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BK in staggered chiral perturbation theory
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We calculate the kaon B parameter, BK, to next-to-leading order in staggered chiral perturbation theory.
We find expressions for partially quenched QCD with three sea quarks, quenched QCD, and full QCD
with mu � md � ms. We extend the usual power counting to include the effects of using perturbative
(rather than nonperturbative) matching factors. Taste breaking enters through the O�a2� terms in the
effective action, through O�a2� terms from the discretization of operators, and through the truncation of
matching factors. These effects cause mixing with several additional operators, complicating the chiral
and continuum extrapolations. In addition to the staggered expressions, we present BK at next-to-leading
order in continuum PQ�PT for Nf � 3 sea quarks with mu � md � ms.
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I. INTRODUCTION

Experimental measurements ofCP violation can be used
to extract information about the Cabibbo-Kobayashi-
Maskawa (CKM) matrix. In particular, the size of indirect
CP violation in the neutral kaon system, �K, combined
with theoretical input, places an important constraint on
the apex of the CKM unitarity triangle [1,2]. Because �K is
well known experimentally [3], the dominant source of
error in this procedure is the uncertainty in the lattice
determination of the nonperturbative constant BK, which
parametrizes the K0 � K0 matrix element. Because new
physics would likely produce unitarity violation in the
CKM matrix and additional CP-violating phases, a precise
determination of BK will help to constrain physics beyond
the standard model.

Promising calculations with partially quenched stag-
gered fermions are in progress [4,5].1 Because staggered
fermions are computationally cheaper than other standard
discretizations, they allow simulations with the lightest
dynamical quark masses currently available. Unfortu-
nately, staggered fermions come with their own source of
error—taste-symmetry breaking. Each lattice fermion fla-
vor comes in four tastes, which are degenerate in the
continuum. The nonzero lattice spacing, a, breaks the
continuum taste symmetry at O�a2�, and the resulting
discretization errors are numerically significant at present
lattice spacings [7]. Thus one must use the chiral perturba-
tion theory functional forms for staggered fermions in
order to correctly perform the combined continuum and
chiral extrapolations incorporating taste violations [8–10].
It is clear, then, that the potential improvement in the
precision of the lattice determination of BK is limited
without the availability of the appropriate staggered �PT
expression.
address: ruthv@fnal.gov
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s of BK with dynamical domain wall fermions are
[6].
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In this paper we calculate BK to next-to-leading order
(NLO) in an extended version of staggered chiral pertur-
bation theory (S�PT) that incorporates perturbative opera-
tor mixing. In the NLO S�PT expressions for quantities
calculated thus far, e.g. fK and fD, taste breaking primarily
enters through additive corrections to the tree-level masses
of pions inside loops [8,9,11]. The calculation of BK in
S�PT provides a more complicated example of taste break-
ing in which new operators in the staggered chiral effective
theory significantly change the result from that in contin-
uum �PT, even at NLO. The bulk of our new work is in
correctly enumerating all possible operators which con-
tribute. It turns out that the NLO expression is in terms of
37 low-energy constants (21 for a single lattice spacing),
five of which are already known from fitting other stag-
gered lattice data. Because fitting so many parameters
requires a large amount of data, we show how to extract
additional coefficients using simple kaon matrix elements.
Nevertheless, performing the continuum and chiral extrap-
olations of BK will be challenging.

We aim to keep the body of this paper accessible to those
wishing to use our NLO S�PT expressions for calculations
of BK on the lattice. Our paper is therefore organized as
follows. In Sec. II we define BK in QCD, and discuss
modifications to the quark-level operator necessary for its
calculation with staggered quarks. We summarize the main
results of our BK operator enumeration in Sec. III. In
Sec. IV we calculate BK at 1 loop for a partially quenched
(PQ) theory with three dynamical quark flavors (each with
four tastes). We then add the NLO analytic terms and give
results for BK to NLO in quenched, partially quenched, and
full QCD in Sec. V. Finally, in Sec. VI we explicitly show,
for a single lattice spacing, how to determine six of the
undetermined NLO coefficients, as well as how to use the
S�PT fit results to extract the renormalization group in-
variant quantity B̂K in the continuum. We conclude in
Sec. VII. As a corollary to our staggered result, we present
the expression for BK at NLO in the continuum PQ�PT
with 2� 1 sea quarks (mu � md � ms) in Appendix A,
since it is not available in the literature. Appendix B briefly
-1 © 2006 The American Physical Society
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reviews the essentials of staggered chiral perturbation the-
ory necessary for understanding the details of our NLO
calculation and operator enumeration. Appendix C enu-
merates in detail all of the operators which contribute to BK
at NLO.

II. BK WITH STAGGERED QUARKS

In this section we relate BK in QCD to matrix elements
of a continuum staggered theory in which one has taken the
fourth root of the quark determinant but there are still four
tastes per valence quark flavor.

The kaon B parameter is defined as a ratio of matrix
elements:

M K � hK
0jOKjK

0i � BKMvac; (1)

where OK is a weak operator and Mvac is the result for
MK in the vacuum saturation approximation:

O K � �sa���1� �5�da��sb���1� �5�db�; (2)

Mvac �
8
3hK

0j�sa���1� �5�da�j0i

� h0j�sb���1� �5�db�jK0i: (3)

Note that there are separate summations over color indices
a and b. Thus the matrix element MK receives contribu-
tions from two different quark-level contractions, one of
which produces a single color loop and the other of which
has two color loops. The expression in Eq. (1) can be
simplified using the fact that Mvac is related to the square
of the kaon decay constant:

M K �
8
3BKm

2
Kf

2
K; (4)

where we use the normalization that fK 	 156 MeV.
In order to calculate BK with staggered fermions we

must introduce the taste degree of freedom, both in the
operators (OK) and in the states (K0 and K0). We choose
the external staggered kaons to be taste P, by which we
mean that the lattice meson operator contains the pseudo-
scalar taste matrix �5. Since this is the lattice Goldstone
taste, its correlation functions satisfy U�1�A Ward identi-
ties, so S�PT expressions for its mass, decay constant, and
other physical quantities are simpler than those for other
tastes of pseudo-Goldstone bosons (PGBs). In addition, it
is a local kaon on the lattice, and therefore relatively simple
to implement numerically. Because the external kaons are
taste P, the weak operator should also be taste P:

Onaive
K � �sa����1� �5� 
 �5�da�

� �sb����1� �5� 
 �5�db�: (5)
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However, when this operator is Fierz transformed, not only
do its color indices change, but it mixes with other tastes.
To remedy this, we introduce two types of valence quarks,
1 and 2, into the BK operator:

Ostaggered
K � 2f�s1a����1� �5� 
 �5�d1a�

� �s2b����1� �5� 
 �5�d2b�

� �s1a����1� �5� 
 �5�d1b�

� �s2b����1� �5� 
 �5�d2a�g; (6)

and take the matrix element between two types of kaons:

M staggered
K � hK0

1PjO
staggered
K jK0

2Pi; (7)

where K0
1 is an s1d1 meson and K0

2 is an s2d2 meson. The
extra valence quarks require explicit inclusion of both
color contractions in Ostaggered

K , while the overall factor of
2 ensures that MK and Mstaggered

K have the same total
number of contractions. When Ostaggered

K is Fierz trans-
formed, it has a new flavor structure so it does not contrib-
ute to Mstaggered

K . Thus Mstaggered
K cannot receive con-

tributions from incorrect tastes. We choose that the two
sets of valence quarks have equal masses, i.e. md1 �
md2 � mx and ms1 � ms2 � my, in order to simplify fu-
ture expressions.

The continuum staggered theory differs from QCD in
that it has four copies of each valence quark, so MK and
Mstaggered

K are not precisely equal. Nevertheless they are
simply related by overall normalization factors.
Specifically,

M K �
1

Nt
Mstaggered

K ; (8)
h0js���5djK0i �

������
1

Nt

s
h0js����5 
 �5�djK

0
Pi; (9)

where Nt � 4 is the number of tastes per valence quark
flavor [12]. We emphasize that these expressions assume
that one has already taken the fourth root of the quark
determinant and the continuum limit, and that the

�������
det4
p

procedure is valid. We now reexpress BK in terms of the
staggered matrix elements calculated on the lattice:
BK �
1
Nt
hK0

1PjO
staggered
K jK0

2Pi

8
3

����
1
Nt

q
hK0

Pjs����5 
 �5�dj0i
����
1
Nt

q
h0js����5 
 �5�djK0

Pi
: (10)
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Because the various factors of Nt cancel, BK in QCD is
equal to the value of the analogous ratio of staggered
matrix elements.

Current calculations of BK with staggered quarks use the
partially quenched approximation. The quark content of
the corresponding PQ theory is quite large. We have al-
014003
ready seen that staggering requires two sets of d and s
valence quarks. Partial quenching adds two corresponding
sets of ghost quarks as well as three sea quarks, resulting in
eleven total quark flavors, each of which comes in four
tastes. In order to make this completely clear, we show the
explicit form of the quark mass matrix:
M � diagfmuI;mdI;msI;|����������{z����������}
sea

mxI;myI;|�����{z�����}
valence 1

mxI;myI;|�����{z�����}
valence 2

mxI;myI;|�����{z�����}
ghost 1

mxI;myI|����{z����}
ghost 2

g; (11)
2Our generic discretization errors are not suppressed by �
because we consider unimproved operators. This is in contrast to
the mass and decay constant calculations of Ref. [7], which use
improved operators and therefore have smaller generic discreti-
zation errors of around 2%.

