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Fluctuations, strangeness, and quasiquarks in heavy-ion collisions from lattice QCD
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We report measurements of diagonal susceptibilities for the baryon number, �B, electrical charge, �Q,
third component of isospin, �I , strangeness, �S, and hypercharge, �Y , as well as the off-diagonal �BQ,
�BY , �BS, etc. We show that the ratios of susceptibilities in the high-temperature phase are robust
variables, independent of lattice spacing, and therefore give predictions for experiments. We also
investigate strangeness production and flavor symmetry breaking matrix elements at finite temperature.
Finally, we present evidence that in the high-temperature phase of QCD the different flavor quantum
numbers are excited in linkages which are exactly the same as one expects from quarks. We present some
investigations of these quarklike quasiparticles.
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I. INTRODUCTION

Experiments plan to study fluctuations of conserved
quantities in heavy-ion collisions at BNL RHIC and
CERN LHC in different rapidity windows. With proper
particle identification, one can measure in the experiment
both absolutely conserved quantities like the baryon num-
ber (B) and the electrical charge (Q), as well as quantities
which are conserved only under the strong interactions,
such as the third component of isospin (I3), the strangeness
(S) and the hypercharge (Y). These observations can be
used to extract fluctuations in the numbers of these quan-
tities [1,2]. Such observations need to be compared to
predictions of quark number susceptibilities (QNS) from
lattice QCD. In this paper we report on lattice computa-
tions of a variety of diagonal QNS—�B, �Q, �I, �S and
�Y . One of the main results in this paper is the extraction of
predictions for the ratios of these susceptibilities which
survive the continuum limit. Our second important result is
the investigation of the strange quark sector of the theory:
we extract the Wroblewski parameter in a dynamical QCD
computation for the first time, and also investigate the
dynamics and kinematics of flavor symmetry breaking in
QCD. Further, we present results on the cross correlations
�BQ, �BY , �BS and �QY . These cross correlations are used
to explore the charge and baryon number of objects that
carry flavor. We find that the baryon number of flavor
carrying objects immediately above the QCD crossover
temperature, Tc, are 1=3 and the charges are 1=3 or 2=3.
We find furthermore, that these objects are almost pure
flavor—anything carrying u flavor has only tiny admix-
tures of d and s flavors, etc. This is our third main result.

We have bypassed the necessity of numerically taking
the continuum limit of the theory by restricting attention to
the high-temperature phase where it is easy to define robust
observables which have little, or no, lattice spacing depen-
dence. We demonstrate the robustness of the observables in
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quenched QCD, and then compute these quantities in QCD
with two flavors of light dynamical quarks. These are also
good observables in the sense of [1]:

CK=L �
�K
�L
�
�2
K

�2
L

; (1)

where �K and �L are QNS for the conserved quantum
numbers K and L and �K and �L are the variances. The
two variances must be obtained under identical experimen-
tal conditions, after removing counting (Poisson) fluctua-
tions as suggested by [3]. Thus the robust lattice
observables give predictions for robust experimental
observables.

EitherK or L can also stand for a composite label �M;N�
where M and N are conserved quantum numbers—in this
case the susceptibility is an off-diagonal susceptibility, and
the variance has to be replaced by the covariance of M and
N. Note the relation with the correlation coefficient:

rMN �
hMNi � hMihNi

�M�N
�

�MN��������������
�M�N
p � C�M;N�=M

������������
CM=N

q

� C�N;M�=N
������������
CN=M

q
(2)

where again, the expressions are robust both on the lattice
and in experiment. The study of these robust variables tells
us about the relative magnitudes of fluctuations in different
quantum numbers. The study of these quantities is one of
the main results reported here.

We further present investigations of the strange quark
sector of the theory. The robust variable CSU is closely
related to the Wroblewski parameter which can be ex-
tracted from experiments. This shows strong dependence
on the actual strange quark mass, ms, in the vicinity of Tc.
Sincems ’ Tc, it seems that part of this sensitivity could be
attributed purely to kinematics. We investigate the dynami-
cal matrix elements which are responsible for flavor sym-
metry breaking in QCD and compare the importance of
kinematics and dynamics in the strange quark sector. This
is our second major result.
-1 © 2006 The American Physical Society
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One outstanding question about the high-temperature
phase of QCD is the nature of flavored excitations. There
is ample evidence that quarks are liberated at sufficiently
high temperature—the continuum limit of lattice compu-
tations of screening masses are consistent with the exis-
tence of such a Fermi gas for T � 2Tc [4,5]; quantitative
agreement between weak-coupling estimates of the sus-
ceptibilities [6,7] and the lattice data [5,8] also confirm
this; the equation of state at very high temperature also
testifies to this. However, comparison of lattice results and
weak-coupling computations of these quantities fail for
T < 2Tc. Our third new result concerns this matter of the
thermodynamically important single particle excitations.

