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What do lattice baryonic susceptibilities tell us about quarks, diquarks, and baryons at T > Tc?
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Lattice data on QCD thermodynamics, especially recent study of high order susceptibilities by UK-
Bielefeld Collaboration, have provided valuable information about matter properties around and above the
critical temperature Tc. In this work we tried to understand what physical picture would explain these
numerical data. We found two scenarios which will do it: (i) a quark quasiparticle gas, with the effective
mass which is strongly decreasing near the phase boundary into the quark-gluon plasma (QGP) phase; or
(ii) a picture including baryons at T > Tc, with the mass rapidly increasing across the phase boundary
toward QGP. We further provide several arguments in favor of the latter scenario, one of which is a natural
continuity with the baryon gas picture at T < Tc.

DOI: 10.1103/PhysRevD.73.014509 PACS numbers: 12.38.Gc, 12.38.Mh
1We follow notations used in this work where � is the
chemical potential per quark, not per baryon. Thus the associated
charge is B � 1 for a quark, B � 2 for a diquark, and B � 3 for
a baryon.

2Since we would not discuss any Taylor series in this work, we
would prefer to leave out the factorials and thus discuss suscep-
tibilities dn defined without them, not cn.
I. INTRODUCTION

QGP is experimentally studied via heavy ion collisions,
at CERN SPS and last years at Brookhaven National
Laboratory and Relativistic Heavy Ion Collision (RHIC)
collider, at temperatures reaching up to about T � 2Tc.
Success of hydrodynamical description [1] of observed
collective flows have indicated that all dissipative lengths
are very short and thus the produced matter cannot be a
weakly coupled gas but rather a near-perfect (small vis-
cosity) liquid [2]. These features are further complemented
by very high jet losses and robust heavy quark charm
(equilibration) observed well beyond what pQCD pre-
dicted. As a result, a radically new picture of QGP at
such temperatures is being developed, known as the
strongly coupled quark-gluon plasma, or sQGP.

It has been pointed out by Shuryak and Zahed [3] that
the interaction seems to be strong enough to preserve the
mesonlike bound states above Tc although in a strongly
modified form. In particular, the lowest charmonium states
J= ; �c are predicted to exist up to T as high as about
�2:5–3�Tc. These charmonium states were observed on the
lattice [4] as peaks in spectral densities of the correlation
functions, and they indeed seem to survive till such high
temperatures.

It was further pointed out in the next paper by Shuryak
and Zahed [5] that in the deconfined phase also multiple
binary colored bound states should exist, in about the same
T domain, since the interaction is about the same. To put
the discussion below into proper perspective, they argued
that there should be three categories of bound states, in
decreasing robustness: (i) glueballs, (ii) �qg�3 and mesons
�qq; and (iii) �qg�6, diquarks and baryons. If the strength of
the effective potential in �qq states is counted as 1, the
relative color Casimirs for categories (i), (ii), and (iii) are
9=4, 9=8� 1, and � 1=2, respectively. In our recent work
[6] we have extended the same approach to some many-
body states. We found new 3-gluon configuration ggg
belonging to category (i), the polymeric chains �q:g:g:::gq
06=73(1)=014509(11)$23.00 014509
of the category (ii), and diquarks and baryons in category
(iii).

The last two are the baryon number carrying states we
will discuss in this work. Since these states belong to the
third, most weakly bound category, they are naturally most
vulnerable to uncertainties of the potential and their exis-
tence can be questioned. Besides, these states are relatively
heavy: such states have not been included in [5] in
pressure.

The reason we will discuss them now is because they are
more important at increasing baryonic chemical potential
�. An alternative way to look at the same thing is to
consider higher derivatives over � at � � 0: this way
the role of such states is enhanced due to powers of their
baryon number. At some point the diquarks and baryons
should become noticeable in these quantities even if their
role in pressure is small—and this is precisely what we
think happened in the lattice data of the UK-Bielefeld
Collaboration (UKB) [7], especially in susceptibilities
with four and six derivatives.

In this work we will concentrate on the so-called bar-
yonic susceptibilities part of the free energy, which can be
singled out via derivatives over quark chemical potentials
�q � ��u ��d�=2 and �I � ��u ��d�=2 calculated re-
cently by the UKB. They use it in a context of Taylor
expansion of the thermodynamical quantities in powers of
baryonic chemical potential �=T1 up to the orderO��6� of
2-flavor QCD, but we will not discuss this expansion per se
and concentrate on (T-dependent) susceptibilities of the
kind2:
-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.73.014509


JINFENG LIAO AND EDWARD V. SHURYAK PHYSICAL REVIEW D 73, 014509 (2006)
dn�T� �
@n�p=T4�

@��=T�n

����������0
� n!cn�T� (1)

for n � 2; 4; 6. (The odd ones vanish at � � 0 by symme-
try.) These data are shown in Fig. 1 and also below. The
UKB also studied what they called isospin susceptibilities
defined as
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FIG. 1. The dotted lines correspond to a gas of baryonic
resonances with both ground state and excited baryons, the solid
lines correspond to that with only lowest (s-wave) nucleons and
�, while the points with error bars are the susceptibilities
d2�T�; d4�T�; d6�T� from lattice data (after removal of factorials
in c2;4;6).
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dIn�T� �
@n�p=T4�

