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In search of a Hagedorn transition in SU�N� lattice gauge theories at large-N
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We investigate on the lattice the metastable confined phase above Tc in SU�N� gauge theories, for
N � 8; 10, and 12. In particular we focus on the decrease with the temperature of the mass of the lightest
state that couples to Polyakov loops. We find that at T � Tc the corresponding effective string tension
�eff�T� is approximately half its value at T � 0, and that as we increase T beyond Tc, while remaining in
the confined phase, �eff�T� continues to decrease. We extrapolate �eff�T� to even higher temperatures, and
interpret the temperature where it vanishes as the Hagedorn temperature TH. For SU�12� we find that
TH=Tc � 1:116�9�, when we use the exponent of the three-dimensional XY model for the extrapolation,
which seems to be slightly preferred over a mean-field exponent by our data.

DOI: 10.1103/PhysRevD.73.014517 PACS numbers: 11.15.Ha, 11.15.Pg, 11.25.Tq, 12.38.Mh
I. INTRODUCTION

In the large-N limit the confined phase of the SU�N�
gauge theory becomes weakly interacting and relatively
simpler [1,2]. Moreover, some of its features can be de-
scribed by a low energy effective string theory (for ex-
ample see [3]). The link between gauge theories and string
theories was strengthened with the conjectured AdS/CFT
dualities between supersymmetric Yang-Mills theories in
the large-N limit and gravity models (for a review see [4]).
An interesting element of systems with stringy properties is
the occurrence of an ultimate temperature, above which the
free string description is unsuitable. In string models for
QCD (or pure gauge theory), this temperature is naturally
identified with a ‘‘Hagedorn‘‘ deconfinement transition.

The earliest evidence for the existence of a finite tem-
perature phase transition in hadronic physics was obtained
by Hagedorn in [5]. There, he assumed that hadronic states
with mass m! 1, referred to as ‘‘fireballs’’, are com-
pound systems of other fireballs. This can be stated mathe-
matically by a self-consistent relation that the density of
states ��E� must obey, and that results in an exponential
growth of � with the energy E. An immediate consequence
is that there exists a temperature TH, above which the
partition function diverges: as T ! T�H , the Boltzmann
suppression of states / exp��E=T� is overwhelmed by
the density of states, ��E� / exp��cE�. At this T an in-
crease of the system’s energy is met with an increase in the
number of particles. In the bootstrap dynamical frame-
work, which predated the discovery of QCD and the idea
that hadrons are confined bound states of quarks and
gluons, TH represents an ultimate temperature beyond
which matter cannot be heated. In the more appropriate
language of QCD, once we are close enough to TH for these
fireballs to be densely packed, the underlying quark and
gluon degrees become liberated from their ‘‘hadronic
bags‘‘ and we expect to see a deconfinement transition [6].

A simple, intuitive, and general analogue of the above
argument [7,8] in the context of any linearly confining
theory is as follows. In such a theory the energy of a string
06=73(1)=014517(11)$23.00 014517
of length l between two distant static sources a distance
r < l apart, obeys

E�l; r� ’ �l; (1.1)

where � is the confining string tension and we neglect
subleading terms. For a string (or for a long enough flux
tube) it is easy to see that once l� r the number of
different states of the string grows exponentially with l,
n�l� / exp�cl�, up to power factors, with c determined by
the dynamics and dimensionality. On the other hand the
probability of such a string with l� r is suppressed by a
Boltzmann factor, / exp��E�l�=T�. The total probability
of such a string is given by the free energy that combines
the two factors to define an effective string tension �eff�T�:

/ exp��c� �=T� � l	 
 exp���eff�T�l=T�: (1.2)

It is thus clear that as T ! TH 
 �=c, arbitrarily long
loops will be thermally excited and the effective string
tension vanishes, �eff !

T!TH 0. Because of this vanishing
energy, and other features of the free energy [6], one would
naturally expect this deconfining phase transition to be
second order.

We can give a parallel argument for the partition func-
tion itself. Consider an SU�N� gauge theory in which the
confining energy eigenstates are composed of glueballs. A
model for glueballs is to construct them from closed loops
of (fundamental) flux. For the lightest glueballs this loop
will be small, and given that the width of the flux tube is
O�1=

p
��, it does not make much sense to think of a

distinct closed loop of flux. However in the sector of highly
excited glueballs, the loop will be very long and the
presence of such states becomes compelling. For a state
composed of a flux loop of length l, the energy is E� �l.
What is the number density, nG�E�, of such states? Such
highly excited states have large quantum numbers and in
this limit a classical counting of states is justified. Thus the
number of these states equals the number of closed loops of
length l, i.e. nG�E� / exp�cl� up to subleading factors, with
the scale c identical to the one in Eq. (1.2). Thus the
-1 © 2006 The American Physical Society
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partition function will have a Hagedorn divergence as T !
TH where TH is identical to the string condensation tem-
perature of the previous paragraph.