We address this question in the most direct way pos-
sible—create an excitation with one quantum number and
observe what other quantum numbers it carries.
Technically, this involves the measurement of robust ratios
of off-diagonal QNS; the correlation between quantum
numbers K and L can be studied through the ratio

C�KL�=L �
hKLi � hKihLi

hL2i � hLi2
: (3)

We find that such measurements are feasible on the lattice,
and are open to direct interpretation. We also suggest that
they could be performed in heavy-ion experiments, as
direct tests of whether quarks exist in the hot and dense
matter inside the fireball. A recent suggestion of [9] is the
measurement of just such a variable: essentially C�BS�=S.

We find that, immediately above Tc, the baryon number,
charge and other flavor quantum numbers are linked with
each other in exactly the same way as they are in quarks.
For example, excitations which carry unit strangeness
carry a baryon number of �1=3 and a charge of �1=3.
This, together with the fact that there is also a failure of
weak-coupling theory, would imply that the QCD plasma
phase is a ‘‘quark liquid’’ in the sense that the quasipar-
ticles carry the quantum numbers of quarks, but the inter-
actions between them are too strong for the system to be
treated in weak-coupling theory. Extension of this argu-
ment to a finite chemical potential for T > Tc and �� T
would imply that the system is a normal Fermi liquid [10].
Such an extension is feasible since the Taylor series ex-
pansion of the free energy in �=T is observed to have a
radius of convergence much higher than unity for T > Tc
[11], in agreement with our current understanding of the
phase diagram of QCD.

This is an appropriate place to remark upon a few
aspects of our computations. Having removed most of
the lattice spacing uncertainties by using robust variables,
we have to control only the quark masses. We do this partly
by performing the computations in an approximation
called partial quenching. In this approximation the valence
quark masses in the theory are tuned keeping the sea quark
masses fixed [12]. We explore the dependence of the robust
variables on the sea quark masses and find that the results
are not very sensitive to these parameters. This is ex-
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pected—away from a phase transition there is no more
than a 5% change in the QNS in going from quenched to
Nf � 2 dynamical QCD, and one expects the change to be
smaller in going from Nf � 2 to Nf � 2� 1, as long as
one avoids the vicinity of the phase transition. The ratios
are even less sensitive to the sea quark content than the
QNS. In this study we have concentrated on the numeri-
cally more important effect of the valence quark masses.

We have used two flavors of dynamical sea quarks of
bare mass m � 0:1Tc to study a temperature range up to
about 2Tc. These quark masses are such that m�=Tc � 5:4
and m�=m� � 0:3—which makes this the smallest quark
mass used in a systematic study of fluctuations. We have
taken the strange quark to be quenched and to have a bare
mass in the range ms=Tc � 0:75–1. This gives the correct
physical values of the ratio mK=m�. We have also inves-
tigated the effect of decreasing the valence light quark
mass by a factor of 3 in order to get at the same time the
correct physical value of the ratio m�=m�, and varying the
strange quark mass about the physical value.

Details of simulations and the results are given in the
next section, and a summary of the results in the final
section. Details of the formalism, including expressions
for various QNS are given in the Appendix.

II. SIMULATIONS AND RESULTS

A. The simulations

In earlier papers [11,13,14] we have shown that finite
volume effects on the QNS are negligible for lattices with
Ns � 2Nt (Ns is the spatial extent of the lattice and Nt the
temporal extent). The data we discuss here are obtained on
4	 163 lattices. The setting of the scale, the parameters
employed and the statistics are detailed in [11]. To that set
of data with T=Tc � 0:75
 0:02, 0:8
 0:02, 0:85
 0:01,
0:9
 0:01, 0:95
 0:01, 1:00
 0:01, 1:045
 0:01,
1:25
 0:02, 1:65
 0:06 and 2:15
 0:10, we have added
two more sets—55 configurations separated by more than
two autocorrelation times at T=Tc � 0:975
 0:010 (i.e.,
� � 5:2825) and 86 configurations, similarly spaced, at
T=Tc � 1:15
 0:01 (i.e., � � 5:325). The configurations
are generated with a bare sea quark mass m � 0:1Tc,
which gives m� � 0:3m�.

We have explored the dependence of the physics on the
strange quark mass and on variations in the light quark
mass through partially quenched computations, i.e., the
approximation in which the number of valence quark
flavors is different from the number of dynamical sea quark
flavors, and their masses are also different. Errors in partial
quenching are estimated by comparing results with the
fully quenched theory.

B. Quark number susceptibilities

Our primary results for QNS are shown in Fig. 1. These
were obtained using Eqs. (A9) and (A11) in the Appendix.
-2
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FIG. 1 (color online). Some of the QNS, �=T2, as functions of
T=Tc for mud � 0:1Tc and ms � Tc.
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The diagonal QNS and several of the off-diagonal ones
show the characteristic crossover from small values in the
low-temperature phase to large values in the high-
temperature phase which gave rise to the original interpre-
tation that the QCD phase transition liberates quarks
[15,16]. Observe that �B < �Q through the full tempera-
ture range explored. Both �I and �Y have values between
the two others. In the low-temperature phase one has �Y <
�I, but for T � 1:5Tc one obtains �Y > �I. We expect the
crossover temperature between these two regimes to vary
with quark masses.

