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Nonperturbative study of the action parameters for anisotropic-lattice quarks
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A quark action designed for highly anisotropic-lattice simulations is discussed. The mass-dependence
of the parameters in the action is studied and the results are presented. Applications of this action in
studies of heavy quark quantities are described and results are presented from simulations at an anisotropy
of six, for a range of quark masses from strange to bottom.
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I. INTRODUCTION

The anisotropic lattice has proved an invaluable tool for
simulations of a variety of physical quantities. The preci-
sion calculation of the glueball spectrum was an early
application of the approach [1] and it was recognized
that anisotropic actions may also be advantageous in heavy
quark physics calculations [2]. Correlators of heavy parti-
cles such as glueballs and hadrons with a charm or bottom
quark have a signal which decays rapidly. Monte Carlo
estimates of these correlation functions can be noisy, mak-
ing it difficult to resolve a plateau over a convincing range
of lattice time steps. Increasing the number of time slices
for which the effective mass of a particle has reached a
plateau solves this problem and also decreases the statisti-
cal error in the fitted mass. Since this value may be used as
an input to determine many physical parameters this de-
crease is very beneficial.

Second, improved precision in effective mass fits means
that momentum-dependent errors of O�ap� can be disen-
tangled from other discretization effects and larger particle
momenta may be considered. This is particularly relevant
for the determination of semileptonic decay form factors
where the overlap of momentum regions accessible to both
experiments and lattice calculations is currently very
small. Typically, experiments have more events with
daughter particle momentum at or above 1 GeV. This is
also the region where large momentum-dependent errors
are expected in lattice calculations. The form factors of
decays like B! �‘� and B! K�� are inputs to determi-
nations of Cabibbo-Kobayashi-Maskawa quark-mixing
matrix (CKM) parameters so that increased precision in
lattice calculations can lead to tighter constraints on the
standard model. This has motivated a study of 2� 2 an-
isotropic lattices where the temporal and one spatial direc-
tion are made fine and all momentum is injected along this
fine spatial axis. Details of the progress to date in this work
are in Refs. [3,4]. The 2� 2 formulation has also proved
useful for a precision determination of the static interquark
potential over large separations, which is described in
Ref. [3]. In this paper we consider a 3� 1 anisotropic
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fermion action. The temporal lattice spacing, at is made
fine relative to the spatial spacing, as. The action is de-
signed with simulations at large anisotropies in mind. To
simulate a bottom quark with a relativistic action requires a
lattice spacing of less than 0.04 fm which is prohibitively
expensive on an isotropic lattice where the simulation cost
scales at least as O�a�4�. The anisotropic lattice offers the
possibility of relativistic heavy-quark physics using rea-
sonably modest computing resources. In the rest frame
of a hadron with a heavy constituent, the quark four-
momentum is closely aligned with the temporal axis, al-
lowing an anisotropic discretization to represent accurately
the Dirac operator on the quark field.

Implementing an anisotropic program does however,
incur a computational overhead not associated with the
isotropic lattice. The ratio of scales, � � as=at determined
by studying a physical long-distance probe depends on
bare parameters in the lattice action. While this depen-
dence is straightforward to establish at the tree-level of
perturbation theory, quantum corrections can occur at
higher orders. In the quenched approximation on a 3� 1
lattice this is not a serious additional cost as the tuning can
be done post-hoc. In this paper we investigate the accuracy
of this tuning procedure, at a fixed anisotropy � � 6 and
also the dependence of the renormalized anisotropy on the
quark mass at which the tuning is carried out.