Since we expect c�
p
�, we expect the Hagedorn tran-

sition to occur at TH � �=c�
p
�. On the other hand the

lightest glueball (a scalar) satisfies mG ’ 3:5
p
� while the

next lightest glueball (a tensor) satisfies mG ’ 4:8
p
�.

Thus one has the somewhat counterintuitive picture that
as T ! TH the lightest glueballs are not thermally excited.
Rather it is the highly excited glueballs, whose density of
states grows exponentially with their mass, that drive the
transition.

In the above scenarios, as T ! TH the vacuum becomes
increasingly densely packed with the thermally excited
states. These will at some point start to interact and the
idealised arguments we use necessarily break down as T
approaches TH. We note that as N ! 1 for SU�N� gauge
theories (or QCD), interactions between color singlet states
vanish. Thus it is in this limit that the argument for a
Hagedorn transition becomes most compelling.

The vanishing of �eff , and the divergence of the asso-
ciated correlation length, suggests that this Hagedorn tran-
sition is second order. To what universality class might it
belong? The high temperature phase has a nonzero vacuum
expectation value for the complex valued Polyakov lines
that wind around the Euclidean temporal torus. This spon-
taneously breaks the global ZN symmetry of the theory.
Using universality arguments one can then predict the
critical exponents of the transition [9]. In particular, in
three spatial dimensions it belongs to the universality
classes of the three-dimensional Ising and XY models for
N � 2 and N � 4 (for N � 3, there is no known universal-
ity class) [10]. Finally for N � 1 there are studies that
predict mean-field behavior for the correlation length [11].
This can be understood as a suppression of the critical
region by powers of 1=N (see, for example, the discussion
in [12], and references therein). The study in [13] also
gives mean-field scaling, however only because infrared
divergences are not seen at the small volume discussed
there [14].

The above discussion has so far ignored the contribution
to the partition function that comes from nonconfined
energy eigenstates containing a finite density of gluons.
While such states will be irrelevant at low T, the fact that
their entropy grows as N2 while the entropy of confined
states is at most weakly dependent on N, means that for
large enough N there must be some T where their free
energy will decrease below that of the confined sector of
states. At this point there will be a phase transition to a
(perhaps strongly interacting) ‘‘gluon plasma‘‘, which one
would naturally expect to be first order. Indeed it turns out
to be the case that in four dimensions SU�N� gauge theo-
ries go through a first-order deconfining transition for N �
3 [15]. (See also the latent heat calculation at large-N on a
symmetric lattice [16].) For SU�2� the transition is second
014517
order, but it is not clear if it is a Hagedorn transition. The
fact that it is at small rather than large N makes the case
weaker. As does the fact that the SU�2� value of Tc=

p
�

lies on the curve that interpolates through the N � 3 values
[15]. On the other hand the value of Tc=

p
� does coincide

with the string condensation temperature of the simple
Nambu-Goto string theory (see below).

The fact that for N � 3 the first-order deconfining tran-
sition occurs for Tc < TH, would appear to render the
Hagedorn transition inaccessible. However the deconfining
transition is strongly first order at larger N, and so one can
try to use its metastability to carry out calculations in the
confining phase for T > Tc. If TH is not far away, one can
then hope to calculate �eff�T� over a range of T where it
decreases sufficiently that an extrapolation to �eff�TH� � 0
can be attempted. In the range of N accessible to us, the
interface tension between confined and deconfined phases
increases with N faster than the latent heat, and this makes
the metastability region larger [17] as N grows. Thus such
a strategy has some chance of success, and it is what we
shall attempt in this paper.

Our strategy is therefore to begin deep enough in the
confined phase and then to increase the temperature to
temperatures T > Tc, calculating the decrease in �eff�T�,
and extrapolating to �eff � 0. We interpret the result of the
extrapolation as the Hagedorn temperature, TH.
Nevertheless, since we work with finite values of N and
volume V, tunneling probably occurs somewhere below
TH. These tunneling effects and the fact that as �eff de-
creases finite volume effects become important, can make
an apriori fit for the functional form of �eff�T� unreliable.
As a result we first perform fits where we fix the functional
behavior to be

m 
 �eff=T �
T!TH

�TH=Tc � T=Tc�
�: (1.3)

where � � 0:6715�3� corresponding to 3D XY [18] or � �
0:5 corresponding to mean field. The reason for these two
choices is motivated by two conceivable ways in which the
low energy effective loop potential can behave (see below).
In addition we also perform fits where the exponent � is a
free parameter, constrained to the range �0; 1	, and find it to
be especially useful for SU�12�. The coefficient A is fitted
as well. An additional outcome of this work is to confirm
that at T � Tc the mass of the timelike flux loop that
couples to Polyakov loops is far from zero at large-N,
which confirms that the transition is strongly first-order.
To make this point clear we will present figures of the
effective string tension in units of the zero temperature
string tension �. As a function of T, it should have the
following behavior.