Our results are compatible with earlier results with
staggered fermions at the same cutoff and quark mass
which were obtained in the high-temperature phase [8].
They are not directly comparable to results obtained in [17]
at the same lattice spacing due to differences in the
discretization.
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FIG. 2 (color online). Ratios of QNS are robust observables, being
T � 2Tc, and the sea quark content of QCD. The quenched results c
valence quark mass is 0:03Tc and the strange quark mass is Tc.
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Robust observables

In the quenched theory it was found that the QNS
depended quadratically on the lattice spacing [18], i.e.,
��a� � ��O�a2�. Since staggered fermions have order
a2 lattice artifacts, one expects the same behavior in the
theory with sea quarks. We therefore search for observ-
ables which are robust against changes in the lattice spac-
ing, in the sense that r�a� � r�O�an� with n > 2. We
expect the ratios of QNS to have very good scaling prop-
erties in the high-temperature phase, where the flavor off-
diagonal QNS are much smaller than the flavor diagonal
QNS. In the low-temperature phase we do not necessarily
expect such behavior to hold, since these two pieces are
comparable, and the coefficient of the order a2 corrections
in the two parts depends on different physical quantities, so
a cancellation of the coefficient of the O�a2� piece is not
mandated by field theory, but depends on the detailed
dynamics.

As shown in Fig. 2, ratios of QNS in the high-
temperature phase have this property. The figure also
shows another pleasant property—these ratios have little
statistically significant dependence on the sea quark con-
tent of the theory. We have checked that these two aspects
of robustness hold for all ratios in the high-temperature
phase of QCD. The dependence of such ratios on the
valence quark masses can be determined using the qua-
dratic response coefficients defined in [19] and applied to
the study of CB=S.

In view of these results, the hierarchy of QNS shown in
the previous subsection must be a robust feature of QCD. It
is therefore useful to demonstrate this hierarchy by plotting
CX=S as a function of T=Tc in Fig. 3. Our results indicate
that experimental studies of CS=Q, CB=Q and CY=Q are the
most promising in terms of distinguishing between the two
phases of QCD, because they exhibit the largest changes in
going from one phase to the other.
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FIG. 3 (color online). Some robust predictions of fluctuation
measures from QCD: all the quantities shown are the ratio CX=Q
for the X indicated in the figure, except for X � S which is
CS=Q=2.
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C. Strange quarks

The Wroblewski parameter, �s, as extracted from ex-
periments, is the ratio of the numbers of primary produced
strange and light quark pairs. It has been argued earlier [5]
that under certain conditions, whose satisfaction can be
verified by independent observations, one has �s � Cs=u.
Our results for this robust quantity are shown in Fig. 4 [20].
In this computation we have taken the strange quark mass
to be ms � Tc and the two light quark masses to be
degenerate, mud � 0:03Tc, such that it reproduces the
correct value of m�=m�. As can be seen from the figure,
the value of the ratio at Tc is �s � 0:4, in agreement with
the value of the Wroblewski parameter extracted from
 0
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FIG. 4 (color online). The robust variable Cs=u � �s as a
function of T=Tc when the light quark masses are taken to be
mud � 0:03Tc, corresponding to a realistic pion mass, and the
strange quark mass is set to ms � Tc, which gives a realistic
value of the ratio mK=m�.
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experiments, when the freeze-out temperature is close to
Tc [21]. It is also a pleasant fact that at lower temperatures
the ratio keeps decreasing.

The dependence of this ratio on the valence quark
masses was investigated in [19], where it was shown that,
in the continuum limit, there was no dependence on the
valence quark mass except near Tc. In the vicinity of Tc,
and immediately below, we found �s to be strongly depen-
dent on ms. It increases as a function of T=Tc and at large
enough T reaches the same value as �u, but it does this
slowly when ms=Tc is large, and faster when ms � Tc. If
the plasma contains strange quark quasiparticles, as we
argue later, then this behavior could be a kinematic effect,
which measures the phase space for a thermal gluon to split
into a strange quark-antiquark pair. That the first effect is
dynamical and the second kinematical can be motivated by
a study of quantities which vanish in the SU(3) flavor
symmetric limit.

Flavor symmetry breaking

Two off-diagonal susceptibilities show an interesting
pattern—�BQ and �BY are both continuous through Tc,
but peak in the vicinity of Tc. Since �BQ � �BY=2, as seen
from Eqs. (A9) and (A11), we show only the latter in Fig. 5
for various values of quark masses explained in the cap-
tion. The figure also displays �IY for mu � md. Direct
computations also show that �BQ � �BY � 0 when all
three quark masses are equal, and that �IY � 0 in the
SU(2) symmetric limit, providing an explicit demonstra-
tion that nonzero values of these quantities are due to flavor
symmetry breaking (see the discussion in the Appendix).