@��=T�n�2@��I=T�2

�����������I�0
� n!cIn�T�; (2)

and in a flavor-diagonal–nondiagonal language there are

duun � �dn � dIn�=4; dudn � �dn � dIn�=4: (3)

Let us also mention another recent independent lattice
studies on susceptibilities of 2-flavor QCD in [8], where
they defined so-called nonlinear susceptibilities

�nu;nd �
@�nu�nd�p
@�nu

u @�
nd
d

(4)

and evaluated their values on lattice. To see the connection
between these two approaches, we give the following
relations

duun � Tn�4
Xn�2

l�0

Cln�2��l�2;n�l�2 � �l;n�l	=2; (5)

and

dudn � Tn�4
Xn�2

l�0

Cln�2�l�1;n�l�1: (6)

While the two approaches are very closely related, their
numerical results, however, are not quantitatively compa-
rable, partly because they have used very different mass
setup in the lattice calculation. We nevertheless emphasize
that in a qualitative view both of them have found very
similar and interesting patterns in those susceptibilities,
especially for the fourth and the sixth, which are the central
issues to be addressed in this paper.

To set the stage, we start with the hadronic phase below
Tc. Here the relevant states are only the baryons with the
baryon number (per quark) 3. Their spectrum is known at
T � 0 experimentally, and thus an obvious question is can
a simple resonance gas of known baryons explain the
behavior of these susceptibilities below Tc? Indeed it is
the case, as shown by the dotted curves in Fig. 1 [obtained
by including contributions of nucleon states from N�940�
toN�1675� and � states from ��1232� to ��1700�, for two-
flavor theory one should not include strange baryons]. No
T or � dependence of these masses is assumed, nor do we
take into account the fact that lattice is dealing with non-
massive quarks3: tuning these will make the agreement
even better. So the susceptibilities in the hadronic phase,
T < Tc, can be well described by the usual resonance gas
of baryons. As shown in Fig. 1, the contribution of all
baryons starts overshooting the lattice data close to Tc. It
probably indicates that excited baryons other than the
s-wave states N;� may melt a bit below Tc.

4 We will not
include excited baryons in any discussion to follow.
3In fact the input quark mass in these calculations is 0:4T.
4Note that the calculations like we have done in [6] (valid only

above Tc, and not too close to it) do not support any states other
than the s-wave ones, even for mesons.
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The main issue to be discussed in this work is what these
lattice data actually tell us about the nature of baryonic
states above Tc and whether one can describe them with
sQGP model or as well with some other model.

Before we proceed to the argumentation in literature, let
us remind the reader of standard thermodynamical expres-
sions for massive fermions, which can be put in the follow-
ing well-known form:

p

T4 � N
M2

2�2T2

X1
l�1

�
���l�1

l2
�elB�=T

� e�lB�=T�K2�lM=T�
�
; (7)

where B, M is the baryon number of the corresponding
particle and its mass, N is the statistical weight, and K2 is
the Bessel function.5 This form is very convenient for
taking derivatives over �, for example, the first derivative,
the baryon density is

nB
T3 � NB

M2

2�2T2

X1
l�1

�
���l�1

l
�elB�=T

� e�lB�=T�K2�lM=T�
�

� NBN �B�=T;M=T	; (8)

where the function N �x; y	 is defined by these series. Note
at this point we do not really consider mass as depending
on � so no extra derivatives against M appear.

In a number of talks Karsch (and also a recent preprint)
[9] have presented what we would refer to as a ‘‘naı̈ve’’
argument: the subsequent ratios

dn�2=dn � hB2i (9)

are directly related to the squared baryon number of the
constituents. The argument goes as follows: (a) for massive
particles withM
 T one can use the so-called Boltzmann
approximation, keeping only the first term in the sum
above; (b) after that the � dependence factorizes, and
thus each two derivatives over � restore the same expres-
sion, modulo the factor B2. In the matter dominated by
quark quasiparticles, or qg bound states, the right-hand
side would be 1, but it would instead be 4 or 9 for matter
dominated by diquarks or baryons, respectively. The mea-
sured ratio d4=d2 is�10 at T < Tc but at T > Tc it rapidly
drops and becomes close to 1. Comparing it to the formula
above Karsch concluded that at T > Tc matter is a gas of
some B � 1 objects, while the contribution of the B � 2
diquarks is strongly restricted.

But if one looks closer at this argument, one finds it
missing a lot of effects that should be there as well. For
5If there are more than one species of particle we then sum
over different species. Yet there will be particular concern when
dealing with quasiparticles instead of particles where some
background term may arise in the pressure, as will be discussed
in a later section.
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example, the next similar ratio d6=d4 above Tc is nowhere
close to 1 but is in fact a large negative number �� 10
which cannot be interpreted as a B2 of anything.

Furthermore, the idea that one can keep only the main
term in the sum so that the � and T dependence can
factorize must be wrong by itself. The T dependence of
d2�T�, d4�T�, and d6�T� is not at all similar: while d2�T�
resembles the behavior of the pressure itself and can easily
be interpreted as a transition from hadron to quark gas, the
next one d4�T� has a sharp maximum near Tc, with even
more complicated ‘‘wiggle’’ in the d6�T�.

