculate the MSSM spectrum from mSUGRA pa-
rameters, by using the program SOFTSUSY1.9.2 [48]. Ideally
we would like to include data from negative search results
from collider data within a combined likelihood. Unfor-
tunately, it is difficult to obtain the data in such a form and
so, instead, we assign a zero likelihood to any point for
which at least one of the constraints [49] in Table II is not
satisfied. We also implement a parametrization2 of the 95%
confidence level limits [51] on mh�ghZZ=g

SM
hZZ�, where
1Low values of m0 and M1=2 avoid a large cancellation
between weak-scale SUSY breaking terms in order to get a
small value of �.

2The parametrization was developed by Slavich for Ref. [50].
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ghZZ=g
SM
hZZ is the ratio of the MSSM Higgs coupling to

two Z0 bosons to the equivalent standard model coupling.
In order to take a 3 GeV uncertainty on the mSUGRA
prediction ofmh into account, we add 3 GeV [50,52] to the
mh0 value that is used in the parametrization. In the MSSM,
ghZZ=g

SM
hZZ � sin��� �� and in practice, it is easier to

apply limits in terms of the inverse parametrization
sin2��� ���mh0� as shown in Table III.

The spectrum is transferred via the SUSY Les Houches
Accord [53] to the computer program MICROMEGAS1.3.5

[54,55] in order to calculate several quantities used to
calculate the likelihood of a parameter point. We will use
six measurements in order to construct the final likelihood
of any given point of parameter space. As mentioned in the
introduction, we make the assumption that the neutralino
makes up the entire cold dark matter relic density as con-
strained by WMAP:

�DMh
2 � 0:1126�0:0081

�0:0091: (4)

The anomalous magnetic moment of the muon has been
measured [56] to be higher than the standard model
prediction [57,58]. The experimental measurement is so
precise that the comparison is limited by theoretical un-
certainties in the standard model prediction. Following
Ref. [59], we constrain any new physics contribution to be

�
�g� 2��

2
� 19:0� 8:4� 10�10: (5)

Adding theoretical errors [60] to measurement errors [61]
in quadrature for the branching ratio for the decay b! s�,
one obtains the empirically derived constraint

BR�b! s�� � 3:52� 0:42� 10�4: (6)

The standard model inputs’ measurements also contrib-
ute to the likelihood. We take these to be [49], for the
running bottom quark mass in the modified minimal sub-
traction scheme,

mb�mb�
MS � 4:2� 0:2 GeV; (7)

for the pole mass of the top quark3 [62],

mt � 172:7� 2:9 GeV; (8)

and for the strong coupling constant in the modified mini-
mal subtraction scheme at MZ
3For an analysis with mt � 174:3� 3:4 GeV, see the original
version of this paper on the hep-ph/ electronic archive.
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TABLE III. Parametrization of 95% confidence level LEP2 Higgs limits on the mh0 -sin2���
�� plane. All points with mh0 < 90 GeV are ruled out.

mh0=GeV range Upper bound on sin2��� ��

90–99 �6:1979� 0:123 13mh0=GeV� 0:000 584 11 �mh0=GeV�2

99–104 35:73� 0:697 47mh0=GeV� 0:003 426 6 �mh0=GeV�2

104–109.5 21:379� 0:403mh0=GeV� 0:001 921 1 �mh0=GeV�2

109.5–114.4 1=�60:081� 0:516 24mh0=GeV�

MULTIDIMENSIONAL mSUGRA LIKELIHOOD MAPS PHYSICAL REVIEW D 73, 015013 (2006)
�s�MZ�
MS � 0:1187� 0:002: (9)

A prediction pi of one of these quantities, where

i � f�s�MZ�
MS;mt; mb�mb�

MS; �g� 2��=2;

BR�b! s��;�DMh
2g; (10)

with measurement mi � si yields a log likelihood

lnLi � �
�mi � pi�

2

2s2
i

�
1

2
ln�2	� � lnsi; (11)

assuming the usual Gaussian errors. Note that since Eq. (4)
has asymmetric errors, s�DMh2 � 0:0081�0:0091� if our
prediction is higher (lower) than the observed central
value. To form the combined likelihood, one takes
lnLtot �

P
i�1 lnLi, corresponding to the combination of

independent Gaussian likelihoods. In practice, we will
ignore the normalization constants � 1

2 ln�2	� � lnsi,
since the likelihood distribution has an arbitrary normal-
ization anyway.

We take the proposal function to be the product of
Gaussian distributions along each dimension k �
1; 2; . . . ; D centered on the location of the current point
along that dimension, i.e. x�t�k :

Q�x�t�1�; x�t�� �
YD
k�1

1�������
2	
p

lk
e��x

�t�1�
k �x�t�k �

2=2l2k ; (12)

where lk denotes the width of the distribution along direc-
tion k. By trial and error, we find that using values of lk that
are equal to the parameter range of dimension k given in
Table I divided by 25 works well. For the standard model
inputs, we choose lk � 8
k=25.

In order to start the chain we follow the following
procedure, which finds a point at random in parameter
space that is not a terrible fit to the data. We pick some
y�0� at random in the mSUGRA parameter space using a flat
distribution for its pdf. The Markov chain for y is evolved a
sufficient number of steps (t) such that lnL�y�t��>�5, i.e.
the initial chain has found a reasonable fit. We then set
x�0� � y�t�, continuing the Markov chain in x and discard-
ing the ‘‘burn-in’’ chain y. The reasonable-fit point is
typically found long before 2000 iterations of the
Markov chain.
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E. Convergence

In order that likelihood distributions calculated in this
paper be considered reliable, it is important to check con-
vergence of the MCMC. This is done by running 9 inde-
pendent Markov chains, each with random starting
positions as described above. The starting positions are
chosen in the ranges presented in Table I with a flat pdf,
since it is important for the convergence measure that the
initial values be overdistributed compared to the likelihood
function one samples from. By examining the variance and
means of input parameters within the chains and between
the 9 different chains, we will construct a quantity [63] R̂.
R̂ will provide an upper bound on the factor of expected
decrease of variance of 1D likelihood distributions if the
chain were iterated to an infinite number of steps. An R̂
value can be constructed for scalar quantities that are
associated with a point x�t�.