From a comparison of the cases (D) and (E) in Fig. 5 it is
clear that �BY is not only a function of �us � ms �mu and
T for large values of this asymmetry, since the two curves
are not coincident although they have equal �us. A careful
look at the cases (A)–(C) in the same figure shows that
whenms is comparable to Tc then both the position and the
value of the peak in these QNS are dependent on ms.
Explicit dependence of the flavor symmetry breaking ma-
trix elements on the actual value of ms (and not just the
asymmetry parameter) can only come as a kinematic ef-
fect. We try to confirm the magnitude of this effect next.

In Fig. 6 we display the values of the dimensionless
quantities AIY � �IY=�2

ud and ABY � �BY=�2
us, extracted

using the computations in which �us and �ud are much
smaller than Tc. It would be interesting to check the
temperature range in which these dimensionless quantities
are computable in weak-coupling theory. In the same figure
we also show �BY=�2

us when �us is comparable to Tc. Its
strong suppression relative to the former case shows the
kinematic effect which is responsible for the shape of Cs=u
shown in Fig. 4.

The physics of the region just above Tc is known to be
complicated when observed through gluonic variables such
as �=T4 � ��� 3P�=T4 (where � is the energy density
-4
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FIG. 5 (color online). The first panel shows �BY=T2 as a function of T=Tc for various patterns of SU(3) flavor symmetry breaking.
Holding mud � 0:1Tc constant we vary ms in (A) ms � Tc, (B) ms � 0:75Tc, and (C) ms � 0:5Tc. Holding �us � 0:25Tc constant,
we vary all the quark masses in (D) ms � 0:75 and (E) ms � Tc. In (F) all the quark masses are small mud � 0:01Tc, ms � 0:1Tc. The
second panel shows �IY=T2, as a function of T=Tc when mu � 0:03Tc, md � 0:1Tc and ms � Tc.

FLUCTUATIONS, STRANGENESS, AND QUASIQUARKS . . . PHYSICAL REVIEW D 73, 014004 (2006)
and P the pressure) as well as the ratio of the lowest lying
screening masses in the CP-even and CP-odd sectors [22].
The peaks in ABY and AIY are the first observations of
interesting structures near Tc in fermionic variables uncon-
nected with the order parameter. It would be interesting to
see what temperature range in this is explainable by weak-
coupling theory.

D. Flavor carrying degrees of freedom

The question of which are the thermodynamically rele-
vant degrees of freedom in the QCD plasma is easier to
answer in the quark sector than in the gluon sector. The
reason is that the multitude of flavor quantum numbers
allows us to look for ‘‘linkage’’ of flavor, i.e., exciting one
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FIG. 6 (color online). The flavor symmetry breaking matrix
elements (A) �BY=�2

us extracted with mud � 0:03Tc and ms �
0:1Tc, and (B) AIY � �IY=�2

ud extracted using mu � 0:03Tc,
md � 0:1Tc and ms � Tc, as a function of T=Tc. The kinematic
suppression for realistic strange quark masses is clear from the
significantly smaller values of �BY=�2

us when (C) ms � Tc and
(D) ms � 0:75Tc.
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quantum number and seeing the magnitude of another
quantum number that is simultaneously excited.

1. Strangeness carriers

Robust variables involving off-diagonal QNS serve pre-
cisely this purpose. In [9] the robust variable

CBS � �3C�BS�=S � �3
�BS
�S
� 1�

�us � �ds
�s

� 1� C�us�=s � C�ds�=s � 1� 2C�us�=s (4)

is identified as one which can distinguish between bound
state QCD [23] and the usual picture of the excitations in
the plasma phase of QCD [in the last expression above we
have used Eq. (A15) and flavor SU(2) symmetry to write
C�us�=s � C�ds�=s]. This is expected to have a value of unity
if strangeness is carried by quarks (i.e., S � 1 always
comes linked with B � �1=3). In [9] it was shown that
bound state quark-gluon plasma gives a value of CBS �
2=3 (for T > Tc).

We present the first estimate for this quantity from lattice
QCD in Fig. 7. In the low-temperature phase CBS is very
different from unity, but immediately above Tc the value is
clamped to unity. There is no statistically significant
change in CBS as ms=Tc is varied between 0.1 and 1.
Since the statistical error bars are extremely small for T �
Tc, this is a strong statement which contrasts with the ms
dependence of �s and �BY .

Another interesting measure is the correlation of charge
and strangeness measured by the robust observable

CQS � 3C�QS�=S � 1�
2�us � �ds

�s
: (5)

When strangeness is carried by quarks one would expect
this to be unity (since S � 1 comes with Q � 1=3). In
Fig. 7 we have also shown the first measurement of CQS.
Immediately above Tc it reaches close to unity with small
errors. As a result, these two measurements together quite
-5
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FIG. 8 (color online). The robust variable �C�ud�=u which
measures the correlation between u and d flavors for mud �
0:1Tc. It is positive in the low-temperature phase since u quarks
are found along with d antiquarks in charged pions, and vanishes
in the high-temperature phase, indicating that u and d are fully
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strongly indicate that unit strangeness is carried by objects
with baryon number �1=3 and charge �1=3 in the high-
temperature phase of QCD, immediately above Tc.

