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Lattice study of pentaquark states
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We present a study of the pentaquark system in quenched lattice QCD using diquark-diquark and kaon-
nucleon local and smeared interpolating fields. We examine the volume dependence of the spectral
weights of local correlators on lattices of size 163 � 32, 243 � 32, and 323 � 64 at � � 6:0. We find that a
reliable evaluation of the volume dependence of the spectral weights requires accurate determination of
the correlators at large time separations. Our main result from the spectral weight analysis in the
pentaquark system is that within our variational basis and statistics we cannot exclude a pentaquark
resonance. However, our data also do not allow a clear identification of a pentaquark state since only the
spectral weights of the lowest state can be determined to sufficient accuracy to test for volume
dependence. In the negative parity channel, the mass extracted for this state is very close to the kaon-
nucleon threshold, whereas in the positive parity channel it is about 60% above.

DOI: 10.1103/PhysRevD.73.014507 PACS numbers: 11.15.Ha, 12.38.Gc, 12.38.Aw, 12.38.�t
I. INTRODUCTION

Experimental searches for a pentaquark state near the
kaon-nucleon (KN) threshold, reported in recent experi-
ments [1,2], are under way worldwide. The accumulation
of evidence from low energy experiments for the existence
of this state [3] combined with the negative results ob-
tained in high energy experiments [4] pose deep questions
as to its nature and its production mechanism. Further
doubts as to the existence of the �� have been raised by
the recent report of the CLAS collaboration claiming lack
of evidence for a resonance state from a dedicated high
statistics proton experiment [5]. The �� was predicted
theoretically in the chiral soliton model [6] as an exotic
baryon state with an unusually narrow width. The possible
existence of such a state has raised interesting questions on
what its structure should be in order to account for its
narrow width. A number of phenomenological models
have been put forward to explain its stability such as
special flux tube configurations [7–10] and diquark forma-
tion [11].

Several studies in lattice QCD have looked for a penta-
quark state in order to determine its mass and parity but no
consensus has been reached yet with some groups finding a
bound state with mass close to the experimental value
[12,14,13,15,16] and others the KN scattering state [17–
19]. One main difference between these groups has been
the interpolating field used to create this state [20]. Since
its structure is unknown, optimizing the interpolating field
that one uses is a difficult task. However, for reasonable
interpolating fields, the results should not be dependent on
the interpolating field. In this work we use two of the most
popular choices: an interpolating field motivated by the
diquark-diquark picture [11] and an interpolating field
motivated by the kaon-nucleon structure [8]. We note
that diquark formation was shown to be important in the
context of the static pentaquark potential where arrange-
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ments of quarks that allow diquark formation are found to
be energetically favored giving rise to a potential that is
proportional to the minimal flux tube connecting the five
quarks [10,15,21]. Using these interpolating fields as a
basis, we construct a 2� 2 mass correlation matrix and
determine the optimal linear combination that yields maxi-
mum overlap with the ground state of the system. Another
way of enhancing the ground state by suppressing excited
state contributions is smearing. In addition to using local
interpolating fields, we also use smeared fields by applying
gauge invariant smearing to the quark fields used. We find
that the value we obtain for the mass is independent of
which of these various interpolating fields we use. Since
both interpolating fields have an overlap with the KN
scattering state we expect, that being the lowest state, it
will determine the large time dependence of both correla-
tors. If a pentaquark bound state exists about 100 MeV
higher than the KN threshold, we expect it to dominate the
time dependence of the correlator up to time separations of
about �10 GeV�1. Therefore the main difficulty is to
identify unambiguously the resonance in an intermediate
time range before the nearby KN scattering state domi-
nates. If our interpolating fields have good overlap with the
KN scattering state and the ��, then diagonalization of the
mass correlation matrix should give as lowest eigenvalues
these two states. This is our motivation for choosing the
KN-interpolating field, which is expected to have large
overlap with the KN scattering states and the diquark-
diquark field expected to have large enough overlap with
the pentaquark state. To distinguish a single particle state
from a scattering state, the tools that we have at our
disposal are the volume dependence of the energy and
spectral weights of the state, provided we can isolate it
with sufficient accuracy. The energy of a scattering state on
a lattice, with the exception of s-wave scattering states, is
volume dependent. This is because, in the center of mass
frame, the two particles have nonzero relative momentum,
-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.73.014507


C. ALEXANDROU AND A. TSAPALIS PHYSICAL REVIEW D 73, 014507 (2006)
which on a finite lattice depends on the spatial size of the
lattice. This means that if a scattering state with nonzero
momentum dominates the correlator then its energy will
depend on the spatial length of the lattice. The other
criterion that can be used is the scaling of the spectral
weights with the spatial volume. For a two-particle scat-
tering state the spectral weights are expected to be in-
versely proportional to the spatial volume, whereas for a
resonance there should be no volume dependence. The
spectral decomposition of the correlator was given by
Lüscher [22], who first noted that a weakly interacting
two-particle state well below resonance energy should
contribute to the correlator with an amplitude that scales
inversely proportional to the volume. The scaling of the
spectral weights as a probe for a two-particle resonance
scattering state was first used in a lattice study of the
pentaquark system by Mathur et al. [17]. In order to check
how reliably we can extract the scaling of spectral weights
in practice, we study the two-pion system in the isospin
I � 2 channel for which no low energy resonances are
present. This study is done on three lattices of size 163 �
32, 243 � 32, and 323 � 64 at � � 6:0, which are the same
lattices used in the study of the pentaquark system. We
consider four different two-pion interpolating fields and
determine accurately the two lowest energy eigenstates.
What we find is that the value of spectral weights extracted
stabilizes only at large enough time separations and only
then the ratio of spectral weights reaches the expected
value. Therefore to check for volume dependence one
requires very accurate data so that the extracted ratio of
spectral weights is precise enough. For the two-pion sys-
tem, given our statistics, this can only be achieved for the
lowest eigenstate. How large contributions from higher
relative momentum states are can be assessed by explicitly
projecting to zero relative momentum. This is done for the
lattice of size 163 � 32 and the results obtained are com-
pared to those without explicit projection to zero relative
momentum. We note that such a comparison has not been
carried out in previous lattice studies of the pentaquark
system. We confirm that diagonalization of the correlation
matrix without explicit projection yields a lowest energy
eigenvalue that contains contributions from states with
higher momenta and only becomes a pure s-wave scatter-
ing state at large time separations. This means that in order
to obtain the lowest scattering state one must allow for
larger time separation as the spatial extent of the lattice
increases. As we will demonstrate for a lattice of spatial
size of 3 fm, one has to go beyond a time interval of 30a�
15 GeV�1 to obtain the lowest scattering state. This is why
we use Dirichlet boundary conditions (b.c.) in the temporal
direction. In the study of the two-pion system, we use the
heaviest pion mass considered in this work, namely �l �
0:153, to have the smallest statistical errors. We compare
the scaling behavior of spectral weights in the two-pion
and pentaquark system using the same value of �l. Our
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main conclusion is that, within the accuracy that the spec-
tral weights can be determined from our data, we cannot
exclude a pentaquark resonance. In the negative parity
channel within our variational basis, we only obtain the
lowest eigenstate accurately enough to be able to perform
the scaling analysis of the spectral weights. Because of this
we are unable to draw a definite conclusion regarding the
existence of the ��. For the positive parity channel, we
obtain two eigenstates very close in energy which at the
two heaviest light quark masses have an energy gap of
about 100 MeV independent of the spatial volume. It
becomes more difficult to obtain an accurate determination
for this energy gap as the quark mass gets lighter. Although
we find an energy gap that is of the right order, the mass for
this state is high: Measuring the mass in the positive parity
channel for five values of light quark masses on our largest
lattice using a smeared diquark-diquark interpolating field
for the source and a local one for the sink and extrapolating
to the chiral limit, we obtain a value of 1:65� 0:09 times
the mass of the noninteracting KN state. This value is too
high to be identified with the ���1540�. The values of the
light quark mass that we use in carrying out the extrapo-
lation correspond to pion masses in the range of about
900– 420 MeV.
II. LATTICE TECHNIQUES