�eff=� �
T!THA � T=Tc � �TH=Tc � T=Tc�

�; (1.4)

If we imagine the effective potential for an order pa-
rameter such as the Polyakov loop, Veff�lp�, then at T � Tc
this will possess degenerate minima corresponding to the
-2
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confined and deconfined phases. These will be separated by
a barrier whose height is expected to be O�N2� at large N.
As we increase T the confined minimum rises relative to
the deconfined one(s). As T ! TH we expect the second
derivative at the confining minimum to go to zero, corre-
sponding to �eff ! 0. The simplest possibility is that at
this T the confining minimum completely disappears, i.e.
that this corresponds to a spinodal point of the potential. In
a string model of glueballs where the glueball is composed
of two ‘‘constituent‘‘ gluons joined by an adjoint flux tube,
string condensation would correspond to the explicit re-
lease of a gluon plasma simultaneously throughout space
and the identification of the Hagedorn transition with a
spinodal point would be compelling. This is less clear in
the closed flux loop model. (Whether the increasing stabil-
ity of the adjoint string as N ! 1 allows us to use the
adjoint string model for the highly excited states relevant
near TH also needs consideration.) If this Hagedorn
transition-spinodal point identification is indeed correct,
then in the vicinity of lp ’ 0, the effective loop potential
looks like that of a Gaussian model, and � � 0:5 is ex-
pected. A model for this behavior is in [13], where because
of the infinitesimal volume, any infrared divergences are
excluded, and one has mean-field scaling close to TH,
which also implies � � 0:5.

In principle it seems quite possible that TH does not
coincide with the spinodal transition temperature, Ts. The
temperature TH is a natural concept if one has a good
description of the confined phase as an effective string
theory. The latter will have O�1=N� interactions, and thus
to leading order, lead to a Hagedorn behavior at a certain
temperature TH. On the contrary, Ts most probably enc-
odes information on the gluonic deconfined phase, which
might not be contained in the string theory. Without any
other information in the spirit of the calculations [13], that
identifies TH � Ts, these two temperatures may be
different.

If TH < Ts then our method for identifying TH remains
valid. In that case one may write down a Landau-Ginzburg
theory that has a second order Hagedorn transition at TH,
from the confined vacuum,C, to a deconfined one,D1. This
happens at TH > Tc, where both C;D1 are metastable, and
another deconfined vacuum D2 is stable. At large-N, the
metastability may be strong enough such that this em-
bedded second order phase transition happens without
being sensitive to tunnelings into the real vacuum. In this
case, the fixed point that controls the critical behavior of
the transition is that of the 3D XY model. Nonetheless, to
see this nontrivial critical behavior one must be very close
to TH. This happens because interactions between the
Polyakov loops are O�1=N2� suppressed, and taking the
N � 1 limit before T ! TH results in a Gaussian model
and to � � 0:5. To see the scaling behavior of the 3DXY
model, one needs to take T ! TH together with N ! 1. In
other words, the critical region of this second order tran-
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sition has a width that shrinks with increasing N [12]. To
see this we can examine the renormalization of the �jlpj4

interaction in the Landau-Ginzburg-Wilson effective ac-
tion of the transition. As usual, � gets renormalized by
infrared (IR) modes, and in three spatial dimensions it gets
a contribution of O��2=m�. Since �� 1=N2, this becomes
significant only if m� 1=N2. Using m2 � �TH � T�, this
means that the IR modes drive the system to the 3DXY
universality class only if �TH � T� & 1=N4. Outside of this
regime the correlation length has the MF scaling � � 0:5.

Finally, in the case of TH > Ts then the spinodal tran-
sition may (but need not) interfere with our determination
of TH. This is a significant ambiguity that we cannot
resolve in the present calculations but the reader should
be aware of its existence.

We finish by listing some of the reasons that motivate
our study. First it gives nonperturbative information about
the free energy as a function of the Polyakov loop. While
the value of Tc tells us when the ordered and disordered
minima have the same free energy, the function �eff�T�
indicates how the curvature of the free energy at the con-
fining vacuum changes with T and its vanishing may
indicate the point at which the confining vacuum becomes
completely unstable. This information can serve to con-
strain the form of the potential in effective models for the
Polyakov loops (like those in [11], for example). Second,
this study is a first attempt to investigate the validity of
nonzero temperature mean-field theory techniques of
large-N lattice gauge theories in the continuum. A related
study [19] in the strong-coupling limit saw that mean-field
theory predictions at finite temperature are simply incor-
rect, which is consistent with the fact that the large-N limit
of these strongly-coupled fermionic systems is mapped to
classical systems at finite temperature, whose universality
class is not mean field [12]. It is of prime interest to know if
the same happens in the continuum limit of the pure gauge
theory, which we are much closer to. The Hagedorn tem-
perature TH can also give an estimate of the central charge
of a possible underlying string theory [20], and finally it is
interesting to know what is the limit of TH=Tc when N !
1. This limit should be larger than 1, given that the
deconfining phase transition has been shown to be first
order at 3  N  8 [15]. It is however possible that
TH=Tc is close to 1 and perhaps decreasing with N which
opens up interesting new possibilities in the N � 1 limit.
II. LATTICE CALCULATION

We work on a lattice with L3
s � Lt sites, where Lt is the

lattice extent in the Euclidean time direction. The partition
function is give by

Z �
Z
DU exp��SW�; (2.1)

where SW is the Wilson action given by
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TABLE I. Statistics and results of the Monte-Carlo simulations for N � 8, obtained with
method A. The ‘‘D’’ denotes tunneling to deconfining configurations, which is not considered for
the fits. amhot is the result of the data set that excludes the first 3000 measurement sweeps.