Furthermore, Eqs. (4) and (5) indicate that our observa-
tions imply that �us � 0, and hence strangeness carrying
excitations do not carry u or d flavor. This is the most direct
lattice evidence to date that strangeness is linked to other
quantum numbers exactly as it would be for strange quarks,
in the high-temperature phase of QCD, and that these
linkages are quite different below Tc. Later in this section
we show that one should think of these as quasiparticles,
dressed by the strong residual interactions, rather than as
elementary quarks.

Apart from the direct evidence of linkage between quan-
tum numbers, we also draw attention to the cryptic evi-
dence in the temperature and ms dependence of CBS and
CQS. The rapid change of CBS with T (for T < Tc) has a
natural explanation if the thermodynamics is controlled by
a spectrum of strange baryons such that the amount of
(anti-) strangeness per baryon increases with mass, and
the masses are larger than T. The temperature indepen-
dence of the two quantities above Tc similarly implies that
there is one excitation, which has mass less than Tc. The
fact that the values of these quantities do not depend on ms
within errors, for T > Tc, further implies that the effective
masses of these quasiparticles is less than Tc, so that the
infrared cutoff on the Dirac operator spectrum is provided
by T. When the quark mass is increased well beyond Tc
there is evidence from other quarters that the physics
changes. However, very heavy quarks do not affect the
thermodynamics of the QCD plasma for T > Tc.

2. The light quark sector

In transplanting these methods to the light quark sector,
we find that the composite QNS, �BI and �QI, are not
014004
informative, since the quark of one flavor has the same
isospin as the antiquark of the other flavor. One way to
extract information on the degrees of freedom would be to
consider QNS of G parity. However, it is more transparent
to turn to the flavored QNS �ud / hN uN di. We can then
use the quantity

C�ud�=u �
�ud
�u

; (6)

which looks at the linkage between u and d flavors in the
same way that C�QS�=S looked for linkage of strangeness
and charge. Our results are plotted in Fig. 8. In the hadronic
phase it is nonvanishing because of charged pions, and
negative because in these mesons each u comes with a d,
and vice versa. In the quark-gluon plasma phase the van-
ishing of this normalized covariance implies that a particle
with u quantum number does not exhibit d quantum
numbers.

Further tests come from investigating

C�BU�=U � C�BD�=D �
1
3�1� C�ud�=u � C�us�=u�;

C�QU�=U �
1
3�2� C�ud�=u � C�us�=u�;

C�QD�=D � �
1
3�1� 2C�ud�=u � C�us�=u�:

(7)

The vanishingly small values of C�ud�=u and C�us�=u imply
that the u flavor is carried by excitations with baryon
number �1=3 and charge �2=3, whereas the d flavor is
carried by particles with baryon number �1=3 and charge
�1=3. These are, therefore, quark quasiparticles.
-6
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3. Quasiquarks

One might wonder why we talk of, for example, baryon
number 1=3 when the measurements even at 2Tc differ
from this number by a few parts in a thousand. What does
this small but statistically significant deviation tell us? The
answer is that it says something about the spatial structure
of the quasiparticle. If flavor were carried by pointlike bare
quarks, then �ud and �us would be precisely zero.
However, interactions dress each quark into a spatially
extended quasiparticle, and a thermodynamic average
probes the spatial dimension of the charge with a resolution
of 1=2�T. When T is sufficiently large, so that the gauge
coupling is sufficiently small, this structure can be com-
puted in weak-coupling theory. As the coupling grows, the
perturbative computation fails quantitatively, but as long as
the correction to the charge or baryon number remains
small, one can fruitfully talk of quasiquarks.

In Fig. 9 we show the flavor off-diagonal QNS �ud=T2

for two different quark masses, along with the prediction of
weak-coupling perturbation theory [6]:

�ud
T2 � �

10

27�3 	
3
s log

�
c
	s

�
; (8)

where c is a constant whose evaluation requires a larger
number of loops in the perturbation theory. The strong
coupling, 	s, has been evaluated to two-loop accuracy at
scale 2�T with the estimate Tc=�MS � 0:49
 0:05 [24].
This variation in Tc=�MS, a variation of c by 2 orders of
magnitude, 0:1 
 c 
 10, and the variation in 	s in going
from one loop to the two-loop expression are included in
the band in the figure. We find that in this range of tem-
perature the prediction is somewhat smaller than the lattice
data. Since this is not a robust variable, it is possible that
-0.1

-0.075

-0.05

-0.025

 0

 0.025

 0.5  1  1.5  2  2.5

/T
2

udχ

T/Tc

0.1Tc

Tc

FIG. 9 (color online). The off-diagonal QNS �ud=T
2 for two

different quark masses compared to weak-coupling theory. The
band includes uncertainties due to neglected higher loop effects,
the effect of changing from one-loop to two-loop computation of
the running coupling, and statistical uncertainties in the deter-
mination of Tc=�MS.
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taking the continuum limit will improve the agreement
between the two. However, it is clear that as one comes
closer to Tc the disagreement increases, although the mag-
nitude of C�ud�=u remains small. Thus, it seems that a Fermi
gas picture, which may be valid at large T=Tc, gives way to
something more complicated as one approaches Tc,
although the quantum numbers are linked in exactly the
same way as for the elementary quarks. This is the meaning
of quasiquarks.

