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The time-dependent CP asymmetry in exclusive B0�t� ! K�0� decays has been proposed as a probe of
new physics in B decays. Recently, this method was extended to radiative decays into multibody hadronic
final states such as B0�t� ! KS�

0� and B0�t� ! �����. The CP asymmetry in these decays vanishes to
the extent that the photon is completely polarized. In the standard model, the photon emitted in b! s�
has high left-handed polarization, but right-handed contamination enters already at leading order in �=mb
even for vanishing light quark masses. We compute here the magnitude of this effect and the time-
dependent CP asymmetry parameter SKS�0�. We find that the standard model can easily accommodate
values of S as large as 10%, but a precise value cannot be obtained at present because of strong
interactions uncertainties.
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TABLE I. Experimental results for the CP asymmetry parame-
ter Sf for f � K�0� and f � KS�

0� from BABAR and BELLE.
The BABAR nonresonant region includes all states with
1:1 GeV<mKS�0 < 1:8 GeV, while BELLE uses the range
1:0 GeV<mKS�0 < 1:8 GeV. The errors shown are statistical
and systematic, respectively.

f Sf
BABAR BELLE

K�0� �0:21
 0:40
 0:05 �0:01
 0:52
 0:11
�KS�

0�nonres� 0:9
 1:0
 0:2 �0:20
 0:66
KS�

0� �0:06
 0:37 �0:08
 0:41
 0:10
I. INTRODUCTION

The standard model (SM) predicts that photons are
predominantly left-handed in b! q� (q � s; d) decay
(and right-handed in �b! �q�). In the presence of new
physics this prediction can be changed, and a significant
right-handed photon amplitude can appear in b! s� de-
cays. Several methods have been suggested for testing this
prediction in radiative B decays [1,2].

One of these methods makes use of time-dependent CP
violation in B0 ! f� with f a CP eigenstate [1]. Since �L
and �R cannot interfere, the time-dependent CP asymme-
try

�� �B0�t� ! f�� � ��B0�t� ! f��

�� �B0�t� ! f�� � ��B0�t� ! f��

� Sf� sin��mt� � Cf� cos��mt�; (1)

is sensitive to the ratio of the right-/left-handed photon
amplitudes. These can be parametrized as

rfei�f � �CP�f�
A� �B0 ! f�R�

A� �B0 ! f�L�
(2)

where �CP�f� is the CP eigenvalue of the state f. This
method has been extended in Ref. [3] also to decays into
multibody final states, such as for example B! KS�

0�.
Summing over the unobserved photon polarization, the

CP violating parameter in Eq. (1) is given by

Sf� � �
2rf

1� r2
f

cos�f sin2�: (3)

In the SM, it is usually assumed (incorrectly, see [9]) that
rq 	mq=mb, which leads to a small CP asymmetry S	
2% in the b! s� transition. We used in this estimate
sin2� � 0:685
 0:032 [4].
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Measurements of the CP asymmetries in B! K��were
reported by BABAR [5] and BELLE [6], see Table I. In
addition, these two collaborations measured the CP asym-
metry in the nonresonant mode SKS�0� in two different
ways: (a) BABAR excludes the K� resonance by integrating
over the KS�0 invariant mass range
1:1 GeV<MKS�0 < 1:8 GeV; (b) BELLE includes both
resonant and nonresonant modes by integrating over the
range mK �m� � MKS�0 � 1:8 GeV. The error in these
determinations is still too large to allow a meaningful
comparison with the SM prediction. With a view to im-
proving the statistics of such measurements, we would like
to assess the feasibility of combining the resonant and
nonresonant measurements. Also, it is clear that searching
for new physics with such measurements requires a reliable
estimate of the standard model background.

At leading order in 1=mb, the photon emitted in B!
K�� is always left-handed polarized, to all orders in �s [9].
However, in multibody decays such asB! KS�0� a right-
handed component appears, already at leading order in
1=mb, in the kinematical region with an energetic kaon
and a soft pion. This is mediated by a B� pole diagram,
-1 © 2006 The American Physical Society
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with the B� ! K�R amplitude calculable at leading order
in �=mb using factorization in QCD as following from
Soft Collinear Effective Theory (SCET) [20–22]. The
presence of two hadrons in the final state evades the
helicity argument which forbids a right-handed photon in
�B! �K��. Note that a right-handed photon is present in

inclusive B! Xs� at leading order [9]. The right-handed
photon couples to the charm quark loop induced by the 4-
quark operator O2 � � �sc�� �cb�, which gives equal rates for
b! sg�L and b! sg�R. In addition to this leading order
effect, a significant right-handed photon amplitude in B!
K�� can appear at subleading order in �=mb from graphs
with photon emission from the charm quark loop.

The purpose of this paper is to study in more detail the
magnitude of the leading order effects described above on
the time-dependent CP asymmetry in B! KS�

0�. In
Sec. II we introduce the effective theory formalism used
in our computation. This is a combination of the soft-
collinear effective theory (SCET) with the chiral perturba-
tion theory recently proposed in Ref. [37]. In Sec. III the
helicity amplitudes are written down, and used to compute
decay distributions for �B! KS�0� with a right-handed
photon. Sec. IV gives the results for the time-dependent
CP violation SKS�0� in the kinematical region with an
energetic kaon and a soft pion. This has a significant
overlap with the region used in the BELLE and BABAR
measurements of the time-dependent CP asymmetry into a
nonresonant KS�0 state. Sec. V summarizes our results.
Readers interested in the phenomenology of the decay can
skip the formalism and proceed directly to Sec. III.
II. EFFECTIVE THEORY FORMALISM

The exclusive radiative decays B! K�� can be de-
scribed in the large recoil region in factorization. At lead-
ing order in �=mb with �	 500 MeV, the existence
of such factorization relations has been demonstrated in
[11–15] at lowest order in �s, and proven to all orders in�s
using the soft-collinear effective theory [24,26–29].