3Taste violations are suppressed by �2 rather than � because
we assume an improved action.
where I is the 4� 4 identity matrix. Thus the general-
ization of BK to PQ staggered quarks is relatively straight-
forward conceptually, although nontrivial to implement on
the lattice.

III. GENERALIZED STAGGERED CHIRAL
PERTURBATION THEORY FOR BK

The previous section described how to calculate BK with
staggered quarks in the continuum, but our expression for
BK in S�PT must describe BK at a � 0 if it is to be used for
continuum and chiral extrapolations of lattice data. It is
therefore necessary to discuss in some detail how BK is
actually calculated on the lattice.

The BK matrix element, Mstaggered
K , receives a contribu-

tion from the lattice version of Ostaggered
K , as well as from

other lattice operators that are in the same representation of
the symmetry group that maps a hypercube onto itself [13]:

Ostaggered;cont
K �Ostaggered;lat

K �
�

4�
�taste P ops:�

�
�

4�
�other taste ops:� ��2�all taste ops:�

� a2�all taste ops:� � . . . ; (12)

where � is the strong coupling constant. The 1-loop per-
turbative matching coefficients between Ostaggered

K in the
continuum and four-fermion lattice operators are known,
and are numbers of order unity times �=4� [14]. However,
the 2-loop matching coefficients have not been determined,
so, in order to remain conservative, we consider them to be
of order unity times �2 without any factors of 4�. Current
numerical staggered calculations are in fact of the follow-
ing matrix element:

hK0
1PjO1-loop�taste P�jK0

2Pi �Mlat; (13)

where the subscript ‘‘1-loop’’ and the argument ‘‘taste P’’
indicate that one includes all staggered lattice operators
with taste P that mix with the latticized BK operator at
O��=4��, i.e. those in the second term on the right-hand
side of Eq. (12), using the appropriate matching coeffi-
cients. However, one neglects wrong-taste and higher-
order perturbative mixing (terms three and four), as well
as all operators which arise through discretization effects
(term five), in Eq. (12). Although the expression in Eq. (13)
differs from the continuum matrix element, it reduces to
the desired quantity in the continuum limit. Generically,

M lat �Mcont �
�

4�
M0 � �2M00 � a2M000 � . . . ;

(14)

where Mcont is the desired continuum result. The matrix
element M0 comes from neglecting taste-violating 1-loop
operator mixing, while M00 comes from neglecting 2-loop
operator mixing. Both taste-breaking and taste-conserving
discretization errors generate M000.

We are now in a position to determine the appropriate
power-counting scheme for calculating BK at next-to-
leading order in S�PT. Clearly it must incorporate a2,
�=4�, and �2. Continuum �PT is a low-energy expansion
in both the PGB momentum and the quark masses; it
assumes that p2

PGB=�2
� �m2

PGB=�2
�, where m2

PGB / mq

and �� 	 4�f� is the �PT scale. However, the numerical
values of mq, a2, and � all depend on the particular
parameters of a given lattice simulation. Current PQ stag-
gered lattice simulations [7] use a range of PGB masses
from m2

PGB=�2
� � 0:04–0:2, so our S�PT expression must

apply throughout this range. Generic discretization errors
are of the size a2�2

QCD, which is approximately 0.04 for
1=a� 2 GeV and �QCD � 400 MeV, so they are compa-
rable to the minimal m2

PGB=�2
� and should be included at

the same order.2 Taste-breaking discretization errors, on
the other hand, are caused by exchange of gluons with
momentum �=a, and therefore receive an additional factor
of �2

V��=a�, so their size must be considered separately.3

At the lightest quark masses, the lattice Goldstone pion
mass is comparable to the mass splittings among the other
PGB tastes: m2

PGB=�2
� � a2�2

V�q

 � �=a��2 � 0:04,

where � is a QCD scale (distinct from �QCD) which turns
out to be around 1200 MeV. Thus they are not suppressed
-3
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relative to pure O�a2� discretization effects by the addi-
tional powers of�, as naive power counting would suggest,
because of the large scale � associated with the taste-
breaking process at the quark level [15]. Standard S�PT
only includes discretization effects—we now consider
additional errors from perturbative operator matching,
which depend upon �V�q
�. Generically, the choice of q


is process dependent, and the value of �V�q
� ranges from
�0:3–0:55 for q
 � �=a–1=a at a � :125 fm [16]. Thus
both �=4� and �2 must be included at lowest order in our
power counting.4

In light of this discussion, we adopt the following ex-
tended S�PT power-counting scheme:

p2 �m� a2 � a2
� � �=4�� �2; (15)

where a2
� � �2

V��=a�a
2. We account for the fact that �2a2

terms in the action are enhanced numerically by including
them at the same order as simple discretization effects.5 In
fact, while it may seem ad hoc, p2 �m� a2

� is the
standard S�PT power-counting scheme. It is simply not
traditionally written as such because standard S�PT cal-
culations have only included O�a2

�� taste-breaking discre-
tization errors from the action, and have therefore not
needed to contrast them with pure O�a2� discretization
effects. We also use conservative power counting for the
perturbative errors by assuming that 2-loop contributions
4The quoted values of � indicate that it is perhaps necessary to
include O��3� errors as well; we assume that this is not the case.

5We assume that taste-conserving discretization errors are not
enhanced since such behavior has not been observed in staggered
lattice simulations.

6Note the distinction between BK at NLO and BK at 1 loop,
which does not contain the analytic terms.
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are not significantly smaller than those from 1-loop dia-
grams. We emphasize that our scheme is phenomenologi-
cally based on the particular parameter values of current
staggered simulations—simulations using significantly
lighter quark masses or smaller lattice spacings would
require a different scheme and result in a different S�PT
expression for BK.

We must determine all of the contributions at NLO in
our power counting to Mlat, including the effects of per-
turbative matching and discretization errors. We then find
BK by using Mlat in the ratio given in Eq. (10). In S�PT,
Mlat is simply the matrix element of a sum of operators
with undetermined coefficients:

M lat � hK
0
1PjC

i
�O

i
�jK

0
2Pi; (16)

so our goal is really to determine all operators in the chiral
effective theory, Oi

�, that contribute at NLO to the above
matrix element. Once we do so, the full NLO S�PT
expression will contain the LO tree-level term, 1-loop
corrections, and analytic terms of the same order as the
1-loop terms.6 This task is not as daunting as it first seems
given the extended power-counting scheme because it
turns out that the only LO contribution to BK is of
O�p2�. Thus operators of the following orders in our power
counting contribute to BK at NLO:
1-loop: O�p2�;O�m�;O�a2�;O�a2
��;O��=4��;O��2�;

NLO analytic: O�p4�;O�p2m�;O�p2a2�;O�p2a2
��;O�p2�=4��;O�p2�2�;O�m2�;O�ma2�;O�ma2

��;

O�m�=4��;O�m�2�;O�a4�;O�a4
��;O��2=16�2�;O��4�: (17)
In the rest of this section we give an overview of the
operators that contribute to BK at 1 loop in S�PT.
Appendix C contains the detailed operator enumeration
as well as the determination of analytic terms.

Clearly the lattice version of the continuum quark-level
operator Ostaggered

K , Eq. (6), will generate the dominant
contribution to BK, so we map Ostaggered

K onto chiral opera-
tors first. This is relatively straightforward; we follow the
graded group-theory method of Refs. [10,17] to insure that
we include all possible linearly independent operators.
This results in two operators, Eqs. (C7) and (C8), the first
of which is simply the staggered, partially quenched analog
of the continuum �27L; 1R� chiral operator, and the second
of which arises because we use two sets of valence quarks.
Because both chiral operators come from the same quark-
level operator, their coefficients are related, and turn out to
be equal. This is crucial because BK in the continuum �PT
only depends on a single parameter [18], and our result
must match the continuum one when a! 0. Only the
‘‘standard’’ chiral operator contributes to BK at tree level,
and its contribution is of O�p2�.

Next we determine the chiral operators which contribute
to BK because of perturbative operator mixing. Four-
fermion operators which mix with Ostaggered

K but are not
taste P are unaccounted for in Eq. (13), so they introduce
errors into BK that are of O��=4��, as well as errors of
O��2�.7 We therefore map them onto chiral operators with
two undetermined coefficients of O��=4�� and O��2�,
respectively. The resulting eight chiral operators are given
in Eqs. (C16)–(C23). Taste P four-fermion operators are
accounted for at O��=4�� using the matching coefficients,
but they still introduce errors into BK at O��2�, through a
new O��2� operator given in Eq. (C14).
7Recall that �=4�� �2 in our power counting because we
make no assumption about the numerical size of the O��2�
matching coefficients.
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To match the continuum regularized operator,
Ostaggered;cont
K , we also need to include operators of higher

dimension. From now on we will generically refer to this
matching of the continuum onto lattice operators as ‘‘mix-
ing.’’ In particular, we must include all dimension 8 op-
erators that are in the same representation of the symmetry
group that maps a hypercube onto itself. Because dimen-
sion 8 operators are explicitly suppressed by a factor of a2

relative to dimension 6 operators, they can map onto chiral
operators with coefficients of O�a2� that contribute to BK
at NLO. There turn out to be nine such operators—the
same as those which arise from perturbative operator
mixing.

