
PHYSICAL REVIEW D 73, 014508 (2006)
Heavy quark diffusion from the lattice
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We study the diffusion of heavy quarks in the quark gluon plasma using the Langevin equations of
motion and estimate the contribution of the transport peak to the Euclidean current-current correlator. We
show that the Euclidean correlator is remarkably insensitive to the heavy quark diffusion coefficient and
give a physical interpretation of this result using the free streaming Boltzmann equation. However if the
diffusion coefficient is smaller than �1=��T�, as favored by RHIC phenomenology, the transport
contribution should be visible in the Euclidean correlator. We outline a procedure to isolate this
contribution.

DOI: 10.1103/PhysRevD.73.014508 PACS numbers: 12.38.Gc, 11.10.Wx, 12.38.Mh
I. INTRODUCTION

The experimental relativistic heavy ion program has
produced a variety of evidences which suggest that a quark
gluon plasma (QGP) has been formed at the relativistic
heavy ion collider (RHIC) [1,2]. One of the most exciting
results from RHIC so far is the large azimuthal anisotropy
of light hadrons with respect to the reaction plane, known
as elliptic flow. The observed elliptic flow is significantly
larger than was expected from kinetic calculations [3], but
in fairly good agreement with simulations based upon
ideal hydrodynamics [4–8]. This result suggests that the
transport mean free path is small enough to employ ther-
modynamics and hydrodynamics to describe the heavy
ion reaction. However, this interpretation of the RHIC
results demands further theoretical and experimental
corroboration.

Experimentally, this interpretation can be challenged by
measuring the elliptic flow of charm and bottom mesons
[9–11]. The first experimental results show a nonzero
elliptic flow for these heavy mesons. Naively, since the
quark mass is significantly larger than the temperature of
the medium, the relaxation time of heavy mesons is�M=T
longer than the light hadron relaxation time

�heavy
R �

M
T
�light
R :

Consequently the heavy meson elliptic flow should be
reduced relative to the light hadrons. Recently, a variety
of phenomenological models have estimated how the trans-
port mean free path of heavy quarks in the medium is
ultimately reflected in the elliptic flow [12–14]. The result
of these model studies is best expressed in terms of the
heavy quark diffusion coefficient. (In a relaxation time
approximation the diffusion coefficient is related to the
equilibration time, �heavy

R � M
T D.) There is a consensus

from the models that if the diffusion coefficient of the
heavy quark is greater than
06=73(1)=014508(14)$23.00 014508
D *
1

T
;

the heavy quark elliptic flow will be small and probably in
contradiction with current data.

Theoretically, transport coefficients have been computed
in the perturbative quark gluon plasma using kinetic theory
[15,16]. The heavy quark diffusion coefficient has also
been computed [12,17,18]. Recent efforts have also ex-
plored some meson resonance models and found a sub-
stantially smaller diffusion coefficient than in perturbation
theory [19]. The ambiguity in these calculations under-
scores the need for reliable nonperturbative estimates of
transport coefficients in the QGP.

Kubo formulas relate hydrodynamic transport coeffi-
cients to the small frequency behavior of real-time corre-
lation functions [20,21]. Correlation functions in real time
are in turn related to correlation functions in imaginary
time by analytic continuation. Karsch and Wyld [22] first
attempted to use this connection to extract the shear vis-
cosity of QCD from the lattice. More recently, additional
attempts to extract the shear viscosity [23,24] and electric
conductivity [25] have been made. We will argue that
whenever the transport time scale is large compared to
the inverse temperature, the Euclidean correlation function
is independent of the transport coefficient to leading
order in the scale separation. For weakly coupled field
theories this has been discussed by Aarts and Martinez
Resco [26]. For this reason, only precise lattice data and a
comprehensive understanding of the different contribu-
tions to the Euclidean correlator can constrain the transport
coefficients.

In this paper we are going to estimate the contribution of
heavy quark diffusion to Euclidean vector current correla-
tors. The case of heavy quarks is special since the time
scale for diffusion, M=T2, is much longer than any other
time scale in the problem. In terms of the spectral func-
tions, this separation means that transport processes con-
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tribute at small energy, !� T2=M, and all other contribu-
tions (e.g. resonances and continuum contributions) start at
high energy, ! * 2M. For light quarks, transport contrib-
utes to meson spectral functions for !� g4T. This scale is
separated from the energy scale of other contributions,
!� T; gT, only in the weak coupling limit g� 1.

The behavior of vector current correlators at large times
can be related to the heavy quark diffusion constant.
Euclidean heavy meson correlators at temperatures above
the deconfinement temperature have been calculated on the
lattice and attempts to extract spectral functions have been
made [27–29]. Transport should show up as a peak at very
small frequencies, ! ’ 0. So far, it has not been observed
in these studies. Obviously, it is very difficult to reconstruct
the spectral functions from the finite temperature lattice
correlators, as the time extent is limited by the inverse
temperature. However, the temperature dependence of
the correlators can be determined to very high accuracy
[29,30] and therefore some information about the transport
can be ascertained.

II. LINEAR RESPONSE AND THE SPECTRAL
DENSITY

This section briefly reviews linear response which is the
appropriate framework to connect the Langevin and diffu-
sion equations to the current-current correlator [20]. We
will also define the spectral density which is needed to
relate the Euclidean current-current correlator measured on
the lattice to its Minkowski counterpart.

Consider a small perturbing Hamiltonian

H � H0 �
Z
d3xh�x; t�O�x; t�; (2.1)

where h�x; t� is a classical source. Now imagine that we
slowly turn on the external source h�x; t�, and then abruptly
turn it off at time t � 0. h�x; t� obeys

h�x; t� � e�t���t�h0�x�: (2.2)

The expectation value of h�O�x; t�i in the presence of the
perturbing Hamiltonian is

h�O�x; t�i � �i
Z
d3y

Z t

�1
dt0h�O�x; t�; O�y; t0�	ih�y; t0�:

(2.3)

Using translational invariance and taking spatial Fourier
transforms we have

h�O�k; t�i �
Z �1
�1

dt0��k; t� t0�h�k; t0�; (2.4)

where

��k; t� t0� �
Z
d3xe�ik
xi��t� t0�h�O�x; t�; O�y; t0�	i;

(2.5)

is the retarded correlator. When confusion can not arise we
014508
use momentum labels p;k;q; . . . rather than position labels
x; y; z; . . . to distinguish the spatial Fourier transform of a
field hO�k; t�i �

R
eik
xhO�x; t�i from the field itself,

hO�x; t�i.
For t > 0, differentiating with respect to t we have

@
@t
h�O�k; t�i �

Z �1
�1

dt0
@
@t
��k; t� t0�h�k; t0�: (2.6)

Using @
@t ��k; t� t

0� � � @
@t0 ��k; t� t

0�, integrating by
parts with respect to t0, and using Eq. (2.2), we find a
relation between expectation values and correlators

@
@t
h�O�k; t�i � ���k; t�h0�k�: (2.7)

The external field h0�k� can be eliminated by using the
relation between the static susceptibility �s, the initial
condition h�O�k; t�i, and the external field

h�O�k; t � 0�i � �s�k�h0�k�; (2.8)

where the static susceptibility �s�k�, follows from
Eq. (2.5)

�s�k� �
Z 1

0
dt0e��t

0
��k; t0�: (2.9)

Eliminating the field h0�k�, we find

�s�k�
@
@t
h�O�k; t�i � ���k; t�h�O�k; t � 0�i: (2.10)

This result relates the time evolution of an average from a
specified initial condition to an equilibrium correlator
��k; t�.