The b! s� transitions with an energetic s quark are
mediated in SCETI by the effective Lagrangian

Heff � N0�mbc�!� �sn;!A6
?PLbv � b1L�!i�O

�1L��!i�

� b1R�!i�O�1R��!i� �O��2��; (4)

with N0 �
GFVtbV�tse��

2
p
�2 E�. The relevant modes are soft quarks

and gluons with momenta ks 	� and collinear quarks
and gluons along n [28]. We use everywhere the SCET
notations in Ref. [25]. We choose the photon momentum
to move along the � ~e3 direction q� � E� �n�, such that
the hadronic system has a large momentum along the
opposite direction n�. The hard scale in this problem is
Q � �n  pX 	mb; and the expansion parameter in SCET
is �2 	�=Q. We denoted n�; �n� unite light-cone vectors
satisfying n2 � �n2 � 0; n  �n � 2. The transverse photon
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field is A?
� , and its polarization vectors are "� �

�0; 1��
2
p ;� i��

2
p ; 0� (right-handed photon) and "� �

�0; 1��
2
p ; i��

2
p ; 0� (left-handed photon).

We neglect here and in the following s quark mass
effects, which can be included straightforwardly [23].
The photon coupling to the spectator quark in the B in-
troduces new factorizable operators containing collinear
modes along the photon momentum [28–30]. These spec-
tator effects do not contribute to the right-handed photon
amplitude, and we return to them below (see the discussion
around Eq. (14)).

The first operator in Eq. (4) scales like O��0� and
couples only to left-handed photons. The O��� operators
O�1L;R� couple to left- and right-handed photons, respec-
tively, and are defined as

O�1L��!1; !2� � �sn;!1
A6 ?

�
1

�n  P
igB6 ?n

�
!2

PRbv;

O�1R��!1; !2� � �sn;!1

�
1

�n  P
igB6 ?n

�
!2

A6 ?PRbv:

(5)

At lowest order in matching, the Wilson coefficients can be
extracted from the computations of [12–15,19] and are
given by [28]

c�!� � Ceff
7 �O��s�mb�� (6)

b1L�!1; !2� � Ceff
7 �

2C2

3
	
�
�2E�!2

m2
c

�

�O�C3�6;8; �s�mb��;

b1R�!1; !2� � �
2C2

3
	
�
�2E�!2

m2
c

�
�O�C3�6;8; �s�mb��:

(7)

with

Ceff
7 � C7 �

4

9
C3 �

4

3
C4 �

1

9
C5 �

1

3
C6 (8)

in the operator basis of Ref. [17]. Beyond tree level the
Wilson coefficients c; b1L and b1R receive hard corrections
	�s�mb� from charm loops [18] and from matching onto
SCETI. The O��s�mb�� matching corrections are known
only for c�!� [21], so for consistency we do not include
them in any of the coefficients. The function 	�x� appears
in the 3-point function with a charm loop, and is given by
[19]

	�x� �

8><
>:

1
2�

2
x arctan2�

�������x
4�x

p
� x < 4

1
2�

2
x �log�

��
x
p
�
�������
x�4
p

2 � � �i
2 �

2 x > 4 (9)

In the Wilson coefficients of the O��� operators b1L and
b1R we neglect small contributions from the penguin op-
erators O3�6 and the gluon dipole operator O8.
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After matching onto SCETII [24], the b! s� effective
Lagrangian (4) contains both factorizable and nonfactoriz-
able operators

Heff ! �Onf
� �Ofact

� Osp
� �A� �    (10)

where the ellipses stand for higher dimension operators.
The details of this matching are given in Refs. [24–26],
and we give here only the points essential in the following.

The nonfactorizable operators couple only to the left-
handed photon field, "��� O

nf
� � 0, while the factorizable

operators couple to both left- and right-handed photons.
Working at tree level in matching SCETI ! SCETII, the
factorizable operators are

Ofact
� � N0

�
�

1

2!

Z 1

0
dzdxdk�b1L�z�J?�x; z; k��

� � �qk� 6n�
?
���?PRbv�

�
�sn;!1

�6n
2
�?� qn;!2

�

�
1

2!

Z 1

0
dzdxdk�b1R�z�Jk�x; z; k��

� � �qk� 6n�
?
�PRbv�

�
�sn;!1

�6n
2
PLqn;!2

��
(11)

where we used a momentum space notation for the soft
nonlocal operators

�q ik�b
j
v �

Z d�
4�

e��i=2��k� �qi��n=2�Yn��; 0�b
j
v�0�: (12)

The functions b1L�z� and b1R�z� appearing here are related
to the Wilson coefficients in Eq. (4) as bi�z� � bi��1�
z�!; z!�. The momentum labels of the collinear fields are
parametrized as !1 � x!;!2 � ��1� x�!. We denoted
here with J?;k jet functions defined as in Ref. [33]. They
have perturbative expansions in �s��c� with �2

c 	Q�. At
leading order they are given by

Jk�x; z; k�� � J?�x; z; k�� �
��s��c�CF

Nc

1

�xk�
��x� z�

(13)

The O��2
s� corrections to the jet functions have been

recently obtained in Ref. [27].
Another class of factorizable operators not present in