The analysis of the R̂ convergence statistic follows
Ref. [63] closely. We consider c � 1; . . . ;M chains (M �
9 here), each with N � 106 steps. Then we may define the
average input parameter along direction k for the chain c
and the average amongst the ensemble of chains


 �xk�c �
1

N

XN
t�1


x�t�k �c; �xk �
1

M

XM
c�1


 �xk�c; (13)

respectively. The variance of chain c along direction k is


Vk�c �
XN
t�1

�
x�t�k �c � 
 �xk�c�
2; (14)

so that we have the average of the variances within a chain

wk �
1

M

XM
c�1


Vk�c (15)

and the variance between chains’ averages

Bk=N �
1

M� 1

XM
c�1

�
 �xk�c � �xk�
2: (16)

The basic ratio constructed corresponds to

Rk �
N�1
N wk � Bk=N�1�

1
M�

wk
: (17)

As long as the initial seed parameters of the Markov chain
-5
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are overdistributed, i.e. they have larger variance than the
likelihood, this ratio will be larger than 1 [63] if the chains
have not converged or if they have not had time to explore
the entirety of the parameter space. It tends to one only if
both of these conditions are met. In order to construct R̂,
we must take into account the sampling variability of 
 �xk�c
and 
Vk�c. The variance of chain variances along direction
k is estimated to be

vk �
1

M� 1

XM
c�1

�
Vk�c � wk�
2; (18)

and we must take into account the following estimates of
covariances between the values of 
 �xk�c and 
Vk�c:

�
k�1 � �wk �x2
k �

1

M

XM
c�1


Vk�c
 �xk�
2
c;

�
k�2 � �wk �xk �
1

M

XM
c�1


Vk�c
 �xk�c:

(19)

Defining the total estimated variance of the target distribu-
tion along direction k,

V k �
1

M

�
1�

1

N

�
2
vk �

2�M� 1�2

M�M� 1�
�Bk=N�

2

� 2
�N � 1��M� 1�

M2N
��
k�1 � 2�xk�
k�2�; (20)

where we have degrees of freedom

dfk � 2
Rkwk � Bk=�NM�

V k
; (21)

leads us to the final equation for the estimated reduction in
 1

 1.2

 1.4

 1.6

 1.8

 2

 10  20  30  40  50  60  70  80  90  100

r

step/10000

upper bound

FIG. 1 (color online). Estimate of potential scale reduction
shown as a function of the number of Markov chain Monte
Carlo steps. The upper bound we require for convergence is
shown as a horizontal line.
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the sampled variance as t! 1:

R̂ k � Rk
dfk

dfk � 2
: (22)

Here, we define r � maxkf
������
R̂k

q
g. Values of r < 1:05 are

considered to signify convergence and compatibility of the
chains, since we could only hope to decrease the scale of
any of the input parameter distributions by at most 5% by
performing further Markov Chain steps. In Fig. 1, we show
the quantity r as a function of step number. r < 1:05 is met
already for 600 000 steps indicating adequate convergence,
although for the results we present below we always use
the full 9� 1 000 000 sample.
III. LIKELIHOOD MAPS

The number of input parameters exceeds the number of
data and the likelihood shows a rough degeneracy along
directions which give isolines of �DMh

2. The parameters
of the best-fit point of the MCMC do not therefore supply
us with much information, but the value of the likelihood at
that point is interesting: a very small value would indicate a
high �2 and therefore a bad fit. The best-fit point sampled
by the MCMC with 7D input parameter space was

m0 � 964 GeV; M1=2 � 341 GeV;

A0 � 1394 GeV; mb�mb� � 4:18 GeV;

mt � 173:0 GeV; �s�MZ� � 0:1185;

tan� � 57:9;

(23)

leading to predictions of ��g� 2��=2 � 1:8� 10�9,
BR�b! s�� � 3:63� 10�4 and �DMh2 � 0:1124 and
corresponding to a combined likelihood (ignoring normal-
ization constants, as stated above) of L � 0:95. The point
is within the A0-pole region, and the centrality of predicted
observables gives us confidence that mSUGRA can fit well
to current data. The efficiency of the MCMC algorithm is
quite small: only 4:1%. This reflects the fact that the
thickness of WMAP-allowed volume is small, making it
difficult to sample efficiently.

We display binned sampled likelihood distributions in
Figs. 2(a)–2(f) for the full mt,mb�mb�, �s�MZ�

MS, m0, A0,
tan� and M1=2 parameter space. The unseen dimensions in
each figure have been marginalized with flat priors. All 2D
or 1D marginalizations in this paper assume a flat prior
(within the ranges of parameters considered in Table I) in
all unseen dimensions (or in other words, the likelihood is
integrated over them with equal weight). One can view the
marginalization probabilistically, or just as a means of
viewing the higher dimensional parameter space. We
have used 75� 75 bins, normalizing the likelihood in
each bin to the maximum likelihood in any bin in each
2D plane.
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FIG. 2 (color online). Likelihood maps of mSUGRA parameter space. The graphs show the likelihood distributions sampled from
7D parameter space and marginalized down to two. The likelihood (relative to the likelihood in the highest bin) is displayed by
reference to the bar on the right-hand side of each plot.