In previous work the authors of Ref. [5] have investi-
gated an anisotropic version of the Symanzik-improved,
Sheikholeslami-Wohlert (SW) action and its feasibility for
heavy quark physics. They have shown that the Wilson
parameter in the spatial direction (rs) must be chosen with
care. In particular, they have studied the functional depen-
dence of improvement conditions on � and mqat to test if
any mqas dependence arises in an essential way. The
appearance of such terms would represent a serious tuning
problem when the quark mass, mq is large (as is coarse
by construction on the anisotropic lattice). They find that
for rs � 1 continuum behavior is only recovered for
M0as � 1 making this an inappropriate choice for aniso-
tropic heavy quark simulations. With rs � 1=� this
-1 © 2006 The American Physical Society
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O�mqas�-dependence does not arise and for charmed had-
rons the desired combination M0as � 1 andM0at � 1 can
be achieved. However, the authors find that ‘‘reasonable’’
choices of � and as which would allow for simulations
with b quarks do not exist in this formulation and a non-
relativistic interpretation is required, as in the isotropic
lattice case.

In this paper we investigate an action specifically de-
signed for highly anisotropic lattices, e.g. � 	 5 and which
does not demonstrate the pathological rs and associated
O�mqas� dependence described above. By applying differ-
ent improvement terms in the spatial and temporal direc-
tions the action is both doubler and O�asmq� error free.
This opens up the possibility of simulating directly at the
bottom quark mass using an anisotropic relativistic action.
In addition, in this feasibility study the renormalization of
� was determined from the speed of light at 
 1% accu-
racy. This precision was governed by finite statistics and
could certainly be improved upon.

The paper is organized as follows. The construction of
the action is described in Sec. II. Section III compares this
action with the sD34 action proposed in Ref. [6] and details
some analytic results. Results from a study of the disper-
sion relations and the mass-dependence of the speed of
light are described in Sec. IV. Some preliminary results of
this study have appeared in Ref. [7]. Our conclusions and a
discussion of future work are contained in Sec. V.

II. DESIGNING HIGHLY ANISOTROPIC ACTIONS

We begin by considering a Wilson-type action with
Symanzik improvement to remove discretization errors.
Full O�a�-improvement requires a clover term and a field
rotation, given by

 �
�

1�
ra
4
�D6 �m�

�
 0; (1)

� � � 0
�

1�
ra
4
�D6 �m�

�
; (2)

where a is the lattice spacing on an isotropic lattice and r is
the usual Wilson parameter. The rotation described by
Eqs. (1) and (2) preserves locality and maintains a positive
transfer matrix so that ghost states do not arise in a calcu-
lation of the free fermion propagator. However, in an
anisotropic implementation of this action, when at is
made very small, these rotations may lead to the reappear-
ance of doublers, an undesirable side-effect of the
anisotropy.

We would like to maintain the useful properties of
actions with nearest neighbor temporal interactions only.
In particular, the positivity of the transfer matrix guaran-
tees that effective masses approach a plateau from above.
Therefore, to construct an action suitable for large anisot-
ropies we begin by applying field rotations in the temporal
direction only, rewriting Eqs. (1) and (2) as
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This leads to a new action in which the temporal and spatial
directions are treated differently. Having applied the rota-
tions of Eq. (2) the continuum action is given by

S0 � � 0Mr 
0 �

rat
2

� 0
�
D2

0 �
g
2
�iEi

�
 0: (5)

where Mr � �r�iDi � �0D0 ��rm and �r �

�1� 1
2 ratm�. At the tree level, the rotations described in

Eqs. (3) and (4) do not generate a spatial clover term. As a
result the (� � B) term does not appear in Eq. (5). The
chromoelectric field, Ei is defined as

igEi � �Di;D0; (6)

and �i � �i0 is given by �i �
1
2i ��i; �0.

The temporal doublers are removed by discretizing the
D2

0 term in the usual way. However, with no spatial rotation
the spatial doublers remain and must be treated separately.
They are removed by adding a higher-order, irrelevant
operator to the action. This was first suggested by
Hamber and Wu in Ref. [8]. The simplest such operator
is a spatial D4 term which is added ad hoc to the Dirac
operator, giving an action,

S0 � � 0Mr 
0 �

rat
2

� 0
�
D2

0 �
g
2
�iEi

�
 0 � sa3

s
� 0
X
i

D4
i  
0:

(7)