Eq. (11) arise from the photon coupling to the spectator
quarks [28–30]. (Photon coupling to the final state quarks
leads to power suppressed operators [31].) After matching
onto SCETII, they are given at leading order in �s�mb� by

Osp
� �

GF

2
���
2
p e

X
q�u;d;s

bsp�!i�

�
Z
dk�Jsp�k��eq� �qk���

�6n6nPLbv�

�

�
�sn;!1

�6n
2
PLqn;!2

�
(14)
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with bspec�!i� � VubV
�
us�C1 � C2=Nc��qu � VtbV

�
ts�C4 �

C3=Nc� �O��s�mb�� and

Jsp�k�� �
1

k� � i


�
1�

�sCF
4�

�
L2 � 1�

�2

6

��
(15)

with L � log���2E�k� � i
�=�2� a jet function known to
O��s��c�� [32]. The spectator operator couples only to
left-handed photons. For consistency with the other factor-
izable operators included, we work to O��0

s�Q��, but keep
terms of O��s��c�� in the factorized amplitude. The domi-
nant term	C1;2 contributes only to �B0 ! K����, but not
to �B0 ! KS�

0�. In Eqs. (6) we neglected the contributions
from O3�6;8 to the Wilson coefficients c�!�; b1L;1R�!i�, so
for consistency we neglect such terms also in Eq. (14).

The SCET formalism introduced above has been applied
to prove factorization relations for exclusive semileptonic
B! M‘� and radiative B! M�;M‘�‘� decays into one
energetic light hadron, with M a light pseudoscalar or
vector meson [9,24–29]. In all these cases, the transition
matrix element is written as the sum of a soft (nonfactor-
izable) and hard-scattering (factorizable) terms, as follows.

The matrix elements of the nonfactorizable operators are
parametrized in terms of soft form factors. In our calcu-
lation we require only the matrix element

hK��p;��j�sn"6
�
�PLbvj �B�v�i � �"

�
�  �

�� �n  pK��
BK�
?

(16)

where we use the SCETI notation for the operators ob-
tained from them by matching onto SCETII.

The matrix elements of the factorizable operators Ofact
�

given in Eq. (11) are given by convolutions of soft and
collinear matrix elements with the Wilson coefficients. The
matrix elements are parametrized in terms of light-cone
wave functions of the B and K��� mesons [28]. In the �B!
�K� transition, only the left-handed photon amplitude is

nonvanishing [9,28], and is given by

Hfact
� � �B! �K��L� � h �K��LjH effj �Bi

� N0mbmB

Z 1

0
dzb1L�z��

BK�
J? �z� (17)

where the factorizable function �BK
�

J? �z� is defined as

�BK
�

J? �z� �
fBf?K�
mB

Z
dxdk�J?�x; z; k��B

��k��
?
K� �x�

(18)

In Ref. [37] it was proposed to extend the application of
this formalism also to multibody B decays to final states
containing one energetic meson and one soft hadron. We
summarize briefly the main points of this approach, before
proceeding with the details of the computation.

The matrix elements of the nonfactorizable operators is
parametrized in a manner similar to Eq. (16) in terms of a
new soft function
-3
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Hnf
�� �B! Kn��L� � N0mbc� �n  pK� ��

BK�
? �EK; E��:

This nonfactorizable amplitude couples only to left-handed
photons, just as in the case of the B! K�� transition.
Furthermore, the soft function �BK�? is related by a sym-
metry relation to a similar function appearing in multibody
semileptonic decay B! ��‘ �� [37], analogous to the
appearance of a common nonfactorizable amplitude �BM

in both rare and semileptonic form factors [10,11,24].
The matrix elements of the factorizable operators in

Eq. (11) are also given by convolutions of hard, jet and
soft factors, as in the case of the B! K� transition dis-
cussed above. At leading order in �; Q, soft and collinear
modes decouple in the SCET Lagrangian [22], which is the
statement of soft-collinear factorization. This fact has two
important implications. First, the soft pion does not couple
to the collinear meson in the final state M. Second, the
matrix elements of factorizable operators corresponding to
the transition B! Mn� factor as

hKn�jOfactj �Bi � hKnjOCj0ih�jOSj �Bi;

and are calculable in terms of the kaon light-cone wave
functions and a new soft matrix element of the OS operator
in the B! � transition.

The soft operator OS required here appears in the b1R
factorizable operator. We define it as

OS�k�� �
Z d�

4�
e��i=2��k� �q

�
�
n
2

�
Yn

�
�
n
2
; 0
�
"6 �
6n
2
PRbv�0�:

Its B! � matrix element is parametrized in terms of one
soft function S�k�; t2; ��, defined as

h��p��jOS�k��j �B�v�i � �2�"�  p��S�k�; t2; ��

with t � mBv� p� and � � n  p�=�n  v�. The support
of this function is �n  p� � k� � 1. This is the analog
for B physics of the generalized parton distributions
(GPD), commonly encountered in nucleon physics.