MULTIDIMENSIONAL mSUGRA LIKELIHOOD MAPS PHYSICAL REVIEW D 73, 015013 (2006)
In each plot, the h0 pole s-channel resonant annihilation
region is present close to the lowest values of M1=2. It can
be seen as a vertical sliver in the top left-hand corner of the
m0 �M1=2 as in Fig. 2(a) and the slim band ranging across
the bottom of Figs. 2(d) and 2(f). The bright region in
Fig. 2(a) at low values of m0 is primarily a coannihilation
region where slepton-neutralino annihilation contributes
significantly to the depletion of the neutralino relic density
in the early universe. However, at the lowest values of m0
015013
and M1=2 values visible on the graph, the bulk region
resides, being continuously connected to the coannihilation
tail, as shown in Ref. [7]. The pseudoscalar Higgs (A0)
s-channel annihilation channel occurs at high tan� �
50–60 and in the intermediate areas of m0 �
500–1600 GeV, M1=2 � 250–1400 GeV. In the literature,
the most common way to display mSUGRA results is to
present them in 2D in the m0-M1=2 plane, where thin strips
are observed (see, for example, Ref. [11]) that are consis-
-7
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tent with the WMAP constraint upon �DMh
2. Figure 2(a)

demonstrates (in corroboration with Refs. [42,43]) that the
strips are truly a result of picking a 2D hypersurface in
parameter space: if one performs a full multidimensional
scan, there is a large region in the m0-M1=2 plane that is
consistent with the data. The bottom right-hand side corner
of Fig. 2(a) is ruled out primarily by the fact that the
lightest supersymmetric particle (LSP) is charged. Large
M1=2 is disfavored by the �g� 2�� result. The bottom left-
hand corner of Fig. 2(a) is ruled out by a combination of
dark matter and direct search constraints. We see an inter-
esting correlation between m0 and tan� in Fig. 2(b): the
region extending to low tan� and low m0 is essentially the
stau coannihilation/bulk region.

We display some binned likelihood distributions of
MSSM particle masses in Figs. 3(a)–3(c) that are relevant
for dark matter annihilation. In Fig. 3(a), the A0-pole
resonance region is clearly discernible: at just above a
line 2m�0

1
� MA0 and just below it, there is just enough

annihilation to produce the observed relic density.
Throughout much of the parameter space (MA < 1 TeV),
the exact resonance condition depletes the relic density
�DMh

2 to be too small. At around MA 	 1 TeV, exact
FIG. 3 (color online). Likelihood distributions of masses in mSUG
down to 2D. The likelihood (relative to the likelihood in the highest
each plot.
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resonance is required in order to sufficiently deplete the
relic dark matter density. The rest of the likelihood density
is spread over the dark part of the plot and is mostly too
diffuse to be visible. In Fig. 3(b), there are two detectable
regions: the small one with the maximum 2D binned like-
lihood at the lowest possible values of m�0

1
corresponds to

the h0-pole region. The larger upper high likelihood region
is an amalgam of the coannihilation and A0-pole regions.
As a by-product we see that values of mh > 126 GeV are
disfavored in the mSUGRA model. In Fig. 3(c), the stau
coannihilation region is visible as the diagonal dark line
and the h0-pole region as the lower likelihood horizontal
dark line. The rest of the likelihood density is diffusely
distributed in between these two extremes. We have shown
the likelihood distribution for lightest chargino and slepton
masses in Fig. 3(d). Unfortunately, most of the likelihood is
in a region where the well-known trilepton search channel
[64] at the Tevatron is rather difficult. With 8 fb�1 of
integrated luminosity, this search channel requires m��1

<
m~l, m��1

< 250 for a discovery [65].
We show the sampled likelihood distribution for m~lR

,
m~g, m~t1 and m~qL in Fig. 4(a). The likelihood distributions
have been placed into 75 bins of widths that are equal for
RA. The graphs show the likelihood distributions marginalized
bin) is displayed by reference to the bar on the right-hand side of
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FIG. 4 (color online). (a) Selected sparticle mass likelihood distributions in mSUGRA. (b) The stau-neutralino mass difference
likelihood distribution where the inset shows a blowup of the quasi-mass-degenerate region. (c) Branching ratio for the decay Bs !
����. The Tevatron upper bound is displayed by a vertical line. (d) Likelihood density marginalized to the 2D plane BR�Bs !
����� versus M1=2. (e) Correlation between BR�Bs ! ����� and �g� 2��. (f) Likelihood marginalized to the tan�-MA plane.

MULTIDIMENSIONAL mSUGRA LIKELIHOOD MAPS PHYSICAL REVIEW D 73, 015013 (2006)
the different types of sparticles. They are each normalized
to an integrated likelihood of 1. The spike at low values of
the gluino mass corresponds to the h0-pole region of
mSUGRA. This spike has a good chance of being covered
at the Tevatron experiments before the LHC starts running
[65]. It should be noted that upper limits upon the scalar
sparticle masses inferred from Fig. 4(a) are due largely to
015013
the definition of the range of the initial parameters (m0

being less than 2 TeV). Nevertheless, it is clear that there is
already some preference from the combined data for vari-
ous ranges of sparticle masses and upper bounds upon the
gaugino masses. For example, values ofm~g > 3:5 TeV and
m~g � 400–800 GeV are disfavored, as well as m~qL <
800 GeV. In Fig. 4(b), the mass splitting between the
-9



TABLE IV. Likelihood of being in a certain region of
mSUGRA parameter space.