In this work we consider two interpolating fields moti-
vated by recent proposals on the possible structure of the
�� state. The first is based on the idea of diquark forma-
tion [11] and the other on a diquark-triquark structure [8].
Both have been used in previous lattice studies but a
correlation matrix analysis in the manner considered here
has not been presented. We will refer to the first as diquark-
diquark interpolating field. It is given by

J DD � �abc�aef�bghC�sTc �uTeCdf��uTgC�5dh�; (1)

where C � �0�2 is the charge conjugation operator. It was
first proposed and used in the study of the pentaquark
system on the lattice by Sasaki [13]. After performing
the antisymmetric tensor contraction, we generalize the
resulting expression to obtain an isospin I � 0 and I � 1
interpolating fields:

J DD � �abc�uTaC�5db�	�uTcCde� 
 �uTeCdc��C�sTe : (2)

The minus sign corresponds to isospin I � 0 and the plus
sign to isospin I � 1. The second field, which we will refer
to as the KN-interpolating field, is given by

J NK � �abc�uTaC�5db�	uc� �s�5d� 
 dc� �s�5u��; (3)

where the minus sign corresponds to the isoscalar and the
plus to the isovector. Although we have used both the
isoscalar and the isovector interpolating fields, in this
work we will only discuss the results in the isospin zero
channel.
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As presented, the interpolating fields have opposite par-
ities with JDD having positive parity and JKN negative.
The parity of these fields can be flipped by multiplying
with �5. The two point correlator can couple both to
positive and negative parity states and the propagators for
the positive and negative parity interpolating fields are
given, respectively, by [23]

G��t� �
�1� �0�

2
g�t� �

�1� �0�

2
g��t�

G��t� �
�1� �0�

2
g�t� �

�1� �0�

2
g��t�

g�t� � ��t�C�e�m
�t � ���t�C�em

�t;

(4)

wherem� (m�) is the mass of the positive (negative) parity
state. Employing Dirichlet boundary conditions means that
only the terms with t > 0 contribute and therefore the
positive and negative parity states correspond to the upper
and lower Dirac components of G��t� or the lower and
upper components of G��t�, respectively. For the two
smaller volumes we use only Dirichlet b.c. and local
interpolating fields since the main purpose of the evalu-
ation on the smaller lattices is to examine the volume
dependence of the spectral weights in the correlators. In
order to perform our volume studies we also use Dirichlet
b.c. for the local interpolating field on our largest volume.
However, the 323 � 64 lattice has a time extent large
enough so that backwards moving quarks are suppressed
and antiperiodic boundary conditions can also be used
without affecting the identification of the parity.
Therefore on the large volume we opt for antiperiodic
b.c. when using smeared sources. It is well known that
smearing improves the overlap of the interpolating field
with the ground state since it produces an extended source
of size typical to that of physical hadrons. We perform
gauge invariant smearing [24] by replacing a local quark
field u�x� appearing in the interpolating fields by a smeared
one, ~u�x�, obtained by

~u�x; t� �
X

y
��x; y;U�t��u�y; t�: (5)

The gauge invariant smearing function ��x; y;U�t�� is
given by

��x; y;U�t�� � �1� �H�n�x; y;U�t�� (6)

where the hopping matrix H is defined by

H�x; y;U�t�� �
X3

j�1

	Uj�x; t��x;y�ĵ �U
y
j �x� ĵ; t��x;y�ĵ�:

(7)

The parameters � � 4 and n � 50 are optimized to ap-
proximately reproduce the root mean square radius of the
nucleon in the quenched theory at � � 6:0 where all the
computations are carried out.
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Having M interpolating fields, we can construct an M�
M mass correlation matrix

C i;j�t� �
Z
d3xh0jJ i�x; t�J

y
j �0; 0�j0i; (8)

where in the case of the pentaquark system the indices
i; j � DD or KN. For nonvanishing results we must use
interpolating fields of the same parity. This can be easily
achieved by multiplying for example JDD with �5. Our
variational analysis is performed in two ways: (i) We solve
the generalized eigenvalue equation

C �t1�vn�t1� � �n�t1; t0�C�t0�vn�t1�: (9)

For a large time separation t1 � t0 the eigenvalues are
given by �n�t1; t0� � exp��En�t1 � t0��, n �
0; 1; . . . ;M� 1, yielding the energies En of the M lowest
states [25] with total momentum zero. The energy of the
Mth eigenstate is usually poorly determined since it has
contributions from all the higher excited states, except
when our variational basis contains interpolating fields
with a sizable overlap with all M lowest states. In this
analysis we take t0=a � 3–6 with a the lattice spacing and
check that the values that we find for En do not change as
we vary t0. (ii) We first diagonalize the correlation matrix
C�t0�

C �t0�vn�t0� � �n�t0�vn�t0� (10)

to determine the eigenvectors v�t0� taking t0=a � 1. We
use these eigenvectors to project to the space spanned by
the N � M largest eigenvalues �n�t0�

C N
ij�t� � �vi; C�t�vj�; i; j � 0; . . . ; N � 1 (11)

and solve the generalized eigenvector equation given in
Eq. (9) but for the projected correlation matrix CN

ij instead
of C�t�. We denote the resulting eigenvalues by �n. The
eigenvectors, V n, that we find determine the best linear
combination

P
nV nJ n that has maximum overlap with the

N lowest eigenstates. We will refer to this linear combina-
tion as the optimal interpolating field, J optimal. The optimal
correlator can be obtained by projecting CN: �V i; C

NV j�

which yields the same energies as those extracted from the
eigenvalues �n. We check that the eigenvalues, �n that we
obtain by diagonalizing CN

ij are in agreement with �n.
For the pentaquark system, in addition, to CDD;KN con-

structed using the local interpolating fields JDD and JKN

as a basis, we also consider ~CDD;KN constructed using
smeared fields ~JDD and ~JKN for the source but keeping
the sink local and vice versa. The eigenvalues, ~�n, ex-
tracted from this correlation matrix should yield, for large
enough time separations, the same energies as those ex-
tracted from �n. We check for consistency at the two
heaviest light quark masses, namely �l � 0:153 and �l �
0:155.
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The contractions needed for the computation of the pentaquark matrix elements are optimized by doing all the Dirac
contractions explicitly before summing over color. For example, using the JDD interpolating field as source and sink, the
correlator is given by

CDD;DD�t� �
X

x
�a
0b0c0�abc	�C�5S�x�C�5�

f0f
	0	0 f	Tr�C�5Dc0c�x�C�5Ub0bT�x��Tr�CDf0f�x�CUa0aT�x��

� Tr�C�5Dc0f�x�CUb0bT�x��Tr�CDf0c�x�C�5Ua0aT�x�� � Tr�C�5Dc0c�x�C�5Ua0aT�x�CDf0f�x�CUb0bT�x��

� Tr�C�5Dc0f�x�CUa0aT�x�CDf0c�x�C�5Ub0bT�x��� � 	a0 $ f0; a$ f� � 	a0 $ f0� � 	a$ f�g; (12)
where S�x�, U�x�, and D�x� denote the strange, up, and
down quark propagators, Latin letters denote color indices,
Greek letters Dirac indices, and the transpose acts only on
Dirac indices. In each of the terms we perform the Dirac
algebra separately and store the result in an array; e.g. in
the first term having two traces we construct the traces and
then we multiply them and sum over color indices. This
reduces the time needed by more than an order of magni-
tude to about twice the time one needs for the nucleon
correlator. Such grouping of terms is common in many
lattice studies of matrix elements as, for example, in
Refs. [17,19,26].
III. RESULTS

The lattices and values of the hopping parameter, �l, that
we use for the light quarks are listed in Table I, where we
also give the mass of the pion, the kaon, and the nucleon at
TABLE I. In the first column we give the lattice volume and in
the second column the value of the hopping parameter, �l, for
light quarks. In the third, fourth, fifth, and sixth columns, we give
the pion mass, the kaon mass, the nucleon mass, and the N mass
in lattice units. For �l � 0:1558 and 0.1562, the mass of N is
not given since no clear plateaus could be identified.

