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Perturbative renormalization of the first moment of structure functions for domain-wall QCD
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Using the domain-wall formulation of lattice fermions, we have computed the one-loop renormalization
factors of one-link operators which measure the first nontrivial moment of the unpolarized, polarized, and
transversity structure functions, in the flavor nonsinglet sector. The knowledge of these factors is
necessary in order to extract physical numbers from domain-wall Monte Carlo simulations of parton
distributions. We have automated the perturbative calculations by developing suitable FORM codes. The
results show that in many instances the total renormalization factors are almost equal to one, and that
hence the corresponding operators are, for the appropriate values of the Dirac massM and the coupling g0,
practically unrenormalized.
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I. INTRODUCTION

Domain-wall fermions [1–3] provide a solution of the
Ginsparg-Wilson relation [4], and as such they possess an
exact chiral symmetry at nonvanishing lattice spacings [5]
without at the same time presenting inconvenient features
like doublers or nonanaliticities. They constitute one of the
most promising formulations for simulations of chiral
fermions on a lattice and for the study of physical issues
connected with chirality [6]. Although Monte Carlo simu-
lations of these fermions require more computational ef-
forts compared with some other nonchiral formulations
(like Wilson fermions), recently many advances have
been reported and at present domain-wall fermions are
widely used in a variety of physical situations, for which
some of the most recent results and investigations can be
found in [7–13].

Form factors, structure functions, and generalized parton
distributions are also among the phenomenological quan-
tities which have been studied by means of simulations
with domain-wall fermions [14–17]. The calculation of the
perturbative renormalization of the operators related to the
moments of the deep inelastic structure functions, involv-
ing the treatment of covariant derivatives, has been missing
up to now. These renormalization factors, whether pertur-
batively or nonperturbatively computed, are however nec-
essary for the reliable extractions of physical numbers from
Monte Carlo simulations of structure functions. The in-
tention of the present work is to provide some of these
factors from perturbation theory, and we have here consid-
ered the lowest nontrivial moment of various parton dis-
tributions. In particular, we present results for the
momentum, helicity, and transversity distributions, which
give a complete description of the quark momentum and
spin at leading twist.

This article is organized as follows. In Sec. II we review
the basic perturbative ingredients which are necessary for
the calculations presented in this work, and in Sec. III we
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discuss the peculiar aspects of one-loop renormalization
for domain-wall fermions. In Sec. IV then we introduce the
operators of which we have evaluated the renormalization
factors, which we give in Sec. V. Finally, in Sec. VI we
make some concluding remarks, and in the appendix we
give the results for the quark self-energy and the bilinear
operators, where we have found some discrepancies with
old calculations [18], which however derive only from
some constants in divergent continuum integrals. These
discrepancies do not affect the expressions of the renor-
malization factors, for which there is complete agreement
with Ref. [18].

II. PERTURBATIVE DOMAIN-WALL

We employ the standard formulation of domain-wall
fermions devised by Shamir [2], where the five-
dimensional quark action is given by

SDW
q �

X
x

XNs
s�1

�
1

2

X
�

� s�x���� � r�U��x� s�x� �̂�

�  s�x���� � r�U
y
��x� �̂� s�x� �̂��

� � s�x�P� s�1�x� �  s�x�P� s�1�x��

� �M� 1� 4r� s�x� s�x�
�

�m
X
x

� Ns�x�P� 1�x� �  1�x�P� Ns�x��: (1)

The Wilson parameter is set to r � �1, and the Dirac mass
M takes values between zero and two (at tree level) so that
the correct structure of chiral modes (with no doublers) is
attained for Ns ! 1. The chiral projectors are P� � �1�
�5�=2. Here and in most of the paper we put a � 1.

The above domain-wall action can be imagined as a
Wilson action endowed with an additional flavor index s
plus a special mass matrix for these flavors, explicitly
given in Eqs. (10)–(13) further below. The mass matrix
governs the mixing among the flavors and induces a so-
phisticated structure on the flavor space, which at the end
-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.73.014505


STEFANO CAPITANI PHYSICAL REVIEW D 73, 014505 (2006)
produces one light quark andNs � 1 heavy quarks. For this
reason the tree-level quark propagator turns out to have a
more complicated form than in the four-dimensional
Wilson case, and in practical terms perturbation theory
for domain-wall fermions looks like having Ns fermion
flavors with an involved propagator structure in the index s.
The gluon fields and their couplings to the quarks are
instead kept four-dimensional, that is they do not depend
on the fifth dimension and are identical at each s. The
gluon propagator and vertices are then just the same as in a
four-dimensional lattice theory. In this work we have used
for the pure gauge part of the domain-wall action the
standard plaquette action, and we perform all computations
in a general covariant gauge, where the gluon propagator is
given by

G���k� �
1

4
P
� sin2 k�

2

�
��� � �1� ��

4 sin
k�
2 sink�2

4
P
� sin2 k�

2

�
; (2)

where � � 1 and � � 0 correspond to the Feynman and
Landau gauges, respectively. The measure term, the gauge-
fixing term and the Faddeev-Popov term, as well as the
quark-gluon interaction vertices, have also the same ex-
pression as in the Wilson case. Since r � �1, the vertices
that we need in this paper assume the form (apart from
color factors)

V�1�� �p� � �g0

�
i�� cos

p�
2
� sin

p�
2

�
(3)

V�2����p� �
1

2
g2

0

�
i�� sin

p�
2
� cos

p�
2

�
� ��� (4)

for the interaction of the quark current with one gluon and
two gluons, respectively, where p stands for the sum of the
incoming and outgoing quark momenta.