This approach has previously been discussed in detail in
Ref. [9]. In this formulation, s is a Wilson-like parameter
which is chosen such that the doublers receive a suffi-
ciently large mass. The discretization of the action in
Eq. (7) is now straightforward. Only the �iDi term requires
an improved discretization since the simplest discretization
would lead to O�a2

s� errors. For this case we write

��1�imp��x� �
1

a

�
2

3
���x� a� ���x� a�

�
1

12
���x� 2a� ���x� 2a�

�
; (8)

and similarly the (unimproved) discretizations of @, @2 and
@4 are

��1���x� �
1

2a
f��x� a� ���x� a�g; (9)

��2���x� �
1

a2 f��x� a� ���x� a� � 2�g; (10)
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��4���x� �
1

a4 f���x� 2a� ���x� 2a�

� 4���x� a� ���x� a� � 6��x�g: (11)

The corresponding gauge covariant derivatives, D, D2 and
D4 respectively are constructed by including link variables
in the usual way. The chromoelectric field is discretized by
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a clover term with plaquettes in the three space-time planes
only

gEi �
1

�a2
t
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su

2
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8i
f�i�x� ��yi �x�g; (12)
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us and ut are the mean-link improvement parameters. us is determined from the spatial plaquette and ut is set to unity. At
the accuracy of the action constructed here no improvement is required. Finally, including the gauge fields and the mean-
link improvement factors the lattice fermion matrix, MARIA, is given by,
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At the tree level, the fermion anisotropy �q is given by the
ratio of scales, � � as=at. We call the action described
here ARIA for Anisotropic, Rotated, Improved Action. It is
classically improved to O�at; a

2
s�.

III. HEAVY QUARKS WITH ARIA

The precision calculation of the glueball spectrum on
coarse lattices [1] suggests that heavy hadronic quantities
would also benefit from the anisotropic formulation. The
correlation functions for heavy-heavy and heavy-light me-
sons fall rapidly with time and it can be difficult to isolate a
convincing plateau over a reasonable number of time sli-
ces. A lattice with fine temporal direction, in principle,
solves this problem by providing a large number of time
slices over which the time-dependence can be resolved.
Improved Wilson actions on anisotropic lattices have been
used to study a range of heavy flavor physics including
charmonium and bottomonium spectroscopy [10–12],
heavy-light and hybrid spectra [13–16] and also heavy-
light semileptonic decays [17].

In these calculations, currents are improved using rota-
tions, which are applied identically in all four space-time
directions and the Wilson parameter in the spatial direction
is usually chosen to be either rs � 1=� [18,19] or rs � 1 �
rt [20–23]. However, it was pointed out in Ref. [5] that
simulations with anisotropic Wilson-type actions may in-
clude O�asmq� effects. Naively, errors of this form are
unexpected but they arise in products of the Wilson and
mass terms in the action. In particular, the authors showed
that the presence of these artefacts, which appear in radia-
tive corrections, depends on the spatial Wilson parameter,
rs. The O�asmq�-dependence potentially spoils the benefits
of working on an anisotropic lattice, especially at large
quark masses.

In Ref. [6] a different approach was adopted. Since the
unwanted O�asmq�-dependent terms arise from the spatial
Wilson term the authors propose an anisotropic D234-type
action [2] may be more suitable. In this case a rotation term
is applied in the temporal direction only, removing the
temporal doublers. Spatial doublers are removed by adding
an irrelevant, dimension-four term to the Dirac operator.
The authors showed to one-loop order in perturbation
theory, that this so-called ‘‘sD34’’ action does not suffer
from O�asmq� terms. Comparing the ARIA action pro-
posed in Sec. II and the sD34 action from Ref. [6] we
see that these are the same, up to O�at� improvement.

The D234 quark action on an anisotropic lattice [2] is
written

SD234 � ata3
s

X
x

� �x�M �x�; (15)

and writing M in the notation of Ref. [6]

M � m0 �
X
�

����r��1� b�a2
����

�
1

2
at

 X
�

r�� �
X
�<�

c�SW���F��

!