Region Likelihood
0

B. C. ALLANACH AND C. G. LESTER PHYSICAL REVIEW D 73, 015013 (2006)
lightest stau and lightest neutralino is shown. The inset in
the figure displays the quasidegenerate coannihilation re-
gion at low mass splittings. The peaked region at m~�1

�

m�0
1
< 10 GeV is likely to be difficult to discern at the

LHC. One would wish to measure decays of the lightest
staus in order to check the coannihilation region, but
reconstructing a relevant soft � resulting from such a decay
is likely to prove problematic. On the other hand, a linear
collider with sufficient energy to produce sparticles could
provide the necessary information [29,66]. The predicted
likelihood distribution of the Bs ! ���� branching ratio
is shown in Fig. 4(c). Possible values for this observable
were found with a random scan of unconstrained MSSM
parameter space in Ref. [67] (no likelihood distribution
was given). The region to the right-hand side of the vertical
line is ruled out from the combined CDF/D0 95%
C.L. exclusion [68,69]4 limit BR�B0

s ! �����< 3:4�
10�7. We have not cut points violating this constraint, but
this has a negligible effect since there are only a small
number of them. The 2D marginalization of the branching
ratio versus M1=2 shows a peak at very low M1=2 values, as
Fig. 4(d) displays. This indicates that the spike in Fig. 4(c)
at branching ratios of about 10�8:6 is due to the h0-pole
region. Lowering the empirical upper bound on the Bs !
���� branching ratio will significantly cut into the al-
lowed mSUGRA parameter space. A significant lowering
of the bound upon this branching ratio is expected in the
coming years from the Tevatron experiments and from the
Large Hadron Collider Beauty experiment. For example, it
is estimated [65] that the Tevatron could exclude a branch-
ing ratio of more than 2� 10�8 with 8 fb�1 of integrated
luminosity. This corresponds to ruling out 29% of the
currently allowed likelihood density. Predictions for
BR�Bs ! ����� were correlated with those for �g�
2�� in Ref. [71] in mSUGRA. For a given mSUGRA
parameter point, a correlation was shown when tan� was
varied. The authors conclude that for high tan�, an en-
hancement of BR�Bs ! ����� is implied by the �g� 2��
measurements. We reexamine this statement in view of the
full dimensionality of the mSUGRA parameter space in
Fig. 4(e). The correlation is seen to be far from perfect, the
likelihood distribution being highly smeared in terms of
the two measurements. Nevertheless, there is a mild corre-
lation between BR�Bs ! ����� and the SUSY contribu-
tion to �g� 2�� at the highest likelihoods, as evidenced by
the bright oblique stripe in Fig. 4(e). In Fig. 4(f), we show
the likelihood distribution in the tan�-mA plane. There is a
significant amount of likelihood density towards the top
left-hand side of the plot, where the Tevatron is expected to
have sensitivity [65] (covering tan�> 40 for mA <
240 GeV for 8 fb�1 of integrated luminosity). LHC experi-
4There are newer CDF/D0 bounds [70], for example, CDF(D0)
have noncombined 95% C.L. limits of 2:0�3:0� � 10�7

respectively.
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ments should be able to observe the A0 for the entire high
likelihood range [12].

We now ask what are the likelihoods of the different
regions of relic density depletion in mSUGRA parameter
space. In order to sharply delineate the regions, we define
them as follows: the coannihilation region is defined such
that m�0

1
is within 10% of m~�1

. The h0=A0-pole regions
have 2m�0

1
within 10% of mh0 , mA0 respectively. Stop-

coannihilation requires a broader definition: it is defined
such thatm�0

1
is within 30% ofm~t1 , since the annihilation is

so much more efficient [23–25] than in the other regions.
A better defined procedure might perhaps be to determine
regions on the basis of the dominant annihilation mecha-
nism, but since we are only looking for a rough indication
of the region involved, the procedure adopted here will
suffice. Points that fall in between any of the sharp defini-
tions are either from the bulk region or in the smaller tails
of the likelihood distribution.

The likelihoods of these regions are shown in Table IV.
We estimate the uncertainty by calculating the standard
deviation on the 9 independent Markov chain samples. The
quoted error thus reflects an uncertainty due not to experi-
mental errors, but to a to finite simulation time of the
Markov chain. We see that the h0-pole region has a rela-
tively low likelihood whereas for the A0-pole and � coan-
nihilation regions the likelihood is larger. From the table,
we see that the ~t-coannihilation region, although uncertain
due to the low statistics, is negligible, and we now inves-
tigate why this is the case.

The suppression of the stop-coannihilation region comes
from essentially two effects: firstly, as already apparent
from Ref. [25], finding a suitable stop-coannihilation re-
gion which is compatible with both the �g� 2�� and
BR
b! s�� measurements is problematic. Secondly, the
central value of mt has come down since Ref. [25]. The
dominant radiative corrections to mh0 are highly correlated
withmt [50], with the consequence that the lower predicted
Higgs mass now rules out more of the stop-coannihilation
region. We illustrate these points in Fig. 5 along the m0

direction for given values of the other mSUGRA parame-
ters (stated in the caption). In Fig. 5(a), we plot the frac-
tional stop-neutralino mass splitting � alongside the
neutralino relic density �DMh2. We see that the fractional
mass splitting takes values between 0.1 and 0.23 in the
range of m0 shown. This is the stop-coannihilation regime,
h pole 0:02� 0:01
A0 pole 0:41� 0:03
~� coannihilation 0:27� 0:04
~t coannihilation �2:1� 4:8� � 10�4
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and we see that around m0 	 786 GeV, �	 0:2 corre-
sponding to �DMh