N � 8
� am amhot a

����
�
p

Initial (no. of sweeps)=103

(all sweeps)

43.850 0.361(17) 0.362(17) 0.3615 Frozen 20.0
43.875 0.336(22) 0.362(22) 0.3580 43.850 15.0
43.900 0.334(17) 0.337(17) 0.3547 43.875 13.0
43.930 0.272(19) 0.270(19) 0.3507 43.875 17.0
43.950 0.314(15) 0.326(15) 0.3481 43.850 24.0
43.975 0.286(17) 0.283(17) 0.3448 43.950 10.0
43.980 0.258(18) 0.245(18) 0.3442 43.975 13.0
43.985 0.304(14) 0.294(14) 0.3436 43.975 13.0
43.995 0.206(13) 0.207(13) 0.3423 43.975 14.0
44.000 0.264(17) 0.260(17) 0.3417 43.850 29.0
44.01;D – – 0.3404 44.000 13.0
44.015;D – – 0.3398 44.000 13.0
44.020 0.240(17) 0.253(17) 0.3392 44.000 15.0
44.025 0.228(17) 0.201(17) 0.3385 44.000 16.0
44.033 0.213(14) 0.220(14) 0.3376 44.000 20.0

TABLE II. Results and statistics of the Monte-Carlo simulations for N � 10 obtained with
method A. The D denotes tunneling to deconfining configurations. amhot are the results of the
data set that excludes the first 3000 measurement sweeps.

N � 10
� am amhot a

����
�
p

Initial (no. of
(all sweeps) config. sweeps)/103

68.5000 0.571(41) 0.609(34) 0.3941 frozen 17.0
68.5520 0.524(28) 0.514(29) 0.3888 68.50 22.0
68.6000 0.545(11) 0.544(11) 0.3839 68.50 23.5
68.6553 0.502(13) 0.500(14) 0.3785 68.60 20.5
68.7000 0.481(36) 0.441(35) 0.3742 68.50 23.5
68.7500 0.452(12) 0.453(14) 0.3695 68.50 23.0
68.8000 0.391(17) 0.388(19) 0.3649 68.50 26.0
68.8500 0.389(14) 0.378(22) 0.3603 68.50 24.0
68.9000 0.356(15) 0.345(16) 0.3559 68.50 23.0
68.9500 0.287(15) 0.289(16) 0.3516 68.50 23.5
69.0000 0.295(17) 0.286(17) 0.3473 68.50 25.0
69.0100 0.295(13) 0.294(14) 0.3465 69.00 23.0
69.0200 0.315(15) 0.312(15) 0.3457 69.00 22.0
69.0412 0.277(15) 0.292(16) 0.3439 69.00 22.0
69.0500 0.271(14) 0.273(16) 0.3432 69.00 21.0
69.0700 0.251(18) 0.242(19) 0.3416 69.00 22.0
69.0816 0.262(16) 0.258(17) 0.3406 69.00 22.0
69.1000 – – 0.3391 68.50 11.0
69.1100 0.253(11) 0.248(11) 0.3383 69.10 22.0
69.1200 0.233(15) 0.226(16) 0.3375 69.10 22.0
69.1300 0.223(15) 0.231(14) 0.3367 69.10 22.0
69.1400 – – 0.3359 69.10 12.0
69.1500 0.218(12) 0.228(13) 0.3351 69.10 22.0
69.1600 – – 0.3344 69.15 8.0
69.1700 – – 0.3336 69.15 8.0
69.1800 0.222(14) 0.225(16) 0.3328 69.15 18.0
69.1900 0.218(12) 0.228(13) 0.3320 69.15 18.0
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TABLE III. Masses in lattice units and statistics of the Monte-Carlo simulations for N � 10
obtained with method B on 143 � 5, and 123 � 5 lattices.

N � 10
� 123 � 5 (no. of sweeps)/103 143 � 5 (no. of sweeps)=103 a

����
�
p

68.50 0.599(30) 20 0.584(35) 20 0.3941
68.70 0.396(17) 22 0.428(29) 22 0.3742
68.85 0.371(27) 20 0.371(18) 20 0.3603
68.95 0.316(16) ‘‘ 0.308(11) ‘‘ 0.3516
69.07 0.246(12) ‘‘ 0.270(15) ‘‘ 0.3416
69.13 0.244(17) ‘‘ 0.241(14) 18 0.3367
69.17 0.220(10) ‘‘ 0.203(15) 16 0.3336
69.20 0.154(11) 22 0.200(21) 8 0.3313
69.23 0.183(19) 15 – – 0.3290
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SW � �
X
P

�
1�

1

N
ReTrUP

�
: (2.2)
TABLE IV. Results and statistics of the Monte-Carlo simula-
tions for N � 12 obtained with method B. All masses are
calculated on a 123 � 5 lattice, except for the last row which
is for 163 � 5 lattice. The number of thermalization sweeps was
at least 400 between two successive values of �, while it was 800
for the first calculation of � � 99:00.