III. SUMMARY

We have presented an extensive computation of many
different quark number susceptibilities (see the Appendix
for the definitions). All the diagonal QNS, and some of the
off-diagonal QNS, track the phase structure of QCD—
being small in the confined phase and crossing over to
larger values in the high-temperature phase of QCD, as
shown in Fig. 1.

An important observation was that ratios of QNS, CA=B,
defined in Eq. (1), are robust variables which depend
weakly on the lattice spacing and the sea quark content
of QCD in the high-temperature phase, as shown in Fig. 2.
These ratios can be compared to experimentally deter-
mined ratios of variances (or covariances) in event-to-event
fluctuations of conserved quantum numbers. The relative
magnitudes of the diagonal QNS are among these robust
observables, and we found the ordering �S > �Q > �Y >
�I > �B, shown in Fig. 3.

A second set of results concerns the thermal production
rate of strange quarks. It has been argued [18] that under
certain (testable) conditions the Wroblewski parameter is
the robust observable Cs=u. While it is insensitive to the sea
quark content of QCD, it is known to depend sensitively on
the valence quark masses [19]. Here we have determined
this quantity for realistic values of the strange and light
quark masses (see Fig. 4).

We attributed this dependence onms to kinematic effects
visible when ms ’ O�Tc�. However, kinematic effects
should manifest themselves in other quantities as well.
We tested this hypothesis by examining certain QNS which
vanish in the flavor symmetric limit. We extracted the
matrix elements which are quadratic in the flavor symme-
try breaking mass differences, �us, when �us � Tc. By
comparing these (in Fig. 6) to the corresponding quantities
when �us � O�Tc�, we demonstrated the presence of such
kinematic effects in other quantities as well. The flavor
symmetry breaking matrix elements themselves (Fig. 6)
peak at T slightly larger than Tc, and are the first known
example of observables in the quark sector of QCD which
parallel similar structures seen in the gluon sector.

Our final result is that the high-temperature phase of
QCD essentially consists of quasiquarks. We demonstrated
this by observing that unit strangeness is carried by some-
thing which has baryon number �1=3 and charge 1=3, as
shown in Fig. 7. Part of the argument is that this correlation
-7
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does not depend on the strange quark mass even when it is
as large as Tc. Similarly, in the light quark sector one finds
that u and d quantum numbers are not produced together
(Fig. 8). Through Eqs. (7) we found that this implies that
the u flavor is carried by excitations with baryon number
�1=3 and charge �2=3, whereas the d flavor is carried by
particles with baryon number �1=3 and charge �1=3.

We presented an argument that the carriers of these
quantum numbers are not elementary quarks but their
dressed counterparts which are called quasiquarks. This
argument involved the comparison of �ud with a weak-
coupling prediction, which is shown in Fig. 9. The key
point is that this comparison fails badly as one approaches
Tc, although the correlations of flavor quantum numbers
remain as they would for quarks. A similar comparison of
the weak-coupling prediction with lattice results for the
diagonal QNS �u also fails near Tc, leading us to the same
conclusion.

The argument about the existence of quasiquarks in the
high-temperature phase of QCD depends on the examina-
tion of robust variables given in Eq. (3). It is useful to note
that their use is not restricted to the lattice. It is also
possible to measure them in heavy-ion collisions and
thereby deduce the nature of excitations in the fireball
produced in these collisions.

We end by pointing out that we have not studied the low-
temperature phase of QCD in much detail here. This is an
interesting problem, which we have touched upon very
briefly in the discussion of CBS and CQS, and has been
left for the future.
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APPENDIX: SUSCEPTIBILITIES IN EQUIVALENT
ENSEMBLES

Corresponding to every conserved charge, Q, under the
global symmetries of a theory, one can introduce a chemi-
cal potential, �, into thermodynamics, by adding to the
action a source term �Q. In QCD, at finite quark mass,
one has SU�Nf� vector flavor symmetry. Corresponding to
each of the Nf flavors, one can introduce a chemical
potential �f (f � u, d, s, etc.) through the term

J �
X
f

�fN f � �TN ; (A1)

where N f is the number operator for quarks of flavor f,
whose expectation value is the number of quarks minus the
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number of antiquarks. The last expression just rewrites the
sum as a dot product of the vector of intensive variables �
with the vector of extensive variables N . This corresponds
to a grand canonical ensemble in which the chemical
potential on each of the quark flavors can be tuned inde-
pendently. In the corresponding canonical ensemble the
number of quarks of each flavor is kept fixed.