�
X
�

��d�a2
��2

�: (16)

The sD34 action is a special case of this action in which the
parameters have the following values
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��0; �i� � �1; ��; �b0; bi� � �0;
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1
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and � � �1� 1
2 rtatm0�. Substituting in Eq. (16) gives
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which is the action we use in our simulations, up to O�at�
improvement. Reexpressing the fermion matrix in our
notation,

MARIA � �rm0 �
X
i

�r�iri
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6
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�
� �0r0

�
at
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�
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s

X
i

�2
i ; (19)

where s � 1=8 and �r � �1�
1
2 rtatm0�.

A. Analytic results for ARIA

In this section the energy-momentum behavior of the
ARIA action is calculated. We begin by presenting results
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for general r and s. The free-quark dispersion relation is
obtained by solving det ~MARIA � 0 in momentum space
where ~MARIA is the Fourier transform of Eq. (14). The
energy-momentum relation is

cosh�Eat� �
r2 � r!�p�

r2 � 1

�

����������������������������������������������������������������������
�r�!�p��2 � �1� r2��1� a2

t ~p2�
p

r2 � 1
; (20)

where !�p� and ~p are defined as
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X
i
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i ; (21)
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1

6
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s p̂

2
i �; (22)

with �pi �
1
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sin�aspi� and p̂i �
2
as

sin�aspi=2�. Expanding
the physical solution in powers of spatial momentum yields
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1 �

M1

M2
p2 �O�p4�; (23)

where the rest mass, M1 and the kinetic mass M2 are given
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: (25)
Equations (24) and (25) indicate that at the tree level, M1

and M2 do not depend on O�asmq� terms or on the ratio of
scales, �.

To compare these expressions with the results of other
studies, the particular choice r � 1 was considered. In this
case the lattice ghost [the unphysical solution of Eq. (20)]
disappears and the dispersion relation is given by

4sinh2

�
Eat
2

�
�
a2
t ~p2 �!2�p�
1�!�p�

; (26)

with

M1 �
1

at
log�1��rm0at�; (27)
1

2M2
�

�r

m0�2��rm0at�
: (28)

where now �r � �1�
1
2atm0�. These expressions are con-

sistent with those obtained in Ref. [6] for the sD34 action
and in Ref. [24] for the Fermilab action on an isotropic
lattice.

The free-quark dispersion relations for massless and
massive quarks are shown in Fig. 1. The anisotropy pa-
rameter, � is six for both cases. In analogy to the traditional
Wilson r-parameter, the parameter s in this action can in
principle take any positive value. We chose s � 1=8 by
eye, demanding that the energy-momentum relations do
not have negative slope for asjpj<�. Since s parame-
trizes a term which removes the spatial doublers and is
irrelevant in the continuum limit precise tuning is not
required.
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TABLE I. Details of the simulation.

# gauge configurations 100

Volume 103 � 120
as 0.21fm
as=r0 0.4332(11)
� � as=at 6
atmq �0:04,0.1,0.2,0.3,0.4,0.5,1.0,1.5

0 π √2π √3π
as|p|

0

0.5

1

a t
)p(

E
(1,0,0) axis
(1,1,0) axis
(1,1,1) axis
continuum

0 π √2π √3π
as|p|

0

0.5

1

a tE

(1,0,0) axis
(1,1,0) axis
(1,1,1) axis
continuum

FIG. 1 (color online). The dispersion relations given by
Eq. (20) with � � 6, r � 1 and s � 1=8. The top figure is the
massless case while the bottom plot shows the massive case, with
atmq � 0:2.
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IV. RESULTS

In this exploratory study the temporal rotations have
been omitted which leads to an O�at� classical discretiza-
tion error. However, since at is small in these simulations,
at � 0:04 fm, the effects should be under control at least
when atmq < 1. Discarding temporal rotations means the
action has no clover term and in addition we have set�r �
1. It is planned to include correction terms to remove O�at�
errors in future work.

