
PHYSICAL REVIEW D 73, 014019 (2006)
Phases of QCD: Lattice thermodynamics and a field theoretical model
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We investigate three-color QCD thermodynamics at finite quark chemical potential. Lattice QCD
results are compared with a generalized Nambu Jona-Lasinio model in which quarks couple simulta-
neously to the chiral condensate and to a background temporal gauge field representing Polyakov loop
dynamics. This so-called PNJL model thus includes features of both deconfinement and chiral symmetry
restoration. The parameters of the Polyakov loop effective potential are fixed in the pure-gauge sector. The
chiral condensate and the Polyakov loop as functions of temperature and quark chemical potential are
calculated by minimizing the thermodynamic potential of the system. The resulting equation of state,
(scaled) pressure difference and quark number density at finite quark chemical potential are then
confronted with corresponding Lattice QCD data.
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I. INTRODUCTION

Recent years have seen an expansion of activities de-
voted to the study of the QCD phase diagram. Heavy-ion
experiments are looking for signals of the Quark-Gluon
Plasma. Large-scale lattice simulations at finite tempera-
ture have become a principal tool for investigating the
pattern of phases in QCD. Accurate computations of lattice
QCD thermodynamics in the pure-gauge sector have been
performed. First results at finite quark chemical potential
are available. The equation of state of strongly interacting
matter is now at hand as a function of temperature T and in
a limited range of quark chemical potential �. Improved
multiparameter reweighting techniques [1,2], Taylor series
expansion methods [3–5] and analytic continuation from
imaginary chemical potential [6–9] provide lattice data for
the pressure, entropy density, quark density and selected
susceptibilities.

A straightforward interpretation of these data in terms of
QCD perturbation theory does not work because of poor
convergence at any temperature of practical interest
[10,11]. In order to overcome this problem, resummation
schemes have been proposed, based, for example, on the
Hard Thermal Loop (HTL) approach [12–20] or on dimen-
sionally reduced screened perturbation theory (DRSPT)
[21–23]. However, these approaches still give reliable
results only for temperatures T * 2:5Tc, far above the
critical temperature Tc � 0:2 GeV. At these high tempera-
tures, the HTL approach motivates and justifies a picture of
weakly interacting quasiparticles, as determined by the
HTL propagators.

In order to extend such descriptions to lower tempera-
tures closer to Tc, various models have been proposed.
Early attempts were based on the MIT bag model [24].
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More sophisticated approaches became necessary when
more precise lattice data appeared. Various aspects of
QCD thermodynamics have been investigated in terms of
quasiparticle models based on perturbative calculations
carried out in the HTL scheme [25–30], in terms of a
condensate of Z3 Wilson lines [31], by refined quasipar-
ticle models based on the HTL-resummed entropy and
extensions thereof [32], by an improved version with a
temperature-dependent number of active degrees of free-
dom [33,34], by an evaporation model of the gluon con-
densate [35], by quasiparticle models formulated in
dynamical terms [36], and by hadron resonance gas models
below the critical temperature [37] (for a recent review see
[38]).

In this paper, we study the thermodynamics of two-
flavor QCD at finite quark chemical potential. Our inves-
tigation is based on a synthesis of a Nambu Jona-Lasinio
(NJL) model [39–44] and the nonlinear dynamics involv-
ing the Polyakov loop [45–49]. In this Polyakov-loop-
extended (PNJL) model, quarks develop quasiparticle
masses by propagating in the chiral condensate, while
they couple at the same time to a homogeneous back-
ground (temporal) gauge field representing Polyakov
loop dynamics.

The ‘‘classic’’ NJL model incorporates the chiral sym-
metry of two-flavor QCD and its spontaneous breakdown
at T < Tc. Gluonic degrees of freedom are ‘‘integrated
out’’ and replaced by a local four-point interaction of quark
color currents. Subsequent Fierz transformations project
this interaction into various quark-antiquark and diquark
channels. The color singlet q �q modes of lowest mass are
identified with the lightest mesons. Pions properly emerge
as Goldstone bosons at T < Tc. However, the local SU�Nc�
gauge invariance of QCD is now replaced by a global
SU�Nc� symmetry in the NJL model, so that the confine-
ment property is lost. Consequently, standard NJL-type
models are bound to fail in attempts to describe Nc � 3
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thermodynamics around Tc (and beyond) for nonzero
quark chemical potential �.