N � 12
� am a

����
�
p

(no. of sweeps)=103

99.00 0.573(25) 0.3866 5
99.20 0.472(24) 0.3729 5
99.40 0.396(18) 0.3601 5
99.60 0.333(17) 0.3479 10
99.80 0.259(13) 0.3365 10
Here � � 2N2=�, and � � g2N is the ’t Hooft coupling,
kept fixed in the large-N limit. P is a lattice plaquette
index, and UP is the plaquette variable given by multi-
plying link variables along the circumference of a funda-
mental plaquette. Simulations are done using the Kennedy-
Pendleton heat bath algorithm for the link updates, fol-
lowed by five over-relaxations. We focus on the measure-
ment of the correlations of Polyakov lines, which are taken
every five sweeps.

The Monte-Carlo simulations were done using two dif-
ferent methods, which for convenience we refer to as
method ‘‘A’’ and method ‘‘B’’. In both, the calculation
was initialized with a field configuration at the lowest value
of � which was preceded by at least 3000 thermalization
sweeps from a cold start. Then, in method B, to reduce
thermalization effects, each value of � was simulated
beginning from the previous one. In contrast, in method
A, more than one simulation began from the same �. This
serves to eliminate the dependence between different simu-
lations1. We choose to use method A and method B for
N � 8 and N � 12 respectively. In the case of N � 10 we
used both methods, and could compare between them. In
Tables I and II, where we present results obtained with
method A, we give the initial configurations for each value
of �, along with the statistics of the study. The number of
thermalization sweeps for N � 8; 10 for each value of �
was always at least 3000. As mentioned, the SU�12� cal-
culations were done with method B, and less thermaliza-
tion sweeps (at least 400) were needed for each value of �.
For each data set, we calculate the correlation functions of
the thermal lines with improved operators [17], and use a
variational technique to extract the lightest masses [21–
25], the results for which are given in lattice units, am, in
1For a finite amount of statistics these two methods can lead to
different results. In particular, Method A should be more noisy.

014517
Tables I, II, III, and IV, where the errors are evaluated by a
jack-knife procedure.

To check that the results of method A are properly
thermalized we also calculate the masses by excluding an
additional 3000 sweeps (in addition to the standard ther-
malization sweeps). This results in a new set of masses,
which we refer to as amhot, and which we present in
Tables I and II. We find that in general the thermalization
effects are not significant, and in almost all cases amhot

agrees with am to within one sigma.
The physical scale a

p
� listed in the Tables was fixed

using the interpolation for the string tension given in [17]
in the case of SU�8�. For N � 10; 12 we extrapolate the
parameters of the scaling function of [17], c0;1;2, and
�0=N2, in 1=N2 from their values at N � 6; 8. In addition
we measured the string tension for N � 10 at � � 68:80
on an 84 lattice, and for N � 12 at � � 99:2; 100:0, on an
84, and a 104 lattice, respectively. The results, together with
the string tensions calculated with the scaling function, are
given in Table V. We find that assuming an error only in the
measured string tension, then the measured and calculated
99.90 0.203(13) 0.3310 10
99.95 0.190(13) 0.3284 10
99.95 0.187(14) 0.3284 10
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TABLE V. String tensions for SU�10� and SU�12�.

N;� Measurement Results of scaling function (see text)

N � 10; � � 68:80 0.3667(80) 0.3649
N � 12; � � 99:20 0.3770(26) 0.3729
N � 12; � � 100:00 0.3243(23) 0.3257

0.95 1 1.05
T/T

c

0

0.05

0.1

0.15

0.2

0.25
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0.35

0.4

0.45

0.5
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σ
ffe
/σ

0

MF
3dXY
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FIG. 1 (color online). Effective string tension for SU�8� ob-
tained in method A in units of the zero temperature string
tension.
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string tensions deviate at most by 1:6�. Evaluating the
extrapolation error will make the agreement better.

Let us note here that the points used for the fits exclude
values of� in which tunneling to the deconfined phase was
observed. Tunnellings were identified by observing double
peaks in the histogram of the expectation values of the
Polyakov lines, and by identifying clear tunneling configu-
rations (again using the Polyakov lines as a criterion). For
other values of �, we observe an increase in the fluctua-
tions of the lines with T, but did not see any tunneling
configurations. Correspondingly, the histograms widen
with T, and for some values of � start to develop asym-
metric tails. Nevertheless in all these cases the overall
average of the bare Polyakov line was always lower than
3� 10�3. The � values of the excluded deconfining simu-
lations are � � 44:01; 44:015 for SU�8�, and � �
69:10; 69:14; 69:16, and 69:17 for SU�10� (for method
A), as noted in Tables I and II. For the case of SU�12�
the last point of � � 99:95 was still confining after 10; 000
sweeps. At the next value of � � 100:00 the 123 � 5
system already showed signs of instability.