The construction of the tree-level quark propagator has
been started in [2,19–23] and then completed and used in
the first full-fledged calculations of the renormalization of
the quark self-energy and bilinears [18,24,25]. Further
perturbative results for domain-wall fermions have been
obtained in [26–32], and some perturbative calculations
for nonstandard domain-wall actions have been carried out
in [33].

For our perturbative calculations with domain-wall fer-
mions we use the same framework of [18,25], where one
works solely with the dominant contributions to the propa-
gators when the number of flavors Ns (or points in the fifth
additional dimension) goes to infinity. In this limit the
decoupling of the chiral modes is exact for massless
quarks, chirality breaking terms being exponentially sup-
pressed in the length of the fifth dimension.

The domain-wall Dirac operator after a Fourier trans-
form in (four-dimensional) momentum space becomes
014505
Dst�p� � �s;t
X
�

i�� sinp� � �W
�
st �p� �mM

�
st �P�

� �W�st �p� �mM
�
st �P�; (5)

where the mass matrix is given by

W�st �p� � �W�p��s;t � �s�1;t; (6)

M�st � �s;Ns�t;1; (7)

M�st � �s;1�t;Ns ; (8)

and

W�p� � 1�M� 2
X
�

sin2 p�
2
: (9)

In more explicit form,

W��p� �

�W�p� 1

�W�p� . .
.

. .
.

1
�W�p�

0
BBBBB@

1
CCCCCA; (10)

W��p� �

�W�p�
1 �W�p�

. .
. . .

.

1 �W�p�

0
BBBB@

1
CCCCA; (11)

M� �
1

0
@

1
A; (12)

M� �
1

0
@

1
A: (13)

We see that for m � 0 the M�’s are absent from the action
and hence the propagator no longer possesses any terms
directly connecting the two boundaries at s � 1 and s �
Ns.

In this work we only consider massless quarks. By
inverting the above Dirac operator with m � 0 one obtains
the tree-level quark propagator

h s��p� t�p�i �
X
u

���i�� sinp��s;u

�W�su�p��GR
ut�p�P�

� ��i�� sinp��s;u

�W�su�p��GL
ut�p�P�	: (14)

The expressions of the functions GR�p� and GL�p� are, for
large Ns,
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GR
st�p� � �

A�p�
F�p�

��1�W�p�e���p��e��2Ns�s�t���p�

� �1�W�p�e��p��e��s�t���p�� � A�p�e�js�tj��p�;

(15)

GL
st�p� � �

A�p�
F�p�

��1�W�p�e��p��e��2Ns�s�t�2���p�

� �1�W�p�e���p��e��s�t�2���p��

� A�p�e�js�tj��p�; (16)

where ��p� is defined by the positive solution of the
equation [2,19]

cosh���p�� �
1�W2�p� �

P
� sin2p�

2jW�p�j
; (17)

and

A�p� �
1

2W�p� sinh���p��
; (18)

F�p� � 1�W�p�e��p�: (19)

These formulas are only valid for positive W, which is
always the case if 0<M< 1. When W has a zero, � has a
logarithmic singularity. For 1<M< 2, W can become
negative if the momentum is small enough. In this case
the propagator is given by the above equations with the
replacements

W ! �jWj; (20)

e�� ! �e��; (21)

which imply that also sinh� changes sign.
To study matrix elements of the chiral modes in pertur-

bation theory, we need to diagonalize the mass matrix in
the fifth dimension. However, since this matrix is not
Hermitian, one has rather to consider the squared mass
matrix, that is the second-order operators DDy and DyD,
which are Hermitian and nonnegative and give a well-
behaved spectrum. In the second-order operators the two
chiralities are in fact well decoupled.

The chiral mode is obtained by means of a rotation in the
fifth dimension of the original quark fields  s�x� to the
basis which diagonalizes the mass matrix, and is given by

�0�x� �
���������������
1� w2

0

q X
s

�P�ws�1
0  s�x� � P�w

Ns�s
0  s�x��;

(22)

where

w0 � W�0� � 1�M: (23)

We can see that, because of the damping factors ws�1
0 and

wNs�s0 , the chiral mode is exponentially localized near the
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boundaries of the fifth dimension. The ‘‘physical’’ quark
fields that are instead used in Monte Carlo simulations are
however somewhat simpler, and they are constructed only
from quark fields exactly located at these boundaries:

q�x� � P� 1�x� � P� Ns�x� (24)

q�x� �  Ns�x�P� �  1�x�P�: (25)

We also use these expressions for our calculations, as done
in [18,24,25].

The computation of matrix elements involving states and
operators constructed from these physical quark fields
requires additional propagators. We need in fact to connect
an internal with a physical quark field, and the correspond-
ing propagators are given by

hq��p� s�p�i �
1

F�p�
i�� sinp��e

��Ns�s���p�P�

� e��s�1���p�P��

� e���p��e��s�1���p�P�

� e��Ns�s���p�P��; (26)

h s��p�q�p�i �
1

F�p�
�e��Ns�s���p�P�

� e��s�1���p�P��i�� sinp�

� e���p��e��s�1���p�P�

� e��Ns�s���p�P��: (27)

For our calculations it is also necessary to know their
expansions for small momentum:

hq��p� s�p�ic �
1� w2

0

i 6p

�
wNs�s0 P� � w

s�1
0 P�

�
w0

1� w2
0

i 6p�ws�1
0 P� � w

Ns�s
0 P��

�
;

(28)

h s��p�q�p�ic �
�
wNs�s0 P� � w

s�1
0 P�

� �ws�1
0 P� � w

Ns�s
0 P��

w0

1� w2
0

i 6p
�



1� w2

0

i 6p
; (29)

where the factors 1� w2
0 are related to the sums of the tree-

level exponential damping factors over the fifth dimension:

lim
Ns!1

XNs
s�1

�wNs�s0 P� � w
s�1
0 P��2 �

1

1� w2
0

: (30)

Finally, we also need the tree-level propagator
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hq��p�q�p�i �
i�� sinp�
F�p�

; (31)

which in the limit of small momentum is equal to

hq��p�q�p�ic �
1� w2

0

i 6p
: (32)
III. ONE-LOOP RENORMALIZATION

Matrix elements estimated by importance sampling in
Monte Carlo lattice simulations need to be properly renor-
malized in order to become meaningful physical numbers.
They can be considered as (regulated) bare quantities, and
in order to get physical results they have to undergo a
lattice renormalization which matches them to some con-
tinuum scheme. We choose for the continuum the MS
scheme of dimensional regularization, since commonly
Wilson coefficients of operator product expansions are
computed in this scheme.