Volume �l m
 mK mN mN

Local source and sink using Dirichlet b.c. and JDD, JKN

163 � 32 0.153 0.422(2) 0.363(2) 0.787(8) 1.039(56)
0.155 0.295(3) 0.295(3) 0.623(14) 0.895(86)

243 � 32 0.153 0.426(3) 0.369(2) 0.790(10) 1.026(42)
0.155 0.302(3) 0.302(2) 0.644(12) 0.877(57)

323 � 64 0.153 0.420(2) 0.361(2) 0.788(6) 0.987(33)
0.155 0.294(2) 0.294(2) 0.633(7) 0.849(46)

Smeared source and local sink using antiperiodic b.c. and JDD

323 � 64 0.153 0.418(2) 0.358(2) 0.778(6) 0.990(30)
0.1550 0.292(2) 0.292(2) 0.625(7) 0.802(44)
0.1554 0.262(2) 0.277(2) 0.590(9) 0.748(49)
0.1558 0.229(2) 0.262(2) 0.553(9)
0.1562 0.192(2) 0.246(2) 0.513(10)

�c � 0:1571 0 0.207(5) 0.420(10)

Smeared source and sink using antiperiodic b.c. and JDD

323 � 64 0.153 0.418(2) 0.360(3) 0.789(9) 0.973(39)

014507
each value of �l as well as the value obtained by linear
extrapolation to the chiral limit using the form

m2
H � a� bm2


: (13)

In Eq. (13) mH denotes the mass of any of the hadrons
considered in this work. In Table I we also include the mass
of the negative parity baryon N at the values of �l where
we could identify a plateau. For the strange quark we take
�s � 0:155, which produces a mass for the � meson of
0:421�3� in lattice units. Using the mass of the nucleon in
the chiral limit given in Table I, we find that the ratio of the
mass of the � meson to the mass of the nucleon at the
chiral limit is m�=mN � 1:002� 0:025, which is very
close to the physical ratio of 1:087 verifying that the value
of �s � 0:155 used is very close (within 10%) to the
physical strange quark mass. We analyzed 202 configura-
tions for the 163 � 32 lattice [27] and 100 configurations
for each of the 243 � 32 and 323 � 64 lattices.

A. The nucleon sector

In order to assess our methods of analysis, we first
examine the results obtained for the nucleon using the
standard interpolating field,

J N�x� � �abc�uTa �x�C�5db�x��uc�x�; (14)

which can be local as given in Eq. (14) or constructed from
smeared fields ~u and ~d instead of u and d. We denote the
latter by ~JN . In evaluating the nucleon correlator we can
use JN for the source and sink or use ~JyN for the source and
JN for the sink. In general, denoting with H the appro-
priate hadronic state, the correlator C�t� �R
d3xh0jJH�x�J

y
H�0�j0i computed using local interpolat-

ing fields for the source and the sink is referred to as the
local-local correlator, whereas the correlator ~C�t� com-
puted using a local (smeared) field for the source and
smeared (local) for the sink is referred to as local-smeared
correlator. Finally the correlator, Ĉ�t�, computed using
smeared fields for both the source and the sink, is referred
to as smeared-smeared correlator. In Fig. 1 we show results
for the nucleon effective mass defined by
-4



FIG. 1 (color online). The upper graph shows the effective
mass for the nucleon (positive parity) and the lower graph for
the N (negative parity) at �l � 0:153. The crosses show the
results using the local-local correlator, C�t�, and Dirichlet
b.c. and the open triangles using the local-smeared correlator,
~C�t� and antiperiodic b.c. shifted to the right for clarity. In the
case of the nucleon, we also show results obtained using the
smeared-smeared correlator Ĉ�t� (asterisks) shifted to the left for
clarity. The dotted and dashed lines are fits to the effective
masses obtained using C�t� and ~C�t�, respectively, assuming
two state dominance.
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meff�t� � � log
C�t�

C�t� 1�
(15)

on the lattice of size 323 � 64 with Dirichlet boundary
conditions. On the same figure we also show results ob-
tained from ~C�t� with antiperiodic boundary conditions in
the time direction. As can be seen, smearing improves the
overlap with the nucleon ground state resulting in an earlier
plateau. All the errors shown on our figures and given in the
tables are statistical and they are determined using a jack-
knife analysis.

We fit the effective mass assuming two state dominance
to the form

meff�t� � m0 � log
1� ze��mt

1� ze��m�t�1�
; (16)
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where m0 is the mass of the ground state, �m � m1 �m0

is the mass gap between the ground state and the first
excited state, and z is the ratio of the overlap of the
interpolating field with the first excited state as compared
to the ground state. For the nucleon sector m0 gives the
mass of the nucleon and �m the mass gap between the
nucleon and the N�1440� state. The values of m0 and �m
determined from fitting the effective mass derived either
from C�t� or ~C�t� are in agreement. The errors on the mass
gap �m however are large not allowing an accurate deter-
mination of the mass of the excited state. The fact that the
ground state overlap is enhanced, as compared to that of
the first excited state when smearing is used, is confirmed
by the decrease in the value of z by a factor of about 20.
Smearing both source and sink tends to suppress even
further the excited state contributions and decorrelates
the results at successive time slices. The mass extracted
by fitting the smeared-smeared correlator, Ĉ�t�, to a single
exponential is mN � 0:789�9� consistent with that ex-
tracted from the local-smeared correlator. However, as
can be seen in Fig. 1, the statistical error on the smeared-
smeared results at each time slice is larger as compared to
the errors of the local-smeared results due to the gauge
noise introduced at the sink. Such errors will make it
difficult to distinguish two closely lying states, and there-
fore in the case of the pentaquark system we will mostly
use local-local and local-smeared correlators.

An important test that distinguishes particle states from
scattering states is the scaling of the spectral weights of
local correlators with the spatial volume of the lattice
[17,22]. Expanding the correlator computed on a lattice
of spatial size L in terms of states with the same quantum
numbers as the interpolating field, one obtains

CL�t� �
X
�

W�
Le
�E�Lt: (17)

For a single particle state the weights W�
L are of order one

whereas for a scattering state consisting of two weakly
interacting particles well below the resonance are of order
1=L3. Furthermore, for a single particle state, E�L deter-
mines the mass of the state and should be volume inde-
pendent for large enough volumes. For a scattering state
that is not an s-wave, on the other hand, E�L is volume
dependent since it involves the relative momentum of the
two particles, a fact which on the lattice means that each
particle carries equal momentum in units of 2
=L. In the
case of the nucleon, we know that we have a single particle
state and we can check how reliably we can extract these
weights. In Fig. 2 we plot the ratio of the local-local
correlator C16�t� to C24�t� (computed on the lattices of
size 163 and 243, respectively) for the nucleon and the
N. In a time interval where a single state dominates
(plateau region), assuming its mass is volume independent,
the ratio of correlators is equal to the ratio of weights
W16=W24. This ratio should be one for a single particle
-5



FIG. 2 (color online). We show the ratio C16�t�=C24�t�
(crosses) and the ratio RH16:24 (open triangles with a small shift
to the right for clarity) as a function of the time separation in
lattice units. The upper graph shows results for the nucleon and
the lower for N at �l � 0:153.
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state. As can be seen, the ratio of correlators is approxi-
mately one. In the same figure we also show the ratio

RHL1:L2
�
CL1
�t�emeff;L1

�t�

CL2
�t�emeff;L2

�t�
; (18)
where withH we denote the nucleon or theN and we have
taken L1 � 16 and L2 � 24. This ratio corrects small finite
size effects on the mass and in the plateau region is again
equal to WL1

=WL2
. As can be seen, RHL1:L2

indeed improves
the signal, in particular, for the nucleon, giving better
agreement with unity, which is the expected result.

B. The two-pion sector

Having tested our techniques for a single particle state,
we now verify that they can be applied for two-particle
scattering states. For this test we choose the two-pion
system in the isospin two channel where no low lying
resonances are expected. We consider five interpolating
fields:
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J 2

1 �x� � J


1 �x�J


1 �x�; J


1 �x� � �d�x��5u�x�;

J 2

2 �x� � J


2 �x�J


2 �x�; J


2 �
�d�x��5�0u�x�;

J 2

3 �x� � J


3 �x�J


3 �x�; J


3 �
�d�x��5ê	�	u�x�;

J 2

4 �x� � J�

0 �x�J
�
0 �x�; J�

0 �
�d�x��0

X3

i�1

�iu�x�;

J 2

5 �x� �

X3

i�1

J�
i �x�J

�
i �x�; J�

i �x� � �d�x��iu�x�:

(19)

The first three are products of pion interpolating fields
whereas the last two are products of rho-type interpolating
fields. As we already pointed out, the energy of a scattering
state of two hadrons h1 and h2 depends on the spatial size L
of the lattice and is given by

Enh1h2
�

�������������������������������
m2
h1
� n

�
2

L

�
2

s
�

�������������������������������
m2
h2
� n

�
2

L

�
2

s
;

n � 0; 1; . . .