Finally, four-fermion operators from the staggered ac-
tion that arise due to discretization effects can enter time-
ordered products with the BK operator Ostaggered

K , effec-
tively correcting the BK four-fermion vertex at O�a2

��.
We must therefore determine the chiral operators which
result from a combination of the BK four-fermion operator
and the inserted four-fermion operator from the action. We
do so using the spurion method of Ref. [10]. This results in
four new chiral operators, Eqs. (C26)–(C29), as well addi-
tional copies of seven operators which had appeared pre-
viously from operator mixing.

In total, we find 15 chiral operators; we will determine
their contributions to BK at 1 loop in the following section.
We note, however, that many of these chiral operators arise
in more than one way and correspond to more than one
quark-level operator, so they actually have more than one
undetermined coefficient. We list the O��=4��, O��2�,
O�a2�, and O�a2

�� operators and their coefficients in
Table IV. For example, the operator O1A

� , which comes
both from 1-loop perturbative matching and from inser-
tions of operators in the staggered action, has three coef-
ficients, one multiplied by �=4�, one multiplied by �2,
and one multiplied by a2. The three coefficients can be
separated, in principle, by carrying out simulations at more
(a) (b)

(d) (e)

FIG. 1 (color online). Tree-level and 1-loop contributions to MK
(b) generates kaon wave function renormalization. The circle represen
represent an insertion of the BK operator. Each box ‘‘changes’’ the
staggered case because it has the wrong flavor structure to contract

014003
than one lattice spacing. We emphasize that they cannot be
lumped together in a fit to multiple lattice spacings. In the
following sections, including the final expressions for BK
at NLO, we only associate a single coefficient, Ci

�, with
each operator. This is simply to reduce the size of the final
expressions. One must combine the expressions with
Table IV in order to make them complete.
BK AT 1 LOOP FOR 4� 4� 4 DYNAMICAL
FLAVORS

We first calculate BK at tree level, which receives a
contribution from a single diagram, Fig. 1(a), and from a
single chiral operator:

O K
� �

X
�

�Str��@��yF1�Str��@��yF2� � p:c:�: (18)

In the diagram, the BK chiral operator is shown as two
disconnected squares, each of which produces a kaon. This
reflects the structure of OK

� , which has two supertraces in
which the matrices F1 and F2 have the appropriate taste
(�5) and flavor (s1d1 and s2d2) structures to produce a K0

1
and a K0

2 . OK
� is just the staggered analog of the continuum

�27L; 1R� BK operator—it reduces to the standard form
after removing the taste structure (�5 ! �I) and the partial
quenching (d1; d2! d and Str! Tr). The tree-level BK
matrix element is simple:

MLO
K � �

2CK
�

f2

X
�

hK0
1jStr�@��F1�Str�@��F2�jK

0
2i

� �
32CK

�

f2 @�K
0
1@�K

0
2 �

32CK
�

f2 m2
xyP ; (19)

where m2
xyP � ��mx �my� is the tree-level kaon mass.

The kaon B parameter itself is just the ratio MK=Mvac,
(c)

(f)

. In (a)–(e), one external PGB is a K0
1 and the other is a K0

2 .
ts a vertex from the LO staggered chiral Lagrangian. The squares
quark flavor from d$ s. (f) does not actually contribute in the
with two different external kaons.

-5
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where Mvac is given in Eq. (3).8 Because the matrix
element Mvac is proportional to the square of the axial
current, it is proportional to f2p2 at tree level:

M LO
vac �

8

3
f2m2

xyP : (20)

Therefore the kaon mass drops out of the ratio of matrix
elements:

�
MK

Mvac

�
LO
�

12

f4 C
K
� � B0; (21)

and BK is just a constant at lowest order in S�PT.
We are now ready to calculate BK at 1 loop in S�PT. It is

useful to simplify the form of BK as much as possible
diagrammatically before explicitly showing any expres-
sions. In general, MK receives 1-loop contributions from
the five diagrams shown in Figs. 1(b)–1(f) [19]. However,
one can easily show that Fig. 1(f) cannot contribute in the
staggered case because it is impossible to draw a corre-
sponding quark-line diagram with two different external
kaons. Moreover, because BK is defined by the ratio
MK=Mvac, cancellations occur between matrix elements
in the same manner as the kaon mass dropped out at tree
level. It turns out that Figs. 1(b) and 1(c) cancel entirely in
the BK ratio, as we now show.

The 1-loop matrix element MK can be expressed as

M K �
8
3B0f2m2

xyPf1� X�Figs: 1�b�–1�c��g

� X0�Figs: 1�d�–�e��; (22)

where X and X0 denote the results of the specified diagrams
and m2

xyP is the 1-loop kaon mass squared.9 The NLO
expression for Mvac has the same form as the tree-level
one:

M vac �
8
3m

2
xyPf

2
xyP ; (23)

except that both m2
xyP and fxyP become the 1-loop quanti-

ties. Now consider Figs. 1(b) and 1(c). Visually, it is easy to
see that they factorize—if one draws a vertical line be-
tween the boxes, the left halves of the two diagrams
renormalize fK at 1 loop while the right halves just pro-
duce f at tree level. It therefore seems natural that
X�Figs: 1�b�–�c�� should be related to the 1-loop renormal-
ization of the kaon decay constant, and, if one works out
the details, one finds that
8Because we work only in the staggered theory for the rest of
the paper, we drop the superscript ‘‘staggered’’ from both
operators and matrix elements in order to reduce clutter in
expressions.

9Note that X0 is not within the curly braces because it comes
from operators other than OK

� and is therefore not proportional to
B0.
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X�Figs: 1�b�–�c�� � 2
�fNLO

f
; (24)

where the factor of 2 results from the fact that the loop can
be on either leg. Thus Figs. 1(b) and 1(c) are exactly those
necessary to turn the tree-level f2 into the 1-loop f2

xyP
10:

M K �
8
3B0f

2
xyPm

2
xyP � X

0�Figs: 1�d�–�e��; (25)

and BK only depends on Figs. 1(d) and 1(e):

B1-loop
K � B0 �

3
8

X0�Figs: 1�d�–�e��
f2
xyPm

2
xyP

: (26)

The diagrams in Figs. 1(d) and 1(e) receive contributions
from all of the enumerated BK chiral operators, which we
list here for convenience:

OK
� �

X
�

�Str��@��yF1�Str��@��yF2�

� Str��y@��F1�Str��y@��F2��;

ON
� �

X
�

�Str��@��yF1�@��yF2�

� Str��y@��F1�y@��F2��;

O1P
� � Str�F1�F2�y�;

O2P
� � Str��5�F1�y�5�F2�y�� p:c:;

O3P
� � Str��5�F1�y�Str��5�F2�y�� p:c:;

O1I
� � Str�F1I�F2I�

y�;

O1T
� �

X
��	

Str�F1T�F2T�y�;

O2T
� �

X
��	

Str���	�F1�y�	��F2�y�� p:c:;

O3T
� �

X
��	

Str���	�F1�y�Str��	��F2�y�� p:c:;

O1V
� �

X
�

�Str�F1V�F2V���Str�F1V�yF2V�y��;

O2V
� �

X
�

�Str�F1V��Str�F2V���Str�F1V�y�Str�F2V�y��;

O3V
� �

X
�

Str�F1V��Str�F2V�y�;

O1A
� �

X
�

�Str�F1A�F2A���Str�F1A�yF2A�y��;

O2A
� �

X
�

�Str�F1A��Str�F2A���Str�F1A�y�Str�F2A�y��;

O3A
� �

X
�

Str�F1A��Str�F2A�y�: (27)

Appendix C explains the details of our operator notation,
but we note here the important features. In general, each
10Note that the NLO analytic contributions to fxyP simply
change the coefficients of the NLO analytic corrections to BK.
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(a) (b) (c)

FIG. 2 (color online). Quark-line diagram contributions to BK at 1 loop. One external meson is a K0
1 and the other is a K0

2 . The two
boxes (hexagons) represent an insertion of the BK operator. Each box changes the valence quark flavor from �d1$ s1� or �d2$ s2�.
Each hexagon changes the valence quark flavor from �d1$ s2� or �d2$ s1�. (a) and (b) contribute to Fig. 1(d) while (c) contributes
to Fig. 1(e).
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operator contains an F1 and an F2, which are taste matrices
with different, nontrivial flavor structures such that OK

�

produces the desired kaons at tree level. In particular, F1

and F2 with no additional labels are taste �5, whereas the
remaining F’s have ‘‘incorrect’’ tastes, e.g. F1T is taste
��	. The fact that many operators with tastes other than P
contribute to BK illustrates the importance of incorporating
taste-symmetry breaking when calculating quantities with
staggered fermions on the lattice.
11Double-supertrace operators O3P
� and O3T

� cannot contribute
to BK at NLO because the loop mesons must be connected
through a hairpin propagator, and can only be tastes I, V, or
A. For a review of S�PT and a brief discussion of hairpin (quark
disconnected) propagators see Appendix B.