A perturbative lattice renormalization involves both lat-
tice and continuum perturbative calculations. At tree level,
for momenta much lower than the lattice cutoff, lattice
operators have the same matrix elements as the original
continuum operators. At one loop one then gets, for the
case of a multiplicatively renormalized operator,

hqjOlatjqi � �1� �g2����0� loga2p2 � Rlat�� � hqjOtreejqi;

(33)

hqjOMSjqi �
�
1� �g2

MS

�
���0� log

p2

�2 � R
MS

��

� hqjOtreejqi; (34)

where the lattice and continuum one-loop finite constants,
Rlat and RMS, do not have in general the same value, and
hence the one-loop renormalization factors on the lattice
and in the continuum are in general not equal (the one-loop
anomalous dimensions are however the same). Here and in
the following we call for brevity �g2 � �g2

0=16	2�CF (and
similarly for �g2

MS
), with CF � �N

2
c � 1�=2Nc for the

SU�Nc� gauge group.
The connection between the original lattice numbers and

the final continuum physical results is given, neglecting
higher-order terms in �g2, by [34]

hqjOMSjqi

hqjOlatjqi
� 1� �g2����0� loga2�2 � Rlat � RMS�;

(35)

where the difference �R � Rlat � RMS determines the re-
normalization factor

ZO�a�; �g� � 1� �g2����0� loga2�2 � �R� (36)

which converts the lattice operator Olat into the physical
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renormalized operator OMS. The computation of these
renormalization factors requires both lattice and contin-
uum perturbative techniques (for more details see [35]). In
the domain-wall case it presents additional peculiar fea-
tures that is worth reviewing.

Let us first consider, in the massless case, the one-loop
correction to the domain-wall quark propagator
hq��p�q�p�ic. It can be easily seen that, given the structure
of the propagators hq��p� s�p�ic and h s��p�q�p�ic, we
can write

hq��p�q�p�i1loop �
1� w2

0

i 6p
�q�p�

1� w2
0

i 6p
(37)

�
1� w2

0

i 6p� �1� w2
0��q�p�

; (38)

where

�q�p� �
X
s;t

�
wNs�s0 P� � w

s�1
0 P�

�
w0

1� w2
0

i 6p�ws�1
0 P� � w

Ns�s
0 P��

�

��st�p� �
�
wNs�t0 P� � wt�1

0 P�

� �wt�1
0 P� � w

Ns�t
0 P��

w0

1� w2
0

i 6p
�
: (39)

The calculation of the one-loop self-energy diagrams gives
[18]

�st�p� � � �g2�i 6p�I�P� � I�P�� �W�1 P� �W
�
1 P��st;

(40)

and when the damping factors are also taken into account
the final result can be written as

�q�p� �
1

1� w2
0

i 6p �g2

�
� loga2p2 ��1 �

2w0

1� w2
0

�3

�
:

(41)

Putting all together, we see that the one-loop correction
to the quark propagator is of the same form as its tree-level
expression:

hq��p�q�p�i1loop �
1� w2

0

i 6p� �1� w2
0��q�p�

�
1� w2

0

i 6p
ZwZ2;

(42)

where

Z2 � 1� �g2�� loga2p2 ��1� (43)

is the usual quark wave function renormalization factor,
whereas

Zw � 1�
2w0

1� w2
0

�g2�3 � 1� �g2zw (44)
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is a new feature appearing in domain-wall fermions, which
represents an additive renormalization tow0, as can be seen
from

�1� w2
0�Zw � 1� �w0 � �g2�3�

2 �O� �g4�: (45)

Thus, while the zero mode remains stable under radiative
corrections, the Dirac mass M � 1� w0 is additively re-
normalized. This effect is due to the W�1 terms in Eq. (40),
which in turn originate from the order a terms in the
damping factors of Eqs. (28) and (29). We have by explicit
calculation checked that the part proportional to 1� � of
�3 is zero (its contribution from the half-circle diagram
exactly canceling the one of the tadpole), which means that
�3 and Zw are gauge invariant. The values of �1, �3, and
zw can be found in the appendix.

We remark that in the above domain-wall self-energy
there is no term �0 proportional to 1=a, which if present
would signal a breaking of chirality.