(20)

where we have suppressed the L index on the energy. In
Fig. 3 we show the effective mass for a single pion using
the interpolating fields J


1 �x�, J


2 �x�, and J


3 �x� for our
three lattices. As expected J


1 �x�, routinely used in lattice
calculations, and its variant J


2 �x� have the largest overlap
with the pion. All three yield consistent results for the pion
mass. For the two-pion system the interpolating field
J 2


3 �x� is very noisy as compared to the other four and
we do not include it in the figure. We obtain the best
overlap with the two-pion ground state when using
J 2


1 �x� with J 2

4 �x� and J 2


5 �x� being the next best.
Again all interpolating fields produce consistent two-pion
energies for large enough time separation. For lattices
163 � 32 and 323 � 64, the time extent is sufficient to
have a large plateau region after suppression of excited
state contributions. For the 243 � 32 lattice this occurs for
time separations t=a > 22 limiting the fit range to a few
time slices.

We perform a variational analysis using the interpolating
fields defined in Eq. (19) excluding J 2


3 , which means that
in Eq. (9) we take M � 4. To check we also compute the
eigenvalues by the second method of analysis, namely, by
projecting using Eq. (11) to an N � N matrix where we
take N � 3. We find two distinct eigenstates for which we
also construct the best interpolating field using the eigen-
vectors V n. For this system, had we used only interpolat-
ing fields J 1 and J 4 the resulting eigenvalues would be
consistent with the ones obtained within the larger varia-
tional set. This is an important observation since it dem-
onstrates that using two interpolating fields which have
very good overlap with two low lying states we can accu-
rately determine them by diagonalizing the 2� 2 correla-
tion matrix. The effective mass determined for the two
-6



FIG. 4 (color online). The effective mass at �l � 0:153 ex-
tracted from the correlator using the interpolating field J 2


1

(crosses) and from the two largest eigenvalues �0 (open tri-
angles) and �1 (asterisks) for the lattice of size 163 � 32 (upper
graph), 243 � 32 (middle graph), and 323 � 64 (lower graph).
The dotted lines are the two lowest energy two-pion scattering
states E0

2
 and E1
2
. The dashed line is the lowest energy two-rho

scattering state E0
2�.

FIG. 3 (color online). The effective mass at �l � 0:153 as a
function of t=a for the lattice of size 163 � 32 (top), 243 � 32
(middle), and 323 � 64 (bottom). The set of results with the
lower value are obtained using one pion interpolating fields, J


1

(crosses), J

2 (asterisks), and J


3 (open triangles). The set with
the higher value corresponds to the two-pion interpolating fields,
J 2


1 (crosses), J 2

2 (asterisks), J 2


4 (open triangles), and J 2

5

(circles). The dotted lines are the two lowest two-pion scattering
states E0

2
 and E1
2
.
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eigenvalues �n is shown in Fig. 4 for our three lattices. In
all cases the effective mass extracted from the lowest
energy eigenvalue (largest �) is in agreement with that
extracted from the correlator that uses the interpolating
field J 2


1 . As the spatial extension of the lattice increases, a
larger time separation is needed for the effective mass to
reach the energy of the s-wave scattering state E0

2
. Since
in this system the low lying states are two-particle scatter-
ing states, this clearly demonstrates that the two lowest
eigenvalues do not correspond to a given value of the
relative momentum carried by each particle but they are
an admixture of states having nonzero relative momentum
that mix with the state with zero relative momentum. The
energy difference, En � En�1, between different relative
momentum states decreases like 1=L2 and therefore a
larger time interval is needed in order to reach the ground
state as L increases. This can be seen in Fig. 4 where for the
163 lattice the plateau for the ground state is reached for
014507
t=a > 13 whereas for the 243 we need t=a > 23 and for the
323 t=a > 30. These values determine the smallest value of
the lower time range to be used in fitting the effective
masses to a constant. If one would like to reduce the lower
fit range then fitting to a two-exponential form using
Eq. (16) is essential. A similar behavior is also observed
for the second eigenstate: On the 163 the two-rho scattering
state E0

2� is the second lowest energy state since E1
2
 is

higher and a clear plateau is seen for t=a > 17. Going to
the larger 243 lattice E1

2
 decreases becoming about equal
to E0

2� with a plateau that sets in for t=a� 25 resulting in a
fit range limited to three points. This explains why the
energy extracted is higher on this lattice than 2m� as can be
seen in Fig. 5, where we plot the mass extracted from fitting
the effective mass in the available plateau region versus the
spatial lattice size. Finally, despite the fact that on the 323

lattice E1
2
 < E0

2� the two-rho state dominates the time
-7



FIG. 6 (color online). The upper graph shows the effective
mass for the lowest energy eigenstates and the lower graph the
effective mass for the second higher energy eigenstate. In both
graphs we show data with projection to zero relative momentum
using Eq. (21) (asterisks shifted to the right for clarity) and
without explicit projection (open triangles) for the lattice of size
163 � 32 at �l � 0:153. We also show twice the effective mass
extracted from a single pion (crosses in upper graph) and rho
correlator (circles in lower graph). The dotted line is the two-
pion scattering state E1

2
.

FIG. 5 (color online). The mass at �l � 0:153 extracted from
fitting the plateau of the effective mass of the lowest energy
eigenvalue (filled triangles) and the second higher energy eigen-
value (filled circles shifted to right for clarity) as a function of
the spatial length of the lattice L. Also shown are results for
twice the mass extracted from the pion correlator (crosses) and
rho correlator (asterisks). The dotted line is the two-pion scat-
tering energy E1

2
.

FIG. 7 (color online). The ratio R16:24 at �l � 0:153 for one
and two-pion states using interpolating field J


1 �x� (crosses) and
J 2


1 �x� (asterisks) as a function of t=a. The ratio R16:24 extracted
from correlators using the optimal combination Joptimal�x� for the
lowest eigenstate of the two-pion system is shown by the open
triangles shifted to the right for clarity. The dotted lines show the
expected value of the ratio for a single particle state and a two-
particle scattering state.
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dependence of the second eigenvalue for 30 � t=a � 40.
For t=a > 40 the effective mass becomes consistent with
E1

2
 but in this time range the statistical errors become too
large to clearly distinguish the E1

2
 scattering state.
Therefore fitting the effective mass in a time range 30–
40 or extending the upper fit range affects very little the
resulting value thereby obtaining the rather accurate mea-
surement of E0

2� displayed in Fig. 5. Note that corrections
due to interactions between the two pions cannot be seen
on the scale of this figure assuming that we can use the
physical scattering length in Luscher’s result [28]. It must
be noted that on the large lattice fitting in the plateaulike
region in the time range 15< t=a < 30 would yield an
incorrect higher value for the energy. Therefore this dem-
onstrates that for lattices of spatial extent of about 3 fm we
need a time separation of at least 40a to obtain correctly
the energy of the two-rho state making the use of Dirichlet
b.c. essential. To verify that the reason the plateau region
starts at relative large time separations is due to contami-
nation of states with higher relative momentum, we per-
form on the small lattice an explicit momentum projection
to two particles each carrying zero momentum. This is
done by evaluating the correlation matrix

C js
0
ks�t� �

X
x;y
h0jJs

0

j �x; t�J
s0
j �y; t�J

sy
k �0�J

sy
k �0�j0i; (21)

where s; s0 denotes the pion or the rho.
In Fig. 6 we compare the eigenvalues obtained when we

carry out the zero momentum projection for each particle
to our previous (unprojected) results. As can be seen for
both eigenstates, the plateau region starts at earlier time
014507-8
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separations. In fact for t=a > 6 the projected two-particle
correlator is the same as the product of the single particle
correlators. For large enough time separations, the unpro-
jected eigenvalues approach the correct values E0