12Recall that OK
� and ON

� have the same coefficient, which we
call CK

� .
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Figure 1(d), in which one of the many BK operators
produces a four-meson vertex and two of the legs are
then contracted to form a loop, corresponds to two
quark-level diagrams, shown in Figs. 2(a) and 2(b). The
two boxes in each diagram are similar, but not identical:
one changes a d1 quark into an s1 quark while the other
changes a d2 into an s2. Figure 2(a) must be disconnected
at the quark level because the two external kaons contain
different kinds of valence quarks, so it only receives con-
tributions from double-supertrace operators11:
M�a� �
8CK

�

f4

Z d4q

�2��4
�p2 � q2�fDI

xx�q� �DI
yy�q� � 2DI

xy�q�g �
16�2C2V

� � C3V
� �

f4

Z d4q

�2��4
fDA

xx�q� �DA
yy�q� � 2DA

xy�q�g

�
16�2C2A

� � C3A
� �

f4

Z d4q

�2��4
fDV

xx�q� �D
V
yy�q� � 2DV

xy�q�g: (28)

The symbols DI, DV , and DA represent the taste I, V, and A disconnected propagators, respectively—we will show their
explicit forms later as needed. Figure 2(b), on the other hand, is connected and only receives contributions from the seven
single-supertrace operators12:

M�b� �
X
B0

CK
�f

B0

f4

Z d4q

�2��4

�
2q2

3

�
1

q2 �m2
xyB0

�
�
�q2 � p2�

4

�
1

q2 �m2
xxB0
�

1

q2 �m2
yyB0

��

�
X
B;B0

C1B
� g

BB0

f4

Z d4q

�2��4

�
1

3

�
1

q2 �m2
xyB0

�
�

1

4

�
1

q2 �m2
xxB0
�

1

q2 �m2
yyB0

��

�
X
B;B0

C2B
� hBB

0

f4

Z d4q

�2��4

�
2

3

�
1

q2 �m2
xyB0

�
�

1

4

�
1

q2 �m2
xxB0
�

1

q2 �m2
yyB0

��
; (29)
where the coefficients fB
0
, gBB

0
, and hBB

0
are matrices in

which B � I; P; V; A; T labels the contributing operator
and B0 � I; P; V; A; T indicates the loop meson taste:

fB
0
� �8� 1 1 4 4 6 �; (30)
gBB
0
� �4

1 1 �4 �4 6
1 1 4 4 6
�8 8 �16 16 0
�8 8 16 �16 0
12 12 0 0 �24

0BBBBB@

1CCCCCA; (31)

hBB
0
� 128

0 0 0 0 0
0 0 1 1 0
0 0 0 0 0
0 0 0 0 0
0 0 6 6 12

0BBBBB@

1CCCCCA: (32)

The sum over B0 accounts for how many times a particular
-7
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loop meson taste contributes to the above expression with a
given coefficient—this is important because a staggered
meson’s mass depends on its taste as well as its flavor.13

The pattern f1; 1; 4; 4; 6g in Eq. (30) counts the number of
lattice PGBs with each taste—thus the coefficient fB

0

averages over all PGB tastes. Note that the rows of zeros
in Eq. (32) have no deep physical meaning, but simply
correspond to the absence of certain operators, e.g. h0B �
�0; 0; 0; 0; 0� indicates that O2I

� does not exist. Nevertheless
we include them so as to allow both B and B0 to run over
the same set of indices.

Figure 1(e), in which an operator from the staggered
chiral Lagrangian generates the four-meson vertex and one
of the BK operators is inserted in the loop, corresponds to
the third quark-level diagram, Fig. 2(c). Because the LO
staggered chiral Lagrangian contains three types of opera-
tors—the continuum two-derivative term, the continuum
mass term, and the O�a2� potential—there are many con-
tributions to this diagram. Nevertheless, although the stag-
gered potential contains both single- and double-supertrace
operators, we only show a connected vertex in Fig. 2(c).14

This is because it turns out that, for all disconnected 4-PGB
vertices from the LO staggered potential in which two of
the legs have the desired flavors of external kaons, the
various Wick contractions cancel and the vertex is identi-
cally zero. Thus we need only consider connected 4-PGB
vertices. Because the two external kaons have entirely
different flavors, they cannot share any quark lines without
a BK operator insertion (box or hexagon), so Fig. 2(c)
shows the only possible quark flow. However, it is now
easy to see that the BK operator must change both the quark
flavor and the valence set, so we use hexagons rather than
boxes to indicate this. Finally, at the 2-PGB level, double-
supertrace BK operators (by construction) change flavors
within a valence set, whereas single-supertrace operators
change flavors between sets of valence quarks. Thus the
last diagram only receives contributions from single-
supertrace operators:
M �c� �
X
B0

Z d4q

�2��4

�
�CK

�fB
0
q2 �

X
B

�C1B
� gBB

0

� C2B
� h

BB0 �

��p2 � q2 � 2m2
xyP �m

2
xyB0

6f4

�

�

�
1

q2 �m2
xyB0

�
2
: (33)
Note that it depends on the same coefficients, f, g, and h as
M�b�—this will allow us to combine the two in the follow-
ing section.
13See Ref. [8] for the staggered meson masses at tree level.
14The staggered potential is shown explicitly in Appendix B.
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V. NEXT-TO-LEADING-ORDER BK RESULTS

The 1-loop matrix elements determined in the previous
section apply to a PQ theory with four tastes of each sea
quark flavor. To go from four tastes per sea quark to one
taste per sea quark (from the so-called ‘‘4� 4� 4 theory’’
to the ‘‘1� 1� 1 theory’’ when Nsea � 3), we must multi-
ply every sea quark loop by 1/4. At first glance, the quark-
level diagrams which contribute to BK at 1 loop,
Figs. 2(a)–2(c), do not appear to contain any sea quark
loops. However, sea quark loops implicitly enter the dis-
connected hairpin propagators when one rediagonalizes
the mass matrices of the flavor-neutral, taste V, A, and I,
sectors. In general, the forms of quenched, PQ, and full
QCD matrix elements only differ for diagrams with sea
quark loops, so the final expression for Eq. (28) will change
in the three cases, but those for Eqs. (29) and (33) will
remain the same.

A. BK at NLO in the PQ theory

We first consider BK in the 1� 1� 1 PQ theory (mu �

md � ms), as it is the most general. We label the valence
quarks by x and y, and reserve the labels u, d, and s for the
sea quarks. Note that the sea quark masses only show up in
the PQ results implicitly through the masses of the flavor-
neutral PGBs:�0, 
, and 
0. Thus the 1� 1� 1 result can
be turned into the 2� 1 (mu � md � ms) result simply by
changing the expressions for the �0, 
, and 
0 masses.

The matrix elements that come from connected quark-
level diagrams are the most simple to calculate, so we
consider them first. Neither Fig. 2(b) nor Fig. 2(c) contains
sea quark loops, so we do not have to insert any factors of
1/4 by hand—we need only perform the integrals. To
simplify the resulting expressions, we use a condensed
notation for the chiral logarithms. As in Refs. [8,9], we
define two functions, ‘ and ~‘:

Z d4q

�2��4
1

q2 �m2 �
1

16�2 ‘�m
2�; (34)

Z d4q

�2��4
1

�q2 �m2�2
�

1

16�2
~‘�m2�: (35)

The remaining integrals can all be expressed in terms of ‘
and ~‘:

Z d4q

�2��4
q2

q2 �m2 �
�m2

16�2 ‘�m
2�; (36)

Z d4q

�2��4
q2

�q2 �m2�2
�

1

16�2 �‘�m
2� �m2 ~‘�m2��; (37)
-8
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Z d4q

�2��4
q4

�q2 �m2�2
�

m2

16�2 �m
2 ~‘�m2� � 2‘�m2��: (38)

Because finite-volume (FV) corrections to BK only alter
the chiral logarithms by turning integrals into sums, one
can use either the infinite volume or FV expressions for ‘
and ~‘ as desired:

‘�m2� � m2

�
ln

m2

�2
D:R:

� �FV1 �mL�
�
;

�FV1 �mL� �
4

mL

X
~r�0

K1�j~rjmL�

j ~rj

(39)

BK IN STAGGERED CHIRAL PERTURBATION THEORY
15Note that we use dimensional regularization and the same renorm
16The staggered factors of 1/4 shift the mass eigenvalues but do n

masses in a theory with 2� 1 sea quarks are given in Ref. [8]. The
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~‘�m2� � �

�
ln

m2

�2
D:R:

� 1
�
� �FV3 �mL�;

�FV3 �mL� � 2
X
~r�0

K0�j~rjmL�;
(40)

where L3 is the lattice spatial volume and K0 and K1 are
Bessel functions of imaginary argument.15 Thus our final
expression for BK will be completely general. In terms of ‘
and ~‘, the 1-loop matrix element contribution to BK from
connected quark-level diagrams, M�b� �M�c�, is
Mconn �
1

64�2f4

X
B0

�
CK
�fB

0
�m2

XB0
‘�m2

XB0
� �m2

YB0
‘�m2

YB0
� � 2m2

xyB0
‘�m2

xyB0
��

�
X
B

�C1B
� gBB

0
� C2B

� hBB
0
��‘�m2

XB0
� � ‘�m2

YB0
� � 2‘�m2

xyB0
�� � CK

�fB
0
m2
xyP�‘�m

2
XB0
� � ‘�m2

YB0
� � 2‘�m2

xyB0
�

� 2m2
xyB0

~‘�m2
xyB0
�� �

X
B

�C1B
� gBB

0
� C2B

� hBB
0
�m2

xyP�2
~‘�m2

xyB0
��

�
: (41)
We use a condensed notation for the flavor-neutral mesons,
in which m2

X � m2
xx and so forth. Note that the first two

lines vanish when mx � my. Note also that the second and
third terms in Mconn are proportional to the mass of the
external kaons because we have let p2 � �m2

xyP .
Next we consider the matrix element that comes from

the disconnected diagram in Fig. 2(a), Eq. (28), which
contains tastes I, V, and A hairpin propagators. Because
the 2-PGB disconnected vertices are dimension 2, an addi-
tional hairpin vertex can be canceled by an additional
propagator in the S�PT power counting, so one must
resum the flavor-neutral propagators with all possible num-
bers of sea quark loops between the external hairpins. The
staggered, flavor-neutral, full propagators were determined
in Ref. [8] using the general method outlined in
Appendix A of Ref. [20], but adding factors of 1/4 for
every sea quark loop in the series. We will just quote the
results.