The ratio of scales is changed in a simulation by quan-
tum corrections. Therefore the anisotropy parameter must
be adjusted so that the ratio of scales measured from a
physical quantity takes its target value. In a quenched
simulation the parameters �g and �q in the gauge and
quark actions may be independently tuned to the target
014514
anisotropy, using different physical probes. This is not the
case for unquenched simulations where the anisotropy in
the gauge and quark actions must be tuned simultaneously
[9].

For this study an ensemble of quenched gauge configu-
rations for which �g had already been tuned was used. In
this case the tuning criterion was that � � 6 when mea-
sured from the static interquark potential in different di-
rections on the lattice. The parameter �q in the fermion
action must now be tuned such that its value determined
from the energy-momentum dispersion relation is six. At
this point we introduce some terminology which makes
clear the difference between �q, which is a parameter in the
action, and the slope of the dispersion relation which is a
physical observable—usually called the speed of light, c.
The target anisotropy is six. �q is tuned so that the speed of
light (determined from the slope of the dispersion relation)
is unity.

The anisotropic action offers the possibility of precision
studies of a range of phenomenologically interesting heavy
quark quantities in the D, B, J= and � sectors. For this
reason it is important to understand the dependence of �q
on the heavy quark mass used in simulations. In particular,
a contribution of O�asmq� to the renormalized anisotropy
would spoil this tuning for charm and bottom quark
masses. The main result in this section is a study of the
mass-dependence of the speed of light at fixed anisotropy.

A. Simulation parameters

The gauge action used in this simulation is a two-
plaquette improved action designed for precision glueball
simulations on anisotropic lattices. A description is given
in Ref. [25]. The construction of the fermion action is
described in detail in Sec. II. Details of the simulation
and parameter values are summarized in Table I. A broad
range of quark masses was investigated, from atmq �

�0:04 which is close to the strange quark on these lattices
to heavy quarks with atmq � 1:0 and 1.5. Both degenerate
and nondegenerate combinations are considered. The non-
degenerate combination is made with the lightest quark and
each of the heavier quarks. Note that atmq � �0:04 cor-
responds to a positive quark mass since Wilson-type ac-
tions have an additive mass renormalization. We
accumulated data at spatial momenta (0,0,0), (1,0,0),
-5
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FIG. 2. Pseudoscalar meson effective mass plots. The two
plots indicate that very good fits can be made for a wide range
of quark masses and momenta. The top plot shows the effective
mass of the lightest meson made from a degenerate combination
of quarks with atmq � �0:04 for zero momentum and for three
units of momentum in lattice units. The second plot is the
analogous case for atmq � 1:0.
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(1,1,0) and (1,1,1), in units of 2�=asL, averaging over
equivalent momenta.

It is worth noting that all the gauge configurations and
quark propagators used in this study were generated on
Pentium IV workstations. Generating the lightest quark
propagators (close to the strange quark mass) required
approximately one week on a single processor. At this
quark mass no exceptional configurations were seen.

B. Effective masses

The success of anisotropic-lattice methods is predomi-
nantly due to the increased resolution in the temporal
direction. The fineness of the lattice in this direction is
particularly useful when determining heavy mass quanti-
ties whose signal to noise ratio decreases rapidly. The
increase in resolution also leads to reduced statistical errors
in effective masses since fits can be made to longer time
ranges than is usually possible with an isotropic lattice. For
the same reason, the fitted values tend to be less sensitive to
fluctuations of one or two points in the chosen fit range.

In this study the effective masses were determined using
single cosh fits with a 	2 minimization algorithm. The
signal to noise ratio was enhanced by using four sources,
distributed across the lattice at time slices 0, 30, 60 and 90.
The average of these results was used in the effective mass
fits. The statistical errors shown are calculated from 1000
bootstrap samples in each fit. Figure 2 shows four effective
mass plots. The first plot is the pseudoscalar meson with
degenerate quarks at the lightest mass for zero momentum
and for momentum of �1; 1; 1� in lattice units, 2�=asL. The
second plot is the analogous case for the degenerate com-
bination of quarks with atmq � 1:0. In all cases a clear
plateau, over a large number of time slices is observed. The
fits to effective masses of the nondegenerate mesons are
equally good and in all cases the fit range is ten or more
time slices with a 	2 per degree of freedom (	2=Ndf) �1.
In Fig. 3 the equivalent results for vector mesons are
presented. Once again, the lightest and heaviest degenerate
combinations of quark masses considered are shown and
very good fits are possible in both cases.