Let us now consider a composite operator q�x�Oq�x�
which is multiplicatively renormalizable. Again, by look-
ing at the form of the propagators involved, one can see
FIG. 1. The diagrams needed for the one-loop renormalization
of the lattice operators.
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that the one-loop matrix element of this operator between
physical quark states is given by

h�qOq�qqi1loop �
1� w2

0

i 6p
� AO�p� �O �

1� w2
0

i 6p
; (46)

where AO�p� contains the contribution of the damping
factors and can be written as

AO�p� � �g2���O loga2p2 � BO�: (47)

The one-loop expression has the same form as the tree-
level matrix element. That also the self-energy contribution
to the matrix element fits properly here can be seen (for
example when O � ��) from inserting Eq. (41) (without
�3) in the expression of the contribution of a leg in Fig. 1,

1� w2
0

i 6p
�

1

1� w2
0

i 6p � �g2�� loga2p2 � �1�

�
1� w2

0

i 6p
��

1� w2
0

i 6p
; (48)

which shows that indeed it gives a multiplicative correction
to the tree-level matrix element:

1� w2
0

i 6p
� �g2�� loga2p2 � �1� � �� �

1� w2
0

i 6p
: (49)

IV. STRUCTURE FUNCTION OPERATORS

The operators that we have considered in this work
measure the lowest moment of various structure functions.
They include all three parton distributions that characterize
the quarks in the nucleon: the momentum distribution
q�x;Q2� (described by the F1 and F2 unpolarized structure
functions), the helicity distribution �q�x;Q2� (described
by the g1 structure function), and the (chiral-odd) trans-
versity distribution �q�x;Q2� (described by the h1 struc-
ture function). They thus provide a complete description of
quark momentum and spin at leading twist. We have also
computed the renormalization of the lowest moment of the
g2 structure function, which receives contributions from
twist-3 operators and measures the (chiral-even) transverse
spin. We refer for a more detailed discussion of these
structure functions and, in particular, of the operators
appearing in their operator product expansions, some of
which are given below, to [36,37] (of which we follow the
notation) and references therein.

We have computed the renormalization factors of all
flavor nonsinglet operators which contain at most one
covariant derivative. We have chosen in particular

Ov2;d � �q�f1D4gq; (50)

Ov2;e � �q�4D4q�
1

3

X3

i�1

�q�iDiq; (51)

which measure the first moment of the momentum distri-
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butions,

Oa2;d � �q�f1�5D4gq; (52)

Oa2;e � �q�4�5D4q�
1

3

X3

i�1

�q�i�5Diq; (53)

which measure the first moment of the helicity distribu-
tions,

Od1
� �q��4�5D1	q; (54)

which taken together withOa2
determines the first moment

of the g2 structure function, and finally

Ot1 � �q
41�5q; (55)

Ot2 � �q
4f1�5D2gq; (56)

which correspond to the tensor charge and the lowest
nontrivial moment of the h1 transversity structure function,
respectively. We have not explicitly shown the Gell-Mann
flavor matrices which specialize them to nonsinglet opera-
tors and hence forbid any mixing with gluonic operators,
because they are irrelevant for the sake of the calculation of
the renormalization factors. The symbol fg denotes sym-
metrization over the relevant Lorentz indices, while �	
denotes antisymmetrization. For the covariant derivatives

D � D
!

�D
 

we use the lattice discretizations

D
!

�q�x� �
1
2�U��x�q�x� �̂� �U

y
��x� �̂�q�x� �̂�	

(57)

�q�x�D
 

� �
1
2� �q�x� �̂�U

y
��x� � �q�x� �̂�U��x� �̂�	:

(58)

We have in some cases considered two representatives
for an operator measuring a given parton distribution. They
are differentiated and identified by the choice of their
Lorentz indices. The lattice operators corresponding to
these choices fall in two different irreducible representa-
tions of the hypercubic group (the symmetry group of the
lattice, the remnant of the Lorentz symmetry), and on the
lattice they will renormalize in a different way (whereas in
a continuum scheme their renormalization factors are
equal). In Monte Carlo measurements one of the two
choices can be more convenient to use than the other,
giving for instance smaller statistical and systematic errors,
in particular, when one considers the role played by non-
vanishing momenta in numerical simulations.

Since we have done the calculations with Ns � 1, an
exact chiral symmetry is maintained in all our results, and
its most important consequence is that the operator which
measures the lowest moment of the g2 structure function
does not show any of the power-divergent mixings with
operators of lower dimension which are instead present in
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the case of Wilson fermions. In fact, when chiral symmetry
is broken Od1

mixes with a lower-dimensional operator
which in the continuum operator product expansion is

mq �q��4�5�1	q; (59)

but on the lattice instead has, in place of the mass, a 1=a
coefficient which becomes infinite in the continuum limit.
This mixing is forbidden for domain-wall fermions with
infinite Ns, and Od1

is then in this case multiplicatively
renormalized. In addition, chiral symmetry implies that the
renormalization constants of corresponding unpolarized
and polarized operators (which differ by a �5 matrix)
assume the same value. Thus, chiral symmetry gives a
reduction of the number of independent renormalization
factors in a given physical situation.

For operators which contain one covariant derivative one
needs to perform a Taylor expansion of all vertices and
propagators at first order in the lattice spacing a (which
means the external momentum p). We have chosen as loop
integration momentum the one carried by the internal
quarks. Choosing the one carried by the gluon would result
in much more complicated expressions for the order p
contributions.
V. RESULTS

The diagrams required for the one-loop lattice calcula-
tions of the matrix elements that we have considered here
are given in Fig. 1. It can be easily seen that all tadpole
diagrams are diagonal in the fifth dimension, and therefore
they are equal to the expression calculated with Wilson
fermions. A leg tadpole has then the value

Tl � 8	2Z0�1�
1
4�1� ���; (60)

where Z0 � 0:154 933 390 231 . . . is a well-known integral
[35], while the operator tadpoles have the expression

TO � �Tl (61)

for all operators considered in this work except the tensor
charge, for which the operator tadpole vanishes, Tt1 � 0
[36,37]. The half-circle contribution of the quark self-
energy as well as the vertex and sail diagrams instead all
have a nontrivial structure in the fifth dimension, and due
to their complexity we have deemed necessary to compute
them using computer programs.