The function ��k; t� is related to the spectral density.
The Fourier transform of the retarded correlator can be
written

��k; !� i�� �
Z �1

0
dte�i!t��k; t�e��t: (2.11)

��x; t� is real, and since the integration is only over posi-
tive times, ��k; !� is analytic in the upper half plane.
Provided the Hamiltonian is time-reversal invariant and
the operator O has definite signature under time reversal,
h�O�x; t�; O�y; 0�	i is an odd function of time and ��k; t� is
an even (odd) function of k (time). The spectral density,
��k; !�, is defined as the imaginary part by � of the
retarded correlator

��k; !� �
Im��k; !� i��

�
�

1

2�

Z
d3x

�
Z 1
�1

dte�ik
x�i!th�O�x; t�; O�0; 0�	ie��t:

(2.12)

By inserting complete sets of states, one may show that the
spectral density is an odd function of frequency and is
positive for !> 0 [31].
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The Euclidean correlator may be deduced from the
spectral density. Euclidean tensors are defined from
their Minkowski counter parts, O�1...�n

M	1...	n
��i�� � ��i�r�

�i�sO�1...�n
E	1...	n

���, where r and s are the number of zeros in
f�1 . . .�ng and f	1 . . .	ng respectively. In what follows,
we will drop the ‘‘M’’ on Minkowski operators but indicate
‘‘E’’ on Euclidean operators. With these definitions x0 �
�ix0

E � �i�, and Euclidean tensors transform under O�4�
in the zero temperature limit. Correlators in Euclidean
space-time are of the following form:

G�k; �� �
Z
d3xeik
xhOE�x; ��OE�0; 0�i

� ��1�r�s
Z
d3xeik
xD>�x;�i��; (2.13)

where D>�x; t� � hO�x; t�O�0; 0�i. Usually, the lattice
works with at zero spatial momentum k � 0. In
Minkowski space, we work with the Fourier transform of
D>�x; t�,

D>�k; !� �
Z
d4xe�i!t�ik
xD>�x; t�: (2.14)

Similarly, we define D<�x; t� � hO�0; 0�O�x; t�i and its
Fourier transform. Thus, the spectral density, Eq. (2.12),
is given by

��k; !� �
D>�k; !� �D<�k; !�

2�
: (2.15)

Using the Kubo-Martin Schwinger (KMS) relation
D>�k; t� � D<�k; t� i=T�, and its Fourier counterpart
D>�k; !� � e�!=TD<�k; !�, one discovers the relation
between the spectral density and the Euclidean correlator,

G�k; �� � ��1�r�s
Z 1

0
d!��k; !�

cosh�!��� 
=2��

sinh�!
=2�
:

(2.16)

Again, given an operator, O�1...�n
	1...	n , r, and s are the number

of zeros in the space-time indices f�1 . . .�ng and
f	1 . . .	ng respectively.

For our discussion two correlators will be important: the
density-density correlator

D>
NN�x; t� � hJ

0�x; t�J0�0; 0�i; (2.17)

and the current-current correlator

D>;ij
JJ �x; t� � hJ

i�x; t�Jj�0; 0�i: (2.18)

These correspond to the Euclidean correlators calculated
on the lattice

GNN�x; �� � hJ0
E�x; ��J

0
E�0; 0�i � �D

>
NN�x;�i��;

(2.19)
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Gij
JJ�x; �� � hJ

i
E�x; ��J

j
E�0; 0�i � D>;ij

JJ �x;�i��: (2.20)

The corresponding retarded correlators �NN�x; t� and
�ijJJ�x; t� can be introduced in the same way. The Fourier
transforms of current-current correlators can be decom-
posed into longitudinal and transverse parts. For the re-
tarded correlator we write:

�ijJJ�k; !� �
�
kikj

k2 � �
ij
�
�TJJ�k; !� �

kikj

k2 �LJJ�k; !�:

(2.21)

Current conservation relates the density-density and the
longitudinal current-current correlators

!2

k2
�NN�k; !� �

kikj

k2 �ijJJ�k; !� � �LJJ�k; !�: (2.22)

Since the transverse component of the current-current
correlator is not studied in this work, we will drop the
‘‘L,’’ and for instance, GJJ and �JJ are short for GL

JJ and
�LJJ.

At finite temperature the spectral function can be written
as

�JJ�k; !� � �low
JJ �k; !� � �

high
JJ �k; !�; (2.23)

where the last term is just the zero temperature part and the
first term is the low energy!� T2=M contribution. In the
next two sections we will estimate the low frequency
contribution.

III. TRANSPORT IN EUCLIDEAN CORRELATORS

In this section we estimate how the low frequency part of
the spectral function contributes to the Euclidean current-
current correlator. As discussed below, to leading order in
T=M, the transport contribution to the Euclidean current-
current correlator is given by the time derivative of the
retarded correlator at t ’ 0. This contribution may be
computed using the free streaming Boltzmann equation.

First let us start with the density-density correlator. For
k � 0 charge conservation dictates that the spectral density
is a delta function

�NN�k � 0; !� � �0
s��!�; (3.1)

where �0
s is the static susceptibility at k � 0. For k� T,

the delta function is smeared by an amount proportional to
k2 and the remaining contributions1 are proportional to k2.
Nevertheless the integral under the peak is the same to
order k2=T2. We then approximate

�Glow
NN�k; �� ’ 2T

Z �

0
d!

�low
NN�k; !�
!