The complete factorization relation for the right-handed
photon amplitude can now be written down as

H�� �B! �K��R�

� 2N0fK�"�  p��
Z 1

0
dzdxb1R�z�

�
Z 1
�p��

dk�Jk�x; z; k��S�k�; ��K�x�;

The predictive power of such relations depends on the
existence of reliable information about the soft function S.
Eventually the function S should be extracted using B
decays data, or constrained by lattice QCD computations.
In the soft pion region, the soft function S is fixed by chiral
symmetry in terms of one of the B meson light-cone wave
functions [37]. We will use in this paper the result for S
predicted at leading order in chiral perturbation theory.
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The predictions of chiral symmetry for the couplings of
Goldstone bosons are most conveniently derived using
chiral perturbation theory. The applicability of this ap-
proach is limited to problems describing only soft hadrons.
The extension to heavy hadrons is possible, provided that
the large scale mb is eliminated by going over to HQET.
The corresponding chiral effective theory is the heavy
hadron chiral perturbation theory (HHChPT), and its de-
grees of freedom are heavy meson spin doublets H �
�B;B�� and the Goldstone bosons [34–36].

The effective Lagrangian that describes the strong inter-
actions of the Goldstone bosons with the ground state
heavy mesons is [34–36]

L �
f2
�

8
Tr�@��@��y� � iTr� �Hav�@

�Ha�

�
i
2

Tr� �HaHb�v
���y@��� �@��

y�ab

�
1

2
igTr� �HaHb���5���

y@��� �@��y�ab �   

(19)

where the ellipsis denote light quark mass terms, O�1=mb�
operators associated with the breaking of heavy quark spin
symmetry, and terms of higher order in the derivative
expansion. The pseudo-Goldstone bosons appear in the
Lagrangian through � � ei�=f� (� � �2) where

� �

0
BBB@

1��
2
p �0 � 1��

6
p � �� K�

�� � 1��
2
p �0 � 1��

6
p � K0

K� �K0 � 2��
6
p �

1
CCCA (20)

with the pion decay constant f� ’ 135 MeV. These fields
transform as

�! L�Uy � U�Ry (21)

under chiral SU�3�L � SU�3�R transformations. The super-
fieldHa contains the pseudoscalar and vector heavy meson
fields �Ba and �B�a� with velocity label v�

Ha �
1� v6

2
� �B�a��� � �Ba�5�: (22)

The flavor index runs over a � 1; 2; 3 corresponding to
�Ba � �B

�; �B0; �Bs�. Under chiral SU�3�L � SU�3�R, the
superfield Ha transforms as

Ha ! HbU
y
ba: (23)

The numerical value of the coupling g � 0:5
 0:1 is taken
to cover a range compatible with its determination from
D� ! D� decays g � 0:59
 0:08 [39] and lattice QCD
g � 0:48
 0:03
 0:11 [40], g � 0:42
 0:04
 0:08
[41]

We consider next the matrix element h�jOSj �Bi in chiral
perturbation theory. This requires the chiral representation
of the nonlocal soft operators OS. Consider light-cone
-4
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FIG. 1. The phase space of the �B0 ! KS�
0� decay in varia-

bles �MK�; E��. The vertical line denotes the maximum K�
invariant mass used in the BABAR and BELLE measurements.
The 3 regions shown correspond to (I) soft pion E� 	�; the
shaded region E� � 0:5 GeV (implying EK > 2:18 GeV) shows
the region of applicability of ChPT; (II) collinear pion and kaon
E� 	Q;EK > 1 GeV; (III) soft kaon EK < 1 GeV (implying
E� > 1:7 GeV).
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nonlocal heavy-light bilinears of the form

Oa
L;R�k�� �

Z dx�
4�

e�
i
2k�x� �qa�x��Yn�x�; 0�PR;L�bv�0�:

(24)

Under the chiral group they transform as ��3L; 1R� and
�1L; �3R�, respectively. For each case, there is a unique
operator in the effective theory with the correct transfor-
mation properties [37]

Oa
L�k�� �

i
4

Tr��̂L�k��PR�Hb�
y
ba�; (25)

Oa
R�k�� �

i
4

Tr��̂R�k��PL�Hb�ba� (26)

The common matrix �̂L�k�� � �̂R�k�� � �̂�k�� is given
by

�̂�k�� � fB
�������
mB
p

� �6nB
��k�� �

�6nB
��k��� (27)

where B

�k�� are the usual light-cone wave functions of a

B meson, defined by [11]

Z dz�
2�

e��i=2�k�z�h0j �qi�z��Yn�z�;0�b
j
v�0�j �B�v�i

��
i
4
fBmB

�
1�6v

2
� �6nn vB

��k���6n �n vB
��k����5

�
ji

(28)

The operators in Eqs. (25) and (26) with (27) can be used to
compute the matrix elements of OL;R on states with a B
meson and any number of pseudo-Goldstone bosons. In
particular, they give the following prediction for the soft
function S�k�; t2; ��defined by the B! � matrix element
of OS�k�� at leading order in the chiral expansion [37].

S�k�; t2; �� �
gfBmB

f�

1

v  p� � �
B
��k��:

We will use this result in the numerical evaluations of this
paper. No information can be obtained using chiral sym-
metry about the S function for�n  p� < k� < 0. For soft
pions this contribution is likely to be small, so it will be
neglected in the following.

Finally, we comment briefly on previous applications
[38] of the HHChPT to B decays into multibody final states
containing soft Goldstone bosons. These applications in-
volve the generalization to B� decays of the factorization
formula for nonleptonic B decays, with the B� appearing in
intermediate states of pole diagrams. The usual HHChPT
[29–31] methods are applied to compute the pion coupling
in both pole diagrams and in contact diagrams.