Generically, hairpin propagators contain poles at the
mass eigenstates (�0, 
, and 
0) and the flavor eigenstates
(X and Y).16 These multiple poles can be rewritten as sums
of single poles times their residues, e.g.,
DV;PQ
xy �q� � �a2�0V

1

�q2 �m2
XV
��q2 �m2

YV
�

�q2 �m2
UV
��q2 �m2

DV
��q2 �m2

SV
�

�q2 �m2
�0
V
��q2 �m2


V ��q
2 �m2


0V
�

(42)

� �a2�0V
X

j�X;Y;�0;
;
0

1

q2 �m2
jV

R�5;3�jV
�fmX;mY;m�0 ; m
;m
0 g; fmU;mD;mSg�; (43)

where R�5;3�jV
is the residue of the single pole at q2 � �m2

jV
, e.g.,

R�5;3�XV
�

�m2
UV
�m2

XV
��m2

DV
�m2

XV
��m2

SV
�m2

XV
�

�m2
YV
�m2

XV
��m2

�0
V
�m2

XV
��m2


V �m
2
XV
��m2


0V
�m2

XV
�
: (44)

We use the notation of Refs. [8,9], which is most clearly described in the Appendix of [9]. The expression in Eq. (42) is
valid for three sea quarks with any combination of masses; an analogous expression holds for DA;PQ

xy �q�. Because the
overall flavor-taste singlet decouples from the PQ theory, when m0 ! 1 the expression for DI;PQ

xy �q� simplifies further:
alization scheme as Refs. [8,9].
ot introduce additional poles. Expressions for the �0, 
, and 
0

generalization to the 1� 1� 1 case is straightforward.
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DI;PQ
xy �q� � �

4m2
0

3

1

�q2 �m2
XI
��q2 �m2

YI
�

�q2 �m2
UI
��q2 �m2

DI
��q2 �m2

SI
�

�q2 �m2
�0
I
��q2 �m2


I ��q
2 �m2


0I
�

(45)

			!
m0!1

�
4

3

1

�q2 �m2
XI
��q2 �m2

YI
�

�q2 �m2
UI
��q2 �m2

DI
��q2 �m2

SI
�

�q2 �m2
�0
I
��q2 �m2


I �
(46)

� �
4

3

X
j�X;Y;�0;


1

q2 �m2
jI

R�4;3�jI
�fmX;mY;m�0 ; m
g; fmU;mD;mSg�: (47)

Some of the taste I disconnected propagators are multiplied by q2, so the residues of their poles are changed:

q2DI;PQ
xy �q� �

4

3

X
j�X;Y;�0;


m2
jI

q2 �m2
jI

R�4;3�jI
�fmX;mY;m�0 ; m
g; fmU;mD;mSg�; (48)

where ‘‘�’’ indicates that this relationship only holds within the integral.
Using the definitions of the disconnected propagators it can be shown that

Dxx �Dyy � 2Dxy � �m
2
X �m

2
Y�

2 @

@m2
X

@

@m2
Y

fDxyg: (49)

This greatly simplifies the 1-loop matrix element contribution to BK from disconnected quark-level diagrams:

M PQ
disc �

2CK
�

3�2f4 �m
2
XI
�m2

YI
�2

@

@m2
XI

@

@m2
YI

� X
j�X;Y;�0;


‘�m2
jI
��m2

xyP �m
2
jI
�R�4;3�jI

�
�
�2C2V

� � C3V
� �a

2�0A
�2f4 �m2

XA
�m2

YA
�2

@

@m2
XA

�
@

@m2
YA

� X
j�X;Y;�0;
;
0

‘�m2
jA
�R�5;3�jA

�

�
�
�2C2A

� � C3A
� �a

2�0V
�2f4 �m2

XV
�m2

YV
�2

@

@m2
XV

@

@m2
YV

� X
j�X;Y;�0;
;
0

‘�m2
jV
�R�5;3�jV

�
;

(50)
where we have set p2 � �m2
xyP and the arguments of the

R’s are as in Eqs. (43) and (47). This compact notation
emphasizes that the disconnected matrix element vanishes
quadratically as �mx �my� ! 0.

Finally, BK at NLO in a PQ theory with 1� 1� 1 sea
quarks is

BPQ
K � B0 �

3

8

�
Mconn �MPQ

disc

f2
xyPm

2
xyP

�
A

f2
xyP

� B
m2
xyP

f2
xyP

� C
�mx �my�

2

f2
xyPm

2
xyP

�D
�mu �md �ms�

f2
xyP

�
; (51)

where B0 is given in Eq. (21) and Mconn and MPQ
disc are

given in Eqs. (41) and (50). Here we have reintroduced the
analytic terms from Appendix C 3. We have checked
explicitly that all renormalization scale dependence in
the logarithms can be absorbed by the analytic terms.
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B. BK at NLO in the quenched theory

We now find BK in the quenched theory. Because of the
absence of sea quark loops, additional factors of 1/4 to
reduce the number of tastes per flavor are unnecessary.
Moreover, the flavor-neutral propagators need not be re-
summed, so their forms are quite simple, e.g.,

DV;Quench
xy �q� � �a2�0V

1

�q2 �m2
XV
��q2 �m2

YV
�
; (52)

and likewise for DA;Quench
xy �q�. However, the flavor-taste

singlet (
0I) does not decouple in the quenched theory, so
we cannot take m0 ! 1:

DI;Quench
xy �q� � �

4

3

m2
0 � �q

2

�q2 �m2
XI
��q2 �m2

YI
�
; (53)

where � is an additional chiral parameter that is only
present in the quenched theory, not the strong coupling
constant. As before, the nondegenerate propagators can be
-10
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further simplified into sums of poles times residues:

DV;Quench
xy �q� � �a2�0V

1

m2
YV
�m2

XV

�
1

q2 �m2
XV

�
1

q2 �m2
YV

�
;

DI;Quench
xy �q� �

�
�4

3

�
1

m2
YI
�m2

XI

�m2
0 � �m

2
XI

�q2 �m2
XI
�
�
m2

0 � �m
2
YI

�q2 �m2
YI
�

�
: (54)

Because the connected quark-level diagrams that contribute to BK at 1 loop, Figs. 2(b) and 2(c), do not contain sea quark
loops, the corresponding matrix elements remain unchanged from the PQ theory. The matrix elements from disconnected
quark-level diagrams, after setting p2 � �m2

xyP , are

MQuench
disc �

2CK
�

3�2f4 �m
2
XI
�m2

YI
�2

@

@m2
XI

@

@m2
YI

� X
j�X;Y

‘�m2
jI
��m2

xyP �m
2
jI
��m2

0 � �m
2
jI
�R�2;0�jI

�

�
�2C2V

� � C3V
� �a2�0A

�2f4 �m2
XA
�m2

YA
�2

@

@m2
XA

@

@m2
YA

� X
j�X;Y

‘�m2
jA
�R�2;0�jA

�

�
�2C2A

� � C3A
� �a2�0V

�2f4 �m2
XV
�m2

YV
�2

@

@m2
XV

@

@m2
YV

� X
j�X;Y

‘�m2
jV
�R�2;0�jV

�
; (55)
where

R�2;0�XV
� R�2;0�XV

�fmX;mYg� �
1

�m2
YV
�m2

XV
�
� �R�2;0�YV

:

(56)

Therefore BK at NLO in the quenched theory is

BQuench
K � B0 �

3

8

�
Mconn �MQuench

disc

f2
xyPm

2
xyP

�
A

f2
xyP

� B
m2
xyP

f2
xyP

� C
�mx �my�

2

f2
xyPm

2
xyP

�
; (57)

where B0 is given in Eq. (21) and Mconn is given in
Eq. (41). We emphasize that the undetermined coefficients,
Ci
� and A–C, are different in the quenched theory than in

QCD, and that there is no D term.