�
Z 1

�
d!�low

NN�k; !�

�
cosh�!��� 
=2��

sinh�!
=2�
; (3.2)
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with k� �� T. In the first integral we have replaced the
kernel in Eq. (2.16) with its low frequency expansion
2T=!. Provided � is not close to 0 or T, the second integral
is suppressed by k2=T2 and will be dropped. The depen-
dence on � is also of order k2=T2 since the spectral density
is nearly a delta function. Inserting the spectral density

�NN�k; !� �
1

�

Z 1
0
dt sin�!t��NN�k; t�e��t; (3.3)

and performing the integral over frequency, we find

�Glow
NN�k; �� ’ T

Z 1
�1

�

dt�low
NN�k; t�e

��t ’ T�0
s : (3.4)

Note that the resulting Euclidean correlator is independent
of �. This is true as long � is not close 0 or T where the
second integral in Eq. (3.2) can not be neglected. Further
note that we have written �0

s instead of �s�k� since k is
small.

Similarly, the low energy contribution to the longitudi-
nal current-current correlator is

Glow
JJ �k; �� �

Z 1
0
d!

�low
JJ �k; !�

sinh�!
=2�

� �1�!2 1

2
��� 
=2�2 � . . .	: (3.5)

Thus we see that each � derivative may be associated with
higher and higher moments of �low

JJ �k; !�= sinh�!
=2�.
Let us assume some scale separation between the tem-

perature T and transport scales, !tr. For a heavy quark
these scales are T and �T=M�T or smaller. In perturbation
theory these frequency scales are T and g4T. The spectral
density density is then sharply peaked around !  0. The
Euclidean correlator can then be approximated

Glow
JJ �k; �� � 2T

Z �

0
d!

�low
JJ �k; !�
!

�
Z 1

�
d!�low

JJ �k; !�

�
cosh�!��� 
=2��

sinh�!
=2�
; (3.6)

with !tr � �� T. We show below (see Eq. (4.14)) that
the spectral density �low

JJ �k; !�=! falls as 1=!2 between 0
and !tr. The second integral is therefore of order �T=M�2

and will be dropped since it is suppressed by a factor of
�T=M� relative to the first term. This is valid provided � is
not close to 0 or T. Furthermore, the sensitivity to � is also
of order �T=M�2. Substituting the spectral density,

�JJ�k; !� �
!2

�k2

Z 1
0
dt sin�!t��NN�k; t�e��t; (3.7)
014508
we integrate twice by parts, perform the integral over
frequency, and find Glow

JJ �k; ��

Glow
JJ �k; �� ’

T

k2 @t�NN�k; t�jt�1
�
: (3.8)

Here we have used the fact that �NN�k; t�jt�0 � 0 since
�NN is a commutator. In a Boltzmann or Langevin theory
the time scale �1=� may be taken as zero. This is the low
frequency contribution to the correlator to leading order in
!tr=T. The result is independent of � except for � close to 0
and T. The high frequency contribution to the correlator
must also be added.

If the spectral density falls sufficiently rapidly at infinity
this line of reasoning can be extended. For instance in
classical nonrelativistic systems the spectral density fall
like e��!=T� at large frequency. Performing the same se-
quence of steps we obtain the formal expansion

Glow
JJ �k; �� �

T

k2

�
@�1�t �NN�k; t� �

1

24T2 @
�3�
t �NN�k; t�

� @�3�t �NN�k; t�
1

2
��� 
=2�2 � . . .

�
t�1=�

:

(3.9)

Thus we see that the dominant low frequency contribution
to the Euclidean correlator is given by the short time
behavior of the retarded correlator in this case. Indeed, as
seen from Eq. (3.5) and (3.8), the moments of the spectral
function, the � derivatives of the Euclidean correlator at

=2 and the time derivatives of the real-time retarded
correlator at t ’ 0 are in one to one correspondence.
While short time expansions can never be used to rigor-
ously extract transport coefficients, they have proved use-
ful in nonrelativistic contexts [20,21]. In a quantum field
theory it is unclear that the spectral density falls faster than
�1=!�2. Nevertheless, the � derivatives at 
=2 may be
associated with moments of �JJ�k; !�= sinh�!
=2�,
These moments provide a measure of the width of the
transport peak if the high frequency contribution can be
subtracted (see Sec. V).

We now return to the first term in this short time expan-
sion, Eq. (3.8). For times t� 1=� which are short com-
pared to the collision time it is reasonable to expect that the
motion of heavy quarks is described by the free streaming
Boltzmann equation. Even in the interacting theory, the
free streaming Boltzmann equation will describe the first
time derivative of the retarded correlator.

Let us create an excess of heavy quarks, and subse-
quently study the diffusion of this excess at short times.
This can be done by introducing a small chemical potential
��x� � �0 � ���x� as in Sec. II. Then the thermal dis-
tribution function at an initial time t � 0 is
-4
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f0�x;p� �
1

e�Ep���x��=T � 1
 fp � fp�1� fp�

���x�
T

;

(3.10)

with2, fp � 1=�e�Ep��0�=T � 1�. For short times the colli-
sionless Boltzmann equation applies,�

@
@t
� vip

@
@xi

�
f�x;p; t� � 0: (3.11)

The solution to this equation with the specified initial
conditions is

f�x;p; t� � f0�x� vpt;p�: (3.12)

Then the fluctuation in the number density is

�N�x; t� �
Z d3p
�2��3

�f�x;p; t�; (3.13)

with �f�x;p; t� � f�x;p; t� � fp. Then taking spatial
Fourier transforms with k conjugate to x and substituting
the distribution function, Eq. (3.12), we have

�N�k; t� �
�

1

T

Z d3p
�2��3

e�ik
vptfp�1� fp�
�
���k�:

(3.14)

For small times, we expand the exponential, and find

�N�k; t� �
�
�s�k� �

1

2
t2k2�s�k�

�
v2

3

��
���k�; (3.15)

with

�s�k� �
@N
@�0

�
1

T

Z d3p
�2��3

fp�1� fp�; (3.16)

and �
v2

3

�
�

1

T�s�k�

Z d3p
�2��3

fp�1� fp�
v2

p

3
: (3.17)

Thus, from Eq. (3.8), (2.7), and (3.15), we find3

Glow
JJ �k; �� � T�s�k�

�
v2

3

�
: (3.18)

In the free theory, at k � 0 there there are no corrections to
this result and the Euclidean correlator is a constant. At
finite k, the lattice correlator is not a constant even in the
2Generally we will restrict ourselves to a heavy quark limit
where there are well defined high and low frequency contribu-
tions. The discussion in this paragraph and the previous para-
graph applies whenever the scale separation persists, and is
therefore applicable to relativistic weakly coupled quarks. We
therefore will generalize this paragraph to relativistic quarks
with Bose-Einstein and Fermi-Dirac statistics.

3Here we have considered only a single component gas. For
the case of heavy quark diffusion, the right-hand side of
Eq. (3.16) and Eq. (3.17) should be multiplied by 4Nc to account
for the sum over spin, color, and antiquarks.
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free theory. For massless particles, hv2=3i � 1=3, while for
massive we have hv2=3i � T=M.

