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Sivers effect in semiinclusive deeply inelastic scattering
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The Sivers function is extracted from HERMES data on single spin asymmetries in semi-inclusive
deeply inelastic scattering. Our analysis use a simple Gaussian model for the distribution of transverse
parton momenta, together with the flavor dependence given by the leading 1=Nc approximation and a
neglect of the Sivers antiquark distribution. We find that within the errors of the data these approximations
are sufficient.
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I. INTRODUCTION

Single spin asymmetries (SSA) in hard reactions have a
long history dating back to the 1970s when significant
polarizations of �-hyperons in collisions of unpolarized
hadrons were observed [1], and to the early 1990s when
large asymmetries in p"p! �X or p" �p! �X were found
at Fermilab [2]. No fully consistent and satisfactory unify-
ing approach to the theoretical description of these obser-
vations has been found so far—see the reviews in Ref. [3].

Interestingly, the most recently observed SSA phe-
nomena, namely, those in semi-inclusive deeply inelastic
scattering (SIDIS) [4–11], seem better under control. This
is, in particular, the case for the transverse target SSA
observed at HERMES and COMPASS [8–11]. On the basis
of a generalized factorization approach in which transverse
parton momenta are taken into account [12–14] these
‘‘leading twist’’ asymmetries can be explained [15] in
terms of the Sivers [16–19] or Collins effect [20]. The
former describes, loosely speaking, the distribution of un-
polarized partons in a transversely polarized proton, the
latter describes the fragmentation of transversely polarized
partons into unpolarized hadrons. In the transverse target
SSA these effects can be distinguished by the different
azimuthal angle distribution of the produced hadrons:
Sivers effect / sin����S�, while Collins effect /
sin����S�, where � and �S denote, respectively, the
azimuthal angles of the produced hadron and the target
polarization vector with respect to the axis defined by the
hard virtual photon [15]. Both effects have been subject to
intensive phenomenological studies in hadron-hadron col-
lisions [21–25] and in SIDIS [26–35]. For the longitudinal
target SSA in SIDIS, which were observed first [4–6] but
are dominated by subleading-twist effects [36], the situ-
ation is less clear and their description (presuming the
factorization theorems [12–14] can be generalized to
twist-3) is more involved [37,38].

In this work we will concentrate on the Sivers effect,
which is quantified by the ‘‘Sivers function’’ f?a1T �x;p

2
T� (in

the notation recommended in [39]). It is referred to as
‘‘naively’’ or ‘‘artificially time-reversal-odd’’ for it arises
06=73(1)=014021(14)$23.00 014021
from a correlation between the nucleon spin ST and the
intrinsic transverse parton momentum pT, both transverse
with respect to the nucleon momentum PN in the infinite
momentum frame, with the effect being proportional to
�ST � pT� � PN .

By adequately weighting the events entering the spin
asymmetry with sin����S� one can project out from the
data the Sivers SSA. Including into the weight in addition
to that a power of the transverse momentum of the pro-
duced hadron Ph? � jPh?j yields an SSA which is de-
scribed (with the neglect of soft factors [12–14]) model-
independently in terms of the ‘‘transverse moment’’
f?�1�a1T �x� of the Sivers function [15]. Preliminary
HERMES data analyzed in this way were presented [8]
and subject to first studies [32]. However, the currently
available final HERMES and COMPASS data [9,10] were
analyzed without a transverse momentum weight, and can
only be interpreted by resorting to some model for the
distribution of the transverse parton momenta in the ‘‘un-
integrated’’ [40] Sivers distribution and unpolarized frag-
mentation function. Different models have been explored
in literature [33–35]. Here we approximate the distribution
of transverse parton momenta in the Sivers function to be
Gaussian.

We pay particular attention to the demonstration of the
phenomenological consistency of the approach, and fix or
constrain the free parameters in the Gaussian ansatz con-
sistently by the SIDIS HERMES data. Although hereby the
Gaussian width of the Sivers function remains poorly con-
strained, this does not prevent a meaningful extraction of
the transverse moment of the Sivers distribution function
from the data [9]. This demonstrates that—within the
accuracy of the present data—the Gaussian ansatz is ro-
bust and reliable. A comparison to extractions of the Sivers
function, where no [32] or different models [33–35] were
assumed, helps to estimate the effects of model-
dependence. We find them smaller than the statistical
accuracy of the present data.

In order to reduce the number of free parameters in the
ansatz for the Sivers function, we impose as an additional
-1 © 2006 The American Physical Society
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theoretical constraint the predictions for the Sivers func-
tion from the QCD limit of a large number of colors Nc
[41], which state that f?u1T � �f

?d
1T up to 1=Nc-corrections.

Since a fit constrained in this way works and describes the
HERMES data [9], our study, as a by-product, not only
tests the large-Nc results [41] but also naturally explains
the smallness of the Sivers effect from a deuteron target
observed by COMPASS [10]. Besides choosing different
models for transverse parton momenta and/or ways to fix
the respective parameters, the explicit use of the large-Nc
constraints is the main difference of our approach com-
pared to the works in Refs. [33–35].

For the fit we use only the HERMES data [9] on the
x-dependence of the Sivers SSA. Thus, the HERMES data
on the z-dependence serve as cross and consistency checks
for the fit and the Gaussian ansatz. We also explicitly
address the question of what could be the effects of
1=Nc-corrections and Sivers antiquarks (which we neglect
in our fit). Finally, we suggest how the Gaussian ansatz
could be further tested by means of SIDIS data. Such tests
are of importance for they allow us to understand the range
of applicability and the limitations of this ansatz.

II. SIVERS EFFECT IN SIDIS

Consider the process lp" ! l0hX, where ‘‘"’’ denotes the
transverse (with respect to the beam) target polarization.
Let P, l (l0), and Ph denote, respectively, the momentum of
Θ

z−axis

h
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h

l’

l
q

HADRON PRODUCTION PLANE

LEPTON SCATTERING PLANE

N

S

S

FIG. 1 (color online). Kinematics of the SIDIS process lp!
l0hX and the definitions of the azimuthal angles in the lab frame.
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the target proton, incoming (outgoing) lepton, and pro-
duced hadron. The relevant kinematic variables are q �
l� l0 with Q2 � �q2, x � Q2=�2P � q� and z �
P � Ph=P � q. The Sivers SSA as presented in Ref. [9] is
defined as sum over events i as follows:

Asin����S�
UT

�

P
i

sin��i ��S;i�	N"��i;�S;i� � N#��i;�S;i � ��


1
2

P
i
	N"��i;�S;i� � N

#��i;�S;i � ��

;

(1)

where N"�#���i;�S;i� are the event counts for the respective
target polarization (corrected for depolarization effects)—
see Fig. 1 for the definition of kinematics. It is understood
that if the SSA is considered a function of one kinematic
variable, then an appropriate averaging over the other
variables is implied.