C. BK at NLO in the full (2� 1) theory

Finally we determine BK in full QCD, i.e. mx � md and
my � ms, with 2� 1 sea quarks (mu � md � ms).
Although one can, in principle, just take the limit of the
final PQ expression, Eq. (51), it is easier to start from the
expressions for the 1-loop matrix elements in terms of
integrals.

Because QCD is a physical theory, the disconnected
propagators only have single poles. It is easy to show this
explicitly for the 2� 1 theory, in which m2

�0 � m2
U � m2

D

and parts of the numerator and denominator cancel. For
example, the taste V (and A) disconnected propagators are
014003
DV;2�1
dd �q� � �a2�0V

�
1

q2 �m2
DV

�

� �m2
SV
�m2

DV
�

�m2

V �m

2
DV
��m2


0V
�m2

DV
�

�

� �D! 
! 
0 ! D�
�
; (58)

DV;2�1
ss �q� � �a2�0V

�
1

q2 �m2
SV

�

� �m2
DV
�m2

SV
�

�m2

V �m

2
SV
��m2


0V
�m2

SV
�

�

� �S! 
! 
0 ! S�
�
; (59)

DV;2�1
ds �q� � �a2�0V

�
1

q2 �m2

V

1

�m2

0V
�m2


V �

� �
$ 
0�
�
; (60)

where the arrows indicate all possible permutations of
masses. As in the PQ theory, the taste singlet 
0 decouples,
so we can use the explicit large-m0 expressions for the
masses,

m2
�0
I
� m2

UI
� m2

DI
; (61)

m2

I �

m2
DI

3
�

2m2
SI

3
; (62)

m2

0I
� m2

0; (63)
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to drastically simplify the taste I disconnected propagators:

DI;2�1
dd �q� 			!

m0!1
� 2

1

q2 �m2
DI

�
2

3

1

q2 �m2

I

; (64)

DI;2�1
ss �q� 			!

m0!1
� 4

1

q2 �m2
SI

�
8

3

1

q2 �m2

I

; (65)

DI;2�1
ds �q� 			!

m0!1
�

4

3

1

q2 �m2

I

: (66)

In this section we only show the 1-loop matrix elements that come from disconnected quark-level diagrams:

M2�1
disc �

CK
�

�2f4 f�m
2
dsP
�m2

DI
�‘�m2

DI
� � 2�m2

dsP
�m2

SI
�‘�m2

SI
� � 3�m2

dsP
�m2


I �‘�m
2

I �g

�
�2C2V

� � C3V
� �a2�0A

�2f4

�
2
�
‘�m2


A�
1

�m2

0A
�m2


A�
� �
$ 
0�

�

�

�
‘�m2

DA
�

� �m2
SA
�m2

DA
�

�m2

A �m

2
DA
��m2


0A
�m2

DA
�

�
� �D! 
! 
0 ! D�

�

�

�
‘�m2

SA
�

� �m2
DA
�m2

SA
�

�m2

A �m

2
SA
��m2


0A
�m2

SA
�

�
� �S! 
! 
0 ! S�

��

�
�2C2A

� � C3A
� �a

2�0V
�2f4

�
2
�
‘�m2


V �
1

�m2

0V
�m2


V �
� �
$ 
0�

�

�

�
‘�m2

DV
�

� �m2
SV
�m2

DV
�

�m2

V �m

2
DV
��m2


0V
�m2

DV
�

�
� �D! 
! 
0 ! D�

�

�

�
‘�m2

SV
�

� �m2
DV
�m2

SV
�

�m2

V �m

2
SV
��m2


0V
�m2

SV
�

�
� �S! 
! 
0 ! S�

��
: (67)
The matrix elements which come from connected diagrams
are minimally changed from the PQ ones in that x! d and
y! s. Therefore BK at NLO in full QCD with 2� 1 sea
quarks is

B2�1
K � B0 �

3

8

�
Mconn�x! d; y! s� �M2�1

disc

f2
dsP
m2
dsP

�

�
3

8

�
A

f2
dsP

� B
m2
dsP

f2
dsP

� C
�md �ms�

2

f2
dsP
m2
dsP

�D
�2md �ms�

f2
dsP

�
; (68)

where B0 is given in Eq. (21) and Mconn is given in
Eq. (41).
VI. GUIDE FOR LATTICE DETERMINATION
OF BK

Any lattice determination of BK necessarily entails two
steps: first, fit the �PT expression to the lattice data and
determine the unknown coefficients, and, second, use the
014003
resulting function to extrapolate BK to its value at the
physical quark masses in the continuum limit. The large
number of undetermined constants in the staggered �PT
expression for BK at NLO could make the fitting procedure
quite difficult, and certainly necessitates a lot of data. Our
goal is therefore to find alternative ways to access some of
these coefficients. Once measured, they can be used in the
full NLO S�PT BK fit.

We begin by reviewing explicitly all of the parameters in
the expression for BK at NLO. We presume that BK will be
fit as a function of the kaon mass squared, so we do not
consider the latter to be a fit parameter. In order to properly
count the number of undetermined coefficients, we must
combine the PQ expression for BK, Eq. (51), with
Tables IV and V. Only 13 of the 15 operators listed in
Eq. (27) in fact appear in Eq. (51). Operators O3P

� and O3T
�

turn out not to contribute to BK at NLO. Operators O2V
� and

O3V
� (and similarly O2A

� and O3A
� ) turn out to enter the

expression for BK as a single linear combination, and can
therefore be associated with a single coefficient. Thus we
can see from Table IV that there are 23 coefficients asso-
ciated with NLO chiral operators, in addition to CK

� .
-12
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Similarly, Table V shows that there are six linearly inde-
pendent analytic terms. Finally, certain parameters appear
in all S�PT calculations: the four tree-level mass splittings,
the two hairpin parameters, and fxyP . Thus the expression
for BK at NLO is given in terms of 37 undetermined
coefficients. Fortunately, some of these parameters have
already been determined on the MILC 2� 1 dynamical
field configurations [7]. In particular, the taste Goldstone
meson decay constant, as well as the mass splittings be-
tween the other PGB tastes, are already known.17 However,
this still leaves 32 undetermined fit parameters.

An obvious way to reduce the number of parameters is to
perform a fit to a single lattice spacing. This reduces the
coefficients in Table IV to one per operator (or per linear
combination), i.e. from 23 to 9, and the analytic terms in
Table V from 6 to 4. Clearly one must eventually fit to
multiple lattice spacings. We suggest, however, that is
preferable to fit BK in a multistage process. First, perform
separate NLO BK fits at multiple lattice spacings with this
reduced set of parameters. As we will show, a single lattice
spacing fit of BK, in combination with tree-level fits of
other matrix elements, can be used to separate almost all of
the perturbative and discretization errors from the desired
continuum result. Second, remove these errors at each
lattice spacing. Third, fit the results after error subtraction
simultaneously to multiple lattice spacings using the ap-
propriately simplified S�PT expression. Last, send the
remaining errors, which have now been obtained, to zero,
and calculate a value for the continuum parameter B̂K.18

We now discuss step one: fitting the NLO expression for
BK at a single lattice spacing. Because this still involves 16
parameters, it is qualitatively useful to first consider the
case of degenerate valence quarks, i.e. mx � my. Recall
from the previous sections that the NLO expression for BK
greatly simplifies in this limit. The matrix element from the
disconnected diagram vanishes, thereby removing coeffi-
cients C2V

� –C3A
� and the hairpin parameters, as do half of

the terms in the matrix element from the connected dia-
grams. The degenerate mass case is therefore the appro-
priate testing ground for whether the NLO expression
describes the data at all, i.e. if one is in the chiral regime,
before moving on to the more complex, but physical,
situation of mx � my.

In fact, the degenerate mass case is also quantitatively
useful. Recall that the dominant contribution to BK at NLO
comes from the tree-level matrix element of OK

� , and is
proportional to CK

� :
17We note that the vector hairpin is poorly determined from the
MILC data, and that effects of the vector and axial-vector hair-
pins are, in practice, difficult to disentangle in S�PT fits.

18The explicit expression for B̂K in terms of BK is given in
Eq. (82).
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hK0
1PjO1-loop�taste P�jK0

2Pi

Mvac

� 6
CK
�

f4 � . . . : (69)

Because we wish to determine BK (and consequently CK
� )

to NLO accuracy, the above expression is insufficient.19 An
NLO fit to BK with degenerate valence quark masses,
however, can potentially be used to determine CK

� to
NLO accuracy. In this limit, BK at NLO has the following
form:

BK � 12
CK
�

f4

�
1�

1

512�2f2
xyP

�
X
B0
fB

0

�
‘�m2

KB0
� �

1

2
m2
KB0

~‘�m2
KB0
�

��

�
3

256�2f2
xyP

X
B0

~‘�m2
KB0
�
X
B

�
C1B
�

f4 gBB
0
�

C2B
�

f4 hBB
0

�

� A
3

8f2
xyP

� B
3m2

xyP

8f2
xyP

�D
3�mu �md �ms�

8f2
xyP

: (70)

It depends on CK
� , now at NLO, three analytic terms, and

five linear combinations of other operator coefficients,P
B�C

1B
� gBB

0
� C2B

� hBB
0
� for B0 � I; P; V; A; T. As we

show below, these five combinations can be determined
to the required accuracy using other matrix elements. Once
they are found, we would like to use a fit of Eq. (70) to
extract CK

� to NLO accuracy. Unfortunately, this turns out
not to be possible; separation of the NLO part of CK

� from
the analytic term A requires a simultaneous fit to multiple
lattice spacings. We can, however, consider their sum,
�CK

�=f4 � 3A=16f2
xyP�, to be a single fit parameter that

can be determined to NLO accuracy. We can also deter-
mine the remaining analytic terms, B andD, using Eq. (70)
at a single lattice spacing.