We have used the algebraic manipulation program FORM

[38] to construct routines able to carry out all needed
analytic calculations in an automated way. Sums of the
damping factors in the fifth dimension and of the four-
dimensional expressions in momentum space are evaluated
with Fortran programs. To improve the convergence of the
numerical integrals we use some of the techniques given by
Lüscher and Weisz in [39].

The one-loop diagrams of Fig. 1 diverge at most loga-
rithmically. Special care is required for the evaluation of
-6
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the divergent terms, for which it is convenient to use the
method introduced by Kawai et al. in [40] (see also [35] for
simple examples). A logarithmically divergent integral

I�p� �
Z
dkI�k; p� (62)

is expanded in powers of the external momentum and split
as

I�p� � J�0� � �I�p� � J�0��; (63)

where

J�0� �
Z
dkI�k; 0� (64)

is its Taylor expansion to lowest order in p. Since the
integrals appearing in J do not depend on the external
momentum, they are much easier to compute on the lattice
than the complete integral of type I. The whole dependence
on the external momentum remains in I � J, which is
ultraviolet-finite for a! 0 and can be evaluated by taking
the naive continuum limit. Thanks to these facts, one is left
with computing on the lattice only integrals with vanishing
momentum, which is technically straightforward. It is to be
remarked that while I is well defined, for finite lattice
spacing both J and I � J are separately infrared divergent.
To compute them one must then introduce an intermediate
regularization, which we choose to be the naive dimen-
sional regularization. The associated divergences will at
the end cancel out in the sum J� �I � J�.

To summarize, using this method the computation of any
divergent integral which depends on an external momen-
tum is reduced to the computation of lattice integrals at
zero momentum plus some continuum integrals.

Identifying and processing divergent terms in an auto-
mated way for domain-wall fermions turns out to be some-
what more complicated and prone to errors than for simpler
cases like Wilson fermions. We have thus devised an
alternative indirect procedure for the evaluation of diver-
gent integrals. This procedure uses the chain of equalities

IDW � JDW � �IDW � JDW� (65)

� JDW � �IW � JW� � �JDW � JW� � IW; (66)

where DW stands for domain-wall and W for Wilson
fermions. In words, we numerically compute the difference
between the domain-wall and Wilson zero-momentum J
integrals, and then add the full well-known Wilson result
(for which several significant digits can be obtained with-
out much effort). The key points here are that the differ-
ence JDW � JW is a finite lattice integral, because the
above-mentioned infrared divergences exactly cancel,
and thus it does not need to be regularized at all, and
moreover that the difference I � J is an integral taken in
the continuum limit, and so it makes no difference whether
it is evaluated using domain-wall or Wilson fermions.
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We have tested that our procedure works as desired by
applying it to calculations with overlap fermions, and we
have reproduced in this way all results known in the
literature for the bilinear operators [41] and the first mo-
ment of the unpolarized parton distribution [36,37]. This
procedure is also much more precise than the subtraction of
a known simple lattice integral with the same divergent
behavior, which has the disadvantage of sometimes con-
verging very slowly and hence it requires very large inte-
gration grids to attain the same accuracy. In a few cases we
have used the simpler method (which gives just a couple of
significant digits) for consistency checks.

The amputated matrix elements that we have calculated
have on the lattice the form (see Eq. (47))

1� �g2���O loga2p2 � BO�; (67)

with

BO � VO � TO � �1; (68)

where VO is the finite contribution of the vertex and sail
diagrams (Fig. 1(a)–1(c)), TO refers to the tadpole arising
from the operator (Fig. 1(d)), and �1 is the finite contribu-
tion (proportional to i 6p) from the quark self-energy of one
leg, which also includes a leg tadpole (Fig. 1(e) and 1(g) or
Fig. 1(f) and 1(h)). We call ‘‘proper’’ contributions the
ones that do not include the self-energy. They correspond
to the diagrams a-d in Fig. 1. Calling 1� � � �, the one-
loop results for them are:

Oproper
v2;d

� �g2��53� �� loga2p2 � V��1
v2;d
� � � 6:850 272

� Tv2;d�O
tree
v2;d

; (69)

Oproper
a2;d

� �g2��53� �� loga2p2 � V��1
a2;d
� � � 6:850 272

� Ta2;d�O
tree
a2;d
; (70)

Oproper
v2;e � �g2��53� �� loga2p2 � V��1

v2;e � � � 6:850 272

� Tv2;e�O
tree
v2;e; (71)

Oproper
a2;e � �g2��53� �� loga2p2 � V��1

a2;e � � � 6:850 272

� Ta2;e�O
tree
a2;e; (72)

Oproper
d1

� �g2���1� �� loga2p2 � V��1
d1
� � � 7:850 272

� Td1
�Otree

d1
; (73)

Oproper
t1 � �g2�� loga2p2 � V��1

t1 � � � 3:792 010�Otree
t1 ;

(74)

Oproper
t2 � �g2��2� �� loga2p2 � V��1

t2 � � � 6:350 272

� Tt2�O
tree
t2 : (75)

The results due to the sails and vertices, VO, have been for
-7
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convenience separated in the Feynman gauge values V��1
O ,

listed in Table I for various choices of the Dirac mass M
between M � 0:1 and M � 1:9, and the remaining contri-
butions proportional to �, which are instead independent of
M and shown in the above equations. Notice that also the
tadpoles coming from the operators provide contributions
proportional to �. The results for the tensor charge, Vt1 , are
equal to the results for the standard tensor current �q
��q,
which were already calculated in [18], and are reported,
together with the other bilinears and the self-energy results,
in the appendix.