We have outlined the short time expansion of �NN�k; t�.
Further insight is gained from the full free spectral func-
tion. From, Eq. (3.14) and (2.7) and a simple Fourier
transform we deduce that the retarded correlator from the
free streaming Boltzmann equation is

�NN�k; !� �
1

T

Z d3p
�2��3

fp�1� fp�
�k 
 vp

!� k 
 vp � i�
:

Taking the imaginary part, the corresponding spectral den-
sity is

�low
NN�k; !� �

1

T

Z d3p
�2��3

fp�1� fp�k 
 vp��!� k 
 vp�:

(3.19)

As shown in Appendix B, this form for the spectral density
is identical to the one loop spectral function of the free
theory at small k and !, Eq. (B10). As discussed in
Appendix B, the resulting integral can be performed in
the nonrelativistic limit and we find the free spectral func-
tion for the heavy quark current-current correlator

�low
JJ �k; !� � �s

!3

k2

1������������������
2�k2hv

2

3 i
q exp

�
�

!2

2k2hv
2

3 i

�
: (3.20)

This is the dynamic structure factor of a free nonrelativistic
gas [21]. In the free theory, the spectral function is essen-
tially a Gaussian, with a width that is proportional to k2. In
the limit that k � 0 the correlator is

�low
JJ �k; !� � �s

�
v2

3

�
!��!�: (3.21)

In the free theory, the low frequency spectral density is
infinitely narrow at k � 0. The moments of the spectral
density are in one to one correspondence with the deriva-
tives of the Euclidean correlator at 
=2. Since higher mo-
ments of a delta function are zero, all derivatives at 
=2
vanish and the low frequency contribution of the free
theory to the Euclidean correlator is simply a flat line.
Thus, provided the high frequency contribution of the
spectral function can be subtracted, any bending of the
Euclidean correlator is indicative of something beyond free
streaming. In the next sections we will discuss how inter-
actions smear the ��!� function and estimate how much
the Euclidean correlator curves at 
=2 as a function of
diffusion coefficient.
IV. HEAVY QUARK DIFFUSION IN THE
LANGEVIN EFFECTIVE THEORY

In this section we will discuss the predictions of the
Langevin equations for the retarded correlator. As men-
tioned before, the time scale for heavy quark transport,
M=T2 is much larger than typical time scale for light
-5
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degrees of freedom in the plasma. For this reason we will
assume that the Langevin equations provide a good macro-
scopic description of the thermalization of charm quarks
[12],

dxi

dt
�
pi

M
;

dpi

dt
� �i�t� � �pi;

h�i�t��j�t0�i � �ij��t� t0�:

The drag and fluctuation coefficients are related by the
fluctuation dissipation relation

� �


2MT
: (4.1)

For time scales which are much larger than 1=� the
heavy quark number density obeys ordinary diffusion
equation

@tN �Dr
2N � 0:

The drag coefficient � can be related to the diffusion
coefficient through the Einstein relation

D �
T
M�
�

2T2


: (4.2)

The effective Langevin theory can be derived from
kinetic theory in the weak coupling limit [12] and probably
is adequate for describing heavy quark diffusion even for
strongly interacting plasma. The Langevin equations make
a definite prediction for the retarded correlator. Following
the framework of linear response, consider an initial dis-
tribution of heavy quarks when a small perturbing chemi-
cal potential is applied, ��x� � �0 � ���x�. The initial
phase space distribution of heavy quarks is

f�x;p; t � 0� � e���x�=T�M=T	e��p
2=�2MT�	: (4.3)

Summing over spins and colors, the initial number density
of quarks minus antiquarks is

N�x; t � 0� � �4Nc	
�
MT
2�

�
3=2
e��M=T� sinh

�
��x�
T

�
: (4.4)

By comparing Eq. (4.4) and (2.8), we find the static sus-
ceptibility

�s � �4Nc	
�
MT
2�

�
3=2
e��M=T� cosh

�
�0

T

�
: (4.5)

Let P�x; t� be the probability that a heavy quark starts at
the origin at t � 0 and moves a distance x over a time t.
Consider the relaxation of an initial distribution of heavy
quarks N�x; t � 0� slightly perturbed from equilibrium.
The distribution of heavy quarks at a later time is

N�x; t� �
Z
d3x0P�x� x0; t�N�x0; 0�; (4.6)
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or

N�k; t� � P�k; t�N�k; 0�: (4.7)

Comparing this result with the linear response result,
Eq. (2.10), we conclude that for small k and times large
compared to typical medium timescale

�NN�k; t� � ��s�k�@tP�k; t�: (4.8)

Thus, to find the retarded correlator �NN�k; !� , we need
only find the probability P�x; t�.

The probability distribution P�x; t� is determined in
Appendix A. Not surprisingly, the distribution is a
Gaussian,

P�x; t� �
1

�2��2�t��3=2
exp

�
�

1

2

x2

�2�t�

�
; (4.9)

with a width that depends nontrivially on time

�2�t� � 2Dt�
2D
�
�1� e��t�: (4.10)

For large times, we have�2�t�  2Dt as expected from the
ordinary diffusion equation. For small times, we have

�2�t�  �T=M�t2 ��t� 1�; (4.11)

which reflects the initial thermal velocity distribution of
heavy quarks, hv2=3i � T=M. Using Eq. (4.8), the proba-
bility distribution Eq. (4.9), and the definition of the re-
tarded correlator, we find the following form:

�NN�k; !� � �s�k�
Z 1

0
dtei!tk2D�1� e��t�

� e�k
2Dt��k2D=���1�e��t�: (4.12)

Equation (4.12) summarizes the contribution of the
Langevin equations to the retarded density-density corre-
lator. The retarded correlator has following properties:
(1) F
-6
or small k, Dk2 � �, and arbitrarily large times,
we may write the integrand as k2D�e�k

2Dt � e��t�,
and perform the integration

�NN�k; !� �
�s�k�Dk2

�i!� k2D
�
�s�k�Dk2

�i!� �
: (4.13)

For small frequency !�Dk2, the first term domi-
nates and recalls the diffusion equation, �@t �
Dr2��1. For large frequencies !� �, �NN recalls
the drag term of the Langevin equations, �@t �
���1. Of particular relevance to lattice measure-
ments is the spectral density of the current-current
correlator at k � 0

�JJ�0; !�
!