Another perspective on that issue can be made if one
converts baryon number and isospin susceptibilities into
flavor-diagonal (uu or dd) and flavor nondiagonal ud
susceptibilities. The lattice data show that the second
flavor-mixing derivatives are small6 dud2 =d

uu
2 � 1, but

similar ratios for higher derivatives n � 4; 6 are not small
dudn =duun � 1=2.

Does it imply that the quark gas model is also inadequate
and should be excluded as well as the ‘‘bound state’’ gas?
Or, if the argument is wrong, what exactly is missing?
(i) E
6This

-3
ven if the Boltzmann approximation [keeping the
first term in sum in (7)] may be good for pressure, it
still fails for higher susceptibilities because the lth
term has l� in the exponent, and with subsequent
differentiation their role grows as ln. By the time
one comes to the sixth derivative, these terms start
canceling each other. In physics terms, this is a
form of Fermi blocking effect not included in the
simple Boltzmann approximation.
(ii) T
he second item to recognize is the fact that qua-
siparticles are not particles and their effective
masses depend on matter parameters, such as T
and especially �. Subsequent differentiation of
this effective mass over � would add powers of
derivatives like

M00 �
@2M

@�2 �T;� � 0� (10)

to susceptibilities and to their ratios such as (9).
Provided those are large enough, they may com-
pletely invalidate the naı̈ve interpretation of those
ratios as baryon number squared. This was already
pointed out by Bluhm, Kempfer, and Soff [11], and
we will refer to it below as the ‘‘BKS effect.’’ The
same is true for bound states such as baryons, and
similar derivatives of their masses M00B�T� would
play an important role below.
(iii) T
he contribution of diquarks has been grossly over-
estimated, while the contribution of baryons was
not discussed at all. We will show below that it may
naturally explain the features seen in higher
derivatives.
is also the main point of the paper [10].
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The outline of the paper is as follows: In Sec. II we will
start with an ‘‘unconstrained’’ quark gas model and will
use the lattice data to extract the quasiparticle mass to-
gether with its dependence on matter, M�T;��. We would
not need to rely on perturbative arguments used by BKS
[11] (since even their own fit leads to rather strong cou-
pling at T � Tc). Furthermore, we will conjecture a pos-
sible relation between the T and � dependences due to
known shape of the phase boundary on the phase diagram.
In Sec. III we will further impose a number of constraints
on quark mass, from other lattice data and also from
confinement, a condition that there should not be any
colored degrees of freedom at T < Tc. We will conclude
that these constraints basically make it impossible to as-
cribe the observed features of the data to the BKS effect.
After that we will proceed to Sec. IV in which we will
discuss the contribution of diquark and baryons: here we
will find good fits to the data satisfying all the needed
constraints and nicely joining the baryon gas picture below
Tc.
II. MODEL I: A QUARK GAS WITH AN
UNCONSTRAINED MASS M�T;��

The idea to use thermodynamical quantities calculated
on the lattice to fit the mass parameters of quasiparticles is
by itself quite old. For example, Levai and Heinz [12] have
used the data on p�T� for determination of quark and gluon
effective masses M�T�.7

One well-known problem with quasiparticle gas models
is that the derivatives over T and� upset thermodynamical
consistency between gaslike expressions for different ther-
modynamical quantities. Only one of them can be assumed
to have a simple additive form over quasiparticles—then
there is no freedom left and all other quantities can be
calculated from it by thermodynamics. Thus only one
‘‘primary’’ expression can be additive, while others will
have extra ‘‘derivative’’ terms complementing simple gas
formulas.

Following conventions of the BKS paper, we will use as
such primary expression that for the baryon number den-
sity (8). The expressions for pressure and energy density
would then be corrected by some T;�-dependent ‘‘bag
terms.’’ Higher derivative terms dn will be calculated by
differentiating (8) n� 1 times. To be more specific, we
explicitly give the baryon number density for this quark gas
model

nB
T3 �

@�p=T4�

@��=T�

�
g

2�2

Z
dxx2n�F��� n ~�� � F��� n ~��	: (11)
7It was not as direct as our approach below, because one
cannot get two functions out of one without assumptions.
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Here g � Ns � Nc � Nf � 12 is the degeneracy factor for
quarks in the two-flavor case, n is the baryon quantum
number of quark which is defined here to be n � 1 by
setting � to be the quark chemical potential. ~� � �=T is
made to be dimensionless, and � �

���������������
x2 � ~m
p

with ~m �
M=T. And finally we have introduced Fermi distribution
function F�y� � 1

ey�1 . Starting from (11) the explicit for-
mulas for d2; d4; d6 are given to be

d2 �
@�nB=T

3�

@ ~�

����������0
� �

2g

2�2

Z
dxx2n2F�1���0�;