The number densities, which are the first derivative of
the pressure with respect to the chemical potential, and the
QNS, which are the second derivatives, have been defined
before [15,18]. Here we use the notation of [18] for the
QNS. We shall also use a higher order susceptibility, for
which we use the notation of [11].

It is usually more convenient to define chemical poten-
tials for variables which are easier to control in experi-
ments such as the baryon number, B, the electric charge,Q,
the third component of isospin, I3, or the hypercharge, Y.
Any choice of Nf variables corresponds to a different
choice of ensemble to describe the same physics. The
description in terms of flavors given above can then be
translated into the new ensemble by a simple linear trans-
formation

J � �TM�1MN � ��0�TN 0; i:e:; N 0 � MN

and �0 � �M�1�T� � �MT��1�: (A2)

Clearly, the partition function being the same, the physics
remains invariant under these redefinitions. The choice of a
givenM corresponds to putting coordinates in Gibbs space.

One is usually interested in thermodynamics quantities
or response functions which are obtained by taking deriva-
tives of the free energy or pressure with respect to the
chemical potentials. Note that by the definitions in
Eq. (A2), one has � � MT�0. The chain rule for differen-
tiation then tells us that

@
@�0i

�
@�j

@�0i

@
@�j

� �MT�ji
@
@�j

� Mij
@
@�j

: (A3)

The fact that this gives back the original definitions of the
N 0s in terms of the N s is a consistency check of the
formalism. We illustrate the uses of this formalism for the
cases of Nf � 2 and Nf � 3 below.

1. Nf � 2

a. The B, I3 ensemble

In the two flavor case, one can transform from the flavor
basis to the set

B � 1
3�N u �N d�; �B �

3
2��u ��d�;

I3 �
1
2�N u �N d�; �I � �u ��d:

(A4)

Inverting the relation between chemical potentials one
obtains �u � �B=3��I=2 and �d � �B=3��I=2. In
the ensemble where �I � 0, one then gets �u � �d �
�B=3. The number densities are given by Eq. (A4). The
-8



FLUCTUATIONS, STRANGENESS, AND QUASIQUARKS . . . PHYSICAL REVIEW D 73, 014004 (2006)
quark number susceptibilities are

�B �
1
9��uu � �dd � 2�ud� �

2
9��u � �ud�;

�I �
1
4��uu � �dd � 2�ud� �

1
2��u � �ud�;

�BI �
1
6��uu � �dd� � 0;

(A5)

where the first expression in each case is the most general,
and the second is obtained for exact vector SU(2) flavor
symmetry mu � md. If this symmetry is broken then �BI
should become nonzero. For small values of the symmetry
breaking parameter �ud � md �mu (we will follow the
convention that mu 
 md 
 ms),

�BI � ABI�2
ud; which yields

�BI
T2
c
� ABI

�
�ud

Tc

�
2
; (A6)

where ABI is a dimensionless number. We present results
for this quantity in Fig. 6. In the low-temperature phase we
expect that ABI is a nonperturbative quantity, but that it
should be computable in chiral perturbation theory. It
would be interesting to check how far the weak-coupling
theory in the high-temperature phase agrees with our de-
termination of ABI.

b. The B, Q ensemble

One may choose to work in another ensemble given by

B � 1
3�N u �N d�; �B � �u � 2�d;

Q � 1
3�2N u �N d�; �Q � �u ��d:

For �Q � 0, one gets again the expected result �u �

�d � �B=3. The quark number susceptibilities in this
ensemble are

�B �
1
9��uu � �dd � 2�ud� �

2
9��u � �ud�;

�Q �
1
9�4�uu � �dd � 4�ud� �

1
9�5�u � 4�ud�;

�BQ �
1
9�2�uu � �dd � �ud� �

1
9��u � �ud�;

(A7)

where the last expression in each line holds in the special
case of mud. Note that �BB is the same in both the ensem-
bles. This follows from the fact that the definition of the
baryon number is the same.

2. Nf � 3

a. The B, I3, Y ensemble

The variables in this ensemble are

B � 1
3�N u �N d �N s�; �B � �u ��d ��s;

I3 �
1
2�N u �N d�; �I � �u ��d;

Y � 1
3�N u �N d � 2N s�;

�Y �
1
2��u ��d � 2�s�:

(A8)

The six independent quark number susceptibilities are
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�B �
1
9��u � �d � �s � 2�ud � 2�us � 2�ds�

� 1
9�2�u � �s � 2�ud � 4�us�;

�I �
1
4��u � �d � 2�ud� �

1
2��u � �ud�;

�Y �
1
9��u � �d � 4�s � 2�ud � 4�us � 4�ds�

� 2
9��u � 2�s � �ud � 4�us�;

�BI �
1
6��u � �d � �us � �ds� � 0;

�BY �
1
9��u � �d � 2�s � 2�ud � �us � �ds�

� 2
9��u � �s � �ud � �us�;

�IY �
1
9��u � �d � 2�us � 2�ds� � 0:

(A9)

As before, the last set of expressions on each line holds
only formud � ms. Similar to Eq. (A6), one can define ABI
here, and also AIY � �IY=�2

ud, both of which are generally
nonvanishing when SU(2) flavor symmetry is broken.