�
1

�
Im�JJ�0; !�

!
� �s

T
M

1

�
�

!2 � �2 ;

(4.14)

Heavy quarkonia correlators and spectral functions
are also calculated at finite spatial momenta k on
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FIG. 1 (color online). The spectral density of the longitudinal
current-current correlator ��JJ�k; !�=! divided by D�s�k� as a
function of a scaled frequency �! � !D�M=T� for various values
of a scaled momentum �k � kD

�����������
M=T

p
. The solid lines show the

spectral density from the Langevin equations for nonzero �k. For
comparison, the dotted lines show the spectral function of the
free theory, Eq. (3.20), expressed in the same �k and �! of the
interacting theory. The dash-dotted line shows the k � 0 result
of the Langevin equations, Eq. (4.14).
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lattice. But because the volume in these calculations
is relatively small the typical momenta are large,
k� T and the Langevin approach is not applicable.
(2) T
he typical relaxation time of a heavy quark is set
by the inverse drag coefficient, 1=� � D�M=T�.
The typical distance that a heavy quark moves
over the relaxation is

�����������
T=M

p
=� � D

�����������
M=T

p
. The

correlator �NN is a function of a scaled spatial
momentum �k � kD

�����������
M=T

p
and a scaled frequency

�! � !D�M=T�. In Fig. 1 we show the spectral
weight of the current-current correlator. For com-
parison we also show the free current-current corre-
lator from Eq. (3.20). R
(3) N
oting that �NN�k; !� � � 1
0 e

i!t�s@tP�k; t�
with P�k; t� � e�k

2�2�t�=2, it is easy to verify the
consistency relation ��k; 0� � �s�k�.
V. NUMERICAL ESTIMATE OF THE EUCLIDEAN
CORRELATOR

In this section we will give a numerical estimate of the
Euclidean vector current correlator. We will parametrize
the spectral density with low and high frequency contribu-
tions.

�JJ�k; !� � �low
JJ �k; !� � �

high
JJ �k; !�: (5.1)
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In our numerical analysis we mostly concentrate on the
charm quark, we will discuss the quark mass dependence
of the result at the end of this section. We restrict our
numerical analysis to zero spatial momentum. The high
frequency part is present at zero temperature and will be
parametrized as a J= resonance plus a continuum

�high
JJ �k � 0; !� � M2

J= f
2
V��!

2 �M2
J= �

�
Nc

8�2 ��!
2 � 4M2

D�!
2

�������������������
1�

4M2
D

!2

s

�

�
2

3
�

4M2
D

3!2

�
: (5.2)

Here fV is the J= coupling to dileptons as described in
Appendix C. The continuum contribution is motivated by
the free spectral function calculated in Appendix B, but we
have replaced 2M with the open charm threshold 2MD.

For the low frequency part of the spectral function we
will take two functional forms. The first form is the
Lorentzian from the Langevin equations

�JJ�k � 0; !�
!

� �s
T
M

1

�
�

!2 � �2 ; (5.3)

where � � T
MD . This form is rigorously true when T

MD�

T, and the frequency small ! & �� T.
These inequalities are strained in our numerical work.

For instance, for T=M  1=5 and D� 0:25=T, T
MD , is not

really much less than T. Further, as discussed in Sec. III,
the transport contribution to the Euclidean correlator at
� � 
=2 is fixed by the second moment of the spectral
density Z d!

sinh�!
=2�
�JJ�!�!

2: (5.4)

For the Lorentzian, the sinh�!
=2� rather than the spectral
density �JJ�!� controls the convergence of this integral.
Consequently, transport contribution to the correlator is
sensitive to the high frequency behavior of the Ansatz
where the Langevin approach is not valid. The higher
moments open up the white noise in the Langevin equa-
tions. We therefore considered a Gaussian Ansatz which
falls much more rapidly at infinity

�JJ�!�
!

� �s
T
M

1�������������
2��2

G

q e
� !2

2�2
G: (5.5)

The parameter, �G �
����
2

p T
MD , is fixed from the relation

between the spectral density and the diffusion coefficient
coefficient, ��!�

! j!�0 �
�sD
� . The integral under this

smeared delta function is again �sT=M. By comparing
these functional forms we obtain a feeling for the uncer-
tainties of our estimate.

The temperature dependence of the Euclidean correla-
tors comes from two sources: the temperature dependence
-7
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of the spectral function ��k; !; T�, and the trivial tempera-
ture dependence of the integration kernel, Eq. (2.16). We
obviously want to separate the interesting temperature
dependence coming from the spectral function from the
trivial temperature dependence coming from the integra-
tion kernel. This can be done by defining the reconstructed
correlator [29],

Grec
JJ �k; �; T� �

Z 1
0
d!�JJ�k; !; T

� 0�
cosh�!��� 
=2��

sinh�!
=2�
: (5.6)

If the spectral function does not change above
the deconfinement temperature Tc, the ratio
GJJ�k; �; T�=Grec

JJ �k; �; T� should be unity.
First we estimate the relative importance of the transport

contribution to the correlator. For closer comparison with
existing lattice data, we consider the diffusion of heavy
quarks in a gluonic plasma where the transition tempera-
ture is Tc � 270 MeV [32]. At this stage we can set the �
to zero (D � 1) and consider only the free spectral func-
tion. The charm quark mass M is taken to be 1.3 GeV. In
accord with lattice data [27–29], we will assume that J= 
is not modified by the medium and determine fV from its
dilepton width (see Appendix C). MJ= and MD are taken
from the Particle Data Group [33]. In Fig. 2 we show
GJJ�k; �; T�=Grec

JJ �k; �; T� for several temperatures. The
transport contribution is of order 7–12% and is the only
source of the temperature dependence seen in Fig. 2. A
similar enhancement was found in actual lattice calcula-
tions [34].

Analytic understanding can be gained by performing the
integral over the kernel at � � 
=2. In the heavy quark
limit, we set MJ=  2M and MD  M, and find
0.8
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FIG. 2 (color online). The ratio GJJ��; T�=Grec
JJ ��; T� for differ-

ent temperatures and k � 0.
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GJJ�k� 0; �; T�j��
=2 � 4Nc

�
MT
2�

�
3=2
e��M=T�

T
M|�������������������{z�������������������}

transport

�M3

�
fV
2M

�
2
8e��M=T�|���������������{z���������������}

resonance

� 4Nc

�
MT
2�

�
3=2
e��M=T�

�
1�

T
M

�
|�������������������������{z�������������������������}

continuum

:

fV=2M  0:131 is small and suppresses the resonance
contribution. The transport contribution is smaller by a
factor of T=M relative to the continuum contribution.