2
 and E0
2�

giving an energy gap E0
2� � E

0
2
 � 320 MeV at �l �

0:153. The mass gap between the �� and the KN s-wave
scattering state is not known at this value of �l. However,
as we will discuss when presenting the chiral extrapolation
of our results, the mass gap between our candidate penta-
quark resonance and E0

KN increases with the quark mass to
about 170 MeV at �l � 0:153 in the negative parity chan-
nel. This estimated smaller gap can make the study of the
pentaquark system harder.
FIG. 8 (color online). The ratio of spectral weights w16=w24

(upper graph) and w16=w32 (lower graph) as a function of the
lower fit range ti=a at �l � 0:153. Asterisks denote results
extracted from the correlator with J 2


1 �x�, open triangles and
filled circles from the correlator with Joptimal�x� fitted to a single
exponential and to a sum of two exponentials, respectively. For
comparison we also show these ratios for the single pion state
using J


1 �x� (crosses). The upper fit range is fixed to 26 for the
163 � 32 lattice and to 56 for the 323 � 64 lattice. On the lower
graph with the filled triangles we show results for the ratio of
spectral weights w16=w32 when the upper fit range for the large
lattice is fixed to 26. The dotted lines show the expected value of
the ratios for a single particle state and a two-particle scattering
state.
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Having identified the two lowest eigenstates within our
variational basis, we study the spectral weights of these
states. In Fig. 7 we show the ratio R16:24 for the pion when
using the interpolating field J


1 �x� and for two pions when
using J 2


1 �x� as well as J optimal. This ratio is unity for the
pion as expected, whereas for the two-pion system it
increases approaching the expected ratio of 3:4 for ti=a >
25 when the s-wave two-pion scattering state dominates.
For the lattice of spatial extent 32 this happens for t=a >
30 and therefore R16:32 stays close to unity up to about
t=a � 30 which is the largest time separation for which it
can be constructed. Instead of R16:32 we can extract the
spectral weights by fitting the correlator to a single expo-
nential or to a sum of two exponentials. This allows one to
take into account information from the full time extent of
the lattice. We fix the upper fit range to 26 in lattice units
for the lattices of temporal extent Nt � 32 and to 56 for the
lattice withNt � 64. We show in Fig. 8 the ratio of spectral
weights W16=W24 and W16=W32 for the lowest state. What
can be seen is that both ratios extracted using a single
exponential fit increase approaching the expected value
for a scattering state. Fitting to a sum of two exponentials,
we obtain ratios that approach the expected value at much
smaller time separations albeit with larger errors. However,
if instead of 56 we take an upper fit range of 26 for the large
lattice either using single or double exponential fits, the
ratio W16=W32 stays close to unity leading to the wrong
conclusion. We show the corresponding ratios for the
second eigenstate in Fig. 9 using a single exponential.
FIG. 9 (color online). The ratio of spectral weights w16=w24

extracted from the correlators with interpolating field Joptimal�x�
(asterisks) for the first excited state as a function of the lower fit
range ii=a. The corresponding ratio w16=w32 is shown with the
open triangles. The dotted lines show the expected value of the
ratio for a single particle state and a two-particle scattering state.
The crosses show for comparison the ratio of spectral weights for
one pion state extracted from the correlator using interpolating
field J


1 �x�.
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Even though the errors on the correlators are small the
error on the ratio of spectral weights is too large to lead to a
definite conclusion. Had we used a sum of two exponen-
tials, the errors would be even larger.

C. The pentaquark sector

The first experimental indication for the existence of a
pentaquark state came when the LEPS collaboration [1]
detected a resonance with mass 1540� 10 MeV and width
less than 25 MeV in accord with the predictions of the
chiral soliton model [6]. This small width is surprising
since, lying about 100 MeV above the KN threshold, it is
expected to readily decay to KN. Since the observation of
the first signal for �� was reported, several other experi-
ments were carried out, some confirming its existence [3]
and others not [4,5].

Whether lattice QCD supports the existence of a penta-
quark state is also unclear [20]. The study of resonances in
lattice QCD is in its infancy and therefore it comes with no
surprise that identifying the �� on the lattice turned out to
FIG. 10 (color online). The effective mass for the pentaquark
in the negative parity channel for lattices of size 163 � 32 (upper
graph), 243 � 32 (middle graph), and 323 � 64 (lower graph) at
�l � 0:153. The crosses show the results obtained from corre-
lators using JDD and the open triangles using JKN . The dotted
lines show mN �mK and E1

KN .

014507
be a difficult task. In the two-pion system, scaling of the
spectral weights W with the spatial volume was observed
for large time separations. We will use the largest available
time separations in applying the same analysis in the
pentaquark system. Clearly, whether this criterion can be
used in practice will depend on the size of the statistical
errors.

In Figs. 10 and 11, we show the effective mass for both
the negative and positive parity states evaluated on our
three lattices at �l � 0:153 for isospin zero using the local
interpolating fields JDD and JKN . What can be seen from
these figures is that both interpolating fields yield consis-
tent plateaus in both channels with the KN-interpolating
field yielding smaller errors in the negative parity channel
than the diquark-diquark interpolating field, whereas in the
positive parity channel the opposite is true. We also see that
the errors even at this heavy pion mass are large especially
for the positive parity channel limiting the determination of
the large time behavior. This means that extracting the
spectral weights for the positive parity channel accurately
enough for large time separations to test scaling will not be
possible. Therefore for the positive parity channel we can
FIG. 11 (color online). The effective mass for the pentaquark
in the positive parity channel at �l � 0:153. The dotted lines
show E1

KN and E2
KN and the dashed line mK �mN . The rest of

the notation is the same as that of Fig. 10.
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only look for volume dependence in the extracted energy
of the states. This energy can be determined either by
fitting the effective mass in the plateau range to a constant
or, allowing for two states, to the form given in Eq. (16).
The latter is especially important when using local-local
correlators, since excited states have large contributions up
to time separation of about 14a. Our aim is to detect a
resonance, which is higher than the scattering KN state and
therefore it is crucial to be able to fit in a time range where
it is still the dominant state. This is expected to hold for
time intervals less than about t=a� 20 or t & 10 GeV�1.
The values obtained for the mass, fitting within this range
using either JDD or JKN , are given in Table II for all three
lattices. From these values, we can conclude that, either
using the diquark-diquark or the KN local interpolating
field, the masses that we find are within each other’s error.
In the positive parity channel the systematic volume effect
of a decrease in the mass with the increase of the lattice
size, characteristic of a scattering state, is not observed.

The standard approach to suppress excited state contri-
butions improving the effective mass plateaus is to use
smearing. We use Wuppertal smeared interpolating fields
on the large lattice imposing antiperiodic boundary con-
TABLE II. The first column gives the interpolat
the pentaquark extracted by fitting the effective m
third column gives the mass extracted by fitting t
size 163 � 32. The corresponding quantities for th
columns. We give results at values of �l � 0:153
for these fits is less than one.

163 � 32 2

�l

Neg

Operator am (1 exp) am (2 exp) am (1 ex
JDD 1.172(14) 1.174(14) 1.236(14
JKN 1.173(9) 1.180(9) 1.232(15
J optimal 1.178(14) 1.176(16) 1.232(14

Pos

JDD 1.432(50) 1.376(59) 1.485(30
JKN 1.488(51) 1.411(87) 1.479(44
J optimal 1.502(135) � � � 1.448(52

�l

Neg

Operator am (1 exp) am (2 exp) am (1 ex
JDD 0.977(44) 0.938(23) 1.014(19
JKN 0.947(15) 0.937(17) 0.998(20
J optimal 0.952(19) 0.929(27) 1.006(15

Pos

JDD 1.300(67) 1.184(92) 1.323(33
JKN 1.374(60) 1.283(129) 1.274(48
J optimal 1.457(89) � � � 1.256(57

014507
ditions in the temporal direction. As can be seen in Fig. 12,
where we show results for �l � 0:153, smearing the source
but keeping the sink local suppresses excited state contri-
butions. Note that, within our statistical errors, the effective
mass with smeared source on half the lattice is in agree-
ment with the results from the local correlator at larger
times leading to the same plateau values. This justifies the
use of antiperiodic b.c. As we already pointed out, if the
sink is also smeared the gauge noise increases making
identification of two close-by states impossible.
Therefore for the rest of the results we will apply smearing
only at the source.