In order to describe the Sivers SSA as defined in (1) we
will make two major simplifications. The first consists in
neglecting the soft factors [12–14], and their associated
energy dependence. This step simplifies the description of
the process considerably, though it is difficult to quantify
the uncertainty we introduce in this way. Then, to leading
order in the hard scale, the SSA is given by
Asin��h��S�
UT ���2�

�

P
a
e2
a
R

d2Ph?
R

d2pT
R

d2KT sin��h��S�sin��pT ��S�
jpT j
MN
��2��zpT�KT�Ph?�xf?a1T �x;p

2
T�D

a
1�z;K

2
T�P

a
e2
axfa1 �x�D

a
1�z�

;

(2)
where we canceled out the Q2 and y-dependent factors
(which describe the unpolarized partonic subprocess and
are the same in the numerator and denominator), and �pT
denotes the azimuthal angle around the z-axis e3 of the
parton struck from the target nucleon. In a full description
of the process the transverse parton momenta in f?a1T �x;p
2
T�

and Da
1�z;K

2
T� would be convoluted with the soft factors

[12–14] instead of the simplifying �-function.
However, this simplification is not yet sufficient for the

purpose of extracting the Sivers function. In the numerator
on the right-hand side of Eq. (2) the integrals convoluting
the transverse momenta cannot be solved, unless one
knows f?a1T �x;p

2
T� and Da

1�z;K
2
T�, which is not the case.

The situation would be different if in the SSA in Eq. (1) in
addition had been introduced a power of the transverse
hadron momentum jPh?j.

The leading order expression for such a weighted SSA is
given by [15]

Asin����S��Ph?=MN�
UT;� �x� � ��2�

P
a
e2
axf

?�1�a
1T �x�zDa=�

1 �z�

P
a
e2
axf

a
1 �x�D

a=�
1 �z�

;

(3)
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where the transverse moment of the Sivers function is
defined as

f?�1�a1T �x� �
Z

d2pT
p2
T

2M2
N

f?a1T �x;p
2
T�: (4)

Preliminary HERMES data on the SSA weighted in this
way were presented in [8]. From the point of view of
minimizing the model-dependence in the analysis [32] it
is preferable to consider data on an appropriately
transverse-momentum-weighted SSA [15], such as in
Eq. (3). However, a wealth of data on the SSA in SIDIS
have been analyzed and presented without the ‘‘appropri-
ate transverse momentum weights’’ [4–7,9–11].

Many models for the transverse momentum dependence
of distribution and fragmentation functions were consid-
ered in the literature [26–31,33–35]. Among the most
popular models is the Gaussian ansatz, which has two
important virtues. It describes successfully the distribu-
tions of low (with respect to the relevant hard scale Q)
transverse momenta in various hard reactions—see, for
example, Ref. [23]. It also allows us to perform analytically
the integrals over transverse momentum. In the Gaussian
ansatz one assumes that the transverse momentum and x-
or z-dependence of distribution or fragmentation functions
factorize, and that the distributions of the transverse parton
momenta are Gaussian:

fa1 �x;p
2
T� � fa1 �x�

exp��p2
T=p

2
unp�

�p2
unp

;

f?a1T �x;p
2
T� � f?a1T �x�

exp��p2
T=p

2
Siv�

�p2
Siv

;

Da
1�z;K

2
T� � Da

1�z�
exp��K2

T=K
2
D1
�

�K2
D1

:

(5)

The Gaussian widths p2
unp and K2

D1
are also referred to as

mean square transverse momenta of the unpolarized dis-
tribution and fragmentation functions, respectively, since
for example

hp2
Tiunp �

R
d2pTp2

Tf
a
1 �x;p

2
T�R

d2pTfa1 �x;p
2
T�

�
Gauss

p2
unp: (6)

In general, the mean square transverse momenta could be
flavor and x- or z-dependent, a possibility that we will
disregard. For later convenience let us also introduce the
notion of a mean parton transverse momentum generally
defined, and in the Gaussian model given as follows:

hpTiunp �

R
d2pTjpTjfa1 �x;p

2
T�R

d2pTfa1 �x;p
2
T�

�
Gauss

����
�
p

2
punp: (7)

Under the above assumptions the expression for the
Sivers SSA in Eqs. (1) and (2) is given by [29]
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Asin����S�
UT � ��2�

aGauss
P
a
e2
axf

?�1�a
1T �x�Da

1�z�P
a
e2
axf

a
1 �x�D

a
1�z�

;

with aGauss �

����
�
p

2

MN������������������������������
p2

Siv � K
2
D1
=z2

q :

(8)

Here we ignore the resolution cuts applied by the experi-
ments: Ph? * 50 MeV at HERMES [5,9], and Ph? >
100 MeV at COMPASS [10]. Taking such cuts into ac-
count would yield the same expression (8), however, with
an aGauss given in terms of incomplete �-functions. The
error introduced here by neglecting these cuts, however, is
marginal as we shall estimate below. In the Gaussian ansatz
(5) the transverse moment of the Sivers function (4) is
given by

f?�1�a1T �x� �
Gauss p2

Siv

2M2
N

f?a1T �x�: (9)

The reason why in Eq. (8) we prefer to work with f?�1�a1T �x�
instead of f?a1T �x�will become clear later. Before we start to
extract the Sivers function from the HERMES data [9], it is
necessary to fix or constrain the free parameters p2

Siv and
K2
D1

, preferably by (other) HERMES data for sake of
consistency. The next section is devoted to this task.
III. UNPOLARIZED SIDIS, POSITIVITY
CONSTRAINTS, AND THE LARGE Nc-LIMIT

Let us assume the distribution of transverse momenta in
fa1�x;p

2
T� and Da

1�z;K
2
T� to be Gaussian according to (5),

and let us furthermore assume the corresponding Gaussian
widths to be flavor and x- or z-independent. Then the
average transverse momentum of the produced hadrons
as function of z is given by

hPh?�z�i �

����
�
p

2

����������������������������
z2p2

unp � K
2
D1

q
: (10)

Figure 2 shows the HERMES data on hPh?�z�i for h �
pions from Ref. [6]. Strictly speaking these data were taken
from a deuterium target, but we will ignore this fact (i.e.,
we neglect nuclear binding effects and use isospin symme-
try). Also we will ignore the fact that these mean values are
not corrected for acceptance effects. What is important for
us is that these data allow to fix the free parameters p2

unp

and K2
D1

. A best fit yields

p2
unp � 0:33 GeV2; K2

D1
� 0:16 GeV2; (11)

and is shown in Fig. (2) by a dashed line. We observe a
good and, for our purposes, sufficient agreement. It is
important to stress that the agreement could be improved
at the price of introducing a z- and/or flavor dependent
Gaussian width for the unpolarized fragmentation func-
-3
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FIG. 2. The average transverse momentum hPh?�z�i of pions
produced in SIDIS as measured by HERMES from a deuterium
target [6] vs z. The dashed curve is the hPh?�z�i in the Gaussian
model (10) with the parameters as fixed here, see Eq. (11). The
dotted curve is the hPh?�z�i Gaussian model with the parameters
as obtained from a study of data on the Cahn effect [33].
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tion, but we will refrain from doing so and stick to our
simple picture.