Interactions will modify the correlator by only a few
percent. These small changes due to the transport must be
disentangled from other in-medium effects such as a small
shift in the mass or width of the resonance. This can be
done by introducing a small chemical potential for the
heavy quark, �� M. Since the transport contribution is
proportional to �s, the small chemical potential will en-
hance the transport by factor of cosh��=T�, see Eq. (4.6).
The small charm chemical potential will not affect the
resonance and continuum contributions to the spectral
function to leading order in the heavy quark density,
�e��M���=T . Thus we expect that

�GJJ � GJJ��; T;�� �GJJ��; T; 0� (5.7)

’ �cosh��c=T� � 1�
Z 1

0
d!�low

JJ j��0�!�

�
cosh�!��� 
=2��

sinh�!
=2�
; (5.8)

is largely insensitive to the high frequency behavior of the
spectral function. For a thousand gauge configurations, the
statistical error in the vector current correlators can be
reduced below, 0.5%. One may hope that the same holds
for the difference of the correlators, �GJJ. Clearly, to
achieve this precision one should difference the two corre-
lators before averaging over gauge configurations. This
needs to be studied with numerical experiments.

In Fig. 3(a) and 3(b) we show this difference for T �
1:1Tc, � � M=5 and different values of the diffusion
constant D. As seen in Fig. 3, and as expected from
Eq. (3.8), the effect of the diffusion coefficient is to provide
a small curvature to the correlator and to shift the value of
the correlator downward at � � 
=2.

First we will concentrate on the curvature. If the final
precision is 0.5% and D & 1=��T�, then from Fig. 3(a),
one could hope that the curvature is large enough to be
determined in lattice simulations. In practice, it will be
difficult to guarantee that the continuum contribution will
not affect the extracted value.
-8
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The downward shift of the correlator at 
=2 from the
constant value, �sT=M, is a much larger effect. To isolate
this transport contribution we consider the difference,
�GJJ�M�, as a function of the heavy quark mass. We plot
the ratio

R�M� �
�GJJ�M�=��s�M�T=M�
�GJJ�M0�=��s�M0�T=M0�

j��
=2: (5.9)
4This is true whenever there is a separation between the
transport and temperature time scales. Previously, Aarts and
Martinez Resco found that Euclidean stress tensor correlations
are independent of the coupling constant to leading order [26].
For the free theory this quantity is one and is independent
of the heavy quark mass. Deviations from one are a sig-
nature of interactions. Figure 4(a) and 4(b) show this ratio
as a function of the heavy quark mass for the Lorentzian
and Gaussian Ansätze. Examining Fig. 4, we conclude that
if the diffusion coefficient is sufficiently small, D &

1=��T�, the transport peak should be visible in the mass
dependence of the Euclidean correlator. Additional critical
remarks are left to the conclusions.
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VI. BRIEF SUMMARY AND DISCUSSION

The Euclidean current-current correlator is remarkably
insensitive to the heavy quark diffusion coefficient. Indeed,
to leading order in T=M, the Euclidean current-current
correlator is independent of the diffusion coefficient.4

This is explained as follows (see Sec. III). The low fre-
quency contribution to the Euclidean current-current cor-
relator at � � 
=2, is controlled by the real-time retarded
correlator at t ’ 0. This short time behavior may be calcu-
lated with the free streaming Boltzmann equation. In the
end, the value of the current-current correlator at 
=2 is
simply �sT=M, where �s is the static susceptibility and
T=M reflects average thermal velocity squared. Higher �
derivatives (or moments of the spectral density by
sinh�!
=2�) reflect the width of the transport peak and
contain useful information about the transport time scales.

In a free theory, the spectral density is proportional to a
delta function

�JJ�k � 0; !�
!

� �s
T
M
��!�;

which reflects the fact that in the free case, the spatial
current is conserved in addition to the charge. This result
may be found either by using the free streaming Boltzmann
equation (see Sec. III) or performing a one loop expansion
(see Appendix B). Since the spectral density is propor-
tional to a delta function, higher � derivatives, or moments
of the spectral function, vanish and the Euclidean current-
current correlator is a constant, independent of � (see also
Ref. [26]). In the interacting theory the delta function is
smeared. Using the Langevin equations of motion, we
analyze in Sec. IV how this delta function is smeared as
a function of k and !. This result together with the free
-9



PÉTER PETRECZKY AND DEREK TEANEY PHYSICAL REVIEW D 73, 014508 (2006)
theory is summarized in Fig. 1. At k � 0, the Langevin
effective theory dictates the replacement

��!� !
1

�
�

!2 � �2 ;

where � � T=�MD� and D is the diffusion coefficient of
the heavy quark.

With this Lorentzian form for the spectral function at
small omega, we adopted a simple transport + resonance +
continuum model for the full spectral function and studied
how the Euclidean correlator is modified by the transport
peak in Sec. V. We also smeared the delta function with a
Gaussian to illuminate the sensitivity to the Lorentzian
Ansatz which is only valid in a heavy quark limit and for
! & T=�MD�.

Generally, the transport contribution to the full correla-
tor is suppressed by a factor of T=M relative to the con-
tinuum contribution (see Eq. (5.7)). To disentangle the
transport from the continuum and resonance contributions
we proposed differencing two current-current correlator—
one at finite heavy quark chemical potential and one at
zero chemical potential, �GJJ��� � GJJ��;�� �
GJJ��; 0�. This difference is proportional to the low fre-
quency contribution and is independent of the high fre-
quency contribution to leading order the heavy quark
density, �e��M���=T . With this procedure, the transport
contribution can be separated from the other contributions
at least parametrically. In practice (as opposed paramet-
rics) our numerical work in Sec. V shows that extracting
this piece is difficult though not impossible. A major
unknown is the final precision when the difference of
correlators is calculated. Clearly, one should difference
and then average over gauge configurations. Exploratory
lattice studies are needed to estimate this precision.

The transport contribution to the correlator is displayed
separately in Fig. 3(a) and 3(b) as a function of the diffu-
sion coefficient. As analyzed in Sec. III, the effect of the
diffusion coefficient is to shift the value of the current-
current correlator down from its free value �sT=M, and to
curve the correlator at 
=2. Parametrically, these effects
are suppressed by �T=MD�2 relative to �sT=M. The figure
illustrates that if the diffusion coefficient is much greater
than 1=T it will be difficult to measure the second deriva-
tive at 
=2. However if the precision is 0.5% it may be
possible, although it will be hard to guarantee that the
continuum contribution has been completely subtracted.
To eliminate the continuum contribution it is desirable to
make the mass as large as possible. On the other hand, the
transport signal is proportional to �T=MD�2 and therefore
is suppressed by the mass. Ultimately, numerical experi-
ments will determine the optimal heavy quark mass. Since
the diffusion coefficient is independent of the heavy quark
mass, lattice results will remain relevant to the RHIC
experiments.
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Even with these complications, Fig. 3 shows that the
Euclidean correlator at 
=2 is clearly shifted downward
from its free value, �sT=M. This shift also is indicative of
the width of the transport peak. To evaluate the magnitude
of this shift, we proposed measuring

�GJJ�M�=��s�M�T=M�j��
=2;

as a function of quark mass; this quantity is independent of
the mass in the free theory. As is shown in Fig. 4(a) and
4(b), in the interacting theory the width of the transport
peak makes this quantity mass dependent. Judging from
Fig. 4, if the diffusion coefficient is less than & 0:25=T the
effects of the transport peak should be visible in this mass
dependence.