2 roughly compatible with the WMAP
constraint. Unfortunately, we also see that the lightest
CP-even Higgs mass is predicted to be 110.3 GeV here
and is ruled out by the LEP2 Higgs limits shown in
Table III [sin2��� �� � 1:0) for this range of parame-
ters]. This problem is remedied by going to higher values
ofmt, sincemh0 then goes up, but of course this comes with
an associated penalty in the likelihood from being away
from the empirically central values of mt. In Fig. 5(b), we
display predictions for BR
b! s�� and ��g� 2��=2
along the chosen range for m0. These predictions are
both lower than the empirically derived constraints in the
region where the dark matter relic density is in accordance
with the WMAP constraint: including errors in the theo-
retical prediction as described in the previous section,
BR
b! s�� is 1:95
 lower than the central value and
��g� 2��=2 is 1:6
 lower. It turns out that these predic-
tions are not very sensitive to changes in mt and so their
likelihood penalty tends to apply for the higher values.
However, lower values of ��A0� require lower m0 in order
to fit the dark matter constraint and pick up a bigger like-
lihood constraint from the egregious prediction of BR
b!
s��. These findings are in rough agreement with those of
Ref. [25] except for the more restrictive Higgs bounds,
which are a consequence of the lower experimental value
ofmt. Reference [25] only applies 2
 bounds on both �g�
2�� and BR
b! s��, whereas our results take into account
the likelihood penalty paid by the fact that neither predic-
tion is close to its central value near the stop-coannihilation
region, which then becomes disfavored compared to the
other regions (where an almost perfect fit is possible).
There is also a volume effect: in Table IV, the likelihoods
we calculate are integrated over the relevant region. Thus
regions that are very small, such as the stop-coannihilation
region, will tend to have a smaller likelihood than other,
015013
larger regions. In analyses in the following sections, stop-
coannihilation also turns out to have negligible likelihood
and so we will neglect it from the results.

As an aside, we note that the decay chain ~qL ! �0
2 !

~lR ! �0
1 exists with a likelihood of 0:24� 0:04 (this num-

ber is just based upon the mass ordering and does not take
into account the branching ratio for the chain). The exis-
tence of such a chain allows the extraction of several
functions of sparticle masses from kinematic end points
and they have been used in many LHC analyses, for
example, Refs. [12,72,73].
IV. THEORETICAL UNCERTAINTY

Theoretical uncertainties in the sparticle mass predic-
tions have been shown to produce non-negligible effects in
fits to data [74], including fits to the relic density
[15,30,75]. In this section, we perform a second MCMC
analysis taking theoretical uncertainty into account in or-
der to estimate the size of its effect. SOFTSUSY performs the
Higgs potential minimization then calculates sparticle pole
masses at a scale MSUSY �

��������������m~t1m~t2
p . This scale is chosen

because it is hoped that loop corrections to the pole mass
corrections that are not yet taken into account (typically
two-loop corrections) are small at this scale. In order to
estimate the size of theoretical uncertainties, we vary this
scale by a factor of 2 in either direction (but it is always
constrained to be greater than MZ). Implementation of the
uncertainty in the MCMC algorithm is simple: we simply
add an input parameter x which is bounded between 0.5
and 2, giving the factor by whichMSUSY is to be multiplied.
The MCMC is then rerun as before and explores the full 8D
parameter space (including x) accordingly.

Such a procedure automatically takes into account the
correlations in predictions due to correlated theoretical
uncertainties in the sparticle mass predictions. The like-
-11



TABLE V. Likelihood of being in a certain region of
mSUGRA parameter space including theoretical uncertainties
in the sparticle spectrum calculation.

Region Likelihood

h0 pole 0:03� 0:01
A0 pole 0:41� 0:05
Coannihilation 0:26� 0:08
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lihoods of the three mSUGRA regions are shown in
Table V. The likelihoods are approximately equal to those
for the 7D case, as a comparison to Table IV indicates. In
fact, comparing results and plots produced with and with-
out theoretical uncertainties, the results are generally very
similar. This indicates that the theoretical uncertainties do
not make a huge difference to the 1D and 2D margin-
alizations compared to those coming from the data. The
decay chain ~qL ! �0

2 !
~lR ! �0

1 has a likelihood of
0:22� 0:08, not significantly different to the case when
theoretical uncertainties were not taken into account.

We show two of the 2D marginalized likelihoods in
Figs. 6(a) and 6(b). Comparing with Fig. 2, we see that
Fig. 6 shows no significant effects deriving from theoreti-
cal errors. Marginalizing mass likelihood distributions
down to 1D [as in Fig. 4(a) for example], one obtains
distributions that are identical to the 7D case except for
small statistical fluctuations.

A more complete estimate of theoretical uncertainty
would be to calculate the Higgs potential minimization
conditions and the sparticle masses all at different scales,
varying each independently by a factor of 2. However, such
a prescription is impractical here due to CPU time con-
straints. Also, theoretical uncertainties due to higher loop
finite effects are not modeled by the above approach. The
choice in SOFTSUSY is to perform renormalization group
evolution above the MSSM above MZ, and to match the
FIG. 6 (color online). Likelihood maps of mSUGRA parameter
likelihood distributions sampled from 8D parameter space and margi
the highest bin) is displayed by reference to the bar on the right-ha
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MSSM to QED � QED at MZ to leading log order (plus
one-loop finite terms). This implies that higher logs are
missing in the splitting between sparticles and MZ. While
this should be a good approximation when the sparticles
are not too heavy, for heavier sparticles it would be a better
approximation to integrate out individual sparticles at their
thresholds, while consistently taking the one-loop finite
terms into account. This program has not yet risen to
fruition due to technical difficulties with properly subtract-
ing the finite terms. However, some of the scale depen-
dence caused by not using the better approximation should
be contained within the results of our adopted procedure.
V. OTHER SOURCES OF DARK MATTER