(12)

d4 �
@3�nB=T3�

@ ~�3

����������0

� �
2g

2�2

Z
dxx2

�
n4F�3���0� � 3n2F�2���0�

~m0

�0



�
@2 ~m

@ ~�2

����������0

��
; (13)

d6 �
@5�nB=T

3�

@ ~�5

����������0

� �
2g

2�2

Z
dxx2

�
n6F�5���0� � 10n4F�4���0�

~m0

�0



�
@2 ~m

@ ~�2

����������0

�
� 15n2F�3���0�

~m2
0

�2
0

�
@2 ~m

@ ~�2

����������0

�
2

� 5n2F�2���0�

�
~m0

�0

�
@4 ~m

@ ~�4

����������0

�

�
3x2

x2 � ~m0
2

�
@2 ~m

@ ~�2

����������0

�
2
��
: (14)

In the above equations we have used �0 �
�������������������
x2 � ~m0

2
p

and
~m0�T� � M�T;� � 0�=T, and also F�i��y� means the ith
derivative of the function F�y�.

The model used in the BKS paper assumes some hard
thermal loop based perturbative form for the
T;�-dependent mass with the coupling g2�T;�� running
in a complicated fashion fitted to reproduce the suscepti-
bilities we discuss in this work. However, we do not see
why any assumptions about the mass dependence are
actually needed8 at this point.

We thus suggest a generalization of what was done in
[11]. Assuming a simple ideal gas model of quark quasi-
particles, one has their mass to be the only input needed.
With the lattice data on d2�T�, d4�T�, and d6�T� used as
input, one can simply solve for the three functions of T
which would ideally fit them. We have chosen those to be:
8There is of course no reason to trust any perturbative formula
near Tc at all, where the coupling becomes as strong as it was
found by BKS themselves.
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FIG. 2. Quark quasiparticle mass and its second and fourth
derivatives over� as a function of temperature T, extracted from
lattice data for susceptibilities. There are two sets of points in
each figure that are obtained from c2; c4; c6 and from cI2; c

I
4; c

I
6,

respectively. In the top figure for quark mass, we also plotted the
two points with error bars measured by lattice via propagator,
and the mass given by (20) as well (the dashed line).
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(i) the quark mass M�T;� � 0� and its two lowest non-
zero9 derivatives over �; (ii) M00 � @2M

@�2 �T;� � 0�, and

(iii) M0000 � @4M
@�4 �T;� � 0�. With these at hand, of course,

we are able to develop the Taylor’s expansion for quark
mass as a function of j �T j< 1:

M
�
T;
�
T

�
� M�T;� � 0� �

1

2!

@2M

@�2 �T;�

� 0� �
�
�
T

�
2
�

1

4!

@4M

@�4 �T;� � 0�
�
�
T

�
4
: (15)

The procedure is iterative. First we used c2�T� data to
solve for the mass ~m0 as unknown. Then we go to c4, the
equation of which includes both ~m0 and @2 ~m

@ ~�2 j��0, but since

we have already solved ~m0 from c2 now the only unknown
term is @2 ~m

@ ~�2 j��0, which could be solved out from lattice

results of c4. Finally, we can obtain @4 ~m
@ ~�4 j��0 from c6 with

~m0 and @2 ~m
@ ~�2 j��0 already being solved from c2 and c4. The

results for these three functions are shown in Fig. 2. (The
error bars in ~m0 are determined from uncertainty in c2.
While for @

2 ~m
@ ~�2 j��0 the errors should come from both c4 and

~m0, the error bars in the figure only include those from c4,
and also for @4 ~m

@ ~�4 j��0 the error bars solely include that

originated from c6.)
As an independent check, we also have extracted the

same three quantities, M�T;� � 0�, @2M
@�2 �T;� � 0�, and

@4M
@�4 �T;� � 0� from the lattice data set for cI2�T�, c

I
4�T�,

and cI6�T� from [7] by the same strategy (but starting with
isospin densities).

The results are shown in Fig. 2. As can be seen, two sets
of parameters we extracted from both data sets are well
consistent with each other at T > Tc, while for T < Tc they
do not agree. It is a good feature, as the quark gas model is
not supposed to work there, in the domain of the baryon
resonance gas.

Let us summarize these results. The most important
lessons are (i) the mass M�T� strongly increases when
cooling down toward the critical point Tc; (ii) large and
negative @2M

@�2 �T;� � 0� close to Tc; (iii) the fourth deriva-

tive is positive: so this decrease of the mass due to the
second derivative will stop at about �=T � 1; see (15).

The first two points are the trends already emphasized by
BKS [11]. In their approach these two features are related
with each other because of the assumed perturbative origin
of the effective quark mass:

M � g2�T;��T2

�
1� Nf=6�

1

2�2T2

X
f

�2
f

�
; (16)
9The quasiparticle masses and other quantities obviously can
depend only quadratically on � because of �! �� symmetry
based on CP invariance.
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where the sum runs over all flavors f. Ignoring for a mo-
ment a (rather complicated) running of the coupling, the
BKS mass is thus constant at the particular ellipsoids in the
T �� plane, thus the derivatives over T and � are related.

We would like to propose another reasoning that leads to
a similar effect but is free from perturbative assumptions.
Its idea can be described as follows: the quark mass should
-5
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be getting large not only near the critical point T ! Tc,
� � 0, but also near the whole critical line at all �. It is
needed to ensure that quark degrees of freedom do not
contribute in the confined phase, at any �.