It is instructive to compare our result (11) to the values
extracted in Ref. [33] under certain assumptions from
EMC data [42] on the so-called Cahn effect [43]. There,
p2

unp � 0:25 GeV2 and K2
D1
� 0:20 GeV2 were found.

With these numbers one obtains a hPh?�z�i which de-
scribes the HERMES data almost as well as the direct fit
in Eq. (11)—Fig. (2). [Notice that in the formalism of
Ref. [33] the expression (10) holds approximately upon
the neglect of terms of O�k2

?=Q
2�.] Thus, we are lead to the

encouraging conclusion that the Gaussian ansatz for
fa1 �x;p

2
T� and Da

1�z;K
2
T� is compatible with SIDIS data

from HERMES [6] and that the ansatz and the numerical
values for the Gaussian widths are supported qualitatively
by the analysis [33] of EMC data [42] on the Cahn effect.

Unlike in the case of the unpolarized fragmentation and
distribution functions, it is not possible to fix the Gaussian
width of the Sivers function from SIDIS data. As the
HERMES data [9] show a nonzero Sivers effect, of course,
the parameter p2

Siv cannot be zero [44]. However, there is
also a nontrivial upper bound for p2

Siv due to positivity
conditions. The positivity bound for the Sivers distribution
function reads [45]

jpT j
MN
jf?a1T �x;p

2
T�j � fa1 �x;p

2
T�: (12)
014021
If we demand the inequality (12) to be satisfied in the
Gaussian model (5) at any value of x and for all jpT j,
then the following necessary and sufficient condition
must hold

�
f?a1T �x�
fa1 �x�

�
2
�

2eM2
N

p2
unp

R�1� R�; where R �
p2

siv

p2
unp

:

(13)

This means that the Gaussian width is bound from below
and above as follows

1

2
�

��������������������������������������������
1

4
�

p2
unp

2eM2
N

�
f?a1T �x�
fa1 �x�

�
2

vuut � R

�
1

2

�

��������������������������������������������
1

4
�

p2
unp

2eM2
N

�
f?a1T �x�
fa1 �x�

�
2

vuut :

(14)

In particular, if f?a1T �x� � 0 as the data tell us, then 0<
R< 1 must be satisfied. Thus, we see that p2

Siv is restricted
to the range

0< p2
Siv < 0:33 GeV2: (15)

It is worthwhile stressing that there is a bound for p2
Siv even

if f?a1T �x� is very small.
For later convenience let us derive from (12) bounds for

the transverse moment of the Sivers function. From the
Gaussian version (13) of the positivity bound we obtain
immediately

�
f?�1�a1T �x�
fa1 �x�

�
2
�
ep2

unp

2M2
N

R3�1� R� �
ep2

unp

2M2
N

33

44 : (16)

Notice that from (12) one also can derive a model-
independent bound as follows. Using��������
Z

d2pT
p2
T

2M2
N

f?a1T �x;p
2
T�

���������
Z

d2pT
p2
T

2M2
N

��������f?a1T �x;p
2
T�

��������
�
Z

d2pT
jpT j
2MN

fa1 �x;p
2
T�

and the definition (7) we obtain

jf?�1�a1T �x�j �
hpTiunp

2MN
fa1 �x�: (17)

In the derivation of this bound no use was made of any
transverse momentum model. Therefore, it must be valid in
any model. In fact, by evaluating hpTiunp in the Gaussian
model (7), we find that the model bound (16) is stronger
than (17), i.e. if the transverse moment of the Sivers
functions satisfies (16) then it fulfills automatically also
(17).
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When using the inequality (13) in our approach with the
Gaussian widths assumed to be x-independent, it is under-
stood that the ratio of the Sivers function (or its moment) to
fa1 �x� is to be evaluated at that point in x, where it takes its
maximal value.

The present SIDIS data with their sizeable error bars
[9,10] do not constrain fits for f?a1T for the separate flavors
a � u, d, �u, and �d assuming the effects of heavier quarks to
be negligible. In fact, in Ref. [33] where this has been
attempted, all fitted distributions but f?u1T were found con-
sistent with zero. In this situation it appears appealing to
invoke additional theoretical constraints. In particular, here
we will use predictions from the QCD limit of a large
number of colors Nc.

In this limit the nucleon appears asNc quarks bound by a
mean field [46], which exhibits certain spin-flavor symme-
tries [47]. By exploring these symmetry properties it was
proven in a model-independent way that in the large-Nc
limit [41]

j�f?u1T � f
?d
1T ��x;p

2
T�j|����������������{z����������������}

�O�N3
c �

� j�f?u1T � f
?d
1T ��x;p

2
T�j|����������������{z����������������}

�O�N2
c �

; (18)

or, equivalently,

f?u1T �x;p
2
T� � �f

?d
1T �x;p

2
T� modulo 1=Nccorrections:

(19)

The relations (18) and (19) are expected to be valid within
their accuracy in the region of not too small and not too
large x satisfying xNc � O�N0

c�. Similar relations hold for
the Sivers antiquark distributions [48].

Inspired by the large-Nc relation (19) we choose the
following ansatz:

xf?�1�u1T �x� � �xf?�1�d1T �x� � Axb�1� x�5; (20)

and set f?�1� �q1T �x�, as well as the Sivers distributions of
heavier quarks, to zero. The shape of the Sivers function
at large x cannot be constrained by the data [9,10]. The
large-x behavior f?�1�q1T �x� / �1� x�5 can be justified
under certain assumptions—see [32] and references
therein. However, one may consider it here as a mere
model ansatz.

Given the size of the error bars of the present data the
ansatz (20) and the above assumptions are not too restric-
tive. This was exemplified in Ref. [32] in a study of
preliminary HERMES data [8] on the transverse-momen-
tum-weighted Sivers SSA (3).
IV. EXTRACTION OF THE SIVERS FUNCTION
FROM HERMES DATA

In the previous sections we fixed the parameter K2
D1

in
Eq. (11), but all we have been able to do so far concerning
p2

Siv was to constrain this parameter to the vague range in
Eq. (15). However, the parameter p2

Siv appears explicitly
014021
only in the ‘‘Gaussian factor’’ aGauss defined in Eq. (8). For
illustrative purposes we evaluate this factor for the hz2i 
�0:4�2 of the HERMES experiment in the range (15) of the
a priori possible value for p2

Siv, and we observe that it is
strongly constrained to be in the range

0:72< aGauss < 0:83: (21)

Thus, as long as one is interested in extracting from the
HERMES data [9] the transverse moment f?�1�a1T �x� under
the assumption of the Gaussian ansatz (5), then the result is
only affected to at most �10% by variations of the pa-
rameter p2

Siv within the poorly constrained range given in
(15).