C. Determination of the renormalized anisotropy

The renormalized anisotropy �q which appears as a
parameter in the fermion action is determined nonpertur-
batively. As our tuning condition we demand that the speed
of light c, as measured from the slope of the dispersion
relation at one value of the quark mass, is unity. As stated
earlier, we are interested in two separate aspects of this
nonperturbative renormalization. First, the precision with
which the renormalized anisotropy can be determined and
second, the mass-dependence of this renormalization.
These are addressed in the following.

To begin, the dispersion relation was determined for a
pseudoscalar meson made from the lightest quarks in this
simulation, atmq � �0:04 and with an input anisotropy,
014514
�q � 6:0. The value of c determined from the dispersion
relation was used to determine the tuned value of the
anisotropy. The result is �q � 6:17� 0:06. The quark
propagators are then regenerated using the renormalized
value of �q in the action so that physically meaningful
results can be determined. Using the tuned anisotropy as
input the resulting dispersion relation is shown in Fig. 4.
The value of c determined from this tuned data is 1:01�2�

�1�

illustrating that the nonperturbative tuning can be carried
out at percent-level accuracies. In addition, Fig. 4 shows
very good linear dispersive behavior. As a cross-check of
our renormalization condition, we consider the value of c
-6
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determined from the vector meson dispersion relation with
mq � �0:04 and find c � 0:97� 0:02.

The determination of �q, a parameter in the fermion
action, to 1% accuracy using nonperturbative techniques
is reassuring for anisotropic methods. It indicates that there
is little uncertainty in physical results from the tuning
requirement of this parameter.

D. Mass-dependence of �q
Having studied the precision with which �q can be

determined we turn our attention to the mass-dependence
of the renormalized anisotropy. If the mass-dependence is
large a new anisotropy-tuning would be required for each
different mass in a simulation. Conversely, negligible
014514
mass-dependence implies that a tuning at one quark mass
is sufficient in a calculation with different quark masses.

This effect is investigated by measuring the speed of
light from dispersion relations for a range of quark masses.
We consider the value of c determined from degenerate
combinations of quarks with mass, f�0:04; 0:1; 0:2;
0:3; 0:4; 0:5; 1:0; 1:5g, corresponding to physical masses
from the strange quark to heavier than the bottom quark.
A representative sample of the energy-momentum disper-
sion relations for this range of quark masses is shown in
Fig. 5. The plot shows very good linear dispersive behavior.
-7



TABLE II. The ground state pseudoscalar and vector masses with degenerate quarks. The
speed of light determined from the dispersion relation for each quark mass is shown with the
associated 	2=Nd:f:. The errors in all cases are statistical only. The parameter, �q is fixed in these
simulations to 6.17, its value determined from the dispersion relation of the lightest degenerate
pseudoscalar meson.