A significant check of our perturbative calculations is
that the contributions proportional to � in covariant gauge
are constant in M, as already noted in [35–37] for the case
of overlap fermions and discussed more in depth in [42].
Furthermore, they are equal to the results obtained with
Wilson fermions (and this is the reason why we can pro-
vide more significant digits for these contributions). They
are also independent of the lattice representation of the
operator (e.g., for Ov2;d and Ov2;e). Their analytic expres-
sions are very complicated and highly nonlinear functions
of M containing hundreds of terms, and the numerical
cancellation of this dependence is a rather strong check
on the good behavior of the FORM codes, as well as of the
integration routines.
TABLE I. Values for the sums of the vertex and sail diagrams,
V��1
O , for the momentum, helicity, and transversity operators

considered in this work, in Feynman gauge. The one-loop results
of the proper diagrams in a general covariant gauge can be
inferred from Eqs. (69)–(75). We remind that V��1

a2;d
� V��1

v2 ;d

and V��1
a2 ;e � V��1

v2;e . The case of the tensor charge, V��1
t1 , has

been calculated for the first time in [18].

M V��1
v2 ;d

V��1
v2;e V��1

d1
V��1
t1 V��1

t2

0.1 �3:6205 �3:2261 96.1427 5.1733 �3:8636
0.2 �3:5296 �3:1111 42.4140 4.9150 �3:8433
0.3 �3:4553 �3:0116 25.0326 4.7069 �3:8223
0.4 �3:3896 �2:9194 16.5587 4.5245 �3:8004
0.5 �3:3288 �2:8310 11.5737 4.3571 �3:7776
0.6 �3:2711 �2:7441 8.2910 4.1987 �3:7539
0.7 �3:2150 �2:6573 5.9508 4.0454 �3:7291
0.8 �3:1597 �2:5694 4.1741 3.8943 �3:7031
0.9 �3:1042 �2:4795 2.7486 3.7427 �3:6758
1.0 �3:0478 �2:3865 1.5425 3.5882 �3:6472
1.1 �2:9898 �2:2894 0.4655 3.4286 �3:6170
1.2 �2:9293 �2:1869 �0:5533 3.2610 �3:5850
1.3 �2:8652 �2:0776 �1:5787 3.0821 �3:5510
1.4 �2:7964 �1:9598 �2:6834 2.8879 �3:5148
1.5 �2:7209 �1:8311 �3:9675 2.6727 �3:4760
1.6 �2:6362 �1:6880 �5:5992 2.4284 �3:4342
1.7 �2:5384 �1:5258 �7:9262 2.1425 �3:3889
1.8 �2:4203 �1:3360 �11:8927 1.7930 �3:3395
1.9 �2:2671 �1:1022 �21:7691 1.3341 �3:2850
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Another reasonably strong check is that the operators
Ov2;d and Oa2;d have the same renormalization constant
well within the numerical integration errors, as expected
from chiral symmetry. We have checked that this is also
true for the pair Ov2;e and Oa2;e. Thus, in all cases the
polarized operators have the same renormalization con-
stants as the corresponding unpolarized operators.
Furthermore, as we have explicitly verified, for the same
reason the 1=a coefficient of the mixing term of Eq. (59)
arising in the one-loop expression of the operatorOd1

tends
to zero when the integration grid is refined. This operator is
then for domain-wall fermions multiplicatively renormal-
ized, contrary to what happens in the Wilson case, where
its mixing coefficient goes to infinity in the continuum
limit.

In the numerical integration, the convergence can be-
come slow when M is very close to zero or two. Thus,
while otherwise a grid of 60 or 80 points in each direction
is sufficient to obtain about five significant digits, for M �
0:1 and M � 1:9 we had sometimes to increase the grid to
100 points in each direction in order to achieve the same
precision.

To obtain the complete one-loop amplitudes we have
now to add to the results of the proper diagrams the 1-loop
contributions of the self-energy which are proportional to
i 6p,

�1 � �g2��1� �� loga2p2 ����1
1 � � � 4:792 010�;

(76)

where ���1
1 � 10:8750 when M � 1, while for other val-

ues ofM the Feynman-gauge finite terms ���1
1 are given in

the appendix. The complete one-loop lattice results are
then, for M � 1:

Olat
v2;d
� �1� �g2�83 loga2p2 � 4:4059� ���Otree

v2;d
; (77)

Olat
a2;d
� �1� �g2�83 loga2p2 � 4:4059� ���Otree

a2;d
; (78)

Olat
v2;e � �1� �g2�83 loga2p2 � 3:7445� ���Otree

v2;e; (79)

Olat
a2;e � �1� �g2�83 loga2p2 � 3:7445� ���Otree

a2;e; (80)

Olat
d1
� �1� �g2 � 0:1845�Otree

d1
; (81)

Olat
t1 � �1� �g2�loga2p2 � 14:4633� ���Otree

t1 ; (82)

Olat
t2 � �1� �g2�3 loga2p2 � 5:0052� 3

2���O
tree
t2 : (83)

To establish the connection with the corresponding con-
tinuum quantities we also need to know the one-loop
amplitudes for the same operators in the MS scheme
[36,37]:
-8
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OMS
v2
�

�
1� �g2

�
8

3
log

p2

�2 �
40

9
� �

��
Otree
v2
; (84)

OMS
a2
�

�
1� �g2

�
8

3
log

p2

�2 �
40

9
� �

��
Otree
a2
; (85)

OMS
d1
� Otree

d1
; (86)

OMS
t1 �

�
1� �g2

�
log

p2

�2 � 1� �
��
Otree
t1 ; (87)

OMS
t2 �

�
1� �g2

�
3 log

p2

�2 � 5�
3

2
�
��
Otree
t2 : (88)

Putting all together, we obtain the factors that allow the
matching from the domain-wall lattice theory to the MS
continuum scheme, for M � 1:

OMS
v2;d
� �1� �g2�83 loga2�2 � 0:0386��Olat

v2;d
; (89)

OMS
a2;d
� �1� �g2�83 loga2�2 � 0:0386��Olat

a2;d
; (90)

OMS
v2;e � �1� �g2�83 loga2�2 � 0:6999��Olat

v2;e; (91)

OMS
a2;e � �1� �g2�83 loga2�2 � 0:6999��Olat

a2;e; (92)

OMS
d1
� �1� �g2 � 0:1845�Olat

d1
; (93)

OMS
t1 � �1� �g2�loga2�2 � 15:4633��Olat

t1 ; (94)

OMS
t2 � �1� �g2�3 loga2�2 � 0:0052��Olat

t2 : (95)

Notice that the part proportional to � has canceled between
the lattice and continuum expressions, and these renormal-
ization factors are hence gauge invariant.