There are several issues with such a simplified approach:
(i) the application of chiral perturbation theory to the non-
factorizable operators Onf contributing to the B! � tran-
sition with an energetic pion is problematic. Since these
operators couple to both soft and collinear modes, loop
014013
corrections to their matrix elements do not have a well-
behaved power counting. In our approach these contribu-
tions are simply parametrized by new soft functions �BK�? ,
which are related by symmetry relations to similar matrix
elements appearing in other processes. (ii) the pion contact
terms, such as that in Fig. 2(b), can be computed only for
the factorizable operators, (but not for the entire weak
vertex), and are given by factorization relations.

In the next section we will combine the pieces of the
factorizable amplitudes, add in the nonfactorizable ampli-
tude and write down the complete result for multibody
B! K�� amplitudes.
III. HELICITY AMPLITUDES AND DECAY RATES

We will use the formalism described in Sec. II to com-
pute the amplitude for the decays �B! KS�0� and �B!
K���� in the kinematical region with one energetic (col-
linear) kaon and one soft pion. To establish the region of
validity of our computation, we show in Fig. 1 the phase
space for this decay, in variables �MK�; E��, with M2

K� �
�pK � p��2.

We distinguish three distinct regions for the pion and
kaon energies in �B! K�� decay (see Fig. 1):

(I) E� 	�; EK 	Q
(II) E� 	Q;EK 	Q
(III) E� 	Q;EK 	�
These three regions are treated differently in the SCET,

and the heavy quark mass scaling of the decay amplitudes
is correspondingly different in each of them, as follows.

The region (I) contains a soft pion and an energetic kaon.
Part of this region, but not all, can be treated using the
SCET� ChPT combination considered in this paper. We
-5
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FIG. 2. Diagrams showing leading order contributions to the
decay �B! K�� with one collinear kaon and a soft pion. The
filled circle in (a) and (b) represents a factorizable operator Ofact,
while the filled square in (c) represents a nonfactorizable opera-
tor Onf .
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subdivide it into the soft pion region with E� < 0:5 GeV,
where chiral perturbation theory is valid, and the inter-
mediate pion region 0:5 GeV<E� < 1:0� 1:5 GeV
(which we will call, for lack of a better name, the hard-
soft pion region).

The region (II) includes collinear pion and kaons. In
general this configuration can have the kaon and pion
momenta moving in different directions forming a large
angle in the B rest frame ��K 	O�1�. In our case, the
experimental constraint MK� < 1:8 GeV forces the angle
to be small ��K 	O��=Q� (valid for M2

K� 	�Q), such
that the �;K constituent partons can be described by col-
linear fields with a common n.

The region (III) contains an energetic pion and a soft
kaon EK 	�; E� 	Q. This region is not described by the
leading order SCET operators in Sec. II, and the corre-
sponding amplitudes are suppressed by at least one power
of �=Q relative to those in regions (I) and (II).

We start by writing down the helicity amplitudes for the
B! K�� decay at leading order in �=mb, by combining
the partial results in Sec. II. At this order, only the left-
handed photon amplitude is nonvanishing

H�� �B! �K��R� � 0 (29)

H�� �B! �K��L� � N0mbmB�c�mB��
BK�
?

�
Z 1

0
dzb1L�z��

BK�
J? �z��

� N0mbmBCeff
7 g

eff
� �0�: (30)

We defined here the effective tensor form factor geff
� �0�,

which absorbs the contributions of the operators other than
O7. Similar factorization relations are expected to hold also
for the �B! K�� transition in region (II), with the K�

light-cone wave function replaced by a two-bodyK� light-
cone wave function. We do not pursue this further here, but
note only that the vanishing of the right-handed photon
amplitude at LO observed in Eq. (29) should hold also in
the multibody case. This follows from the vanishing of the
�B! 0 matrix element of the soft operator in Eq. (11)

multiplying b1R.
The amplitudes for the multibody transition �B! Kn��

in region (I) are given at leading order by the graphs in
Fig. 2

�I�:H�� �B! �K��R� � N0
1

2
m2
BSR�p��

Z 1

0
dzb1R�z��BKJk �z�

(31)

H�� �B! �K��L� � N0 �n  pKc�mB��BK�? �EK; E�� (32)

The nonfactorizable operators O�
nf contribute only to the

left-handed photon amplitude, and the corresponding ma-
trix element is parametrized by �BK�? . On the other hand,
the factorizable operatorsO�

fact contribute only to the right-
handed photon amplitude. (We consider only �B0 ! KS�0�
014013
decays, for which the spectator factorizable operatorsOspec

do not contribute in the approximation used here of ne-
glecting O3�6.)

Note the appearance of a nonvanishing right-handed
photon amplitude at leading order in the region (I). This
amplitude is factorizable and can be computed as ex-
plained in Sec. II. The HHChPT diagrams required for its
computation are shown in Fig. 2(a). The factorizable func-
tion �BKJk �z�; appearing here is defined in analogy with the
function in Eq. (18), with the replacements f?K� !
fK;?K� �x� ! K�x�; J? ! Jk. The dependence on the
pion momentum is contained in the soft functions SR�p��
given by

SR�p�� �
g
f�

"�  p�
E� � �

(33)

with � � mB� �mB � 50 MeV.
Finally, in the kinematical region (III) with one soft kaon

and an energetic pion, the effective Lagrangian equation (4)
does not apply. The leading SCETI operator mediating
such a transition contains the �s�bv soft current, with at
least two insertions of the soft-collinear Lagrangian, acting
on the spectator quark

Tf��s�bv�; iL
�1�
q�; iL

�1�
q�g (34)

This is suppressed by at least �2 	�=Q relative to the
operators in Eq. (4), which implies that the decay ampli-
tudes in this region must be power suppressed relative to
those in regions (I) and (II).