On the other hand the NJL model, with just the simplest
possible one-parameter color current-current interaction
between quarks, is remarkably successful in reproducing
the thermodynamics of Nc � 2 Lattice QCD at finite �
[50]. Encouraged by this result, the NJL quasiparticle
concept does suggest itself as a useful starting point.
However, whereas aspects of deconfinement are less sig-
nificant in the Nc � 2 case, they figure prominently for
Nc � 3. This motivates our extension towards the PNJL
Lagrangian as a minimal approach incorporating both
chiral symmetry restoration and deconfinement.

The deconfinement phase transition is well defined in
the heavy-quark limit, where the Polyakov loop serves as
an order parameter. This phase transition is characterized
by the spontaneous breaking of the Z�3� center symmetry
of QCD [51–54]. In the presence of dynamical quarks the
center symmetry is explicitly broken. No order parameter
is established for the deconfinement transition in this case
[55], but the Polyakov loop still serves as an indicator of a
rapid crossover towards deconfinement. The chiral phase
transition, on the other hand, has a well-defined order
parameter in the chiral limit of massless quarks: the chiral
(or quark) condensate h �qqi. This condensate, and its dy-
namical generation, is the basic element of the original
NJL model.

The primary aim of this paper is to test the effectiveness
of the PNJL approach when confronted with Lattice QCD
thermodynamics. The PNJL Lagrangian is derived in
Sec. II. Parameters are fixed in Sec. III by reproducing
known properties of the pion and of the QCD vacuum in
the hadronic phase, while the Polyakov loop effective
potential is adjusted to pure-gauge lattice results.
Secs. IV and V deal with the thermodynamics derived
from the PNJL Lagrangian in the mean-field approxima-
tion. This discussion includes a detailed comparison with
Lattice QCD results at zero and at finite chemical potential.
1more precisely: the Polyakov line with periodic boundary
conditions
II. THE PNJL MODEL

Following [47] we introduce a generalized Nf � 2
Nambu Jona-Lasinio Lagrangian with quarks coupled to
a (spatially constant) temporal background gauge field
representing Polyakov loop dynamics (the PNJL model):

LPNJL � � �i��D
� � m̂0� �

G
2
�� �  �2 � � � i�5 ~� �

2�

�U���A�; ���A�; T�; (1)

where  � � u;  d�T is the quark field,

D� � @� � iA� and A� � ��0A0: (2)

The gauge coupling g is conveniently absorbed in the
definition of A��x� � gA�

a �x�
�a
2 where A�

a is the SU(3)
gauge field and �a are the Gell-Mann matrices. The two-
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flavor current quark mass matrix is m̂0 � diag�mu;md� and
we shall work in the isospin-symmetric limit with mu �
md 	 m0. A local, chirally symmetric scalar-pseudoscalar
four-point interaction of the quark fields is introduced with
an effective coupling strength G.

The quantity U��; ��; T� is the effective potential ex-
pressed in terms of the traced Polyakov loop1 and its
(charge) conjugate,

� � �TrcL�=Nc; �� � �TrcL
y�=Nc: (3)

The Polyakov loop L is a matrix in color space explicitly
given by

L� ~x� � P exp
�
i
Z �

0
d�A4� ~x; ��

�
; (4)

with � � 1=T the inverse temperature and A4 � iA0. In a
convenient gauge (the so-called Polyakov gauge), the
Polyakov loop matrix can be given a diagonal representa-
tion [47].

The coupling between Polyakov loop and quarks is
uniquely determined by the covariant derivative D� in
the PNJL Lagrangian (1). Note that in the chiral limit
(m̂0 ! 0), this Lagrangian is invariant under the chiral
flavor group, SU�2�L 
 SU�2�R, just like the original
QCD Lagrangian.