For simulations of domain-wall QCD at g0 � 1, setting
� � 1=a one obtains the values

OMS
v2;d
� 0:9997 �Olat�domain-wall;M�1:0�

v2;d

� 0:989 20 �Olat�Wilson�
v2;d

; (96)

OMS
a2;d
� 0:9997 �Olat�domain-wall;M�1:0�

a2;d

� 0:997 09 �Olat�Wilson�
a2;d

; (97)

OMS
v2;e � 0:9941 �Olat�domain-wall;M�1:0�

v2;e

� 0:978 37 �Olat�Wilson�
v2;e ; (98)
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OMS
a2;e � 0:9941 �Olat�domain-wall;M�1:0�

a2;e

� 0:978 37 �Olat�Wilson�
a2;e (99)

OMS
d1
� 0:9984 �Olat�domain-wall;M�1:0�

d1
; (100)

OMS
t1 � 0:8694 �Olat�domain-wall;M�1:0�

t1

� 0:856 31 �Olat�Wilson�
t1 ; (101)

OMS
t2 � 1:0000 �Olat�domain-wall;M�1:0�

t2

� 0:995 59 �Olat�Wilson�
t2 ; (102)

where for comparison the corresponding Wilson results are
also shown. Of course the domain-wall renormalization
factors vary with M. For example, for M � 1:8 (which is
almost at the edge of the allowed parameter space) their
values are instead

OMS
v2;d
� 0:9911 �Olat�domain-wall;M�1:8�

v2;d
; (103)

OMS
a2;d
� 0:9911 �Olat�domain-wall;M�1:8�

a2;d
; (104)

OMS
v2;e � 0:9819 �Olat�domain-wall;M�1:8�

v2;e ; (105)

OMS
a2;e � 0:9819 �Olat�domain-wall;M�1:8�

a2;e ; (106)

OMS
d1
� 1:1086 �Olat�domain-wall;M�1:8�

d1
; (107)

OMS
t1 � 0:8813 �Olat�domain-wall;M�1:8�

t1 ; (108)

OMS
t2 � 0:9942 �Olat�domain-wall;M�1:8�

t2 : (109)

Results for other choices of M and g0 can be easily
obtained from the numbers presented in this section.
Table II contains the values of the renormalization factors
as a function of M for g0 � 1.

All the renormalization constants presented in this work
can also be used in unquenched simulations, provided that
one computes only matrix elements of flavor nonsinglet
quark operators, for which at one-loop internal quark loops
never appear. The numbers for the transversity operators
can be however considered unquenched even in the singlet
case, since no chiral-odd gluon operators exist, which
would constitute the only possibility for a having a mixing.

We can easily notice that the renormalization corrections
that we have obtained for domain-wall fermions are in
general small. In particular when the Dirac mass is
M � 1 or not too far from it they are not too different
from the corresponding Wilson results. In many cases the
total renormalization factors turn out to be quite close to 1,
reflecting the fact that the domain-wall one-loop ampli-
tudes have almost the same values as the corresponding
-9



TABLE II. Values of the renormalization factors for the vari-
ous operators, for domain-wall QCD at g0 � 1 and � � 1=a.
We remind that Za2 ;d � Zv2;d and Za2 ;e � Zv2 ;e.

M Zv2;d Zv2;e Zd1
Zt1 Zt2

0.1 0.9979 0.9945 0.1931 0.8494 0.9952
0.2 0.9984 0.9948 0.6480 0.8529 0.9963
0.3 0.9988 0.9951 0.7958 0.8557 0.9972
0.4 0.9992 0.9952 0.8683 0.8582 0.9980
0.5 0.9995 0.9953 0.9112 0.8604 0.9986
0.6 0.9997 0.9953 0.9396 0.8624 0.9991
0.7 0.9998 0.9951 0.9600 0.8643 0.9995
0.8 0.9999 0.9949 0.9755 0.8661 0.9998
0.9 0.9998 0.9946 0.9879 0.8678 1.0000
1.0 0.9997 0.9941 0.9984 0.8694 1.0000
1.1 0.9994 0.9935 1.0077 0.8710 1.0000
1.2 0.9990 0.9927 1.0164 0.8725 0.9998
1.3 0.9984 0.9917 1.0250 0.8740 0.9995
1.4 0.9976 0.9905 1.0342 0.8754 0.9990
1.5 0.9966 0.9890 1.0446 0.8768 0.9982
1.6 0.9952 0.9872 1.0578 0.8782 0.9973
1.7 0.9934 0.9849 1.0765 0.8797 0.9959
1.8 0.9911 0.9819 1.1086 0.8813 0.9942
1.9 0.9878 0.9780 1.1900 0.8832 0.9917

TABLE III. Values of the domain-wall constants needed for
the renormalization of the self-energy and the bilinear operators.
We remind that V��1

P � V��1
S and V��1

A � V��1
V , and that zw �

�2w0�3=�1� w
2
0�.