The critical line at nonzero � is schematically shown in
Fig. 3; its shape at not-too-large �=T can be described by
an ellipsoid, or an unit circle, if the units are chosen
appropriately. One may further think that the mass depen-
dence on the radial coordinate R on such a plot is much
more important than on the angular one � since the ‘‘lines
of constant mass’’ should be nearly parallel to the critical
line, at least in its vicinity where the discussed effect takes
place.

So, the proposed extension of the T dependence of the
mass to its � dependence is based on a substitution

M�T;� � 0� ! M�R�T;���; (17)

R2 �
T2

T2
c
�
�2

�2
c
: (18)

We have introduced here a new parameter �c: its value can
be readily obtained from the experimental freeze-out curve
measured in heavy ion collisions at small �, believed to
represent the critical line. If so, the value of this parameter
is

�c=Tc � 1:7; (19)

which is quite different from the value given by ‘‘pertur-

bative scaling’’ (16):
�����������������������
�1�

Nf
6 ��

2
q

� 3:63 which is not
T/Tc

µ/µc

1

1

R

φ

FIG. 3. In the plane of temperature T-baryonic chemical po-
tential �, both appropriately normalized, the phase boundary
looks like a part of a circle. (At least for the part marked by the
solid line, studied well at SPS and RHIC, with quite well
established chemical freeze out. The dashed line is a continu-
ation of the freeze-out line where its association with the critical
line is questionable.) The polar coordinates to be used are the
radial distance R and the angle �.
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supposed to work in the nonperturbative regime near Tc.
It should be pointed out that though no criticality in the
strict sense was observed in lattice data—no susceptibility
gets divergent—there are, however, peaks (e.g. in d4), the
maximum of which can be taken as ‘‘practical definition’’
of the critical line. The semicircle shape (17) and (18) of it
on the phase diagram has been widely used in other appli-
cations, and at not-too-large � it is certainly a good
parametrization.
III. MODEL II: THE CONSTRAINED QUARK GAS

The ‘‘unconstrained model I’’ discussed above, although
consistent with both data sets dn�T�, dIn�T�, is unfortu-
nately unacceptable, for two main reasons: (i) it contradicts
direct lattice measurements of the quasiparticle masses;
(ii) it implies that quark degrees of freedom still signifi-
cantly contribute in the confining phase at T < Tc. In this
section we will show what happens if one tries to modify
the unconstrained model to make it compatible with both.

One feature of the model I is the relatively light quark
mass M�T;� � 0� in region 1� 2Tc ranging from about
1:7Tc to 2:2Tc. Such mass conflicts with another lattice
data about quark quasiparticle mass at 1:5Tc and 3Tc, see
[13], which are mq=T � 3:9� 0:2 and mq=T � 1:7� 0:1,
respectively, and are shown in Fig. 2 by two crosses with
the error bars. Although these results are based on only one
paper and have not been systematically studied by other
lattice groups so far, they nevertheless represent direct
measurements from the quark propagators. Furthermore,
such large masses correspond to the interparticle potentials
at large distances measured in separate lattice study [14].

Although the mass extracted via the model I grows
toward Tc, this effect is still not robust enough to make
quark contribution near-zero (or negligible) at T � Tc. (In
fact, BKS proceeded to fit equally well some region below
Tc.) This is unacceptable, since we know that there are no
propagating quark degrees of freedom in the confining
phase.

Both these reasons force us to reconsider model I, basi-
cally by increasing the quark mass significantly to meet
both constraints. This can be achieved by a quark mass
formula similar to that used in [5]

M�T� �
0:9
T � 1

� 3:45� 0:4T (20)

with all units in proper powers of Tc. [This and subsequent
mass formulas would then be generalized to finite � ac-
cording to (17).] The coefficients are chosen so that the
curve goes through the two lattice-measured points for
quark mass at T � 1:5; 3:0Tc; see the dashed line in Fig. 2.

We show what happens then to the susceptibilities; see
the medium-thickness solid lines in Fig. 7. In short, good
description of c2�T� is definitely ruined The issue is the
same as for pressure in [5] and perhaps can be cured by qg
and other bound states. But this is not the only problem of
-6



TABLE I. Summary of states with baryon number at T > Tc
studied in this paper.

State Spin Flavor Color Multiplicity

q 2 2 3 12
�qg�3 4 2 3 24
�qg�6 4 2 6 48
�qq�J�I�0

3 1 1 3 3
�qq�J�I�1

3 3 3 3 27
N 2 2 1 4
� 4 4 1 16
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FIG. 4. Comparison of susceptibilities from quark-gluon states
with two limiting case, zero binding (d2;4;6) and ‘‘full-
compensation’’ binding (D2;4;6).
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the constrained model: although it can produce a peak in
d4�T� and a wiggle in d6�T�, given large enough derivatives
over�, those get displaced toward larger T as compared to
the data. It is an inevitable consequence of the second
constraint, insisting that quark effect be effectively zero
at Tc.

10

Completing our discussion of purely quark models, we
now proceed to the possible role of their bound states,
diquarks and baryons.