Having confirmed that both local and smeared interpo-
lating fields as well as the KN and diquark-diquark inter-
polating fields lead to consistent values for the mass, we
perform the variational analysis described in Sect. II. As in
the two-pion system, the eigenvalues will still be contami-
nated by scattering states with nonzero relative momen-
tum. This is particularly severe on the large lattice where
the scattering KN states are very close in energy as can be
seen in Figs. 10 and 11. If within our variational basis we
have interpolating fields that have good overlap with the
pentaquark resonance then the two energy eigenvalues
ing field, the second column gives the mass of
ass to a constant in the plateau region, and the
o the form given in Eq. (16) for the lattice of
e other two lattices are given in the next four
and 0:155 for both parity states. The 2=d:o:f

43 � 32 323 � 64

� 0:153

ative parity

p) am (2 exp) am (1 exp) am (2 exp)
) 1.240(15) 1.237(12) 1.234(13)
) 1.239(17) 1.239(9) 1.236(9)
) 1.253(23) 1.235(9) 1.230(9)

itive parity

) 1.449(48) 1.382(30) 1.423(25)
) 1.434(64) 1.400(36) 1.414(35)
) 1.465(167) 1.462(46) 1.444(68)

� 0:155

ative parity

p) am (2 exp) am (1 exp) am (2 exp)
) 1.013(23) 1.031(15) 1.034(15)
) 1.002(26) 1.023(10) 1.020(11)
) 1.012(32) 1.022(13) 1.020(14)

itive parity

) 1.316(44) 1.308(26) 1.250(49)
) 1.255(67) 1.230(42) 1.218(47)
) 1.283(179) 1.290(75) 1.259(116)
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FIG. 12 (color online). The upper graph shows the pentaquark
effective mass for the negative parity channel and the lower
graph for the positive parity channel at �l � 0:153 on the lattice
of size 323 � 64. The crosses show results obtained from the
local-local correlator C�t�, the open triangles results from the
local-smeared correlator ~C�t� shifted to the right, and the aster-
isks results from the smeared-smeared correlator Ĉ�t�. The
diquark-diquark interpolating field is used in all correlators.
The dashed line is a two-exponential fit to the local-smeared
results. The dotted line shows E0

KN for the negative and E1
KN for

the positive parity channel.
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should yield the KN scattering states and the ��. The
choice of the diquark-diquark interpolating field is based
on the expectation that it should approximate well the
structure of ��. However, if this is not the case then we
will not be able to obtain the resonance state as the second
eigenvalue of the 2� 2 correlation matrix. The lowest
eigenstate will be accurately determined and, allowing
for large enough time separations, it should produce the
s-wave KN scattering state in the negative channel and the
p-wave KN scattering state in the positive channel. If there
is an admixture of a resonance state, then we expect the
spectral weights to show a different behavior from that
observed in the two-pion system where the only low lying
states are scattering states. In the positive parity channel
only KN scattering states with nonzero relative momentum
contribute. Therefore the lowest energy is expected to
decrease as the spatial volume of the lattice increases
according to Eq. (20). Since we expect the errors on the
014507
spectral weights to be too large in this channel to allow us
to test scaling, the only option is to study the volume
dependence of the energy on the spatial length of the
lattice. However, in the positive parity channel the s-
wave KN scattering state is allowed. The energy of this
state is shown in Fig. 11. On the small lattice the value of
the smallest relative momentum 2
=L is such that, at �l �
0:153 using the masses given in Table I, E0

KN comes out
very close to E1

KN whereas for the two larger lattices is
higher. Therefore if the two lowest eigenstates are the KN

and KN scattering states, then we expect the energy gap
jE1

KN � E
0
KN j while being almost zero on the small lattice

to increase for the other two. Clearly the existence of the
KN scattering state complicates the identification of a
pentaquark resonance also in the positive parity channel
and would require at least a 3� 3 or even a 4� 4 corre-
lation matrix to allow us to resolve three different states. A
very accurate determination of the spectral weights for the
three lowest states will be needed in order to distinguish the
KN and KN scattering states from a resonance. This is
beyond the scope of this work. Our working hypothesis is
that if the �� is present then it should dominate the
correlator in the appropriate time range and to have the
largest coupling to the KN scattering state.

In Fig. 13 we show effective masses determined from the
two eigenvalues �0�t� and �1�t� of the correlation matrix
C�t�DD;KN at �l � 0:155. The behavior at �l � 0:153 dis-
cussed up to now is similar. We observe that, like in the
case of the two-pion system, the effective mass derived
from the lowest energy eigenvalue is consistent with that
obtained from either interpolating field JDD or JKN . On
the same figure we also show the effective mass obtained
from the eigenvalues ~�0�t� and ~�1�t� of the correlation
matrix ~C�t�DD;KN , which involves local-smeared correla-
tors of the two interpolating fields JDD and JKN and
antiperiodic boundary conditions in the temporal direction.
Again both local-local and local-smeared results yield the
same plateaus with smearing suppressing excited state
contributions. The main observation is that the first excited
state behaves differently in the positive and negative parity
channels: The negative parity channel is very high in
energy and poorly determined. This is puzzling since if
the diquark-diquark operator has good overlap with the ��

then we would have expected it to be the first excited state
of this correlation matrix with the ground state being the
KN scattering state. In fact, if we compare the overlap of
JDD with the ground state to that obtained with JKN , we
find that it is about 50 times smaller. This raises questions
as to how well a local diquark description approximates the
structure of a pentaquark resonance. In the positive parity
channel we obtain two distinct eigenstates very close to-
gether. From our study of the two-pion system, we know
that the eigenvalues, in general, will not have a definite
relative momentum but will be contaminated with states
with higher relative momenta and therefore it becomes a
-12



FIG. 14 (color online). The energy gap between the two lowest
energy eigenstates as a function of t=a for the pentaquark in the
positive parity channel at �l � 0:153 (upper graph) and �l �
0:155 (lower graph) for lattices of size 163 � 32 (asterisks),
243 � 32 (crosses), and 323 � 64 (open triangles). The dashed
line shows the plateau value determined on the lattice of size
163 � 32.

FIG. 13 (color online). The upper graphs show the effective
mass for the negative parity and the lower graphs for the positive
parity channels at �l � 0:155 on the lattice of size 323 � 64. The
squares on the left two graphs denote the results extracted from
the correlators with the local interpolating field JDD. The
crosses on all four graphs show the effective mass, derived
from the eigenvalue �0�t� of CDD;KN . On the graphs on the
right, the open triangles denote results derived from �1�t�,
whereas the circles and asterisks are results extracted from the
eigenvalue ~�0�t� and ~�1�t� from the diagonalization of ~CDD;KN ,
respectively. The dotted lines show E0

KN for the negative parity
channel and E1

KN for the positive parity channel.
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difficult task to show that they are related to E1
KN and E2

KN
given the statistical uncertainties and the available time
separation. However, we can check if this gap depends on
the spatial size of the lattice. We evaluate this energy gap
on our three lattices at �l � 0:153 and �l � 0:155 and plot
the results in Fig. 14. Within our statistical accuracy the
energy gap does not show any strong volume dependence
having about the same values of 100 MeV at the two �
values. Within our statistical accuracy the energy gap does
not show any strong volume dependence having about the
same values of 100 MeVat the two � values. Although this
energy gap agrees with the energy difference between the
�� and the KN scattering threshold, the mass that we
estimate below for the positive channel at the chiral limit
is much larger than 1540 MeV to be identified as the ��.

Fitting the effective mass derived from �0�t� to Eq. (16)
we find, at �l � 0:153, E�0 � 1:228�14� for the negative
014507
parity and E�0 � 1:438�60� for the positive parity channels
whereas at �l � 0:155 we find E�0 � 1:014�20� and E�0 �
1:259�116�. These values agree both with those extracted
from the local-smeared correlator ~C�t� using JDD and
given in Table III and from ~�0�t� as demonstrated in
Fig. 13. The fact that these different ways of constructing
the correlation matrices lead to the same value for the
energy makes us confident that our results for the lowest
state are robust. For the second eigenstate we can only
provide an estimate in the positive parity channel. We find
that, at our two heaviest pion masses, it is higher in energy
by about 100 MeV.