Measuring Fig. 3 and 4 on the lattice is very difficult.
The importance of such measurements should spur effort.
Only measurements of this kind can seriously challenge
the strong coupling assumptions that underlie the hydro-
dynamic interpretation of the RHIC results.
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APPENDIX A: DIFFUSION OF A BROWNIAN
PARTICLE

The goal of this appendix is to determine the probability
P�x; t� that a Brownian particle will move a distance x
from the origin over a time t. Consider the discretized
Langevin equations:

x t�1 � xt �
pt
M
; (A1)

p t�1 � pt � ��pt�t� �t; h�it�
j
t0 i �


�t
�ij�tt0 ;

(A2)

where the noise is drawn from a Gaussian distribution with
the specified variance.

Let W�p0;p1; . . . ;pn	 be the probability of having a
sequence of momenta, p0;p1; . . . ;pN , where p0 is the
momentum at time zero and pN is the momentum after N
time steps. The probability of having momentum p0 is
given by the thermal distribution

P�p0� �
e��p

2
0=�2MT�	

�2�MT�d=2
:

Here and below d � 3 is the number of space dimensions.
The probability to have momentum p1 given p0 is the
probability that the noise will attain the appropriate value
-10
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P�p1jp0� �
Z
dd��d�p1 � �p0 � �p0�t� ��t��

�

�
�t

2�

�
d=2
e����t�=�2�	�

2
:

Continuing in this way we deduce that probability distri-
bution is

W�p0;p1; . . . ;pn	 �
e��p

2
0=�2MT�	

�2�MT�d=2

1

�2��t�Nd=2

� exp
�
�
XN�1

i�0

�t
2
� _pi � �pi�2

�
:

(A3)

where _pi � �pi�1 � pi�=�t.
Now the probability to move a distance �x over a time

�t can be written as

P��x;�t� �
Z YN

i�0

ddpiW�p0;p1; . . . ;pN	

� �d
�

�x�
XN�1

i�0

pi
M

�t
�
: (A4)

We now rewrite the delta function as a Fourier integral and
substitute Eq. (A3) into Eq. (A4) to obtain

P��x; t� �
Z ddk
�2��d

Yn
i

ddpieik
�x e
��p2

0=�2MT�	

�2�MT�d=2

1

�2��t�Nd=2

� exp

 
�i

XN�1

i�0

�t
M

k 
pi�
XN�1

i�0

�t
2
� _pi��pi�2

!
:

(A5)

The integrals in Eq. (A5) are all Gaussian and can be
performed. We performed the integrals in reverse order,
pn;pn�1; . . . ;p1;p0 and finally the k integral. The result is
a Gaussian

P��x; t� �
1

�2��2�d=2
e��1=2����x�2=�2	;

with width

�2 �
T
M
I2

1 �


M2 I2;

where the discretized integrals I1 and I2 are

I1 � �t
XN�1

i�0

�1� ��t�i 			! Z t

0
dt0e���t�t

0�;

I2 � ��t�
3
XN�1

i�0

"Xi
j�0

�1� ��t�j
#

2

			! Z t

0
dt0
�Z t

t0
dt00e���t�t

00�

�
2
:

Performing the continuum integrals, and liberally using the
014508
relations D � T
M� �

2T2

 , yields our final continuum form
for the width:

�2�t� � 2Dt�
2D
�
�1� e��t�: (A6)

For large times, we have�2�t�  2Dt as expected from the
ordinary diffusion equation. For small times, we have
�2�t�  �T=M�t2 reflecting the initial thermal distribution
of heavy quarks, hv2=3i � T=M.
APPENDIX B: THE FREE SPECTRAL FUNCTION

To evaluate the high frequency behavior of the spectral
function let us evaluate the free spectral function using
standard methods [31]. To this end we will calculate
Matsubara correlator

G�	
E �k; k4� �

Z 


0
d�

Z
d3xe�ik4��k
xhJ�E �x; ��J

	
E�0; 0�i;

(B1)

with k4 � k0
E � 2�nT. With this definition of the

Matsubara propagator the real-time retarded propagator
can be determined from its Euclidean counterpart through
the relation

��	�k; k0� � ��i�rG�	
E �k;�ik4 ! k0 � i��; (B2)

where r � ��0 � �	0 is the number of zeroes in the in-
dices �; 	. In the notation of the rest of the paper
�NN�k; !� � �00�k; !� and �JJ�k; !� � k̂ik̂j�ij�k; !�.

The one loop contribution to the spectral function is
shown in Fig. 5.
-11
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G�	
E �k; k4� � NcT

X
p4

Z d3p
�2��3

��1�

� tr
�
��p6 �M�

p2
4 � E

2
p
��E

�k6 � p6 �M�

�k4 � p4�
2 � E2

k�p
�	E

�
:

(B3)

Here indices are raised and lowered with the metric tensor
g�	E � diag��1;�1;�1;�1�. ��E satisfies f��E ; �

	
Eg �

2g�	E and p6 � p��
�
E � �p

0�0
E � p

i�iE.
Let us examine a typical term in Eq. (B3)

In�k;�ik4� � T
X
p4

pn4
1

p2
4 � E

2
p

1

�k4 � p4�
2 � E2

p�k
;

(B4)

where n � 0; 1; 2. Performing the frequency sum [31] we
have,

In�k;�ik4� �
�1��iEp�

n

4EpEp�k
�

1� np � np�k

�ik4 � Ep � Ep�k

�
��1�n�1� np � np�k�

�ik4 � Ep � Ep�k

�
np � np�k

�ik4 � Ep � Ep�k

�
��1�n�np � np�k�

�ik4 � Ep � Ep�k
	: (B5)

Evaluating the correlator in Eq. (B3) involves performing
the trace, evaluating the frequency sums with Eq. (B5), and
performing the continuation �ik4 ! k0 � i� as indicated
by Eq. (B2). The only contribution to the imaginary part of
the correlator comes from energy denominators. In
Eq. (B5) for example, the imaginary part of a typical
energy denominator after the continuation �ik4 ! k0 �
i� is