Finally, to check the effect of finite volume corrections,
which potentially increase as the mass decreases towards
TH, we perform several additional calculations of the
correlation lengths. In the case of N � 12 we performed
a single calculation on a 163 � 5 lattice at the smallest
volume with � � 99:95. The mass obtained after 5000
thermalization sweeps and 10 000 measurement sweeps,
is am � 0:187�14�, and agrees very well with the result
obtained on the 123 � 5 lattice (both are presented in
Table IV). For N � 10 in method B, all values of � were
simulated on both a 123 � 5 lattice, and a 143 � 5 lattice.
The results are presented in Table III, and we find at most a
1:3� difference between them. Comparing with the situ-
ation close to the second order phase transition of the
SU�2� group [17], we find that for N � 2, finite volume
effects are much more important than for N � 12. This
puts the results of this work, which were largely done for
only one lattice volume, on a more solid footing. This is
also consistent with standard theoretical arguments that
predict smaller volume corrections for gauge theories
with larger values of N.

If we define the effective string tension,�eff�T�, to be the
coefficient of the leading linear part of the free energy of
two distant fundamental sources, then �eff�T� � mT
where m is the lightest mass that couples to timelike
Polyakov loops. Therefore the ratio�eff=�will be given by
014517
�eff

�
�

am���

Lt � �a
����
�
p
����2

: (2.3)

At each simulated ratio of � we estimate T=Tc using

T
Tc
�
�a

����
�
p
�c

a
����
�
p
���

; (2.4)

where �a
����
�
p
�c is the value of a

����
�
p

at � � �c for Lt � 5,
i.e. 5a��c� � T�1

c . It is extracted from Tc=
����
�
p

, which is
0.5819(41) for N � 8. (This assumes that Tc=

����
�
p

varies at
most very weakly with a���, which is in fact what one
observes [17].) The corresponding value for N � 10; 12 is
found by extrapolating in 1=N2 according to measured
values of Tc=

����
�
p
�Lt � 5� for N � 4; 6; 8 [26]. This gives

0.5758 for SU�10� and 0.5735 for SU�12�, with an error of
about 1%.

In Figs. 1–5 we give the effective string tensions as a
function of temperature for the studied gauge groups and
various data sets, as explained above. In view of Eq. (1.4)
we choose to present �eff=�. As the relative error of am is
roughly 10 times the one on Tc=

����
�
p

, we neglect the latter in
our error estimate. The fit to the data was done according
Eq. (1.4), either by fixing � � 0:6715; 0:5 for the 3D XY
and mean-field universality classes, or in some cases by
making � a free parameter. The fitting results are presented
in Table VI.
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FIG. 4 (color online). Effective string tension for SU�10�
obtained in method B on a 143 � 5 lattice, in units of the zero
temperature string tension.
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FIG. 5 (color online). Effective string tension for SU�12�
obtained in method B in units of the zero temperature string
tension.
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obtained in method A in units of the zero temperature string
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obtained in method B on a 123 � 5 lattice, in units of the zero
temperature string tension.
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In Figs. 6–11 we present confidence levels in the fit
parameters, for the cases where the fit is good. In the case
of two parameter fits, we present contours in the
�A; TH=Tc� plane of the �2 per degree of freedom levels,
which correspond to confidence levels of 68:27%; 90%,
and 99%. These confidence levels are then reflected in
the error estimates we give in the text.

When we treat � as a free fit parameter as well, we
present two dimensional projections (e.g. in �� TH=Tc
space) of a volume in the parameter space of �TH=Tc; A; ��
that corresponds to the a confidence level of 68:27% and
lower. In this case we do not quote in the text any error
estimates together with the central values.
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FIG. 6. Confidence levels for the fits of SU�10� on a 123 � 5
obtained with method A for the 3DXY exponent.
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III. SUMMARY AND DISCUSSION

Gathering all the statistically reliable results of SU�10�,
we find that TH=Tc � 1:104�6� � 1:114�15� when fitting
with a 3D XY exponent. When � was treated as a free
parameter fit we find central values of � � 1 and TH=Tc �
1:160� 1:172. Finally when a mean-field exponent is
used, one find from data obtained with method B that
TH=Tc � 1:087�11�. We also find that the extrapolation
with the mean-field exponent has a higher �2, both in the
case of method A, and in the case of method B on a 1435
lattice. In particular, when we analyze both data sets to-
gether, we find that the best fit has a �2=dof � 1:93; 1:36
(with dof � 29) when fitting with a mean-field, and a 3D
XY exponent, respectively. It is also interesting that the
most sizable contribution to the �2 in this case comes from
the data point at � � 68:95 (also line no. 10 in Table II).
Since no reasonable fit will go through this point (see
Fig. 2), it is quite conceivable that at this value of � we
014517
have a strong statistical fluctuation. Ignoring this point
gives essentially the same fitting parameters, but makes
�2=dof � 1:54; 1:04 for the mean-field and 3D XY expo-
nents, respectively. This suggests that the 3D XY exponent
is preferable (although we still cannot exclude the mean-
field exponent possibility completely). This preference is
also be seen in Figs. 7 and 9 where we give the projections
in the �� TH=Tc plane, of a volume in the ��; A; TH=Tc�
space, that corresponds to a confidence level of 68:27%.
There we see that the point � � 0:5 is either outside, or at
the edge of this volume.