IV. THE EFFECT OF DIQUARKS AND BARYONS

We will now proceed to contributions of the bound states
to the baryonic susceptibilities. Let us remind the reader
that the particular reason to focus on diquarks and espe-
cially baryons is that the role of diquarks and baryons
relative to quarks grows with � because of their larger
baryon charges. Alternatively, their contribution to the
susceptibility dn grows exponentially with n: by the factors
2n for the diquarks and 3n for baryons. For example, the
contribution of N;� is enhanced by a factor 81 for d4 and
729 for d6 relative to pressure; estimates of pressure given
above one may then expect to see their contribution there.
On the other hand, for lower derivative d2 we expect quark-
gluon bound states, which are more numerous and more
tightly bound, to contribute significantly. We summarized
all bound states, together with their multiplicities, in the
Table I.
10The very heavy mass due to the constraints significantly
decrease quark contribution to thermodynamics and hence dis-
favor quark-only model, yet on the other hand, it strongly favors
the formation of bound states.
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[In passing, let us comment about the numbers in the real
world with strangeness, Nf � 3. The number of diquark
flavor states is increased to be 3 times larger, for baryons
the total spin-flavor multiplicity increases from 4� 16 �
20 to 56 (an octet J � 1=2 and a decuplet J � 3=2) which
is roughly enhanced by 3 times, so the numbers both
diquarks and baryons states are increased by the factor 3.
The quark number increases as 3=2, so the overall enhance-
ment of the ratios we will discuss below from Nf � 2 to
Nf � 3 is the factor 2.]

Quark-gluon bound states.—Before we proceed to ac-
tual calculation, let us make simple estimates of the rela-
tive weighing in pressure of quark-gluon bound states. The
2-body states qg are thermodynamically suppressed by an
additional Boltzmann factor, exp��M=T� � 0:02� 0:04
(by including their considerable binding). However, due
to their relatively large multiplicity (6 times the number of
the quark states) they contribute to the pressure and sus-
ceptibilities at the level of about 1=10 or more.

To get a more quantitative answer one has to know the
binding energy of these states. While the binding of the
category three states �qg�6 can be reasonably neglected, the
category two �qg�3 states have considerable binding at the
same order as meson states. The potential model calcula-
tions in [6] lead to �qg�3 binding up to j�Ej=T � 1:4 at
T � Tc, which means their contribution increases relative
to the simple estimate above by an extra factor 2–3.

However there are many reason to doubt that close to Tc
this calculation can be trusted quantitatively. In particular,
the potential used is measured on the lattice for static
charges only, and the corresponding calculations are sup-
posed to be reliable only when the binding is small: near Tc
more complicated dynamics beyond the potential model
will contribute as well.

Let us thus just suggest an upper limit for the qg states’
contribution. Since the qg states are colored, they should
get infinitely heavy at Tc, together with all other colored
states. Furthermore, as (the more tightly bound) qg3 states
have the total charge of one quark, their mass should not be
smaller than that of one chargej�Ej � Mq�T � Tc�. So we
expect M�qg� to interpolate between Mq �Mg � 2Mq at
zero binding to a single Mq at T � Tc. The contribution of
these states to susceptibilities in the two limiting cases,
-7
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namely the zero-binding case (labeled in the figure by di)
and "full-compensation" binding case (labeled by Di) are
shown in Fig. 4. We conclude that large uncertainty, of the
order of factor 3, remains in the contributions of such
states.

[These results are calculated with �qg�6 always having
twice quark mass and melting at 1:4Tc while with �qg�3
having twice quark mass in the former case and the same
mass as quark in the latter, both melting at 2:1Tc. The
actual contribution of quark-gluon bound states should be
somewhere in between, near to Di around Tc while rapidly
decreasing to di for higher temperatures.]

One may also ask what is the contribution of the various
polymerlike qg states qg; qgg; qggg; � � � which, accord-
ing to [6], has the same binding energy per bond. The effect
of these states can be easily evaluated via a geometric
series: the resulting enhancement factor is

fpolymers �
1

1� 6 exp��j�Ej �Mg�=T	
; (21)

where 6 is the color and spin degeneracy added by each
link. For small binding this is just a few percent correction,
but if it may get to be strong enough to drive the denomi-
nator toward zero, a total ‘‘polymerization’’ of sQGP
would occur.

Diquarks.—For Nf � 2 gauge theory corresponding to
the UKB data at hand there is only one attractive diquark
channel, the antisymmetric color triplet11 �qq�3. Because
of Fermi statistics, it means that the product of spin and
flavor should be symmetric, and thus there are two options:
(i) spin-0 isospin-0 ud diquark �qq�J�I�0

3 , and (ii) spin-1
isospin-1 one �qq�J�I�1

3 . These are the diquarks which are
familiar in hadronic spectroscopy; the former appears in-
side theN, the latter inside � (octet and decuplet members,
for 3 flavors). The lesson from this spectroscopy (at T � 0,
of course) is that while the former is well bound, by about
300 MeV, the latter is not. In view of the rather marginal
character of diquark binding, we expect only the former
one able to be seriously considered as bound state above
Tc. Nevertheless to confirm the point that diquarks will not
play any role in all susceptibilities measured, we include
both of them in calculation of Fig. 7. If we only use
antisymmetric states, then the contribution will be reduced
to only 1=10 of that.