Pseudoscalar Vector

atmq atMPS c 	2=Ndf atMV c 	2=Ndf
�0:04 0:1045�5

�5 1:01�2
�1 6:3=2 0:161�2

�2 0:97�2
�2 0:66=2

0.10 0:3831�4
�4 0:983�6

�7 2:8=2 0:3934�4
�4 0:982�8

�8 2:1=2

0.20 0:5418�3
�4 0:995�7

�7 0:33=2 0:5472�4
�4 0:990�8

�8 2:1=2

0.30 0:6887�4
�4 1:010�8

�7 2:4=2 0:6924�4
�4 0:997�9

�9 4:5=2

0.40 0:8269�4
�4 1:022�5

�5 0:65=2 0:8294�4
�4 1:011�5

�5 2:3=2

0.50 0:9569�4
�4 1:035�5

�5 1:3=2 0:9587�4
�4 1:025�5

�5 1:6=2

1.00 1:5086�3
�3 1:069�5

�5 1:3=2 1:5092�3
�3 1:072�5

�5 1:2=2

1.50 1:9428�3
�3 1:075�5

�5 0:081=2 1:9431�3
�4 1:072�5

�5 0:058=2
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We find that this relativistic dispersion relation persists for
both degenerate and nondegenerate quark combinations in
pseudoscalar and vector particles at all masses. The mass-
dependence of the speed of light is given by the difference
in the slopes for the different masses. We note that the
lightest mass, close to the strange quark mass, is the
noisiest and the statistical errors increase with increasing
momentum, as expected. It should be noted that the quark
propagators used in this study are generated with point
sources and the use of smearing techniques is expected to
improve the signal for this and lighter quark masses. In
addition the advantages of stout link gauge backgrounds
[26] is under investigation [27].

In Tables II and III we show the speed of light deter-
mined from the slope of the dispersion relation for each
mass in the simulation. The 	2=Nd:f: for these fits is also
shown. Results for both pseudoscalar and vector mesons
are given and the ground state masses extracted in the
fitting procedure described in Sec. IV B are listed. The
tables indicate a stronger mass-dependence for mesons
TABLE III. The ground state masses of nondege
case the quark mass given is combined with the lig
As in Table II the pseudoscalar and vector meson s
associated 	2=Nd:f:. Once again all errors are sta

Pseudoscalar

atmq atMPS c 	2=Nd
0.1 0:2610�6

�6 0:98�1
�1 0:23=2

0.2 0:3466�6
�6 1:01�2

�2 0:56=2

0.3 0:4254�7
�7 1:02�2

�2 2=2

0.4 0:4987�7
�7 1:01�2

�2 1:5=2

0.5 0:5668�8
�8 1:02�2

�2 1:7=2

1.0 0:8521�10
�10 1:00�2

�2 2:6=2

1.5 1:074�1
�1 1:02�3

�3 2:1=2

014514
made with degenerate combinations of quarks (corre-
sponding to heavy-heavy particles) compared with the
nondegenerate (heavy-light) particles. From Table II the
data show an�9% shift in the value of c as the quark mass
is changed from mq � ms to mq > mb. For a more modest
range of quark masses, mq � ms to mq �mc the variation
in c is only 3%. The conclusion is that a single anisotropy
renormalization at mq � ms is sufficient to reliably simu-
late physics from light hadrons to charmonium. If botto-
mium physics is of interest then the renormalization should
be carried out at a heavier quark mass. In fact the computa-
tional cost of this tuning decreases for heavier quark
masses as the quark propagators are cheaper to generate.

Table III shows that in the heavy-light case the variation
in c is very small - approximately 4% over the range of
quark masses considered. This is further reduced to�2% if
only quark masses, ms � mq � mc are considered.

To investigate more thoroughly the mass-dependence of
cwe consider the results for degenerate and nondegenerate
pseudoscalar and vector particles separately as shown in
nerate combinations of quark masses. In each
htest mass in our simulations, atmq � �0:04.
tates are shown with the speed of light and the
tistical only and �q � 6:17� 0:06.

Vector

f atMV c 	2=Ndf
0:2802�8

�8 0:98�2
�2 0:19=2

0:3601�8
�8 0:99�2

�2 0:64=2

0:4351�8
�8 1:00�2

�2 0:45=2

0:5056�8
�9 0:99�2

�2 1:4=2

0:5720�9
�9 1:00�2

�2 1:6=2

0:854�1
�1 1:02�3

�3 0:62=2

1:075�1
�1 1:01�3

�4 1:8=2
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Figs. 6 and 7. The plots show the speed of light as a
function of the meson mass in units of at for both pseudo-
scalars and vectors. The solid and dotted lines are the result
of a linear fit to the data (� 0:04 � atmq � 1:5) with the
slope as a free parameter. The value of the slope deter-
mined from the fit is shown in each plot. The dotted lines
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are the 68% confidence levels. For both pseudoscalars and
vectors the degenerate combinations show a stronger mass-
dependence than the nondegenerate case, for which the
slope is zero. Reducing the range of masses considered
reduces this mass-dependence so that for masses up to
charm it is negligible in all cases.
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It is important to remember that the anisotropy was
tuned only once at the lightest pseudoscalar particle. The
plots show good agreement between determinations of c
from degenerate and nondegenerate particles up to atmq �

0:3, corresponding to atMPS � 0:6887�4� in Fig. 6. The
charm quark mass on this lattice is close to atmq � 0:2,
implying that charm physics is both computationally fea-
sible and requires little parameter tuning at an anisotropy
of six.

Figures 6 and 7 also indicate that the agreement between
the degenerate and nondegenerate meson physics de-
creases for increasing quark mass. While both systems
have discretization effects of O�atmq�, which is small the
discrepancy is not unexpected. Degenerate mesons with
two heavy quarks (charmonium and bottomonium) have a
small Bohr radius, rhadron and will suffer from additional
large discretization effects of O�as=rhadron�. Note that on
these coarse lattices as is large while rhadron is small. The
nondegenerate mesons (D and B mesons) do not have such
a problem.

We have investigated this dependence by varying the
parameter �q in the quark action and repeating the simu-
lations described above, for the heavy quark mass atmq �

1:0. The dependence of the speed of light, determined from
the dispersion relation, on the input anisotropy is shown in
Fig. 8. The value of c determined from the degenerate
meson moves closer to its target value of unity and c
determined from the nondegenerate physics moves away
from this value. It is also interesting to note the agreement
between determinations of c from pseudoscalar and vector
particles. The tuning, described above at atmq � �0:04
was carried out for pseudoscalars and it is reassuring that
although the vector particles have larger statistical errors
they nevertheless yield a consistent picture for the mass-
dependence of the speed of light.

V. DISCUSSION AND CONCLUSIONS

In this paper we have explored the viability of aniso-
tropic actions for heavy quark physics. An action suitable
for simulations at large anisotropies is described. One of
the main disadvantages of using anisotropic actions is the
extra parameter tuning required to recover Lorentz invari-
ance. In particular, if the ratio of scales � is sensitive to the
quark mass in the simulation then a parameter tuning may
014514
be required for each mass. We have determined the speed
of light for a range of quark masses having fixed the ratio of
scales at the strange quark, atmq � �0:04. Only slight
mass-dependence (for the degenerate mesons) is found
up, to atmq � 0:5 which is heavier than the charm quark
on these lattices. This implies that one measurement of the
speed of light is all that is required for simulations over a
large range of masses, at the percent-level of simulation.
The simulations were repeated for mesons with nondegen-
erate quarks, using a value of � tuned from the degenerate
meson spectrum. The results are in excellent agreement up
to atmq � 0:5. Since the charm quark on this lattice is
approximately atmq � 0:2 this work indicates that both
heavy-heavy (degenerate) and heavy-light (nondegenerate)
charm physics can be easily reached using an appropriately
improved anisotropic action.

The results also show that heavy-light as well as heavy-
heavy physics can be reliably simulated after a single
tuning of �q. The determination of c can be interpreted
as a measure of the ratio M1=M2 in Eq. (23). The agree-
ment of M1 and M2 for both heavy-heavy and heavy-light
systems can in turn be interpreted as an absence, in this
quark action, of the anomaly first discussed in Ref. [28].
This anomaly was explained in Ref. [29] where it was
pointed out that for a sufficiently accurate lattice action
(O�v4� in NRQCD) the discrepancies in binding energies

B � B2 � B1 vanishes and I � �2
B �Qq � �
B �QQ �


B �qq��=2M2 �Qq � 0 as expected. The action described in
this study has this property.

This study has been carried out in the quenched approxi-
mation which is a useful laboratory in which to study mass-
dependent and tuning issues at relatively low computa-
tional cost. We are currently developing algorithms for
dynamical simulations with anisotropic lattices which we
plan to use in a study of heavy-flavor physics.
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