The trace of the Polyakov loop, �, and its conjugate, ��,
will be treated as classical field variables throughout this
work. In the absence of quarks, we have � � �� and the
Polyakov loop serves as an order parameter for deconfine-
ment. The phase transition is characterized by the sponta-
neous breaking of the Z�3� center symmetry of QCD. The
temperature-dependent effective potential U has the fol-
lowing general features. At low temperatures, U has a
single minimum at � � 0, while at high temperatures it
develops a second one which turns into the absolute mini-
mum above a critical temperature T0. In the limit T ! 1
we have �! 1. The function U��; ��; T� will be fixed by
comparison with pure-gauge Lattice QCD. We choose the
following general form in accordance with the underlying
Z�3� symmetry:

U��; ��;T�

T4
��

b2�T�
2

����
b3

6
��3� ��3��

b4

4
� ����2

(5)

with

b2�T� � a0 � a1

�
T0

T

�
� a2

�
T0

T

�
2
� a3

�
T0

T

�
3
: (6)

A precision fit of the coefficients ai; bi is performed to
reproduce the lattice data (see Sec. III).
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FIG. 1. Scaled pressure, entropy density and energy density as
functions of the temperature in the pure-gauge sector, compared
to the corresponding lattice data taken from Ref. [58].

TABLE I. Parameter set used in this work for the Polyakov

PHASES OF QCD: LATTICE THERMODYNAMICS AND . . . PHYSICAL REVIEW D 73, 014019 (2006)
Using standard bosonization techniques the Lagrangian
(1) can be rewritten in terms of the auxiliary field variables
� and ~�:

L eff � �
�2 � ~�2

2G
�U��; ��; T� � iTr lnS�1; (7)

where an irrelevant constant has been dropped and

S�1 � i��@
� � �0A

0 � M̂ (8)

is the inverse quark propagator with

M̂ � m̂0 � �� i�5 ~� � ~�: (9)

The trace in (7) is taken over color, flavor and Dirac
indices. The field equations for �, ~�, � and �� are then
solved in the mean-field approximation2. The expectation
value h ~�i of the pseudoscalar isotriplet field is equal to zero
for isospin-symmetric systems.

The � field has a nonvanishing vacuum expectation
value as a consequence of spontaneous chiral symmetry
breaking. Solving the field equations for �, the effective
quark mass m is determined by the self-consistent gap
equation

m � m0 � h�i � m0 �Gh �  i: (10)

Note that h�i � Gh �  i is negative in our representation,
and the chiral (quark) condensate is h �  i � h � u u �
� d di. For later purposes we note that � and �� are two

independent field variables in the general case of finite
quark chemical potential �. They become equal in the
limiting case � � 0. Their (thermal) expectation values
h�i and h ��i are both real [56] but differ at nonzero �.

Before passing to the actual calculations, we summarize
basic assumptions behind Eq. (1) and comment on limita-
tions to be kept in mind. In fact the PNJL model (1) is quite
schematic in several respects. It reduces gluon dynamics to
a) chiral point couplings between quarks, and b) a simple
static background field representing the Polyakov loop.
This picture cannot be expected to work beyond a limited
range of temperatures. At large T, transverse gluons are
known to be thermodynamically active degrees of freedom,
but they are ignored in the PNJL model. To what extent this
model can reproduce lattice QCD thermodynamics is
nonetheless a relevant question. We can assume that its
range of applicability is, roughly, T � �2� 3�Tc, based on
the conclusion drawn in Ref. [57] that transverse gluons
start to contribute significantly for T > 2:5Tc.
2In the mean-field approximation the fields are replaced by
their expectation values for which, in later sections, we will
continue using the notation �, � and �� for simplicity and
convenience.
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III. PARAMETER FIXING

A. Polyakov loop effective potential

The parameters of the Polyakov loop potential U are
fitted to reproduce the lattice data [58] for QCD thermo-
dynamics in the pure-gauge sector. Minimizing
U��; ��; T� one has � � �� and the pressure of the pure-
gauge system is evaluated as p�T� � �U�T� with ��T�
determined at the minimum. The entropy and energy den-
sity are then obtained by means of the standard thermody-
namic relations. In Fig. 1 we show the (scaled) pressure,
energy density and entropy density as functions of tem-
perature. The lattice data are reproduced extremely well
using the ansatz (5) and (6), with parameters summarized
in Table I. The critical temperature T0 for deconfinement
appearing in Eq. (6) is fixed at T0 � 270 MeV in the pure-
gauge sector. The resulting effective potential is displayed
in Fig. 2 for two different temperatures: T � 200 MeV
(below T0) and T � 320 MeV (above T0).