We summarize the different contributions enumerated
above by showing them in graphical form in Fig. 2. We
emphasize our different treatment of the factorizable and
nonfactorizable operators: the matrix elements of the fac-
torizable operators are computed in chiral perturbation
theory, and include the B� pole and contact terms [Fig. 2
and 2(b)]. The matrix element of the nonfactorizable op-
erator [Fig. 2(c)] is parametrized in terms of a new soft
function �BK�? . This new soft function appears only in the
left-handed photon amplitude, and is related by symmetry
relations to a similar soft function which can be determined
in principle from �B! �n�‘ �� [37].

The only region where the right-handed photon ampli-
tude �B0 ! KS�0� contributes at leading order in �=Q is
the region (I) with a soft pion. In region (II) the right-
-6



CP ASYMMETRY IN B0�t� ! KS�
0� IN THE STANDARD MODEL PHYSICAL REVIEW D 73, 014013 (2006)
handed amplitude is suppressed by �=Q relative to the left-
handed amplitude, and in region (III) both amplitudes are
suppressed by at least �=Q. The contribution of the region
(I) with a hard-soft pion 0:5 GeV<E� < 1:0� 1:5 GeV
will be estimated by assuming the validity of HHChPT in
the entire region (I). We proceed to compute the right-
handed photon effect in region (I) on the decay rates and
time-dependent CP asymmetry.

The left-handed photon amplitude H�� �B! �K��L� in
Eq. (30) (region (I)) does not include the K� pole contri-
bution, although this likely dominates numerically in the
resonant regionMK� 	MK� . This contribution is paramet-
rically suppressed by �=mb in the soft pion kinematical
region. The reason for this is that by soft-collinear facto-
rization at leading order in �=mb, the coupling of a soft
pion to two collinear hadrons, K�nKn�S, must be power
suppressed. On the other hand, the K� pole contribution is
numerically enhanced by the K� propagator, so we will
include it in our computation, despite being formally of
higher order in �=mb relative to the latter.

In the absence of data on �BK�? , we will model it by a K�

pole contribution. We introduce the following model for
the �B0 ! �K�� decay amplitudes in the kinematical region
(I) with one soft pion and an energetic kaon (this is similar
to the model used in Ref. [42]). In the left-handed photon
amplitude we neglect the nonresonant contribution and
keep only the K� pole term (Fig. 2(c))

Hmodel
� � �B!K����L��HBK�

� gK�K��"� p��BWK� �MK��

(35)

with HBK�
� � A� �B! K��L� the 1-body helicity amplitude

given in Eq. (32), and BWK� �MK�� � �M
2
K� �M

2
K� �

iMK��K� �
�1 the Breit-Wigner function for a K� resonance.

The amplitude for �B0 ! KS�0�L is given by Eq. (35)
multiplied by 1=2. The K�0K��� coupling with a charged
pion can be extracted from the total K� ! K� decay
width, � � g2

K�K�p
3
�=�16�m2

K� �, which gives gK�K� �
9:1.

The right-handed photon amplitude is given by the sum
of the K� and B� resonant terms

Hmodel
� � �B0 ! K����R�

� N0
gm2

B

2f�

"�  p�
E� � �

Z 1

0
dzb1R�z��

BK
J �z�

�HBK�
� gK�K��"�  p��BWK� �MK�� (36)

The �B0 ! KS�
0�R amplitude has an additional factor of

1=2. We included here also a nonvanishing resonant �B!
K��R right-handed photon amplitude, which is introduced
by a nonvanishing strange quark mass, and by power sup-
pressed contributions neglected in Eq. (31). We will pa-
rametrize it as

HBK�
�

HBK�
�

�
ms

mb
� hse

is (37)
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The potentially leading mechanism contributing to hs has
been identified in Ref. [9], and it arises from charm loops
coupling to the B and K� through soft gluons. Although no
first principles calculation of this parameter is yet avail-
able, it can be estimated from a simple power counting
argument as

hs 	
1

3

C2

C7

�

mb
	 0:09 (38)

In our numerical evaluation we will use hs � 5%, keeping
in mind that this estimate is on the lower side of the
dimensional estimate.

In the remainder of the paper we will use the model
described by Eqs. (35)–(37) to compute distributions and
decay rates for the B! KS�

0� decay. We start by com-
puting the right-handed photon rate; although not directly
observable, this quantity will illustrate the relative impor-
tance of the different mechanisms contributing to the
wrong-helicity photon amplitude.

The �B! �K�� decay rate is given by

d2��B! K���

dE�dM2
K�

�
1

2�4��3m2
B

�jH�j
2 � jH�j

2� (39)

where H
 are given in Eqs. (35) and (36), respectively. In
the limit of a very narrow K� the integrations over
�MK�;E�� can be performed exactly, and the well-known
result for the �B! �K�� rate is recovered

Z
dE�dM2

K�
d2�� �B! �K��L�

dE�dM2
K�

�
E�0��

8�m2
B

jH�� �B!K��L�j2

��0 (40)

HereE�0�� � �m2
B �m

2
K� �=�2mB� denotes the photon energy

corresponding to the 2-body kinematics.
It is convenient to express the �B! K����R decay rate

by normalizing it to the �B! K��L decay rate (a factor of
1=4 has to be added for �B0 ! KS�0�R)