For completeness, we may ask how robust our results are
with respect to the assumption that non-thermal-neutralino
contributions to �DM are negligible. Thus, we allow the
predicted amount of thermal-neutralino relic density
p�DMh2 (assuming some mSUGRA point s) to be some
fraction of the total relic predicted relic density �tot

DMh
2:

� �
p�DMh2

�tot
DMh

2 ; 0  �  1: (24)

Thus, the total amount of dark matter predicted is
p�DMh2=� and, assuming a flat pdf for � as shown in
Fig. 7(a), we obtain the likelihood penalty for a given
SUSY dark matter prediction

L �DMh2 �
Z 1

0
d�

1�������
2	
p

s�DMh2���

� exp
�
��m�DMh2 � p�DMh2=��2

2s�DMh2���2

�
; (25)

where
space including theoretical uncertainty. The graphs show the
nalized down to two. The likelihood (relative to the likelihood in
nd side of each plot.
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s�DMh2��� � 0:0081��p�DMh2=��m�DMh2�

� 0:0091���p�DMh2=��m�DMh2� (26)

in accordance with the asymmetric errors in Eq. (4). ��x� is
the Heaviside step function, ��x� � 1 for all x � 0, ��x� �
0 for all x < 0. We calculate Eq. (25) numerically and
display it in Fig. 7(b), where it is contrasted with the old
dark matter likelihood penalty that assumes that all dark
matter is of thermal-neutralino origin. The figure shows
that, if the relic density is too high, a severe likelihood
penalty applies (similar to the ‘‘no extra DM allowed’’
case) but a much less severe penalty applies if the predic-
tion is below the central value of the observed WMAP
value in Eq. (4). The additional contribution to �h2 is
assumed to be provided by some non-thermal-neutralino
source (late decays or hidden sector dark matter, for ex-
ample) [76]. The rest of the analysis proceeds exactly as in
Sec. III (i.e. without simultaneously taking theoretical
uncertainty into account).

The MCMC algorithm turns out to be much more effi-
cient once we drop the assumption that the cold dark matter
consist only of neutralinos: 19:9% efficiency was achieved
compared to 4:1%. One consequence of this is that statis-
TABLE VI. Likelihood of being in a certain region of
mSUGRA parameter space including possibly an additional
contribution from non-thermal-neutralino dark matter.

Region Likelihood

h0 pole 0:04� 0:01
A0 pole 0:52� 0:02
Coannihilation 0:14� 0:02
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tical fluctuations in the results are smaller. The likelihoods
in each region are shown in Table VI. A comparison of
Tables IV and VI shows that annihilation through the A0

pole has acquired a significantly larger likelihood through
allowing for other forms of dark matter. The Higgs-pole
and coannihilation regions are still, within statistics, com-
patible with their previous likelihoods. All of the listed
uncertainties have decreased, due to the additional
efficiency.

Figure 8(a) shows the likelihood map marginalized to
the M1=2 �m0 plane. Comparing it to Fig. 2(a), we see a
very similar picture except for the fact that the higher
volume of likelihood in the A0-pole region is evident.
The same comment can be made of all of the plots analo-
gous to the ones in Fig. 2: we show the likelihood margi-
nalized to them0 � A0 plane in Fig. 8 as an example. There
are no other qualitative changes in any of the plots, and
indeed the likelihood distributions marginalized to the
A0 � tan� and M1=2 � A0 planes [analogous to Figs. 2(e)
and 2(f)] are identical by eye, except for being smoother
due to the increased efficiency. Likelihoods of sparticle
masses also look the same, except for the spike in the
gluino mass, which has twice as much likelihood. As
mentioned before, this spike is due mainly to the light
h0-pole region which is subject to relatively large fluctua-
tions, as Tables IV and VI illustrate. We cannot conclude
that the h0-pole region obtains more integrated likelihood
by admitting non-thermal-neutralino components to the
relic density because the statistics in the MCMC algorithm
are not high enough.

One distribution that does significantly change shape is
that of BR�Bs ! �����. We show its marginalized dis-
tribution after dropping the lower likelihood penalties on
-13
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FIG. 8 (color online). Likelihood maps of mSUGRA parameter space allowing for non-thermal-neutralino contributions to the dark
matter relic density. The graphs show the likelihood distributions sampled from 7D parameter space and marginalized down to two.
The likelihood (relative to the likelihood in the highest bin) is displayed by reference to the bar on the right-hand side of each plot.
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�DMh
2 from the MCMC algorithm procedure in Fig. 9 as

the histogram marked ‘‘extra DM allowed.’’ For the pur-
pose of comparison, the default calculation where we
assume all dark matter to be thermal neutralinos from
Fig. 4(c) is also displayed, being marked ‘‘no extra DM
allowed.’’ Comparing the two distributions, we see a
broader distribution due to the enhanced A0-pole annihila-
tion region when additional components are allowed in the
fit. The A0-pole region has higher tan�, and therefore
higher values for the branching ratio. The estimated
amount of likelihood that could be covered by Tevatron
measurements with 8 fb�1 of integrated luminosity in-
creases by 6% to 35% of the currently allowed density
due to the presence of non-thermal-neutralino dark matter
contributions.
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FIG. 9 (color online). Investigation on the effects of allowing
for a non-thermal-neutralino component of dark matter in the
branching ratios for the decay Bs ! ���� in mSUGRA. The
current Tevatron upper limit is displayed by a vertical line.
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VI. CONCLUSIONS

Previous studies of mSUGRA in the context of dark
matter and particle physics constraints have tended to not
use the full dimensionality of the parameter space, and to
have put hard 95% (C.L.) limits on predictions. Here, in the
full dimensionality of parameter space, we include all of
the information in a likelihood fit, so that violating one
constraint slightly might be traded against fitting another
one better in a consistent manner. Although there is plenty
of qualitative information about possible dark matter an-
nihilation regions in mSUGRA in the literature, this paper
gives a quantitative calculation of the likelihood distribu-
tions in the full dimensionality of the parameter space.
However, the most important contribution of this paper
lies in the implications of the results to particle physics.