The other simple handle that one has in lattice simula-
tions, besides the quark masses, is the flavors and tastes of
the external states. At tree level, double-supertrace opera-
tors have nonvanishing matrix elements between a K0

1

(s1d1) and a K0
2 (s2d2). In contrast, single-supertrace

operators have nonvanishing matrix elements between
‘‘mixed’’ kaons: s1d2 and s2d1. Both single- and
double-supertrace operators can have nonvanishing matrix
elements between all five possible tastes: I, P, V, A, and T.
Thus, by evaluating the matrix element of O1-loop�taste P�
between different external states, we can naively hope to
determine as many as nine independent coefficients for use
in the larger NLO S�PT fit. In essence, while the two sets
of valence quarks and multiple tastes introduce many new
19In fact, at first glance, we also need f at NLO. However, this
is really unnecessary because CK

� enters both the LO and NLO
contributions to BK as the combination CK

�=f
4. Thus we can treat

the quantity �CK
�=f

4� as the undetermined fit parameter, and
likewise for the other NLO coefficients.
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20This is obviously the correct way to remove discretization
errors. The right way to remove perturbative errors, however, is
less apparent, since we have only partially matched the contin-
uum operator at 1 loop. We will later show that it is, in fact,
correct to simply set their coefficients to zero.

21Strictly speaking we should fit to the quantity B̂K, which is
independent of lattice spacing, as we explain below.
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operators into staggered �PT, they also allow the indepen-
dent determination of more operator coefficients.

First consider the double-supertrace operators, of which
there are four: O2V

� , O3V
� , O2A

� , and O3A
� . Clearly, to extract

the coefficient of O2V
� (or O2A

� ) we need to choose taste
vector (or axial) kaons for our external states. The resulting
matrix elements are

hK0
1V jO1-loop�taste P�jK0

2Vi �
�16

f2 �2C
2V
� � C3V

� �; (71)

hK0
1AjO1-loop�taste P�jK0

2Ai �
�16

f2 �2C
2A
� � C3A

� �; (72)

so we can only determine the linear combination of coef-
ficients �2C2V

� � C3V
� �. However, in the 1-loop contribu-

tions to BK, these coefficients enter in a different linear
combination: �2C2V

� � C3V
� �. Thus we cannot in any simple

way separately extract the coefficients of the two super-
trace operators. Nevertheless, calculation of these matrix
elements should still be done, as it provides an estimate of
the size of the NLO coefficients. Moreover, because the
matrix element of O1-loop�taste P� between taste I and T
kaons should be zero at this order,

hK0
1IjO1-loop�taste P�jK0

2Ii � 0��NNLO�; (73)

hK0
1TjO1-loop�taste P�jK0

2Ti � 0��NNLO�; (74)

they can be used to gauge the size of the higher-order
terms, thereby testing the validity of our phenomenological
power-counting scheme and determining whether or not it
is necessary, as is done in Ref. [7], to introduce a small
subset of next-to-next-to leading order (NNLO) terms.

Next consider the single-supertrace operators.
Extracting many of their coefficients turns out to be fea-
sible, although not completely trivial. There are eight such
operators—ON

� , O1P
� , O2P

� , O1T
� , O1I

� , O2T
� , O1V

� , and
O1A
� —and five possible matrix elements. We can combine

them into a single equation using the same coefficients as
in Eq. (70):

hK0
1

mix

B0 jO1-loop�taste P�jK0mix

2B0 i

Mvac

�
3

8

1

NB0f4m2
KP

�
CK
�f

B0m2
KB0
�
X
B

�C1B
� g

BB0 � C2BhBB
0
�

�
;

(75)

where

NB0 � ��1 �1 4 4 �6 �: (76)

The coefficient CK
� can be separated through its quark mass

dependence, but this is not useful because it is only deter-
mined at LO in this tree-level matrix element. However, the
numerical values of the five linear combinations of coef-
ficients corresponding to B0 � I; P; V; A; T are needed,
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along with the degenerate mass BK result, Eq. (70), to
determine the combination of coefficients �12CK

�=f
4 �

3A=8f2
xyP� to NLO accuracy. The five matrix elements in

Eq. (75) also aid in the true, mx � my, BK determination
because we can solve for five coefficients in terms of the
remaining two, and substitute the resulting functions into
the NLO S�PT expression before fitting.

Thus, after exploiting both degenerate mass and mixed-
flavor matrix elements, we are left with a NLO fit at a
single lattice spacing to only seven parameters: �0V , �0A,
�2C2V

� � C3V
� �, �2C2A

� � C3A
� �, C, and two additional NLO

coefficients of our choice from Eq. (75). This should
certainly be feasible. Once this is done, the next step is
to remove as much of the discretization and perturbative
error as possible before combining the data from multiple
lattice spacings. We do this by setting all coefficients that
are multiplied by a2, a2

�, �=4�, and �2 to zero.20 One can
see now why it is preferable to fit to one lattice spacing at a
time—it avoids having to give each operator in Table IV a
separate coefficient for each expansion parameter. Doing
so would clearly be a waste of effort, since one only needs
the total error, not the individual coefficients, in order to
remove it. We emphasize, however, that there is one coef-
ficient that cannot be removed at this stage—A. It is tied up
in the linear combination �12CK

�=f
4 � 3A=8f2

xyP�. We
must therefore remove all of the coefficients of operators
in Table IV and then perform a new fit to multiple lattice
spacings.21 Such a fit will only contain the continuum
parameter CK

� and A, the latter of which must now be
separated into three pieces of O�a2�, O�a2

��, and O��2�.
It therefore has four parameters, which is a clear improve-
ment over the 37 parameters that would have originally
been needed in a fit to multiple lattice spacings. Once we
have separated the three contributions to A from the coef-
ficient CK

� at NLO, we will remove them as well.
Finally, assuming that we have successfully carried out

the fitting procedure outlined above, we are ready to turn
the result into a continuum value for B̂K. We therefore
review the procedure for matching lattice and continuum
operators. Along the way, we clarify some of the points and
justify some of the assumptions made previously.

After removal of discretization errors, multiple lattice
regularized operators match onto a given continuum op-
erator in the following manner:

O cont��� � Z��; a�Olat�a�; (77)

where Ocont��� is a single operator, Olat�a� is a vector of
-14



BK IN STAGGERED CHIRAL PERTURBATION THEORY PHYSICAL REVIEW D 73, 014003 (2006)
operators, and the vector Z relates the two. The 1-loop
expression for Z��; a� is typically written in the following
way:

Z��; a� � 1�
�

4�
c��a�; (78)

where c is a vector that contains the 1-loop matching
coefficients. However, Eq. (78) clearly has a problem:
what is the appropriate scale at which to evaluate �?
This ambiguity can be avoided by using the exact pertur-
bative formula for Z given by Ji in Ref [21]:

Z��; a� � exp
�
�
Z g���

0
dg00

�cont�g
00�

�cont�g00�

�
Tg0

� exp
�
�
Z 0

g�a�
dg0

�lat�g
0�

�lat�g
0�

�
; (79)

where Tg0 indicates a g0-ordered product22 and � and � are
the anomalous dimension and beta function, respectively.23

Equation (79) is easy to understand physically; it shows
that matching is a three-step process. First, run the lattice
operators calculated at a scale q
 � 1=a up to a � 0. Next,
match the lattice operators at this scale onto the continuum
operator at a scale � � 1. Finally, run the continuum
operator down to a scale �, which is typically 2 GeV.
This procedure cleanly separates the lattice scale, a, from
the continuum scale, �.

Mathematically, Eq. (79) can be used to derive the
following relationship between the continuum and lattice
operators:

������0=2�0

�
1�

����
4�

Jcont �O��2�

�
Ocont���

� ��q
���0=2�0

�
1�

��q
�
4�

Jcont �O��2�

�

�

�
1�

��q
�
4�

c�q
a� �O��2�

�
Olat�a�; (80)

where

J �
�1�0

2�2
0

�
�1

2�0
; (81)

and the vector c contains the standard 1-loop matching
coefficients. This formulation of perturbative matching is
extremely useful. Because the matching coefficients only
appear on the ‘‘lattice side’’ of the equation, and no longer
depend on the continuum scale �, one can choose any
reasonable scale at which to calculate the matching coef-
ficients—a natural choice is q
 � 1=a. One must, of
course, then evaluate all �’s in the NLO S�PT expression
for BK that arise due to truncation of perturbative matching
factors at this same scale.
22Note that there is no Tg00 because we are considering the case
in which there is only one continuum operator and no mixing on
the continuum side.