Note that as soon as we extract a result for f?�1�a1T �x�, then
from the inequality (16) we immediately obtain bounds for
p2

Siv which are stronger than those given in (15). We
proceed as follows.

We use the parametrizations [52,53] for fa1 �x� and Da
1�z�

at a scale of 2:5 GeV2 which corresponds to the averageQ2

in the HERMES experiment. We insert the large-Nc moti-
vated ansatz (20) in the expression for the x-dependent
Sivers SSA in Eq. (8)

Asin����S�
UT � ��2�

R
dzaGauss�z�

P
a
e2
axf

?�1�a
1T �x�Da

1�z�R
dz
P
a
e2
axfa1 �x�D

a
1�z�

;

(22)

where we consider the z-dependence of the Gauss factor
aGauss and integrate within the cuts [9] of the HERMES
experiment, 0:2 � z � 0:7. We fix K2

D1
according to

Eq. (11) and choose for the parameter p2
Siv a value out of

the range (15) of the a priori possible values. Then we
check whether for the chosen p2

Siv the extracted f?�1�a1T �x�
does satisfy the inequality (16) within its 2-�-uncertainty.
We obtain the following result which refers to a scale of
about 2:5GeV2:

xf?�1�u1T �x� � �xf?�1�d1T �x� � ��0:17 . . . 0:18�x0:66�1� x�5;

(23)

with p2
Siv � �0:10 . . . 0:32� GeV2: (24)

Several comments are in order. The total �2 is about 2.2,
i.e., the �2 per degree of freedom is about 0.3.

In Fig. 3(a) the 1- and 2-� regions of the parameters A
and b are shown for p2

Siv � 0:20 GeV2, which is the central
value of p2

Siv in the range (24). The dependence of the
parameter b on p2

Siv is negligible. The response of the
parameter A to variations of p2

Siv is nearly linear—
Fig. 3(b).

The range (24) consists of those values of p2
Siv that are

allowed by the general positivity inequality in the Gaussian
model in Eq. (13). The data [9] do not allow us to constrain
the parameter p2

Siv more accurately than that. However, it is
-5
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function in the Gaussian model (5). The parameter b is practically p2

Siv-independent.
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satisfactory to observe how little the fit result for f?�1�a1T in
Eq. (23) is affected by the fact that the parameter p2

Siv is
only poorly constrained in the range (24).

In Fig. 4(a) we show the extracted u-quark Sivers func-
tion xf?�1�u1T �x�. For the curve labeled as ‘‘best fit’’ we have
chosen p2

Siv � 0:20 GeV2 which corresponds to the central
value in the range (24) allowed by positivity requirements.
For the minima (maxima) of the 1- and 2-� regions we
have chosen the minimal (maximal) value of p2

Siv in the
range (24). Thus, the displayed error bands contain both,
the statistical error of the HERMES data [9] and the
uncertainty due to the poorly constrained Gaussian width
p2

Siv of the Sivers function in Eq. (24).
Notice that strictly speaking we neglected a low-Ph? cut

in Eq. (8) and one may wonder how large is the error we
introduced in this way. With the results we obtained (ne-
glecting such cuts) in Eqs. (11) and (24) we find that taking
this cut into account in the HERMES kinematics would
-0.04
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-0.01

0

0 0.2 0.4 0.6 0.8

 

x

x f1T x f    (1)u(x)
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best fit

FIG. 4. Left: The u-quark Sivers function xf?�1�u1T �x� as a function o
fit, and its 1- and 2-� regions. Right: Here it is shown that the absolute
positivity bound in the Gaussian model in Eq. (16).
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change our results by about 1% (and about 2% at
COMPASS to be discussed below). Thus, in the Gaussian
model the neglect of the low-Ph? cut is justified.

The absolute values of the extracted Sivers functions
f?�1�u1T �x� � �xf?�1�d1T �x� are restricted by the upper
(Gaussian model) bound (16) given numerically by
0:23fu1 �x� or 0:23fd1 �x�. Since fd1 �x� is smaller than fu1�x�
the bound is stronger for the d-quark. In Fig. 4(b) we see
that the extracted Sivers function well satisfies this bound,
and we remark that it does not even exceed half of the
general bound (17) within its 2-� uncertainty.

Finally, in Fig. 5 we compare the Sivers SSA obtained
on the basis of our fit (23) to the HERMES data [9]. Of
course, in the SSA the effects of the (small) uncertainty of
the parameter A in (23) and the (sizeable) uncertainty of
the parameter p2

Siv in (24) cancel. Notably, the 1-� error
band for the �� SSA is much narrower than for the ��

SSA. This means that the �� SSA is more sensitive to
-0.06
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x

x f1T x f    (1)u(x)

2-σ range
1
2
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f x, as extracted from the HERMES data [9]. Shown are the best
value of the extracted Sivers function does not exceed half of the
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1=Nc corrections, i.e., to deviations from the ansatz (20).
We will discuss this point in detail in the next section.

As an intermediate summary we conclude that the
HERMES data [9] are well compatible with the large-Nc
predictions (19) for the Sivers function [41] and that the fit
(23) satisfies the positivity bounds [45]. Remarkably, the
sign of the extracted Sivers function in Eq. (23) is in
agreement with the physical picture discussed in [54].
We remark, however, that model calculations of the
Sivers function [55–57] show no tendency to exhibit the
large-Nc pattern (19).

V. CROSS CHECKS: HERMES DATA ON
z-DEPENDENCE & COMPASS DATA

In our fitting procedure we did not use the HERMES
data [9] on the z-dependence of the Sivers SSA. These data
could have been used as an additional constraint for the
integrals of xf?�1�a1T �x� in the range 0:023< x< 0:4, which
-0.05

0

0.05

0.1

0.15

0 0.2 0.4 0.6

 (a)AUTAsin(φ-φS)(z)

z

π+

1-σ region  for  central  pSiv
2
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2  =(0.10...0.32) GeV2

FIG. 6. Asin��h��S�
UT as a function of z. The data are from the HER

large-Nc constrained fit (23) for the Sivers function, and the impact
range (24). The z-dependent data were not used for the fit, i.e., the
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corresponds to the cuts in the HERMES experiment. This
would have helped to improve the significance of the fit,
considering that only few x-data points are available.
Instead, let us use these data here as a valuable cross check
of our approach. As the z-shape of the SSA is dictated by
the unpolarized fragmentation function Da

1�z� and the
z-dependence of the Gaussian factor aGauss in Eq. (8),
this is not only a cross check for the extracted Sivers
function (23), but it also tests the Gauss ansatz (5), the
consistency of the choice of parameters (11) and (24), and
the large-Nc ansatz (19) and (29) itself. In Fig. 6 we
confront our fit result (23) with the z-dependent
HERMES data on the Sivers SSA [9]. We observe a
satisfactory agreement. Notice that the impact of the
poorly constrained Gaussian width p2

Siv of the Sivers func-
tion (24) is marginal.