In Fig. 15 we compare the effective masses for the
lowest state of the pentaquark system and of the two-
pion system. In the two-pion system, as the spatial volume
increases, the effective masses start off having higher
values because scattering states with higher relative mo-
mentum have smaller energy gap at larger spatial volumes,
requiring longer time to damp out. Only at large times the
ground state dominates the correlator yielding the same
-13



FIG. 15 (color online). The upper graph shows the effective
mass for the lowest energy eigenstate of the two-pion system as a
function of t=a at �l � 0:153. The middle graph shows the
corresponding effective mass for the pentaquark system in the
negative parity channel and the lower graph for the pentaquark in
the positive parity channel for the lattices of size 163 � 32
(asterisks), 243 � 32 (crosses), and 323 � 64 (open triangles).

FIG. 16 (color online). The ratio R16:24 versus t=a for the
negative parity channel for the lowest energy eigenstate at �l �
0:153. Asterisks show results obtained with correlators using the
diquark-diquark interpolating field JDD and open triangles with
J optimal. For comparison we also show the ratio for the nucleon
(crosses). The dotted lines show the expected value of the ratios
for a single particle state and a two-particle scattering state.

TABLE III. We give, in lattice units, the mass of the penta-
quark, m� and m�, in the negative and positive parity channels,
for the lattice of size 323 � 64. They are determined from fitting
the effective mass extracted from the local-smeared correlator,
~C�t�, using JDD to Eq. (16). The fit range is 5–20 in lattice units
and the values at the chiral limit are obtained by linear extrapo-
lation. It has been verified that the values for the masses do not
change outside error bars if the lower fit range is increased from
5 to 7–10.

Negative parity Positive parity

�l am� am�

0:153 1.226(17) 1.366 (35)
0:1550 0.999(21) 1.191(45)
0:1554 0.946(23) 1.167(48)
0:1558 0.891(25) 1.149(54)
0:1562 0.834(29) 1.135(63)
�c 0.701(29) 1.036(51)
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plateau value on all lattice sizes. In the pentaquark system,
on the other hand, the effective masses have the same value
in the time interval 20< t=a < 30. This is the time interval
where a resonance is expected to dominate the correlator.
However, one has to bear in mind that the statistical errors
are bigger than in the two-pion system so that any volume
dependence may be harder to detect. This is particularly
true in the positive parity channel.

In the following we discuss the scaling of the spectral
weights in an attempt to obtain information on the nature of
the lowest energy eigenstates. For the same reasons as
explained for the two-pion system, we only show the ratio
of correlators R16:24. As can be seen in Fig. 16 for the
negative parity channel R16:24 stays close to unity up to
time separations t=a� 20. For t=a > 20 where, from our
study of the two-pion system, we expect this ratio to start to
deviate from unity the errors become large making it
difficult to distinguish a single particle state from a scat-
tering state. In the positive channel in this large time
window the errors are even larger making this test not
applicable. Instead of the ratio R16:24 we plot the spectral
weights determined on each volume making a direct com-
parison to the two-pion system. Again we do this only for
the negative parity channel where we have more accurate
results. This comparison is shown in Fig. 17 as a function
of the lower time range ti=a used in the single and double
exponential fits to the optimal correlators keeping the
upper fit range fixed to 26 for the two smaller lattices
and to 56 for the large lattice. For the two-pion system
the weights are clearly volume dependent. On the lattice of
size 163 � 32 the values we obtain, performing a single
exponential fit, are independent of the lower fit range for
ti=a > 10 and we can reliably extract the spectral weight of
the lowest state. For the 243 � 32 lattice the convergence is
seen later because suppression of higher momentum states
requires larger time separations. For the 323 � 64 lattice,
the spectral weights are less well determined and can vary
014507-14



FIG. 17 (color online). We show the spectral weights for the
lowest eigenstate at �l � 0:153 versus the lower fitting range
ti=a keeping the upper range fixed to 26 for the two smaller
lattices and to 56 for the large lattice. The upper graph shows
results for the two-pion system and the lower graph for the
pentaquark in the negative parity channel for the lattices of
size 163 � 32 (asterisks for a single exponential fit), 243 � 32
(crosses for a single exponential fit), and 323 � 64 (open tri-
angles for a single exponential fit). In the case of the two-pion
system, we also show results for the weights determined from
fitting the correlator to a sum of two exponentials for lattices of
size 163 � 32 (squares), 243 � 32 (circles), and 323 � 64 (filled
triangles). The solid lines in the upper graph show the plateau
values.
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by a factor of about 2 depending on which range of ti=awe
use. However, within this uncertainty, the spectral weight
ratio is closer to the values expected for a scattering state
than to unity. Fitting to a sum of two exponentials, the
spectral weights become independent of the lower fit range
for ti=a > 10 on all three lattices yielding results consistent
to those obtained when fitting to a single exponential. This
checks that indeed the value we find for the spectral
weights does not depend on our fitting scheme. The volume
dependence of spectral weights for the pentaquark system
1Fitting to a sum of two exponentials yields spectral weights
that are consistent with those extracted from the single expo-
nential fit but with errors that are too large to plot in Fig. 17.
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is different. The spectral weights extracted from a fit to a
single exponential1 are volume independent for 10<
ti=a < 26, which is the time range where we can make a
comparison. This means that in this range we do not have a
single scattering state. The energy gap between the two
lowest KN scattering states for �l � 0:153 is a�E1

KN �
E0
KN� � 0:26 and 0:13 on the lattices of size 163 � 32

and 243 � 32, respectively, as compared to the energy
gap of a�2m� � 2m
� � 0:16 in the two-pion system.
This means that, as compared to the two-pion system, the
lowest KN scattering state is filtered out at smaller time
separations on the smallest lattice and at �20% larger
times on the 244 � 32 lattice. Therefore one would have
expected to see a clear volume dependence of the spectral
weights on the two smaller lattices which is not observed.
On the largest lattice, the fact that the values of the spectral
weight decrease as ti=a increases beyond 30 is consistent
with the expectation that at large time separations a KN s-
wave scattering state should dominate. For the positive
parity channel extending the upper fit range to large time
separations yields statistical errors that are too large to
make this test conclusive even at this very heavy pion
mass. As the light quark mass decreases the errors on the
determination of the spectral weights increase and there-
fore one would need much larger statistics to reliably
extract the weights. Based on the volume study of the
spectral weights at �l � 0:153 we cannot exclude a penta-
quark resonance.

Within our variational basis the lowest energy eigen-
value is the only one that we can determine accurately in
the negative parity channel. It is shown to be in agreement
with the mass extracted from the correlators using either
local interpolating fields JDD, JKN , and J optimal or the
smeared versions of these. Therefore to get an estimate on
the light quark mass dependence of the lowest state we use
the local-smeared correlators ~C�t�. Similarly for the posi-
tive parity channel the energy gap between the two lowest
energy eigenvalues is about 100 MeV at both � � 0:153
and � � 0:155. Resolving these two states for smaller
quark masses is even harder and therefore we opt to
evaluate just the lowest energy which can again be ob-
tained from just using ~JDD. This will give us a rough idea
of what the chiral limit of this state is. Since the local-
smeared correlators are evaluated on our largest volume
with antiperiodic b.c. in the time direction, the mass is
extracted using the form given in Eq. (16) for which half
the time separation is sufficient as demonstrated by the
agreement of our results at �l � 0:153 and 0:155.