With the same parametrization, we are also able to
reproduce the lattice data [59] for the temperature depen-
dence of the Polyakov loop itself. A comparison between
these data and our results is shown in Fig. 3. The Polyakov
loop vanishes below the critical temperature T0, at which
point it jumps discontinuously to a finite value, indicating a
first-order phase transition. It tends to one at large tem-
peratures, as expected.
loop potential (5) and (6).

a0 a1 a2 a3 b3 b4

6.75 �1:95 2.625 �7:44 0.75 7.5
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FIG. 3. Polyakov loop as a function of temperature in the
pure-gauge sector, compared to corresponding lattice results
taken from Ref. [59].
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FIG. 2. Scaled Polyakov loop effective potential U��; T�=T4 as a function of � for two values of temperature T.
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B. NJL sector

The pure NJL model part of the Lagrangian (1) has the
following parameters: the ‘‘bare’’ quark mass m0, a three-
momentum cutoff � and the coupling strength G. We
choose to reproduce the known chiral physics in the had-
ronic sector at T � 0 and fix the three parameters by the
following conditions:
(i) T
TABLE
part of
quantitie
constitu

� [GeV
0.651

jh � u ui
251
he pion decay constant is reproduced at its em-
pirical value, f� � 92:4 MeV. In the NJL model,
f� is evaluated using the following equation:
II. Parameter set used in this work for the NJL model
the effective Lagrangian (1), and the resulting physical
s. For these values of the parameters we obtain a

ent quark mass m � 325 MeV.

] G�GeV�2� m0[MeV]
10.08 5.5

j1=3 [MeV] f� [MeV] m� [MeV]
92.3 139.3

014019-4
f2
� � 4m2I�1�� �m� where

I�1�� �m� � �iNc
Z d4p

�2��4
	��2 � ~p2�

�p2 �m2 � i
�2
;

(11)

with the effective (constituent) quark mass m de-
termined self-consistently by the gap equation (10).
(ii) T
he quark condensate becomes

h � u ui � �4mI�0�� �m� (12)

with

I�0�� �m� � iNc
Z d4p

�2��4
	��2 � ~p2�

p2 �m2 � i

: (13)

Its ‘‘empirical’’ value derived from QCD sum rules
is

h � u ui1=3 ’ h � d di1=3 � ��240
 20� MeV:

(14)
(iii) T
he current quark mass m0 is fixed from the Gell-
Mann, Oakes, Renner (GMOR) relation which is
satisfied in the NJL model:

m2
� �

�m0h �  i

f2
�

: (15)

In the chiral limit, m0 � 0 and m� � 0.
The values of the NJL model parameters, together with
the resulting physical quantities, are summarized in
Table II.

IV. RESULTS AT FINITE T AND �

We now extend the model to finite temperature and
chemical potentials using the Matsubara formalism. We
consider the isospin-symmetric case, with an equal number
of u and d quarks (and therefore a single quark chemical
potential �). The quantity to be minimized at finite tem-
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perature is the thermodynamic potential per unit volume:
��T;�� �U��; ��; T� �
T
2

X
n

Z d3p

�2��3
Tr ln

~S�1�i!n; ~p�
T

�
�2

2G
: (16)

Here !n � �2n� 1��T are the Matsubara frequencies for fermions. The inverse quark propagator (in Nambu-Gorkov
representation) becomes

~S�1�p0; ~p� �
�
�0p0 � ~� � ~p�m� �0��� iA4� 0

0 �0p
0 � ~� � ~p�m� �0��� iA4�

�
: (17)
Using the identity Tr ln�X� � ln det�X�we reduce the trace
in (16) and find:

� �U��; ��; T� �
�2

2G
� 2NfT



Z d3p

�2��3
fTrc ln�1� Le��Ep���=T�

� Trc ln�1� Lye��Ep���=T�g

� 6Nf
Z d3p

�2��3
Ep	��

2 � ~p2� (18)

where we have introduced the quark quasiparticle energy
Ep �

������������������
~p2 �m2

p
. The last term involves the NJL three-

momentum cutoff �. The second (finite) term does not
require any cutoff. A small violation of the underlying
chiral symmetry at T > 0:4 GeV, resulting from this pro-
cedure, is of no practical relevance since the model is
supposed to be applied only at temperatures and chemical
potential well below �.