1

�0

d2�R
dM2

K�dE�
�

j ~p?� j2

2�4��2E�0��

��������
E�

E�0��

g	ei

2f��E� ���

�
gK�K��

ms
mb
� hseis�

M2
K� �M

2
K� � iMK��K�

��������
2

(41)

with M2
K� � m2

B � 2mBE�. The two terms give the con-
tributions of the B� resonant pole, and that of the K�

resonant right-handed amplitude. The hadronic dynamics
in the B� resonant contribution enters through the RG
invariant ratio

	ei �
mB

mbC
eff
7 g

eff
� �0�

Z 1

0
dzb1R�z��BKJ �z�

� �0:013� 0:045i (42)

In the numerical evaluation of this parameter we used the
tree level result for the jet functions Eq. (13) and the lowest
-7



TABLE II. Input parameters used in the numerical computa-
tion, and results for the effective Wilson coefficients and factor-
izable matrix elements. The values of the effective Wilson
coefficients are quoted at the scale � � 4:8 GeV. The strange
quark mass is taken from [41].

mpole
b 4:8 GeV C2 1:107

mc�mc� 1:4 GeV C7 �0:343
ms�2 GeV� 78
 10 MeV fB 200 MeV
geff
� �0� 0:3 fK 170 MeV
hk�1
� i
�1
B 350 MeV gK�K� 9:1

g 0:5
 0:1 	ei �0:013� 0:045i
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order matching result for b1R from Eq. (6). The remaining
required parameters are listed in Table II.

The result equation (41) can be used to compute the
energy spectrum and integrated rate with a right-handed
photon, with an upper cut-off on the pion energy. The
interference of the two terms depends sensitively on the
unknown strong phase s. For this reason, we will give
only an upper bound on this rate, obtained by assuming that
the two terms have the same strong phase and interfere
constructively. The resulting photon energy spectrum and
its components are shown in Fig. 3, for the central values of
the parameters. For completeness, we quote also the frac-
tion of events which survive a pion energy cut ncut�Emax

� �.
This can be computed from the K� pole contribution to
H�� �B! �K��� and is: ncut�0:5 GeV� �
11:4%; ncut�1 GeV� � 50:5%; ncut�1:5 GeV� � 88:4%.
0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3

0.4

0.5

0.6

10 1
Γ

dΓR

dMKπ

MKπ (GeV)

FIG. 3. The decay rate (� 103) with a right-handed photon
�B0 ! KS�

0�R, normalized to the B! K��L rate, with a cut on
the pion energy E� � 0:5 GeV, and its components, computed as
described in the text. The black curve gives an upper bound on
the total decay rate. The dark gray curve shows the B� � K�

interference term, and the light gray curve shows the contribu-
tion of the B� pole graph (magnified by a factor of 100 relative to
the other curves).
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IV. TIME-DEPENDENT CP ASYMMETRY

We compute in this section the mixing-induced CP
violating parameter SKS�0� in the standard model. We start
by defining the time-independent amplitudes

�AL � H� �B0 ! KS�0�L� (43)

�A R � H� �B0 ! KS�0�R� (44)

AL � H�B0 ! KS�
0�L� (45)

AR � H�B0 ! KS�
0�R� (46)

Since the b! s transition is CP conserving, there are
relations among these amplitudes, such that only two of
them are independent. We choose the independent ampli-
tudes to be �AL; �AR, and obtain the remaining two ampli-
tudes from them by CP transformations. Charge
conjugation exchanges particles and antiparticles, and par-
ity takes �L $ �R and changes the directions of momenta.
We apply a rotation by 180� around the x axis, which
restores the momenta to their original directions. The effect
of the rotation is to multiply the amplitudes with
�i�i���Ji � �1 (with J�ii the spin-parity of the particles),
and exchange "� $ "�. This gives

AL �
"�  p�
"�  p�

�AR; AR �
"�  p�
"�  p�

�AL (47)

The time-dependent differential rate has a form similar
to Eq. (40) (with i � L;R)

d2��B0�t� ! KS�0�i�

dE�dM2
K�

�
1

2�4��3m2
B

�jAij2 � j �Aij2�

�
1

2
e� ��tf1� Ci cos�mt

� Si sin�mtg (48)

with

Ci�E�;MK�� �
jAij2 � j �Aij2

jAij2 � j �Aij2
(49)

Si�E�;MK�� � 2
Im�e�2i� �AiA�i �

jAij2 � j �Aij2
(50)

From this expression, results for the CP violating coeffi-
cients integrated over parts of the phase space can be
straightforwardly obtained.

The BELLE and BABAR Collaborations measured the S
and C parameters integrated over all E� and a range of
MK�. We compute the SM values of these parameters, by
integrating the time-dependent distribution Eq. (48) with
appropriate cuts. Applicability of the chiral perturbation
theory computation of the �AR amplitude requires that we
restrict the pion energy in the B rest frame by E� < Emax

� ,
with Emax

� � 500 MeV.
-8
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Integrating over E� with an upper cut-off Emax
� , and

summing over the photon polarizations gives the mixing-
induced CP asymmetry parameter SKS�0��MK��

SKS�0��MK�� � �2 sin2�
�
ms

mb
� hs coss

�
gI�MK��

2f�gK�K�

E�

E�0��
��M2

K� �M
2
K� �Re	

�MK��K�Im	�
�

(51)

The first two terms represent the resonant B! K�� effect,
and the last term is the nonresonant contribution. The
dependence on the pion energy cut-off is contained in

I�MK�; Emax
� � �

R
Emax
� dE�

j ~p?� j2

E���R
Emax
� dE�j ~p?� j2

(52)

We show in Fig. 4 results for the SKS�0� parameter as a
function ofMK�, integrated with an upper pion energy cut-
off Emax

� � 0:5 GeV. We used in this computation the
central value for sin2� � 0:685
 0:032 as measured in
the charmonium system [5]. The effect of the nonresonant
contribution is to introduce a mild dependence of the
asymmetry on MK�.