In the SU(3) symmetric limit, mu � md � ms, the three
off-diagonal susceptibilities vanish, i.e., �BI � �BY �
�IY � 0. Also, in this limit one has 2�I � 3�Y=2 � �u �
�ud and 3�B � �u � 2�ud. In the low-temperature phase
the breaking of vector SU(3) symmetry produces the mass
difference between the pion and the K meson. At suffi-
ciently high temperature, when the strange quark mass is
less than the Matsubara frequency, ms < 2�T, the theory
becomes effectively SU(3) symmetric, and the above rela-
tions should hold. In the high-temperature phase of QCD
one also has �ud / g5 logg! 0 [6], so one should obtain
2�I � 3�Y=2 � 3�B.

b. The B, Q, Y ensemble

Another useful set of charges and associated chemical
potentials is

B � 1
3�N u �N d �N s�; �B � �u ��d ��s;

Q � 1
3�2N u �N d �N s�; �Q � �u ��d;

Y � 1
3�N u �N d � 2N s�; �Y � �d ��s:

(A10)

The three susceptibilities �B, �Y and �BY are the same as in
the previous ensemble. The remaining susceptibilities are

�Q �
1
9�4�u � �d � �s � 4�ud � 4�us � 2�ds�

� 1
9�5�u � �s � 4�ud � 2�us�;

�BQ �
1
9�2�u � �d � �s � �ud � �us � 2�ds�

� 1
9��u � �s � �ud � �us�;

�QY �
1
9�2�u � �d � 2�s � �ud � 5�us � �ds�

� 1
9��u � 2�s � �ud � 4�us�:

(A11)

As before, the last set of expressions on each line holds
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only for mud � ms. Note that in this limit one has �BQ �
�BY=2.

In the SU(3) symmetric limit, mud � ms, two of the off-
diagonal susceptibilities vanish, i.e., �BQ � �BY � 0.
Also, in this limit one has �Q � �Y � 2�QY �
2��u � �ud�=3 and �B � ��u � 2�ud�=3. As before, in
the high-temperature limit, when the quark masses are
less than the temperature, the theory becomes effectively
SU(3) symmetric. Then taking �ud � 0, one should obtain
�Q � �Y � 2�B � 2�QY .

It is interesting to examine this in a theory of massless
free fermions. The free energy is given by

F � NcV
X

f�u;d;s

�
7�2

180
T4 �

1

6
�2T2 �

1

12�2 �
4

�
: (A12)

Substituting the values of the flavor chemical potential by
the appropriate combination of�B,�Q and�Y , and taking
the derivatives, we find that �BY � �BQ � 0. Also, �Q �
�Y � 2�B � 2�QY � 2NcT

2=9. For massive free fermi-
ons, when T is much larger than the fermion mass, the
same results would hold.

When SU(3) symmetry is broken through the parameter
�us � ms �mu [we assume that SU(2) symmetry still
holds] then for small �us one may again write

�BY � ABY�2
us and �BQ � ABQ�2

us: (A13)

As before, we expect ABY and ABQ to be nonperturbative
but computable in chiral perturbation theory in the low-
temperature phase. It would be interesting to compare our
results (presented later) with weak-coupling theory in the
high-temperature phase.

c. The B, Q, S ensemble

From the experimental point of view, it may be interest-
ing to use the set

B � 1
3�N u �N d �N s�; �B � �u � 2�d;

Q � 1
3�2N u �N d �N s�; �Q � �u ��d;

S � �N s; �S � �d ��s: (A14)
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Note that we have used the standard convention where the
strangeness of the antistrange quark is �1. The three
susceptibilities, �B, �Q and �BQ are as before. The remain-
der are

�S � �s;

�BS � �
1
3��s � �us � �ds� � �

1
3��s � 2�us�;

�QS �
1
3��s � 2�us � �ds� �

1
3��s � �us�:

(A15)

As always, the last set of expressions on each line holds
only for mud � ms.

d. The B, Q, U ensemble

For technical questions about the light quark sector it is
useful to work in the ensemble with

B � 1
3�N u �N d �N s�;

Q � 1
3�2N u �N d �N s�; U �N u:

(A16)

The three susceptibilities �B, �Q, and �BQ are as before.
The rest are

�U � �u; �BU �
1
3��u � �ud � �us�;

�QU �
1
3�2�u � �ud � �us�:

(A17)

Changing to an ensemble whereU is replaced byD �N d
changes the QNS to

�D � �u; �BD �
1
3��u � �ud � �us�;

�QD � �
1
3��u � 2�ud � �us�;

(A18)

where we have used SU(2) symmetry. This gives �U � �D
and �BU � �BD.
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