The remaining color trace is then performed with the
result

ln det�1� Le��Ep���=T� � ln det�1� Lye��Ep���=T�

� ln�1� 3��� ��e��Ep���=T�e��Ep���=T

� e�3�Ep���=T� � ln�1� 3� ����e��Ep���=T�


 e��Ep���=T � e�3�Ep���=T�: (19)
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FIG. 4. Left: scaled chiral condensate and Polyakov loop ��T� as fu
@h �  i=@T and @�=@T.
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From the thermodynamic potential (18) the equations of
motion for the mean fields �;� and �� are derived through

@�

@�
� 0;

@�

@�
� 0;

@�

@ ��
� 0: (20)

This set of coupled equations is then solved for the fields as
functions of temperature T and quark chemical potential
�.

Figure 4(a) shows the chiral condensate together with
the Polyakov loop � as functions of temperature at � � 0
where we find again � � ��. One observes that the intro-
duction of quarks coupled to the � and � fields turns the
first-order transition seen in pure-gauge Lattice QCD into a
continuous crossover. The original 1st order transition in
the pure-gauge system appears at a critical temperature
T0 � 270 MeV. With the introduction of quarks, the cross-
over transitions for the chiral condensate h �  i and for the
Polyakov loop perfectly coincide at a lower critical tem-
perature Tc ’ 220 MeV (see Fig. 4(b)). We point out that
this feature is obtained without changing a single parame-
ter with respect to the pure-gauge case. The value of the
critical temperature that we obtain is a little high if com-
pared to the available data for two-flavor Lattice QCD [60]
which gives Tc � �173
 8� MeV. On the other hand, it is
presently being discussed that detailed continuum extrapo-
lation of these data can increase this temperature up to
210 MeV [61]. For quantitative comparison with existing
lattice results we choose to reduce Tc by rescaling the
0 0.1 0.2 0.3 0.4
T [GeV]

2

4

6

8

0

T
Φ

[GeV   ]-1

T
[GeV  ]2

(b)

〈ψψ〉

nctions of temperature at zero chemical potential. Right: plots of
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FIG. 5. Averaged sum and difference of � and �� as functions
of the temperature at finite �.
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parameter T0 from 270 to 190 MeV. In this case we loose
the perfect coincidence of the chiral and deconfinement
transitions, but they are shifted relative to each other by
less than 20 MeV. When defining Tc in this case as the
average of the two transition temperatures we find
Tc � 180 MeV. This is also consistent with the observa-
tions reported in [62].

As we turn to nonzero chemical potential, we find that �
and �� are different from each other, even if they are both
real. They will finally coincide again at high temperatures,
as can be seen in Fig. 5. This feature was already observed
in [56].

With increasing chemical potential, the crossover pat-
tern evolves to lower transition temperatures (see Fig. 6)
until it turns to a first-order transition around�� 0:3 GeV.
At this point Cooper pairing of quarks presumably sets in.
A more detailed discussion of the critical point and its
neighborhood therefore requires the additional incorpora-
tion of explicit diquark degrees of freedom in the PNJL
model. Further developments along these lines will be
reported elsewhere.
0.05 0.1 0.15 0.2 0.25 0.3
T[GeV]

0.05

0.1

0.15

0.2

0.25

0.3

m
[G

eV
]

0

200 MeV

270 MeV

340 MeV

(a)

µ=
µ=
µ=
µ=

FIG. 6. Constituent quark mass (a) and Polyakov loop (b) as funct
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V. DETAILED COMPARISON WITH LATTICE QCD

A primary aim of this work is to compare predictions of
our PNJL model with the lattice data available for full
QCD thermodynamics at zero and finite �. Consider first
the pressure of the quark-gluon system at zero chemical
potential:

p�T;� � 0� � ���T;� � 0;��T; 0�;��T; 0�; ���T; 0��;