The diquark-to-quark pressure ratio can be estimated as
fthe ollowing:

�qq�3
q
�

3� 27

12
exp

�
��M� j�Ej

T

�
23=2; (22)

where the binding j�Ej is negligible [actually only the 3
�qq�J�I�0

3 states are very likely bound].12 At small �
11In the talks [9] Karsch mentioned ‘‘hundreds of diquark
bound states’’ in our model: it must be some misunderstanding.

12The last factor comes from M3=2 in the preexponent, origi-
nated from momentum integral.
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where the data under consideration are calculated, M=T �
5 and their contribution is at a few percent level, negligible
compared to uncertainties.

Baryons.—As we found in [6] they are bound till about
T � 1:6Tc. In the 2-flavor theory they are the N;� 3-quark
states. Only the s-wave basic states survive above Tc, while
all other resonances (used in the first section at T < Tc)
which are orbital or radial excitations of N;� families are
‘‘melted.’’

The baryons are also numerous (20) but the suppression
factor due to mass is much smaller

�qqq�
q
�

20

12
exp

�
2�� 2M� j�Ej

T

�
33=2: (23)

Near the ‘‘end point’’ of baryons with zero binding (which
according to [6] is at T � 1:6Tc) their mass is 3Mq,
expected to be in the range of 2.5–3 GeV. As it is an order
of magnitude larger than T, one would not be expected to
contribute to pressure etc.

However, unlike the quark, quark-gluon, and diquarks
(which after all are colored objects existing only above Tc),
N;� baryons are colorless and thus survive on both sides
of the boundary of (a continuous) phase transition (a cross-
over, more accurately), thus the masses of baryons at T !
Tc are expected to join continuously to their known values
at lower T. This of course implies that the binding energy
near Tc gets very large due to some deeper yet poorly
known mechanism, and the potential model used in [6] to
evaluate this binding will not be applicable. The situation is
basically the same as with mesons: as emphasized in [5]
the pion mass must (by definition of chiral breaking)
vanish (in the chiral limit) at T ! Tc, which potential
model also cannot reproduce. We will use below the fol-
lowing parameterization (in Tc units)

MN � 9:5� 4:6 � tanh�3:8 � �T � 1:4�	; (24)

M� � 10:25� 3:85 � tanh�3:8 � �T � 1:4�	 (25)

interpolating between the nucleon and � vacuum masses at
low T, while approaching the same value 3Mq at high
temperatures. We nevertheless point out that the above
equations are certainly not the unique choice. Instead we
think by adopting more complicated formulas the data
could be even better fitted. But that is not the purpose of
this paper, and thus we use the simplest form highlighting
the essential features needed for understanding those sus-
ceptibilities. We plot it in Fig. 5, together with the masses
of various other states to be used later in Fig. 7 for suscep-
tibilities. The main feature is fundamentally again enforc-
ing confinement: when going from the QGP side toward
Tc, all colored degrees of freedom get extremely heavy and
drop out from the system, while all colorless degrees of
freedom get more tightly bound and eventually dominate.
-8
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FIG. 5. Masses of various states studied in this work. The thin
solid line is for quark and the dashed line is twice quark mass
which is roughly for quark-gluon and diquark. The lower thick
solid line is for nucleon states and the upper one for � states.
These masses are used for calculation of Fig. 7.

0.8 1 1.2 1.4 1.6 1.8 2

T T c

-0.5

0

0.5

1

1.5

2

FIG. 6. The susceptibilities ratios dI4=d4 (the thin solid line)
and dI6=d6 (the thick solid line). The dashed lines correspond to
ideal quark gas (upper) and ideal baryonic gas (lower).
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We now approach the central point of the paper: the
baryon contribution provides a natural interpretation of the
structures observed in susceptibilities measured on the
lattice, the large peak near Tc in d4�T� and a more com-
plicated wiggle structure is seen in d6�T�. This happens
because the expected mass dependence of baryons on T;�,
shown in Fig. 5, should have a characteristic shape with an
inflection point, separating the region in which the second
derivative M00B is negative (above Tc) and positive (below
Tc). That is why the contributions of the baryons to d6

show a wiggle as seen from the corresponding curves in
Fig. 7. Note also, that there is a less pronounced wiggle of
the same origin in baryonic d4: we think its negative part is
the reason why the qg and qq contributions above Tc can
get compensated and by coincidence the d4=d2 ratio gets
close to 1 there.