The smallness of the �� SSA can be explained as
follows. Since f?u1T � �f

?d
1T in the large-Nc limit, the
-0.1

-0.05

0

0.05

0.1

0 0.2 0.4 0.6

 (b)AUTAsin(φ-φS)(z)

z

π-

1-σ region  for  central  pSiv
2
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MES experiment [9]. The curves show the 1-� variation of our
of varying the Gaussian width p2

Siv of the Sivers function in the
comparison serves as a cross check for our results.
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asymmetry Asin��h��S�
UT ���� / �49D

unf
1 � 1

9D
fav
1 �, where

Dfav
1 � Dd!��

1 � D �u!��
1 � Du!��

1 , etc. (Dunf
1 �

Du!��
1 � Dd!��

1 , etc.), denotes the so-called favored (un-
favored) fragmentation function. At any z we have the
inequality Dunf

1 �z�<Dfav
1 �z�. However, due to the weight-

ing by the square of the quark electric charges, the effects
of the smaller ‘‘unfavored’’ and the larger ‘‘ favored’’
fragmentation function become comparable and tend to
cancel each other. As a result the SSA for �� appears
rather small, becoming zero around z � 0:56 (for the
parametrization in [53] at Q2 � 2:5 GeV2). The tendency
for cancellation persists with inclusion of the 1=Nc correc-
tions, which, however, shift the position of the zero—see
Sec. VI.

Results from the COMPASS experiment [10] yield an
equally important confirmation for the large Nc picture of
the Sivers function. In the COMPASS experiment a solid
polarized 6LiD target [58,59] was used. Neglecting, to a
first approximation, nuclear binding effects and using iso-
spin symmetry, we observe that for the deuterium Sivers
distribution function we have fu=D1T  fu=p1T � f

u=n
1T 

fu1T � f
d
1T , and analogously for d, �q, etc. Thus, the deute-

rium target is sensitive to the flavor combination which is
suppressed in the large-Nc limit, see (18), and for which
our ansatz (20) yields exactly zero. This is in agreement
with the present COMPASS data which shows a Sivers
effect from deuterium target compatible with zero within
error bars [10].
VI. WHERE ARE SIVERS ANTIQUARKS & 1=Nc
CORRECTIONS?

In the ansatz (20) we neglected the Sivers distributions
for antiquarks and for the strange and heavier quarks. The
neglect of strange and heavier quarks is probably a good
assumption at the present stage of art. However, neglecting
the Sivers antiquarks need not be such a good approxima-
tion. This can be seen from the unpolarized distribution
functions, since in the region of x & 0:15 the distribution
of unpolarized �d-quarks reaches 25% and more of the
unpolarized d-quark distribution. In fact, this is precisely
the x-region where HERMES [9] observes the most sig-
nificant Sivers effect (for ��)—see Fig. 5.

In order to gain a rough idea of the possible uncertainty
introduced by neglecting the Sivers antiquark distributions,
we make two simple models for the Sivers �u- and
�d-distributions, while keeping the quark distributions at
the value given by our fit result (23). Model I is that
Sivers �q-distributions are just �25% of the corresponding
Sivers quark distributions. This assumption may be an
overestimate in the region of larger x. Therefore, in
model II we set the ratio of each Sivers �q- to Sivers
q-distribution to be the same as for the unpolarized distri-
butions. Thus, we will explore the effects of assuming each
of the following models for the �q-Sivers distributions:
014021
f?�1� �q1T �x� � ��x�f?�1�q1T �x�;

with ��x� � �
� 0:25 � const: model I,
�f �u

1�f
�d
1 ��x�

�fu1�f
d
1 ��x�

model II.

(25)

Note that the particular ansatz for model II ensures com-
patibility with the large-Nc limit, where �fu1 � f

d
1��x� �

O�N2
c� � �f

u
1 � f

d
1 ��x� �O�Nc�. Thus, our model Sivers

antiquarks satisfy large-Nc relations analogous to (18) and
(19). We also automatically preserve the sum rule [60] (see
also [32]),

X
a�g;u;d;...

Z
dxf?�1�a1T �x� � 0: (26)

In the large-Nc limit the gluon Sivers distribution is sup-
pressed with respect to the quark one [32]. Our models (25)
satisfy the inequality corresponding to (17). Thus, being
compatible with all theoretical constraints we are presently
aware of, the models (25) are well suited for our purposes.

In Fig. 7 we show the modest effect of the Sivers
�q-distributions as a function of x. The effect is quite small
for the �� SSA, and well within the experimental errors.
The effect is more pronounced for the �� SSA, but still
remains within the experimental errors. The effect of
Sivers antiquarks on the z-dependence of the Sivers SSA
is less visible, and we refrain from showing analog plots.
As here the x-dependence is integrated over, the entire
effects amount of altering the overall normalization of
the SSA without qualitative and with only small quantita-
tive changes to the picture in Fig. 6.

Thus, we conclude that even sizeable Sivers antiquark
distributions, as modeled in Eq. (25), cannot be resolved
within the error bars of the present data [9]. This justifies a
posteriori the neglect of Sivers �q-distribution functions in
our fit ansatz (20) here or in Ref. [32]. In this way we
confirm also the observation made in Ref. [33]. There an
attempt was made to extract f?a1T for the separate flavors
a � u, d, �u, and �d, and the Sivers- �q distributions were
found to be consistent with zero with large uncertainties.

The difficulty to access antiquark distribution functions
in SIDIS data is more general than the example encoun-
tered here. For example, in longitudinal double spin asym-
metries ALL /

P
ae

2
ag

a
1�x�D

a
1�z� it is presently [61] not

possible to resolve a flavor asymmetry in the helicity sea
as sizeable as predicted in the chiral quark-soliton model
[62], namely, larger [63] than the known flavor asymmetry
in the unpolarized sea �g �u

1 � g
�d
1��x�> j�f

�u
1 � f

�d
1 ��x�j. As in

the case of the much better known distribution functions
fa1�x� and ga1�x� (see [64] for the specific example of
helicity sea flavor asymmetry from the chiral quark-soliton
model), it is necessary to study the Drell-Yan process in
order to learn more about Sivers antiquark distribution
functions.