The results that we obtain for the mass from the local-
smeared correlators for all the light quark masses that we
have considered in this work are given in Table III. We note
that at �l � 0:155 diagonalization of the correlation matrix
~CDD;KN�t� yields in the negative parity channel E�0 �
1:002�15� for the ground state and E�1 � 1:6�2� for the
first excited state. This value of E�0 is in agreement with the
-15
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value given in Table III and the value of E�1 is in agreement
with 1:7�1� extracted from the local-smeared correlator via
Eq. (16). The pentaquark masses at the chiral limit given in
Table III are obtained by linearly extrapolating the results
determined on the set of five �l values using Eq. (13). The
corresponding results for the kaon and nucleon masses at
the chiral limit are given in Table I. We show all chiral
extrapolations in Fig. 18. Note that the slope in the case of
pentaquarks is steeper than for the nucleon or the kaon
which means that the mass gap between pentaquarks and
KN increases with the quark mass, giving at �l � 0:153 a
gap of about 170 MeV as mentioned earlier. From the
values obtained at the chiral limit, we can evaluate the
ratios of the mass of the candidate pentaquark in the
positive and negative parity channels to the mass of the
kaon-nucleon system, mKN . The values that we find for
these ratios are 1:12� 0:04 for the negative parity and
1:65� 0:09 for the positive. Substituting the physical
kaon and nucleon mass values leads to the determination
of the mass in physical units. We find in the negative and
positive parity channels the values

m� � 1:605� 0:058 GeV m� � 2:36� 0:13 GeV;

(22)

respectively. As we have already pointed out, the ratio
between the mass of the � meson evaluated at �s �
0:155 and the mass of the nucleon at the chiral limit is
1:002� 0:025, within 10% of the value of 1:087 obtained
using the physical � meson and nucleon masses. Similarly
the ratio mK=mN � 0:493�17� at the chiral limit is very
close to the physical value of 0:526.
FIG. 18 (color online). The mass squared of the kaon (crosses),
nucleon (open triangles), pentaquark in the negative parity
channel (filled circles), and in the positive parity channel (aster-
isks) plotted versus the pion mass squared. We use the nucleon
mass at the chiral limit to set the scale obtaining a�1 � 2:2 GeV.
The dashed lines show the linear extrapolations to the chiral
limit. The dotted line shows the KN threshold at the chiral limit.
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Finally we compare our analysis to other lattice studies
of the pentaquark system. All lattice studies so far are
carried out in quenched QCD. The first pioneering studies
with Wilson fermions were carried out by Csikor et al. [12]
using a variant of the KN-interpolating field, J 0KN , where
the color index of the �s is coupled to a light quark in the
nucleon instead of in the kaon, and Sasaki [13] using the
diquark-diquark interpolating field. Both found evidence
for a pentaquark state. Motivated by these studies we
looked at the pentaquark density-density correlator in order
to learn about the internal structure of the �� [15]. Chiu
and Hsieh [14] using overlap fermions performed a varia-
tional analysis using interpolating fields JKN , J 0KN , and
JDD. Their conclusion was that there is a resonance in the
positive parity channel, which in the chiral limit has a mass
close to that of the ���1540�. The next lattice group to
have results on the pentaquark system was Mathur et
al. [17]. They used interpolating fields JKN and J 0KN
[12]. By studying the scaling of spectral weights on two
volumes of size 123 � 28 and 163 � 28 using a sequential
Bayesian method, they concluded that the states that they
observed were KN scattering states. In the work of Ishii et
al., in addition to periodic boundary conditions, antiperi-
odic boundary conditions were used in the spatial direction
for the light quarks. With antiperiodic boundary conditions
the lowest momentum allowed for each quark is 
=L.
Therefore in the negative parity channel switching from
periodic to antiperiodic b.c. should increase the energy of
the lowest KN scattering state. They indeed observed the
expected shift in energy concluding that the lowest state is
a KN scattering state. Our analysis is closest to the analysis
carried out in Ref. [16]. Diagonalizing the 2� 2 correla-
FIG. 19 (color online). The mass of the lowest eigenstate of
the pentaquark system in the negative parity channel as a
function of the pion mass squared. Filled squares show the
results of this work, crosses are data from Ref. [12], open
triangles from Ref. [13], open circles from Ref. [18], open
squares from Ref. [17], and filled circles from Ref. [19]. In each
case we give the spatial length of the lattice.
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tion matrix constructed using JKN and J 0KN , and using a
large number of configurations, they were able to accu-
rately determine the two lowest eigenvalues in the negative
parity channel and check scaling of their spectral weights.
Based on this scaling they concluded that the lowest state is
the s-wave KN scattering state whereas the second is a
resonance state that they identified as the ��. In the
positive parity channel, they obtained only one state, which
they concluded is not the p-wave KN scattering state.
Finally, after the completion of our work a study of the
binding energy in the pentaquark system as a function of
the light quark mass was carried out in Ref. [19]. The fact
that they saw no increase in the binding as the light quark
mass decreases led them to conclude that there is no
pentaquark resonance. Following Ref. [19], we compare
our results given in Table III for the negative parity channel
to the results from other lattice groups in Fig. 19. The small
variations in the extracted values for the mass among
different groups can be attributed, at least partly, to small
differences in the strange quark mass. Also, errors due to
the choice of the lattice scale a are not included.
IV. CONCLUSIONS

We have presented a computation of the mass of the
pentaquark system using interpolating fields, which are
motivated by the diquark-diquark and diquark-triquark
structure proposed for the �� in order to explain its narrow
width. Despite the difference in the structure of these
interpolating fields, the values obtained for the lowest
mass of the pentaquark system using either interpolating
field are in agreement with each other. They are also in
agreement with the lowest energy eigenvalue determined
from the analysis of the correlation matrices constructed
using either local or smeared KN and diquark-diquark
interpolating fields as a basis. A study of the two-pion
system in the I � 2 channel where no low lying resonances
are present is carried out to check our lattice techniques.
By analyzing the correlation matrix constructed using
products of pion and rho-meson interpolating fields, we
accurately determined that the two lowest states are the s-
wave two-pion and two-rho scattering states with a mass
gap which is about 320 MeV at a quark mass that corre-
sponds to pion mass of about 830 MeV. It is explicitly
verified that these are s-wave states by projecting to zero
relative momentum on our smallest lattice. We note that
the energies obtained by diagonalizing the correlation
matrix in the center of mass frame are a mixture of scat-
tering states of different relative momentum even when the
two lowest states are scattering states and only at large time
separations they yield the correct ground state. This is a
relevant result since in many lattice studies it is assumed
that a similar diagonalization resolves the scattering states
with different relative momentum. By studying the spectral
weights for the two lowest eigenstates in the two-pion
014507
system on our three lattice volumes, we show that the
correct scaling with the spatial volume sets in at large
times requiring accurate determination of local correlators.
The spectral weights in the pentaquark system show no
volume dependence in the time range where in the two-
pion system a clear scaling of spectral weights is seen.
Therefore based on our spectral weights results we cannot
exclude a resonance pentaquark state. In the negative
parity channel our correlation matrix analysis gives accu-
rately one state close to the KN threshold. The first excited
state in this channel is very poorly determined. We would
like to stress that the fact that within the time extent of our
smaller lattices the spectral weights do not scale with the
volume only leads to the conclusion that we do not have a
single scattering state. Given the fact that within our sta-
tistics and time ranges we are unable to accurately resolve
a lower KN- scattering state and a higher close-by single
particle state does not permit us to draw any definite
conclusion regarding the existence of the ��. However,
we have shown in this work that one would need very
accurate data, better interpolating fields, and lattices with
large time extension in order to reliably resolve the low
lying states and perform a spectral weights analysis to
exclude or show the existence of the ��. Using the fact
that the lowest eigenstate from the correlation matrix
analysis yields an energy in agreement with that extracted
with JDD allows us to use the local-smeared diquark-
diquark interpolating field to compute the mass of this
state. This is carried out on a set of five values of light
quark masses on our large lattice. A linear extrapolation to
the chiral limit leads to a value for the mass which is about
10% above the KN threshold. In the positive parity channel
the two lowest eigenstates are separated by an energy gap
of about 100 MeV at the two heaviest pion masses.
However, the mass that we find in the chiral limit, deter-
mined in the same way as in the negative parity channel, is
about 900 MeV above the KN threshold and therefore too
high to be identified with the ���1540�. In summary, we
have shown that, within this analysis in quenched lattice
QCD and using Wilson fermions, we cannot exclude a
pentaquark state, which in the negative parity channel
has a mass about 750 MeV lower than in the positive
channel. However, with the lattice sizes used and within
our statistics, the existence of the �� has also not been
established from this study. In order to reach a definite
conclusion regarding its existence, one would require a
more detail and accurate computation involving a larger
and better basis of interpolating fields, lattices with larger
temporal extent and more statistics.
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