Finally, we integrate also over MK� � �mK�
m�; 1:8� GeV to obtain the inclusive CP asymmetry pa-
rameter (for an upper pion energy cut)

SKS�0� � �2 sin2�
�
ms

mb
� hs coss

�
g

2f�gK�K�
Re�	I2�Emax

� ��

�
(53)

where the phase space factor I2�E
max
� � is defined as
0.8 1 1.2 1.4 1.6 1.8

-7.5

-5

-2.5

0

2.5

5

7.5

10

0.8 1 1.2 1.4 1.6 1.8

-5

0

5

10

SKSπ0γ

MKπ (GeV)

FIG. 4. The time-dependent CP asymmetry parameter SKS�0�
(in percent) as a function of MK�. The three lines correspond to
(from bottom to top): hs coss � �0:05; 0; 0:05. We used here
Emax
� � 0:5 GeV.
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I2�E
max
� � �

R
dM2

K�BW�
K� �MK��

E�
E�0��

R
Emax
� dE�

j ~p?� j2

E���R
dM2

K�jBWK� �MK��j
2
R
Emax
� dE�j ~p

?
� j

2

� 0:20� 0:11i GeV; (54)

and the numerical value corresponds to Emax
� � 0:5 GeV.

As mentioned, for pion energies above 1:0� 1:5 GeV, the
right-handed photon amplitude is power suppressed, so it
can be expected to be numerically small. We estimate the
contribution from the hard-soft region 0.5 GeV
<E�<1:0�1:5 GeV by assuming the validity of the low
energy expression for the decay amplitudes over this range.
Taking Emax

� � 1:5 GeV replaces the numerical value in
Eq. (54) with I2 � 0:14� 0:05i GeV. In both cases dis-
cussed above, the contribution of the nonresonant (third)
term in the braces in Eq. (53) is less than 0:5%, and is thus
negligible.

We neglected in this computation the presence of higher
K� resonances. The Particle Data Book [43] lists four K�

resonances in the region mK �m� � MK� � 1:8 GeV,
which can appear in the KS�0 invariant mass spectrum
(with quantum numbers JP � 1�; 2�; 3�; . . . ). Their in-
clusion does not change the leading order nonresonant
right-handed photon amplitude computed here, but intro-
duces additional power suppressed effects similar to those
parametrized by �hs; s�. In the narrow width limit, their
effect is to replace hs coss in Eq. (53) with

hs coss !
1

1�
P
i
xi
�hs coss �

X
i

xih
i
s cosi

s� (55)

with xi � Br�B! K�i ��Br�K
�
i ! K��=Br�B! K���,

and �his; i
s� new parameters for B! K�i � defined analo-

gously to Eq. (40). Of the four kaon resonances contribut-
ing to the sum, only two of them decay into K� with a
branching fraction larger than 30%: K�2�1430� and
K��1680�, with xi � 0:15 and 0.01, respectively. This
shows that the contributions of the higher kaon resonances
are likely very small and can be neglected.

Our results demonstrate that the nonresonant contribu-
tion to the mixing-induced CP asymmetry is negligibly
small, and the SM contamination is dominated by the right-
handed photon amplitude in �B! K��R, parameterized by
hs coss. Our results show that averaging the nonresonant
and resonant measurements of the S parameter is a justified
procedure.

V. CONCLUSION

We studied in this paper the standard model prediction
for the mixing-induced CP asymmetry parameter in B0 !
KS�

0� decay. This decay is important as a probe for new
physics manifested through a right-handed photon in b!
s� decay. The naive expectation [1] for the S parameter in
the SM is S � �2 sin2��ms=mb� 	 2%. We computed the
corrections to this prediction introduced by strong interac-
tion effects.
-9
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In the kinematical region with MKS�0 	MK� and a soft
pion in the rest frame of the B meson, there is a unique SM
mechanism contributing to the S parameter at leading order
in �=mb, arising from the B� pole diagrams. These effects
are factorizable and calculable using a combination of
SCET and heavy hadron chiral perturbation theory [37].
In addition, power suppressed effects can introduce a
potentially sizeable contamination from nonfactorizable
graphs with the photon coupling to the charm quark loop
[9]. These are difficult to compute in a reliable way, and a
simple power counting estimate allows a right-handed
photon amplitude as large as 	9%.

We performed a detailed numerical study of the non-
resonant effects. We find that the leading order B� pole
effect is numerically small. It introduces a weak depen-
dence of the CP asymmetry SKS�0� onMK�. The dominant
SM contamination is from power suppressed effects in the
�B! K��R resonant amplitude, and our best estimate in the
MK� dependent asymmetry is jSSM

KS�0�
j � 8% (see Fig. 4).

When integrated over MK�, the nonresonant effect is
practically negligible, and the CP asymmetry SKS�0� is
014013
dominated by the resonant �B! �K��R amplitude. This
means that averaging the results of the resonant and non-
resonant measurements, as currently done at B factories, is
a justified procedure. If improved measurements of the CP
asymmetry confirm the present average jSj 	 8%, this
would be consistent with a power suppressed correction
in the SM. We reiterate that the naive estimate S	
�2�ms=mb� sin2� seriously underestimates the value of
the S parameter in the SM. Furthermore, one would also
expect the agreement between resonant and nonresonant
measurements to improve.
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