(21)

where ��T; 0�;��T; 0� and ���T; 0� are the solutions of the
field equations at finite temperature and zero quark chemi-
cal potential. Our results are presented in Fig. 7(a) in
comparison with corresponding lattice data. We point out
that the input parameters of the PNJL model have been
fixed independently in the pure-gauge and hadronic sec-
tors, so that our calculated pressure is a prediction of the
model, without any further tuning of parameters. With this
in mind, the agreement with lattice results is quite satis-
factory. One must note that the lattice data are grouped in
different sets obtained on lattices with temporal extent
Nt � 4 and Nt � 6, both of which are not continuum
extrapolated. In contrast, our calculation should, strictly
speaking, be compared to the continuum limit. In order to
perform meaningful comparisons, the pressure is divided
by its asymptotic high-temperature (Stefan-Boltzmann)
limit for each given case. At high temperatures our pre-
dicted curve should be located closer to the Nt � 6 set than
to the one with Nt � 4. This is indeed the case.
Furthermore, Fig. 7(b) shows the predicted ‘‘interaction
measure’’, �"� 3p�=T4, in comparison with lattice data
for Nt � 6. One should of course note that the lattice
results have been produced using relatively large quark
masses, with pseudoscalar-to-vector mass ratios mPS=mV
around 0.7, whereas our calculation is performed with light
quark masses corresponding to the physical pion mass. We
have investigated the dependence of the pressure and of the
energy density on the quark mass and found that the critical
0.05 0.1 0.15 0.2 0.25 0.3
T [GeV]

0.2

0.4

0.6

0.8

1
0

200 MeV

270 MeV

340 MeV

(b)

µ=

Φ

µ=
µ=
µ=

ions of temperature for different values of the chemical potential.
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FIG. 7. (a) Scaled pressure divided by the Stefan-Boltzmann (ideal gas) limit as a function of temperature at zero chemical potential:
comparison between our PNJL model prediction and lattice results corresponding to Nt � 4 and Nt � 6. (b) Scaled interaction
measure compared to lattice results for Nt � 6. In both cases, the lattice data are taken from Ref. [63]
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temperature scales approximately as Tc ’ Tc�m� � 0� �
0:04m�, in agreement with the behavior found in [60].
Once the rescaling of Tc is taken into account, the curves
plotted in Figs. 7(a) and 7(b) as functions of T=Tc have
negligible remaining dependence on the quark mass.

At nonzero chemical potential, quantities of interest that
have become accessible in Lattice QCD are the ‘‘pressure
difference’’ and the quark number density. The (scaled)
pressure difference is defined as:

�p�T;��

T4
�
p�T;�� � p�T;� � 0�

T4 : (22)

A comparison of �p, calculated in the PNJL model, with
lattice results is presented in Fig. 8. This figure shows the
scaled pressure difference as a function of the temperature
for a series of chemical potentials, with values ranging
between � � 0:2T�0�c and � ’ T�0�c . The agreement be-
tween our results and the lattice data is quite satisfactory.
0.6 0.8 1 1.2 1.4 1.6 1.8 2
T/Tc

0.05

0.1

0.15

0.2

p
/T

∆
4

µ=0.2Tc

µ=0.4Tc

µ=0.6Tc

(a)

FIG. 8. Scaled pressure difference as a function of temperature a
lattice data taken from Ref. [4].
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A related quantity for which lattice results at finite �
exist, is the scaled quark number density, defined as:

nq�T;��

T3
� �

1

T3

@��T;��
@�

: (23)

Our results for nq as a function of the temperature, for
different values of the quark chemical potential, are shown
in Fig. 9 in comparison with corresponding lattice data [4].
Also in this case, the agreement between our PNJL model
and the corresponding lattice data is surprisingly good. It is
instructive to study the effect of the Polyakov loop dynam-
ics on the behavior of the quark density nq. The coupling of
the quark quasiparticles to the field � reduces their weight
as thermodynamically active degrees of freedom when the
critical temperature Tc is approached from above. At Tc the
value of � tends to zero and the quasiparticle exponentials
exp���Ep 
��=T� are progressively suppressed in the
thermodynamic potential as T ! Tc. This is what can be
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t different values of the quark chemical potential, compared to
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FIG. 9. Scaled quark number densities as a function of temperature at different values of the chemical potential, compared to lattice
data taken from Ref. [4].
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interpreted as the impact of confinement in the context of
the PNJL model. In contrast, the standard NJL model
without coupling to the Polyakov loop does not have this
important feature, so that the quark density leaks strongly
into the ‘‘forbidden’’ domain T < Tc ’ 170 MeV, as dem-
onstrated in Fig. 10.