For N � 12 the fits are better, and we find that TH=Tc �
1:092�6� � 1:116�9� for mean-field and 3D XY exponents.
Both fits have a low�2, and we again cannot rule out either.
Here again the mean-field fit has a higher �2 than that of
the 3D XY fit. In this case, however, in view of the good �2

values, the preference towards a 3D XYexponent is weaker
than for SU�10�. Nonetheless it is interesting that when we
perform a fit with the exponent � as a free parameter we
-9
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find TH=Tc � 1:119, and � � 0:69 which is closer to the
3D XY exponent � � 0:6715�3� than to the mean-field
value of � � 0:5. Looking at Fig. 11 we find that the
preference of our data for � � 0:6715 is indeed weaker
here, as both exponents have a similar position in the
parameter space, with respect to the shaded area.

The limited statistics prevents us from making state-
ments about the behavior of TH as a function of N. This
is unfortunate, since it is of interest to know how far is
TH=Tc from 1 at N � 1. Nevertheless we obtain fitted
values of TH=

����
�
p
’ 0:62� 0:68, which is lower than

Tc=
����
�
p
’ 0:7 of SU�2� [27] where the phase transition is

second order, and therefore may be Hagedorn, Tc � TH, or
provides a lower bound on TH. To emphasize this point we
plot the �eff=� for N � 10; 12 that we obtained with
TABLE VI. Results of the fits to Eq. (1.4). The values of TH=Tc, a
free parameter was made, then the resulting � is presented in the sec
A� TH=Tc plane, when appropriate, in Figs. 6–11.

N Universality class TH
Tc

Tp

8 3D XY 1.093 0.6
123 � 5 MF 1.066 0.6
(method A) Free, � � 1 1.145 0.6
10 3D XY 1.104 0.6
123 � 5 MF 1.078 0.6
(method A) Free, � � 1 1.160 0.6
10 3D XY 1.108 0.6
123 � 5 MF 1.083 0.6
(method B) Free, � � 0:79 1.127 0.6
10 3D XY 1.114 0.6
143 � 5 MF 1.087 0.6
(method B) Free, � � 1 1.172 0.6
12 3D XY 1.116 0.6
123 � 5 MF 1.092 0.6
(method B) Free, � � 0:69 1.119 0.6

014517
method B here. For guidance we also calculate the masses
from Polyakov loops for SU�2� on a L35 lattice with L �
16; 20, and 24. The results are presented in Table VII, and
also show the expected increase in finite volume correc-
tions as the temperature approaches Tc. For each value of
T=

����
�
p

we choose to present in Fig. 12 the corresponding
value of �eff=� calculated on the largest volume there,
together with an extra point for SU�2� at T � Tc with
�eff � 0. For the physical scale we again use the interpo-
lation fit in [17]. We find that for N � 10; 12 the results
seem to be close, but not to follow the SU�2� results.

Finally we find interesting the fact that the Nambu-Goto
action, gives rises to a Hagedorn behavior at similar tem-
peratures given by

TNG
c =

����
�
p
’ 0:691=

���
c
p
; (3.1)

where c is the central charge [20] and equals unity in the
usual Nambu-Goto model. Applying this formula to our
values of TH we give the central charge values listed in
Table VI.

A determination of the proper universality class is an
important issue, and may teach us how the scaling region
behaves with N (if at TH the system behaves like in a
second order transition). As mentioned in the introduction,
this question was studied numerically in [19] for the
strongly-coupled gauge theory (with quarks included),
and analytically in [12] where the scaling region for chiral
restoration was seen not to change with N. In our context
the similar question can be approached for deconfinement
in the continuum of the pure gauge theory. Unfortunately,
despite the mild preference towards the 3D XY model,
discussed above, we currently cannot rule out unambigu-
ously any of the universality classes. To distinguish which
one is actually correct one must approach TH closer, and
nd A are presented for all fits. In the cases where a fit with � as a
ond column. We present the coverage probability contours in the

H���
� A central charge �2

dof dof

36 2.190 1.178 2.84 11
20 1.728 1.237 2.79 11
66 3.055 1.073 3.19 10
36 2.328 1.236 1.44 21
21 1.862 1.178 2.07 21
68 3.132 1.067 1.16 20
24 2.112 1.169 3.29 7
38 1.681 1.223 3.56 7
49 2.394 1.131 3.94 6
42 2.102 1.156 0.68 6
26 1.683 1.215 1.00 6
75 2.815 1.045 0.60 5
40 2.337 1.162 0.30 5
26 1.858 1.215 0.50 5
42 2.387 1.156 0.37 4
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TABLE VII. Masses from Polyakov loops on L35 lattices for
N � 2.