Next let us address the 1=Nc-corrections. In our ansatz
(20) we took literally the prediction from the large-Nc limit
-8
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[41] in Eq. (19), disregarding corrections which are generi-
cally of O�1=Nc�  30%. In order to have an idea of the
effect of these corrections, let us assume that the flavor
singlet Sivers distribution is not exactly zero but sup-
pressed by exactly a factor of 1=Nc with respect to the
flavor nonsinglet combination according to Eq. (18). That
is,

j�f?�1�u1T � f?�1�d1T ��x�j�
!
�

1

Nc
�f?�1�u1T � f?�1�d1T ��x�; (27)

where we use f?�1�u1T �x�, f?�1�d1T �x� from Eq. (23) and set
Nc � 3. Of course, it would be naive to expect that the
different flavor combinations behave precisely as in
Eq. (27). However, the scenario in Eq. (27) is by construc-
tion well suited to indicate the order of magnitude of the
effect. In fact, when considered from such a qualitative
point of view, large-Nc relations for parton distributions are
observed to be well satisfied in nature [65].

Note that (27) is compatible with positivity (17).
However, in order to comply with the sum rule (26), we
must introduce a gluon Sivers distribution function equal in
magnitude but of opposite sign to the quark flavor singlet
Sivers distribution.

Figure 8 shows the effect of 1=Nc-corrections as mod-
eled in Eq. (27). The positive (negative) sign in Eq. (27)
corresponds to the upper (lower) curves in Figs. 8(a) and
8(b). What we obtained in this way is an ‘‘error band’’ of
much the same size as the 1-� uncertainty of our fit in
Fig. 5. A look at the z-dependence of the Sivers SSA fully
confirms these findings—see Figs. 8(c) and 8(d). When the
HERMES z-cuts are used, haGaussD

fav
1 i  2haGaussDunf

1 i to a
good accuracy with the parametrization [53]. If this was
exactly the case, then for the minus sign in Eq. (27) the ��

Sivers SSA would become exactly zero, as shown in
Fig. 8(b). More generally, we see that the vanishing of
the �� asymmetry at some value of z is a feature which
is robust against 1=Nc-corrections (and antiquark effects).
014021
The precise position of this zero, however, is very sensitive
to 1=Nc-corrections—Fig. 8(d).

On a deuteron target, the leading 1=Nc prediction gives
zero for the SSA, so that the 1=Nc corrections are all that
remain. Assuming for simplicity that the positive and
negative hadrons identified at COMPASS are mainly pions,
we obtain in our rough model (27) for 1=Nc-corrections the
results shown in Fig. 9. The positive asymmetries are due
to choosing the positive sign in Eq. (27). Clearly, we see
that the COMPASS data [10] are compatible with the
large-Nc corrections being of a magnitude compatible
with out model.
-10
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Thus, the reason why our large-Nc approach works here,
is due to the fact that current precision of the first experi-
mental data [9,10] is comparable to the theoretical accu-
racy of the large-Nc relation (19). This is illustrated in a
different way by Fig. 10 which shows that a variation of the
best fit (23) of �30% corresponding to the generic size of
1=Nc corrections is of similar size and shape as the 1-�
region of the fit. In other words, 1=Nc corrections (and
antiquark effects) cannot be resolved within the error bars
of the data [9,10]. In future, with increasing precision of
the data, it will certainly be necessary to refine the fit ansatz
(20) to include 1=Nc corrections and antiquarks. In fact we
have found that our fit (23) to the final HERMES data [9] is
also compatible with the most recent and substantially
more precise preliminary HERMES data given in [11].

VII. FURTHER TESTS OF THE GAUSSIAN ANSATZ
IN SIDIS

We have seen that the Gaussian model (5) for the dis-
tribution of the transverse parton momenta provides a
satisfactory effective description of the HERMES data on
the average transverse momentum of pions produced in
SIDIS [6]. In order to increase our faith into the applica-
bility of the Gaussian model and—what is equally impor-
tant—to find out its limitations, it is necessary to make
further tests using, e.g., the available HERMES data both
on polarized and unpolarized SIDIS. Although the true
prediction in QCD, or any other field theory, is that there
is approximately a power-law fall off at large transverse
momentum, it can well be that a Gaussian dependence can
be a useful approximation for transverse momenta that are
014021
low with respect to the relevant hard scale. This, in fact,
corresponds to the situation in the HERMES experiment

[9] where hPh?i � 0:4 GeV�
����������
hQ2i

p
� 1:5 GeV.

In this context it would be interesting to study the
average transverse momentum square hP2

h?�z�i of the pro-
duced hadrons given by (actually this relation is of more
general character [66] and manifestly valid in the Gauss
ansatz)

hP2
h?�z�i � z2p2

unp � K
2
D1
: (28)

In particular, hPh?�z�i and hP2
h?�z�i are related to each

other in the Gaussian model by

hPh?�z�i2 �
Gauss�

4
hP2

h?�z�i: (29)

To test the assumption of flavor independence, it would be
useful to study hPh?�z�i and hP2

h?�z�i separately for ��,
�0, �� or the kaons. Finally, one could study the average
transverse momentum of different hadrons averaged over z
but as function of the respective x-bin, in order to test the
assumption of an x- and flavor independent Gaussian width
of the unpolarized distribution function.

Given the unsatisfactory situation with the poorly con-
strained Gaussian width of the Sivers function, it is of
importance to further constrain this parameter by means
of data—in particular, on the Sivers SSA as function of
Ph?. Appropriate HERMES data for this as well as the
following suggestion are in principle available [8,9].

Let us define the following ‘‘Sivers-mean-transverse-
momentum’’:
hPh?�z�iSiv �

P
i
Ph?;i sin��i ��S;i�	N

"��i;�S;i� � N
#��i;�S;i � ��
P

i
sin��i ��S;i�	N"��i;�S;i� � N#��i;�S;i � ��


�
Gauss 2����

�
p

���������������������������
z2p2

Siv � K
2
D1

q
: (30)
One can read off the result in the Gaussian model by
comparing Eqs. (3) and (8). Note that hPh?�z�iSiv is of the
same structure as its ‘‘unpolarized analog’’ hPh?�z�i in
Eq. (7) up to the coefficient 2=

����
�
p

. From a simultaneous
analysis of the Sivers SSA weighted with and without a
power of transverse hadron momentum hPh?�z�iSiv could
be determined with a relative accuracy comparable to that
of the Sivers SSA.