We have successfully employed an MCMC algorithm to
provide likelihood maps of the full 7D input parameter
space of mSUGRA. By using a statistical test, we have
shown that the likelihood distributions have achieved good
convergence before a total of 9� 106 samplings of the
likelihood. We have presented the likelihood marginalized
down to each 2D mSUGRA parameter pair. Such plots
provide the totality of the current information we have
about the model given the experimental constraints and
are quantitative results. Theoretical uncertainties in the
sparticle spectrum calculation broaden a couple of the
distributions a little but do not change them radically.

The main new contribution of this paper is to our knowl-
edge of what current constraints on mSUGRA mean for
particle physics in a quantitative sense. Marginalized 1D
likelihood distributions of quantities such as sparticle
masses (or mass differences) already show some signifi-
cant structure from the data, providing interesting infor-
mation for future collider searches. In particular, the
likelihood of the ‘‘golden cascade’’ ~qL ! �0

2 !
~lR ! �0

1
being kinematically allowed is 24%� 4%. m~�1

�m�0
1

is
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peaked below 10 GeV, implying that stau reconstruction at
hadron colliders could be problematic at the LHC.
Integrating the likelihood density, we find the likelihood
of m~�1

�m�0
1
< 10 GeV is 19:9%. Our likelihood distri-

butions for BR�Bs ! ����� corroborate the conclusions
of Ref. [40]: that current bounds upon the branching ratio
do not yet place significant constraints upon mSUGRA
once other constraints have been taken into account, but
any improvement on the upper bounds constrain the cur-
rently available parameter space. The quantitative results
on BR�Bs ! ����� are particularly important: if the
Tevatron experiments can reach down to 2� 10�8, they
will cover 29% of the mSUGRA likelihood, or 35% if we
allow the possibility of additional contributions to the relic
density other than thermal neutralinos.

We have shown that the correlation between BR�Bs !
����� and ��g� 2�� noticed in Ref. [71] is much diluted
once simultaneous variations of all mSUGRA parameters
are taken into account. The A0-pole annihilation region and
the stau coannihilation region each have approximately an
order of magnitude more likelihood than the h0-pole re-
gion. Stop-coannihilation is highly disfavored compared to
these other regions due to more restrictive Higgs mass
constraints coming from a lower value of mt, as well as
the BR�Bs ! ����� and ��g� 2�� predictions. The light
h0-pole region just survives the LEP2 Higgs mass con-
straints despite the new reduced top mass value albeit with
a reduced likelihood (in the usual frequentist language, it is
outside the 95% confidence level but not the 99% one). The
light h0-pole region has more likelihood if one allows
additional non-thermal-neutralino components of dark
matter.

The analysis of Ref. [11] includesMW and sin2�leff in the
�2 statistic, excluding M1=2 > 1500�600� GeV at the 90%
confidence level for mt � 178 GeV and tan� � 50�10�
respectively. These numbers are not exactly reproduced
in the present analysis for several reasons: we use a more
up-to-date value of mt, we vary mt, mb, �s�MZ� and tan�
simultaneously with the other mSUGRA parameters and
we do not include MW , sin2�leff in the fit. Indeed, one may
wonder about introducing a posteriori bias as a result of
only picking these two precision electroweak observables,
since they are the two that show a preference for a SUSY
contribution. Other observables would presumably prefer
heavier SUSY particles. However, MW and sin2�leff do
show a preference for lower M1=2 for mt � 178 GeV.
Having said that, our results are not wildly different, as
an examination of Fig. 2(a) shows.

We suspect that the MCMC techniques exemplified here
could be found extremely useful in SUSY fitting programs
such as FITTINO [77] and SFITTER [78] in order to provide a
likelihood profile of the parameter space, including sec-
ondary local minima. These programs are designed to fit
more general MSSM models than mSUGRA to data, with
an associated increase in the number of free input parame-
015013
ters, so the linear calculating time of MCMCs ought to be
very useful.

While our results presented for mSUGRA are in them-
selves interesting, it is obvious that the method will be
applicable in a much wider range of circumstances. Once
new observables become relevant, such as some LHC end
points, for example, it would be trivial to include them into
the likelihood and reperform the MCMC [79]. The method
should be equally applicable to other models, and provided
enough CPU power is to hand, could provide likelihood
maps for models with even more parameters and/or de-
tailed electroweak fits.
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APPENDIX: TOY MODELS AND SAMPLING

By definition, a sampler able to sample correctly from a
pdf p�x� must generate a list of x values whose local
density, at large step numbers, is proportional to the proba-
bility density p�x� at each part of the space (in the preced-
ing parts of the paper we have set this pdf to be the
likelihood). The value of the constant of proportionality
between the probability density and the local density of x
values is unimportant, but the key point is that it is constant
across the whole space.

It can sometimes be hard to implement a good sampler
for a given probability distribution. In fact it is often easier
to invent an algorithm which generates a sequence of x
values, and which may superficially resemble a sampler,
but which lacks constancy of proportionality over the
space. We might call such algorithms pseudosamplers as
their output can sometimes resemble that of a true sampler,
provided that the variation in proportionality is not too
great across the space considered. Pseudosamplers are
sometimes useful (e.g. as a means of exploring a multi-
dimensional space in which case sample density may be
neither interesting nor the end product of the analysis).