loop mass: SU(2)
� 1635 2035 2435 a

����
�
p

2.28 0.472(11) 0.476(13) 0.460(26) 0.3871
2.29 0.439(9) 0.435(8) – 0.3754
2.295 0.417(22) – 0.383(22) 0.3639
2.30 0.373(11) 0.390(12) – 0.3527
2.31 0.359(8) 0.335(8) 0.368(16) 0.3417
2.32 0.303(8) 0.299(9) 0.299(7) 0.3400
2.3215 0.290(19) – 0.288(22) 0.3309
2.33 0.274(8) 0.252(8) 0.245(8) 0.3256
2.335 0.252(11) – 0.222(10) 0.3204
2.34 0.217(8) 0.205(7) 0.196(7) 0.3101
2.35 0.161(6) 0.158(7) 0.158(7) 0.2891
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increase the statistics. In fact, as discussed in the introduc-
tion, if the Hagedorn transition is second order, we expect
that the critical region shrinks with increasing N, and that
only when �TH � T� & 1=N4, one will see the nontrivial
critical behavior of a 3DXY model. This is however hard
because tunneling configurations become more probable,
and finite volume effects (although relatively small at
larger values of N) become more important. Nonetheless
014517
when we perform a fit with the critical exponent � 2 �0; 1	
as a free parameter we find that for SU�12�, the best fit
result for � is closer to the 3D XY exponent than to the
mean-field value.

We believe that a more thorough investigation (with
larger statistics) would render the understanding of the
proper universality class, and indeed all the other issues
discussed above, much clearer, and the large-N limit of the
gauge theory better understood. However, considering its
current numerical cost we postpone it to future studies. A
different route to approach this question is to study variants
of the pure gauge theory, such as adding scalar fields.
Depending on the couplings added, the phase transition
can become second order [28], and one can study the
adequacy of large-N mean-field techniques close to second
order phase transition in a thermodynamically stable
phase.

ACKNOWLEDGMENTS

Our lattice calculations were carried out on PPARC and
EPSRC funded computers in Oxford Theoretical Physics.
B. B. was supported by PPARC. We thank Ofer Aharony,
John Cardy, Simon Hands, Maria Paola Lombardo, and
Benjamin Svetitsky for useful discussions and remarks.
[1] G. ’t Hooft, Nucl. Phys. B72, 461 (1974).
[2] E. Witten, Nucl. Phys. B160, 57 (1979).
[3] J. Polchinski, hep-th/9210045.
[4] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and

Y. Oz, Phys. Rep. 323, 183 (2000).
[5] R. Hagedorn, Nuovo Cimento Suppl. 3, 147 (1965).
[6] N. Cabibbo and G. Parisi, Phys. Lett. B 59, 67 (1975).
[7] A. M. Polyakov, Phys. Lett. B 72, 477 (1978).
[8] T. Banks and E. Rabinovici, Nucl. Phys. B160, 349

(1979).
[9] B. Svetitsky and L. G. Yaffe, Nucl. Phys. B210, 423

(1982).
[10] B. Svetitsky, Phys. Rep. 132, 1 (1986).
[11] A. Dumitru, J. Lenaghan, and R. D. Pisarski, Phys. Rev. D

71, 074004 (2005).
[12] B. Bringoltz, hep-lat/0511058.
[13] O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas,

and M. Van Raamsdonk, Adv. Theor. Math. Phys. 8, 603
(2004).

[14] O. Aharony (private communication).
[15] B. Lucini, M. Teper, and U. Wenger, J. High Energy Phys.

01 (2004) 061.
[16] J. Kiskis, hep-lat/0507003.
[17] B. Lucini, M. Teper, and U. Wenger, J. High Energy Phys.

02 (2005) 033.
[18] A. Pelissetto and E. Vicari, Phys. Rep. 368, 549 (2002).
[19] S. Chandrasekharan and C. G. Strouthos, Phys. Rev. Lett.

94, 061601 (2005).
[20] H. Meyer and M. Teper, J. High Energy Phys. 12 (2004)

031.
[21] K. G. Wilson, Closing remarks at the Abingdon/

Rutherford Lattice Meeting, 1981 (unpublished).
[22] M. Falcioni et al., Phys. Lett. B 110, 295 (1982).
[23] K. Ishikawa, M. Teper, and G. Schierholz, Phys. Lett. B

110, 399 (1982).
[24] B. Berg, A. Billoire, and C. Rebbi, Ann. Phys. (N.Y.) 142,

185 (1982).
[25] M. Luscher and U. Wolff, Nucl. Phys. B339, 222 (1990).
[26] M. J. Teper (private communication).
[27] L. D. McLerran and B. Svetitsky, Phys. Rev. D 24, 450

(1981).
[28] O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas,

and M. Van Raamsdonk, Phys. Rev. D 71, 125018 (2005).
-11