M ���1
1 �3 zw V��1

S V��1
V

0.1 11.6603 51.0482 �483:6145 7.8219 6.3355
0.2 11.5099 50.7450 �225:5333 8.6070 6.3380
0.3 11.3829 50.4885 �138:5959 9.2424 6.3408
0.4 11.2730 50.2664 �94:2495 9.8020 6.3438
0.5 11.1772 50.0726 �66:7635 10.3176 6.3472
0.6 11.0939 49.9038 �47:5274 10.8074 6.3509
0.7 11.0221 49.7582 �32:8076 11.2834 6.3549
0.8 10.9616 49.6352 �20:6813 11.7549 6.3594
0.9 10.9124 49.5351 �10:0071 12.2296 6.3644
1.0 10.8750 49.4588 0.0000 12.7151 6.3699
1.1 10.8504 49.4084 9.9815 13.2189 6.3762
1.2 10.8399 49.3865 20.5777 13.7496 6.3831
1.3 10.8455 49.3972 32.5696 14.3176 6.3910
1.4 10.8699 49.4461 47.0915 14.9360 6.4000
1.5 10.9170 49.5411 66.0549 15.6225 6.4102
1.6 10.9923 49.6935 93.1753 16.4024 6.4219
1.7 11.1041 49.9198 137.0349 17.3150 6.4356
1.8 11.2652 50.2462 223.3164 18.4274 6.4516
1.9 11.4979 50.7176 480.4824 19.8800 6.4706
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MS results. The only exception is the tensor charge, which
on the other hand is also the only case which for fermions
which break chiral symmetry cannot be renormalized,
because of its power-divergent mixing. From this point of
view, domain-wall fermions appear to behave quite at
variance with overlap fermions, for which the renormal-
ization factors are generally not small, giving in many
cases rather large one-loop corrections to the tree-level
matrix elements [36,37,41]. The origin of most of these
large effects can be traced back to the �1 contribution from
the half-circle diagram of the self-energy, which for over-
lap fermions is rather big. On the contrary, for domain-wall
fermions �1 does not deviate too much from the �1 of
Wilson fermions. Thus, apart from Od1

when M is away
from one, the renormalization factors computed in this
work give small corrections at the standard accessible
couplings.

We have computed the bilinears and the self-energy
anew, and we have found some discrepancies when com-
paring our results, which we report in the appendix, with
the numbers given in [18]. These discrepancies derive only
from the continuum integrals that are needed to compute
the divergent terms with the Kawai method (for �3 and the
tensor charge, which are finite, we completely agree). The
differences between our results for the Rlat quantities and
those in [18] are indeed in all cases independent of M and
always are an integer or half-integer number. The MS
renormalization factors given in [18] are also different,
and for the same amount, from what is found elsewhere
in the literature (e.g., [36,37,41]). All these differences
014505
cancel then in the expressions of the renormalization fac-
tors, which do not present any discrepancies with [18].
VI. CONCLUSIONS

In this paper we have presented the computation of the
one-loop renormalization factors of a few operators which
measure the first nontrivial moment of various structure
functions, giving a complete description of the quark mo-
mentum and spin at leading twist. We have used domain-
wall fermions, and the associated chiral symmetry plays an
important role in the structure of the strong radiative
corrections.

We have automated the calculations by developing suit-
able FORM codes. This will make it easier to consider the
case of more complicated operators. The renormalization
factors that we have found turn out to be in many cases
close to 1.
APPENDIX: SELF-ENERGY AND BILINEARS

We report here the results for the quark self-energy and
the bilinear operators, which were first calculated in [18] in
Feynman gauge.

Taking into account that the results for the pseudoscalar
and axial-vector operators are equal to the ones for the
scalar and vector operators, respectively, and that the ten-
sor operator has been reported in the main body of the
paper, the one-loop results for the proper diagrams that we
need here are:
-10
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Oproper
S � �g2���4� �� loga2p2

� V��1
S � � � 5:792 010�Otree

S ; (A1)

Oproper
V � �g2���1� �� loga2p2 � V��1

V

� � � 4:792 010�Otree
V : (A2)

There is no operator tadpole for the bilinears, and adding
the self-energy contribution proportional to i 6p [Eq. (76)]

�1 � �g2��1� �� loga2p2 ����1
1 � � � 4:792 010�;

(A3)

we get, for M � 1,

Olat
S � �1� �g2�3 loga2p2 � 23:5901� ���Otree

S ; (A4)

Olat
V � �1� �g2 � 17:2450�Otree

V : (A5)

The one-loop results in the MS scheme are [36,37,41]:

OMS
S �

�
1� �g2

�
�3 log

p2

�2 � 5� �
��
Otree
S ; (A6)

OMS
V � Otree

V ; (A7)

and thus

OMS
S � 0:8430 �Olat�domain-wall;M�1:0�

S

� 0:890 64 �Olat�Wilson�
S ; (A8)

PERTURBATIVE RENORMALIZATION OF THE FIRST . . .
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OMS
P � 0:8430 �Olat�domain-wall;M�1:0�

P

� 0:809 22 �Olat�Wilson�
P ; (A9)

OMS
V � 0:8544 �Olat�domain-wall;M�1:0�

V

� 0:825 92 �Olat�Wilson�
V ; (A10)

OMS
A � 0:8544 �Olat�domain-wall;M�1:0�

A

� 0:866 63 �Olat�Wilson�
A ; (A11)

where for comparison the corresponding Wilson results are
also shown. The renormalization factors for other values of
M and g0 can be easily obtained from the numbers given in
Table III, where we in addition to �1 we report also the
results for the quantities �3 and

zw � �
2w0

1� w2
0

�3; (A12)

which determines the amount of additive renormalization
to w0 � 1�M.
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