One additional argument for baryonic nature of the
structures seen in d4; d6 is the following one. Each deriva-
tive over�q leads to factor 3, so 2 of them give 9. If instead
one has two derivatives over �I the factor obtained is
�2I3�

2, which is 1 for p; n;��;�0 and 9 for ���, ��.
As a result, if one ignores the mass difference between
these states, one finds that baryonic contribution to both
should have the ratio dIn=dn � �1=9� � �4=20� � �1�
1=9��8=20� � 0:467, while this ratio should be 1 for ideal
quark gas. The actual ratio of these quantities according to
UKB data are shown in Fig. 6. We see near Tc the data
obviously favor the existence of baryons, especially for
dI6=d6, and the quark asymptotic end is arrived at about
1:4Tc for dI4=d4 while only after 1:8Tc for dI6=d6. These
evidences strengthen the necessity of baryonic interpreta-
tion of the higher susceptibilities.
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(Having considered baryons, one may ask if there are
objects with even higher baryonic numbers, say dibaryons,
thus contributing even more to high susceptibilities. Note
however the baryons, as color singlets, have at most only
the higher-order dipole-dipole attraction making them
much less bound than qg or gg. They are not even bound
at T � 0, apart of really weakly bound nuclearlike states.
So we do not expect that any of those clusters based on
baryons can withstand T > Tc.)

Taking everything together.—Including quarks, quark-
gluons, diquarks, and baryons, we arrived at summary plots
shown in Fig. 7. We repeat that all masses used are as
shown in Fig. 5 and their� dependence is introduced in the
same way according to (17).

The bound states’ end points are set to be 2:1Tc for �qg�3
quark-gluons, 1:4Tc for �qg�6, 1:4Tc for diquarks, and
1:6Tc for baryons, according to [6]. The gradual removal
near melting point is done by similar means as in [5]. The
results are shown in Fig. 7, where the overall values as well
as the contributions of each kind of states are all present. It
is noticed that there are few ‘‘spurious wiggles.’’ These
undesired structures rise up as a consequence of the can-
cellation of two large contributions with opposite signs: the
negative derivatives of baryons on � and those positive of
quarks. Consequently many spurious structures may ap-
pear, depending on the details of the parameterizations.
Also the exact way to remove various bound states above
their melting temperatures is partly responsible for unde-
sired structures, see discussions in [5].

We focus on the T > Tc side. The conclusions are (i) as
expected the diquark contribution is negligible for all three
quantities even after including the suspect �qq�J�I�1

3 states,
but it is clearly growing as getting to higher derivatives;
-9
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(ii) for d2 quark provides the main contribution, and we
emphasize the fitting will be much better if the quark mass
is finely tuned and particularly if we include the large
binding of qg states near Tc. We have demonstrated above
that large uncertainty in its binding, including polymers
[see (21)] would very hopefully allow for a good fit, which
014509
we decided not to do here. As has been emphasized many
times, we really want to center on the role of baryons
which are completely dominant in d4 and d6. (iii) In d4 it
is precisely the baryons that produce the desired large peak
near Tc till about 1:3Tc where quarks become important;
(iv) the baryons’ contribution extremely dominant the
behavior of d6, especially the wiggle shape.

We conclude that two prominent structures, a peak in
d4�T� and a wiggle in d6�T� are naturally reproduced by
baryons.

V. SUMMARY

In one sentence, the main lessons from the UKB suscep-
tibilities is that the baryons N� do survive the QCD phase
transition, but are rapidly becoming quite heavy across it.

More generally, the discussed data set on the baryonic
and isospin susceptibilities at T > Tc can be described in
two different scenarios. (i) The first is a quark quasiparticle
gas, with the effective mass which is strongly decreasing
near the phase boundary into the QGP phase; (ii) the
second is a picture including baryons with the mass rapidly
increasing across the phase boundary toward QGP, to
about 3Mq.

The first scenario was already pointed out by BKS [11],
while our discussion makes it a bit more general. Its
attractive features notwithstanding, it suggests the values
of the mass not large enough to accommodate the existing
constraints from other lattice measurements. We also think
it is not possible to have quark degrees of freedom in a
hadronic phase. Thus we conclude that success of such a
scenario is unlikely.

The second scenario, based on baryons, can provide
another explanation of the main features of the data,
namely, the observed peak in d4�T� and a wiggle in
d6�T�. It also naturally explains the flavor-changing dud4 ,
dud6 , which are not small relative to flavor-diagonal ones.
Last but not least, this scenario provides a desired continu-
ity to the baryon resonance gas picture at T < Tc.

Although the susceptibilities dn�T� we used in this work
are highly sensitive tools, they are quite indirect.
Thermodynamical observable in general cannot tell the
difference between ‘‘melting’’ baryons (getting unbound)
and baryons remaining well bound but just getting too
heavy: in both cases all one finds is that their contribution
to thermodynamics effectively disappears. Besides, the
ideal gas models used in these studies are probably too
naı̈ve to claim a really quantitative description of the data.
One should instead study directly the spectral densities of
the correlators of the appropriate baryonic currents (qqq)
and see if there are baryonic peaks there, like what has been
done for charmonium and light mesonic channels. Only
such direct measurements would tell us which scenario is
the correct one.

Speaking about experimental confirmation of the
‘‘bound state’’ scenario, we think the best chance could
-10
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be observation of the vector mesons. As described in detail
in [15], vector mesons �;!;� are expected to become
heavy near their disappearance point, like the baryons
discussed above, reaching the mass �2Mq�1:5–2 GeV.
The next generation of RHIC dilepton experiments have a
chance to see if this is indeed what is happening in QGP.
014509
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