In the present and in many other papers, however, sam-
ple density represents confidence in some particular part of
parameter space, and is the final product of the analysis.
Extreme care, then, must be taken to ensure that any
creative modifications to established Markov Chain sam-
pling techniques do not break the principle of detailed
balance—the test which ensures that the algorithm re-
mains a true sampler rather than a pseudosampler.

It is often desirable for Metropolis-Hastings–type sam-
plers to have an efficiency of about 25% for the acceptance
of newly proposed points. Efficiencies much smaller than
this may suggest that the proposal distribution is too wide
-15
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and is too often proposing jumps to undesirable locations
far away from the present point, leading to large statistical
fluctuations in the result. Efficiencies much larger than this
can be indicative of proposal distributions which are too
narrow and may take too many steps to be practical to
random-walk from one side of a region of high probability
to the other. It is tempting, therefore, to adapt the present
step size (i.e. proposal distribution width) on the basis of
recent efficiency. With a couple of toy examples, however,
we will illustrate that this is a dangerous path to follow, and
we will demonstrate that it break the principle of detailed
balance, and thus turns the Markov Chain algorithm from a
sampler into a pseudosampler.

We take as our example the method used by Baltz and
Gondolo [43] which is designed to keep the target effi-
ciency of the authors’ Markov Chain close to 25%:
(1) D
FIG. 1
relevan
algorith
ouble the current step size if the last three pro-
posed points were all accepted.
(2) H
alve the current step size if the last seven proposed
points were all rejected.
We will refer the above method as ‘‘the adaptive algo-
rithm’’ and show that it fails to sample correctly from some
simple distributions, a signature of detailed balance being
broken.

Take, for example, the 1-dimensional double Gaussian
probability distribution pdGau�x� defined by

pdGau�x� / g�x; 0; 1� � g�x; 10; 1=2�; (A1)

where g�x;m;
� � exp���x�m�2=�2
2�� is a Gaussian
distribution of unit height and width 
 centered on x � m.
Note that the Gaussian near the origin is wider than the
Gaussian near x � 10. This pdf mocks up the approximate
situation along the M1=2 direction in mSUGRA for large
m0, as Fig. 2(a) shows. The narrow Gaussian would then
correspond to the light h0-pole region, which is quite
disconnected from the wider A0-pole region. A
Metropolis-Hastings algorithm (see Sec. II) with a fixed
-6 -4 -2 0 2 4 6 8 10 12 14

(a)

0 (color online). Binned samples of the double Gaussian d
ce here. Part (a) uses a Metropolis-Hastings algorithm and y
m.
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Gaussian proposal pdf Q�x� of width 5 was run for
2 000 000 steps and the binned result is shown in
Fig. 10(a). It reproduces the target distribution very well.
In contrast, Fig. 10(b) shows what happens when the
adaptive algorithm is run on pdGau�x�. Clearly, the result
is very different to that in Fig. 10(a) and is thus very wrong.
The narrow Gaussian has been sampled many times more
frequently than it should have been relative to the wider
one near the origin.

The adaptive algorithm ensures that, whenever the cur-
rent point is in one of the two Gaussian regions, the step
size is adjusted to be proportional to the width of that
region. This adaptation is not immediate (seven successive
rejections must occur before the step size is halved) but
suppose for the moment that adaptation were to take place
almost immediately. For the moment, let us also neglect
random fluctuations of the step size. In such a limit, when
the current point is in the left-hand Gaussian region, the
step size is double what it is when the current point is in the
right-hand region. Making a proposal for a jump from the
region on the left to the region on the right, therefore, is
something like a 10-sigma event. In contrast, making the
reverse proposal (from right to left) is more like a 20-sigma
event. In this limit, it is thus e��20�2��10�2�=2 � e150 times
more likely that jumps to the right get proposed than jumps
to the left. This is a vast overestimate of the bias toward the
narrow region for two reasons. Firstly, step size adaptation
is not immediate (even when the step size is half of what it
should be, quite a few steps occur before seven successive
rejections). Secondly and more importantly, even when
settled in one of the two regions, the adaptive step size
makes excursions about its mean value. Excursions to very
high step sizes (double or quadruple the average step size)
are infrequent but still occur. When they do, they elevate
the chance of proposing a jump from one region to another,
and help to equilibrate between the two regions. Both of
these effects reduce the bias favoring the narrow region,
-6 -4 -2 0 2 4 6 8 10 12 14

(b)

istribution pdGau�x�. The normalization is arbitrary and has no
ields a good approximation whereas part (b) uses the adaptive
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but still break detailed balance, and overall the right-hand
Gaussian is still sampled about 10 times more frequently
than it should be.

For quite a different example, consider the truncated
Cauchy distribution defined by

pcauchy�x� /
�

1=�1� x2� if x >�500 and x < 500;
0 otherwise:

(A2)

A faithful sampling from this distribution is shown in
Fig. 11(a), and a mis-sampling using the adaptive algo-
rithm is shown for comparison in Fig. 11(b). Although
there is better correspondence between the samples gen-
015013
erated by the two methods than was the case earlier, it is
nevertheless evident that there are large differences be-
tween the degrees to which the two methods have sampled
the tails of the distribution. As a consequence, samples
from the adaptive method have a root-mean-squared value
of 7.6 compared to the value of 17.9 obtained by the true
sampling. The cause of the discrepancy is again due to the
very different scales in the Cauchy distribution. Its core is
very narrow with a width of order 1, but there are signifi-
cant parts of probability also lodged in the tails many
orders of magnitude away. The adaptive method has to
raise and lower the step size frequently to sample from the
whole dynamic range, and in doing so it has to break
detailed balance many times, resulting in the cumulative
effect of an overall order of magnitude bias in the tails.
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