It is a remarkable feature that the quark densities and the
pressure difference at finite � are so well reproduced even
though the lattice ‘‘data’’ have been obtained by a Taylor
expansion up to fourth order in �, whereas our thermody-
namic potential is used with its full functional dependence
on �. We have examined the convergence in powers of �
by expanding Eq. (18). It turns out that the Taylor expan-
sion to order �2 deviates from the full result by less than
10% even at a chemical potential as large as�� Tc. When
expanded to O��4�, no visible difference is left between
0 0.5 1 1.5 2
T/T

c

0

0.2

0.4

0.6

0.8

1 n
q
/T

3

µ=0.6 Tc

FIG. 10. Comparison between the results in the PNJL model
(solid line) and in the standard NJL model (dashed line) for the
quark number density at � � 0:6Tc. The effect of the missing
confinement is evident in the standard NJL model.
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the approximate and full calculations for all cases shown in
Figs. 8 and 9.
VI. SUMMARY AND CONCLUSIONS

We have studied a Polyakov-loop-extended Nambu and
Jona-Lasinio (PNJL) model with the aim of exploring
whether such an approach can catch essential features of
QCD thermodynamics when confronted with results of
lattice computations at finite temperature and nonzero
quark chemical potential. This PNJL model represents a
minimal synthesis of the two basic principles that govern
QCD at low temperatures: spontaneous chiral symmetry
breaking and confinement. The respective order parame-
ters (the chiral quark condensate and the Polyakov loop)
are given the meaning of collective degrees of freedom.
Quarks couple to these collective fields according to the
symmetry rules dictated by QCD itself.

Once a limited set of input parameters is fitted to Lattice
QCD in the pure-gauge sector and to pion properties in the
hadron sector, the quark-gluon thermodynamics above Tc
up to about twice the critical temperature is well repro-
duced, including quark densities up to chemical potentials
of about 0.2 GeV. In particular, the PNJL model correctly
describes the step from the first-order deconfinement tran-
sition observed in pure-gauge Lattice QCD (with
Tc ’ 270 MeV) to the crossover transition (with Tc around
200 MeV) when Nf � 2 light quark flavors are added. The
nontrivial result is that the crossovers for chiral symmetry
restoration and deconfinement almost coincide, as found in
lattice simulations. The model also reproduces the quark
number densities at various chemical potentials remark-
ably well when confronted with corresponding lattice data.
Considering that the lattice results have been found by a
Taylor expansion in powers of the chemical potential, this
excellent agreement came as a surprise and indicates rapid
convergence of the power series in �.
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Further developments will be directed towards improve-
ments to overcome some obvious limitations. First, the
NJL model operates with a constant four-point coupling
strength which supposedly averages the relevant running
coupling over a limited low-energy kinematic domain,
corresponding to temperatures T � 2Tc and chemical po-
tentials � � 0:3 GeV. Contacts with the high-temperature
limit of QCD and the HTL approaches need to be estab-
lished. Secondly, in order to proceed into the range of
larger chemical potentials, diquark degrees of freedom
need to be explicitly involved. Also, the effective potential
for the Polyakov loop field, determined so far entirely as a
function of temperature by investigating the pure-gauge
sector, must be examined with respect to its dependence on
the chemical potential. And furthermore, the extension to
2� 1 flavors with inclusion of strange quarks must be
explored.
014019
Nevertheless, considering the simplicity of the PNJL
model, the conclusion that can be drawn at this point is
promising: it appears that a relatively straightforward qua-
siparticle approach, with its dynamics rooted in spontane-
ous chiral symmetry breaking and confinement and with
parameters controlled by a few known properties of the
gluonic and hadronic sectors of the QCD phase diagram,
can account for essential observations from two-flavor
Nc � 3 Lattice QCD thermodynamics.
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