Im
�1

�k0 � i�� � Ep � Ep�k
� ���k0 � Ep � Ep�k�:

With this identity we have

Im�00�k; k0�

�
�
Z d3p
�2��3

Nc

4EpEp�k

� ��4Epk0�D� � ��8E2
p � 4p 
 k�D�	;

(B6)

Im�ij�k; k0�

�
�
Z d3p
�2��3

Nc

4EpEp�k
��4pikj� 4kipj

� 8pipj� 4p 
k�ij�D� � �4Epk0��ijD�	;

(B7)

where the even and odd functions D� are
014508
D� � �1� np � np�k����k
0 � Ep � Ep�k�

� ��k0 � Ep �Ep�k� � �np � np�k�

� ���k0 � Ep � Ep�k� � ��k0 � Ep � Ep�k��:

(B8)

The first pair delta functions can only be satisfied when jk0j
is large jk0j � 2M. The second pair of delta functions can
be satisfied when jk0j � k. Thus for k� T, the full cor-
relator can be written as a sum of high and low frequency
contributions

Im��	�k; k0�

�
�

�
Im��	�k0k�

�

�
low
�

�
Im��	�k0k�

�

�
high
:

First let us focus on the high frequency contribution to
the spectral density. To reach an analytic expression for the
spectral density we set k � 0. Then the integral over
���k0 � 2Ep� � ��k0 � 2Ep�� is easily performed, yield-
ing

�
Im�LJJ�k � 0; !�

�

�
high
�

�
1

3

Im�ii�k � 0; !�
�

�
high
;

�
Nc!2

8�2

�������������������
1�

4M2

!2

s �
2

3
�

4M2

3!2

�

� tanh
�
!
2T

�
; (B9)

This agrees with an earlier calculation [35] after account-
ing for a factor of 2 which results from a sum over two
flavors in that calculation.

Next we consider the low frequency contribution to the
correlator which comes from difference of energies,
��k0 � Ep � Ep�k�. For k� T we expand to first order,

np � np�k  �

�
�
@n
@Ep

�
k 
 vp;

with vp � p=Ep. Then the spectral density is

�
Im�00�k; k0�

�

�
low
�
Z d3p
�2��3

Nc

4E2
p



�4p0k0

�
�
@n
@Ep

�
k


 vp���k
0�k 
 vp� � ��k

0�k 
 vp�	

� 8E2
p

�
�
@n
@Ep

�
k 
 vp���k

0�k 
 vp�

� ��k0�k 
 vp�	

�
:

Integrating over cos��kp� eliminates the combination of
delta functions symmetric with respect cos��kp�. In-
tegrating the antisymmetric combination of delta functions
yields a factor of 2 and therefore
-12
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�
Im�00�k; !�

�

�
low
�
Z d3p
�2��3

4Nc

�
�
@n
@Ep

�
k


 vp��!� k 
 vp�: (B10)

Equation (B10) is identical with the correlator deduced
from the free streaming Boltzmann equation, Eq. (3.19).

This expression for the retarded correlator is readily
simplified in the nonrelativistic limit where np �

exp��p2=�2MT��. The delta function can be written as

k 
 vp��!�k 
 vp� �
!M
kp

�
�
cos�pk�

!M
kp

�
�
�
p�

!M
k

�
:

(B11)

Integrating Eq. (B10) we find a Gaussian with a width that
is proportional to k2,�

Im�00�k; !�
�

�
low
� �s!

1������������������
2�k2hv

2

3 i
q exp

�
�

!2

2k2hv
2

3 i

�
:

(B12)

Here, hv2=3i � T=M and �s is the static susceptibility in
the nonrelativistic limit, Eq. (4.6). In the limit that k! 0
the width of the Gaussian approaches zero and we have�

Im�00�k � 0; !�
�

�
low
� �s!��!�: (B13)

With this knowledge and the relation between the density-
density and current-current correlators Eq. (2.22), we find
�JJ�

Im�LJJ�k; !�
�

�
low
� �s

!3

k2

1������������������
2�k2hv

2

3 i
q exp

�
�

!2

2k2hv
2

3 i

�
;

(B14)

In the limit that k! 0 this function also approaches
!��!� �

Im�LJJ�k; !�
�

�
low
� �s

�
v2

3

�
!��!�: (B15)

HEAVY QUARK DIFFUSION FROM THE LATTICE
APPENDIX C: RESONANCE SPECTRAL
FUNCTION

The coupling of a J= to the electromagnetic current at
T � 0 can be written as

h0jJ�EM�0�jp; �i � eQfVMJ= �
�
��p�: (C1)

Here MJ= is the J= mass, J�EM � eQ �c��c, e the charge
of the positron, Q � �2=3 and fV is the electromagnetic
014508
decay constant. In writing this equation we have used the
fact that p�h0jJ

�
EM�0�jp; �i vanishes by current conserva-

tion. The decay rate of unpolarized J= into e�e� may be
expressed in terms of fV :

��J= ! e�e�� �
4�
3

Q2�2
EM

MJ= 
f2
V: (C2)

Using the Particle Data Group [33] we obtain, fV=MJ= �

0:131.
Using Eq. (2.12), (2.14), and (2.21), the spectral density

at k � 0 can be written as follows:

�LJJ�k � 0; !� �
1

2�

�
D>
ii �k; !�

3
�
D<
ii �k; !�

3

�
; (C3)

where D>
ii �k; !� is

D>
ii �k; !� �

Z
d4xe�i!t�ik
xhJi�x�Ji�0�i: (C4)

Here the averages denote thermal averages and J��x� �
�c��c. We will assume that the J= coupling and mass are
independent of temperature and simply replace the thermal
average with vacuum averages. In the frequency domain of
the resonance we may assume that one particle intermedi-
ate J= states dominate the correlator. Inserting one par-
ticle states we find

D>
ii �k; !� �

X
�

Z d3p
2Ep�2��3

Z
d4xe�i!t�ik
xh0jJi�x�jp�i

� hp�jJi�0�j0i: (C5)

Using translation invariance, h0jJi�x�jp�i �
e�ip
xh0jJi�0�jp�i, we perform the momentum and
space-time integrals and find

D>
ii �k; !� �

2�
2Ek

��!� Ek�
X
�

h0jJi�0�jk�ihk�jJi�0�j0i:

(C6)

We now specialize to k � 0 and use Eq. (C1) to obtain

D>
ii �0; !�

3
�

2�
2MJ= 

��!�MJ= �f
2
VM

2
J= : (C7)

A similar calculation yields D<
ii �0; !� and the resonance

contribution to the spectral function reads

�JJ�0; !� �
f2
VM

2
J= 

2MJ= 
���!�MJ= � � ��!�MJ= �	:

(C8)
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