An indirect but important test of the Gaussian ansatz for
the Sivers function can be made on the basis of the analyses
reported here and in [32]. In Ref. [32] the preliminary
HERMES data [8] on the transverse-momentum-weighted
Sivers SSA (3) were used in order to directly extract
f?�1�a1T �x� without resorting to any model for the transverse
parton momenta. Here we have used the final HERMES
data [9] to extract f?�1�a1T �x� under the assumption of the
Gaussian model (5). Thus, if the Gaussian model works,
then the two extractions must yield the same result.
In [32] the same set of assumptions (large-Nc for q,
neglect of �q, etc.) was used as here. However, instead of
determining the 1-� region, two different ansätze were
explored: One ansatz is as in (20), and another is as in
(20) but with fixed b � 1. In Fig. 11 we see that these fits
from Ref. [32] of f?�1�a1T �x� to the Ph?-weighted prelimi-
nary HERMES data [8] are compatible within 1-�with the
fit to the final HERMES data on the Sivers SSA weighted
without a power of Ph? [9].

This observation indicates that the Gaussian ansatz for
the Sivers function is compatible with the HERMES data
within the statistical accuracy of the data [8,9]. Given the
preliminary status of the data [8] it is not possible to draw a
stronger conclusion from this observation at the present
stage. In fact, the HERMES Collaboration does not rec-
ommend [67] the use of the preliminary data [8] since they
are not corrected for acceptance effects specific to the
Ph?-weighting, i.e., absent in the non-Ph?-weighted SSA
-11
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[9]. However, our comparison in Fig. 11 indicates that the
systematic error due to these effects is less dominant than
the statistical uncertainty of the data [8,9].

Another important test for the Gaussian model and for
the fit result (23) could use the HERMES data (and pos-
sible future data from COMPASS and Jlab) on the �0

Sivers SSA. Preliminary data on the �0 SSA with large
statistical uncertainties were shown in [8]. Taking into
account the 1-� uncertainty of the fit (23) we obtain the
results shown in Fig. 12. It is worthwhile to comment on
the z-dependence of the �0-asymmetry. Since the unpolar-
0
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π0

FIG. 12. The Sivers SSA for neutral pions at HERMES as function
(23). The error band arises from the 1-� uncertainty of the fit (23).
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ized fragmentation functions of light quarks and antiquarks
into �0 are the same (and since we neglect the effects of
strange and heavier quarks), Da

1�z� completely cancel out
from the SSA, so that Asin����S�

UT �z; �0� / aGauss�z�. Thus
the z-shape of the neutral pion SSA is entirely predicted by
the Gaussian model. (This remains true even if one con-
siders effects of Ph? cuts. The effect of the small resolution
cut applied at HERMES or COMPASS [9,10] is negligible
in Fig. 12, see also Sec. IV.) A precise measurement of the
z-dependence of the �0 Sivers effect could therefore also
help to test the Gaussian Ansatz. Alternatively, one may
combine appropriately �� and �� data and use isospin
symmetry to arrive at the same information. This may yield
results with better statistical accuracy in the HERMES
experiment [68].
VIII. CONCLUSIONS

In this work we have extracted the transverse moment
f?�1�a1T of the Sivers function from SIDIS HERMES data [9]
using a Gaussian model for the distribution of parton
transverse momenta and employing predictions from the
large-Nc limit [41] as an additional constraint. We have
shown that the Gaussian model provides a reasonable
description of HERMES data on the transverse momentum
distribution of the hadrons produced in unpolarized SIDIS.
We constrained the free parameters of the Gaussian model
consistently by HERMES data, which however, does leave
the Gaussian width of the Sivers distribution poorly con-
strained. Nevertheless, the data [9] well constrain a fit of
the transverse moment of the Sivers function.

We have also shown that the HERMES and COMPASS
data [9,10] are compatible with each other and with pre-
dictions from the large-Nc limit of QCD [41] within their
statistical accuracy. We checked explictly that the effects
of the simplifications we made are either negligibly small,
as, for example, the neglect of the experimental resolution
0

0.02

0.04

0.06

0 0.2 0.4 0.6

 (b)AUTAsin(φ-φS)(z)  at  HERMES

z

π0

of x and z, respectively, as predicted on the basis of the fit result
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cuts on the transverse hadron momenta, or well within the
statistical accuracy of the data, as the usage of large-Nc
constraints or the neglect of Sivers antiquark distributions.
We provided cross and consistency checks for the fit result
by studying the z-dependence of the HERMES data on the
Sivers SSA [9], and made suggestions how to further test
the applicability of the Gaussian model in SIDIS.

The main differences of our approach as compared to the
similar works [33–35] are the use of the large-Nc con-
straints, and the choice of a different model for transverse
parton momenta and/or the way we fixed the respective
parameters. Our fit is in qualitative agreement with extrac-
tions of the Sivers function [33–35] from the same [9] and
from the more recent and more precise (but preliminary)
HERMES data [11], see Ref. [69] for a detailed
comparison.

Of particular interest are studies of the Sivers effect in
the Drell-Yan (DY) process, because the Sivers function
(and other ‘‘time-reversal–odd’’ distributions) are ex-
pected to obey an unusual universality property, namely,
to appear with opposite signs in SIDIS and in DY [18]. The
experimental check of this prediction is a crucial test for
the understanding of the Sivers effect within QCD. On the
basis of an analysis of the preliminary HERMES data [8] it
was shown [32] that this change of sign of the Sivers
function could be checked in p"�� ! l�l�X in the
planned hadron-beam mode of the COMPASS experiment
014021
[70], and in p" �p! l�l�X in the proposed PAX experiment
[71] (whose primary goal is to access the transversity
distribution function in p" �p" ! l�l�X [72]). Our study
of the final HERMES data [9] presented here confirms
the analysis of Ref. [32] solidifying the conclusions
made there—as do the estimates reported in
Refs. [34,35] obtained from analyses of the most recent
preliminary HERMES data [11]. Estimates for COMPASS,
PAX, and RHIC on the basis of the results obtained here
will be presented elsewhere [73].
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18 April 2004, Štrbské Pleso, Slovakia (unpublished);
I. M. Gregor (HERMES Collaboration), Acta Phys. Pol.
B 36, 209 (2005).

[9] A. Airapetian et al. (HERMES Collaboration), Phys. Rev.
Lett. 94, 012002 (2005).

[10] V. Y. Alexakhin et al. (COMPASS Collaboration), Phys.
Rev. Lett. 94, 202002 (2005); P. Pagano (COMPASS
Collaboration), hep-ex/0501035.
[11] M. Diefenthaler, hep-ex/0507013.
[12] J. C. Collins and D. E. Soper, Nucl. Phys. B193, 381

(1981) B213, 545(E) (1983).
[13] X. D. Ji, J. P. Ma, and F. Yuan, Phys. Rev. D 71, 034005

(2005); Phys. Lett. B 597, 299 (2004).
[14] J. C. Collins and A. Metz, Phys. Rev. Lett. 93, 252001

(2004).
[15] D. Boer and P. J. Mulders, Phys. Rev. D 57, 5780 (1998).
[16] D. W. Sivers, Phys. Rev. D 41, 83 (1990); 43, 261 (1991).
[17] S. J. Brodsky, D. S. Hwang, and I. Schmidt, Phys. Lett. B

530, 99 (2002); Nucl. Phys. B642, 344 (2002).
[18] J. C. Collins, Phys. Lett. B 536, 43 (2002).
[19] A. V. Belitsky, X. Ji, and F. Yuan, Nucl. Phys. B656, 165

(2003); X. D. Ji and F. Yuan, Phys. Lett. B 543, 66 (2002);
D. Boer, P. J. Mulders, and F. Pijlman, Nucl. Phys. B667,
201 (2003).

[20] J. C. Collins, Nucl. Phys. B396, 161 (1993).
[21] M. Anselmino, M. Boglione, and F. Murgia, Phys. Lett. B

362, 164 (1995).
[22] M. Anselmino and F. Murgia, Phys. Lett. B 442, 470

(1998).
[23] U. D’Alesio and F. Murgia, Phys. Rev. D 70, 074009

(2004).
[24] M. Anselmino, M. Boglione, U. D’Alesio, E. Leader, and

F. Murgia, Phys. Rev. D 71, 014002 (2005).
-13



J. C. COLLINS et al. PHYSICAL REVIEW D 73, 014021 (2006)
[25] B. Q. Ma, I. Schmidt, and J. J. Yang, Eur. Phys. J. C 40, 63
(2005).

[26] A. V. Efremov, K. Goeke, and P. Schweitzer, Phys. Lett. B
522, 37 (2001); 544, 389E (2002); Eur. Phys. J. C 24, 407
(2002); Nucl. Phys. A711, 84 (2002); Acta Phys. Pol. B
33, 3755 (2002); P. Schweitzer and A. Bacchetta, Nucl.
Phys. A732, 106 (2004).

[27] E. De Sanctis, W. D. Nowak, and K. A. Oganessian, Phys.
Lett. B 483, 69 (2000); K. A. Oganessian, N. Bianchi, E.
De Sanctis, and W. D. Nowak, Nucl. Phys. A689, 784
(2001).

[28] B. Q. Ma, I. Schmidt, and J. J. Yang, Phys. Rev. D 66,
094001 (2002); 65, 034010 (2002).

[29] A. V. Efremov, K. Goeke, and P. Schweitzer, Phys. Lett. B
568, 63 (2003).

[30] M. Anselmino, M. Boglione, U. D’Alesio, A. Kotzinian, F.
Murgia, and A. Prokudin, hep-ph/0412316.

[31] A. V. Efremov, K. Goeke, and P. Schweitzer, Czech. J.
Phys. 55A, 189 (2005).

[32] A. V. Efremov, K. Goeke, S. Menzel, A. Metz, and P.
Schweitzer, Phys. Lett. B 612, 233 (2005).

[33] M. Anselmino, M. Boglione, U. D’Alesio, A. Kotzinian, F.
Murgia, and A. Prokudin, Phys. Rev. D 71, 074006 (2005).

[34] M. Anselmino, M. Boglione, U. D’Alesio, A. Kotzinian, F.
Murgia and A. Prokudin, Phys. Rev. D 72, 094007 (2005).

[35] W. Vogelsang and F. Yuan, Phys. Rev. D 72, 054028
(2005).

[36] A. Airapetian et al. (HERMES Collaboration), Phys. Lett.
B 622, 14 (2005).

[37] P. J. Mulders and R. D. Tangerman, Nucl. Phys. B461, 197
(1996)B484, 538(E) (1997).

[38] A. Afanasev and C. E. Carlson, hep-ph/0308163; A. Metz
and M. Schlegel, Eur. Phys. J. A 22, 489 (2004); Ann.
Phys. (Berlin) 13, 699 (2004); A. Bacchetta, P. J. Mulders,
and F. Pijlman, Phys. Lett. B 595, 309 (2004); K. Goeke,
A. Metz, and M. Schlegel, Phys. Lett. B 618, 90 (2005).

[39] A. Bacchetta, U. D’Alesio, M. Diehl, and C. A. Miller,
Phys. Rev. D 70, 117504 (2004).

[40] i.e., distributions not integrated over the transverse parton
momenta. For a discussion and careful definition of these
objects in QCD we refer to J. C. Collins, Acta Phys. Pol. B
34, 3103 (2003).

[41] P. V. Pobylitsa, hep-ph/0301236.
[42] M. Arneodo et al. (European Muon Collaboration), Z.

Phys. C 34, 277 (1987).
[43] R. N. Cahn, Phys. Lett. B 78, 269 (1978).
[44] Otherwise, for p2

Siv ! 0 in (5) the Gaussian
exp��p2

T=p
2
Siv
�

�p2
Siv

!

��2��pT�. Then f?�1�a1T �x� ! 0 and the Sivers SSA (8)
would vanish.

[45] A. Bacchetta, M. Boglione, A. Henneman, and P. J.
Mulders, Phys. Rev. Lett. 85, 712 (2000).

[46] E. Witten, Nucl. Phys. B160, 57 (1979).
[47] A. P. Balachandran, V. P. Nair, S. G. Rajeev, and A. Stern,

Phys. Rev. D 27, 1153 (1983); 27, 2772(E) (1983); E.
Witten, Nucl. Phys. B223, 433 (1983); J. L. Gervais and B.
Sakita, Phys. Rev. Lett. 52, 87 (1984); A. V. Manohar,
Nucl. Phys. B248, 19 (1984); D. Diakonov, V. Y. Petrov,
and P. V. Pobylitsa, Nucl. Phys. B306, 809 (1988); R. F.
Dashen, E. Jenkins, and A. V. Manohar, Phys. Rev. D 49,
4713 (1994) 51, 2489(E) (1995).
014021
[48] For historical correctness we mention that previously (19)
was discussed in the framework of (simple versions of)
chiral models [49]. However, the way in which (19) was
obtained there was shown to be incorrect [50]. Recently, in
Ref. [51] a (more sophisticated version of a) chiral model
with vector mesons obeying a hidden local flavor symme-
try was discussed, in which the Sivers function obeys (19).

[49] M. Anselmino, V. Barone, A. Drago, and F. Murgia, Nucl.
Phys. B, Proc. Suppl. 105, 132 (2002) hep-ph/0209073.

[50] P. V. Pobylitsa, hep-ph/0212027.
[51] A. Drago, Phys. Rev. D 71, 057501 (2005).
[52] M. Glück, E. Reya, and A. Vogt, Eur. Phys. J. C 5, 461

(1998).
[53] S. Kretzer, E. Leader, and E. Christova, Eur. Phys. J. C 22,

269 (2001).
[54] M. Burkardt, Phys. Rev. D 66, 114005 (2002); Nucl. Phys.

A735, 185 (2004).
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