23Note also that the coupling g�a� can be chosen to be a
continuumlike coupling such as MS [22].
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Equation (80) also justifies our treatment of errors asso-
ciated with perturbative matching. Recall that the standard
matching procedure is to only match to taste P operators at
1 loop. In terms of the above matching expression, this
means that one calculates the matrix element of �1�
c��=4���Olat

P , where the vector Olat
P contains only taste P

operators. However, this is not correct, as lattice operators
of all tastes are required to correctly match the continuum
operator. We account for this error by including ‘‘wrong-
taste’’ operators in the S�PT fit with coefficients of
O��=4��. Conversely, if we were to correctly match onto
the continuum BK operator at 1 loop, we would not need to
include such operators. Thus we conclude that in order to
extract the correct result for BK in the continuum we must
set the coefficients of O��=4�� in Table IV to zero. One
can use the same logic to show that all of the perturbative
matching errors should be dealt with in this manner, i.e. we
must also set the O��2� coefficients in Tables IV and V to
zero. This result is fortunate, as it allows treatment of all
errors—both from discretization and perturbative match-
ing—in the same, simple manner.

Finally, Eq. (80) shows that, once one has successfully
fit the S�PT expression for BK and removed the discreti-
zation and perturbative matching errors at each lattice
spacing, constructing the renormalization group invariant
quantity, B̂K is trivial. This is because, to 1-loop order [23],

B̂ K � ������0=2�0

�
1�

����
4�

Jcont

�
BMS
K ���; (82)

so

B̂ K � ��q
���0=2�0

�
1�

��q
�
4�

Jcont

�
Blat;subtracted
K ; (83)

where Blat;subtracted
K is the lattice value for BK at the scale q


with discretization and perturbative matching errors sub-
tracted. Conversely, we can use Eq. (83) to remove the
remaining errors from B̂K in the following way. Once we
have values for BK with all errors but those from A re-
moved at each lattice spacing, we turn them into values for
B̂K by multiplying by ��q
���0=2�0�1� Jcont��q


�=4��.
We then simultaneously fit B̂K at multiple lattice spacings
to separate the continuum parameter CK

� from A. Next, we
subtract A to get a continuum value for B̂K. Last, we
extrapolate the continuum result to the physical quark
masses using the continuum �PT expression.

Even with the implementation of all of these sugges-
tions, fitting the staggered BK data will be highly non-
trivial. One would clearly like to somehow decrease the
number of operators, or at least undetermined coefficients,
that contribute to BK at NLO. One way to do this is by
using improved links. This drastically reduces the 1-loop
perturbative mixing between O1-loop�taste P� and certain
wrong-taste operators. In particular, for the case of hyper-
cubic fat (HYP) links, the O��=4�� mixing with taste S
and taste T operators is so small that we can consider it to
-15



RUTH S. VAN DE WATER AND STEPHEN R. SHARPE PHYSICAL REVIEW D 73, 014003 (2006)
be of higher order in our power counting [14]. This leaves
the operators O1I

� and O1T
� each with only a single coeffi-

cient of O��2�, thereby reducing the total number of fit
parameters by two.24

The biggest source of potential improvement, however,
is in better perturbative matching. A good first step would
therefore be to match to all tastes of lattice operators at
1 loop, since the requisite matching coefficients are known.
While it has been thought that wrong-taste operator con-
tributions to BK would be less important than those from
taste P operators, our power counting and operator enu-
meration show that this is not the case, in general.
Complete 1-loop matching would eliminate the six coef-
ficients of O��=4�� in the first column Table IV.
Moreover, 2-loop matching of all tastes, or better yet fully
nonperturbative matching, would completely remove the
first column in Table IV and eliminate the operators O1I

�

and O1T
� altogether at this order, reducing the total number

of fit parameters from 37 to 24.25

VII. CONCLUSIONS

We have calculated BK to NLO in S�PT for quenched,
PQ, and full QCD, the form of which is necessary for
correct continuum and chiral extrapolation of staggered
lattice data. These results apply to both infinite and finite
spatial volume. The most general expression is that for a
PQ theory with three sea quarks in which all valence and
sea masses are different.

This is the first calculation of a hadronic weak matrix
element that is not a conserved current in staggered chiral
perturbation theory. It illustrates the generic drawback of
staggered fermions—large numbers of operators, both on
the lattice and in the chiral effective theory, due to the
additional taste degree of freedom. For example, while BK
at 1 loop in continuum chiral perturbation theory is pro-
portional to a single operator coefficient, the same quantity
in staggered �PT comes from 13 operators, many of which
have more than one distinguishable coefficient. To address
this concern we show explicitly how to determine six of
these coefficients (at a single lattice spacing) from other
simple matrix elements of the same lattice operator,
thereby reducing the number of undetermined fit parame-
ters. Furthermore, we suggest two ways to reduce the large
number of coefficients—use of improved links, e.g. HYP
or Asqtad, and of nonperturbative matching coefficients.
24We presume that a similar simplification occurs for Asqtad
links, although their perturbative matching coefficients have yet
to be determined.

25Recall that, generically, use of the matching procedure out-
lined in Eq. (79) to a given order in perturbation theory requires
knowledge of the anomalous dimension at one higher order. For
example, 1-loop matching requires the 2-loop anomalous dimen-
sion. Thus, while 2-loop matching would greatly reduce the
number of coefficients in the NLO S�PT fit, the 3-loop anoma-
lous dimension must also be calculated.
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As usual, partial quenching helps to provide more handles
in the fits, and will likely be essential here.

Use of our expression for BK at NLO in S�PT, in
combination with sufficient lattice data, should allow a
precise determination of BK with staggered quarks.
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APPENDIX A: BK IN CONTINUUM PQ�PT WITH
2� 1 SEA QUARKS

The continuum partially quenched result for BK for Nsea

degenerate sea quarks has been given by Golterman and
Leung [24], and checked for Nsea � 2 by Becirevic and
Villadoro [25]. The result for ‘‘2� 1’’ flavors of sea quarks
does not, however, exist in the literature. It can be obtained
by taking the appropriate limit of our staggered PQ ex-
pression, Eq. (51), and here we present the result.

To go from Eq. (51) to the continuum theory, we first set
all coefficients associated with lattice errors, i.e. those
multiplied by factors of a2, a2

�, �=4�, and �2, equal to
zero. This eliminates all operator coefficients but CK

� . It
also removes the splittings among the 16 tastes of PGBs;
we are therefore free to remove the taste subscripts. Next
we take the ratio of BK to B0 so that all factors of 4 due to
traces in taste space drop out. Finally we set mu � md �

ms. The next-to-leading-order result for BK is then�
BK
B0

�
PQ;2�1

� 1�
1

48�2f2m2
xy
�Iconn � Idisc � bm4

xy

� c�m2
X �m

2
Y�

2 � dm2
xy�2m2

D �m
2
S��;

(A1)

where f 	 130 MeV. The coefficients b, c, and d are
unknown dimensionless low-energy constants proportional
to the constants B, C, and D in Eq. (51). Note that the d
term is proportional to the sum of the sea quark masses,
and, to this order, effectively renormalizes B0 in a fit at a
given sea quark mass. Note also that c is absent for
degenerate valence quarks, mx � my.

The chiral logarithms are given by Iconn and Idisc. We
have broken them into two contributions since the latter
vanishes when mx � my and is also the only place where
sea quark masses enter. The result from the quark con-
nected diagrams is

Iconn � 6m4
xy

~‘�m2
xy� � 3‘�m2

X��m
2
xy �m2

X�

� 3‘�m2
Y��m

2
xy �m2

Y�; (A2)

while that for the diagrams involving a hairpin vertex is

Idisc � IX � IY � I
; (A3)
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IX � ~‘�m2
X�
�m2

xy �m
2
X��m

2
D �m

2
X��m

2
S �m

2
X�

�m2

 �m2

X�

� ‘�m2
X�

�
�m2

xy �m2
X��m

2
D �m

2
X��m

2
S �m

2
X�

�m2

 �m

2
X�

2 �
2�m2

xy �m2
X��m

2
D �m

2
X��m

2
S �m

2
X�

�m2
Y �m

2
X��m

2

 �m

2
X�

�
�m2

D �m
2
X��m

2
S �m

2
X� � �m

2
xy �m

2
X��m

2
S �m

2
X� � �m

2
xy �m

2
X��m

2
D �m

2
X�

�m2

 �m2

X�

�
; (A4)

IY � IX�X $ Y�; (A5)

I
 � ‘�m2

�
�m2

X �m
2
Y�

2�m2
xy �m2


��m2
D �m

2

��m2

S �m
2

�

�m2
X �m

2

�

2�m2
Y �m

2

�

2 : (A6)
26Note that standard S�PT does not include � in its power
counting because there are no external operators.
The expression appears singular, but in fact is not—the
poles all cancel when m2

X;m
2
Y ! m2


 or m2
X ! m2

Y .
Nevertheless, we have not found a simpler expression.
We have also checked that this expression becomes equal
to the two sea quark result (as given most compactly in
Becirevic and Villadoro [25]) in the limit that m2

S �
m2
D;m

2
X;m

2
Y; m

2
xy (so that m2


 � 2m2
S=3).

APPENDIX B: REVIEW OF STAGGERED CHIRAL
PERTURBATION THEORY

Here we recall the leading-order effective staggered
chiral Lagrangian, whose construction is discussed in
much greater detail in Ref. [8], and discuss some of its
general consequences. The next-to-leading-order
Lagrangian, determined in Ref. [10], turns out not to be
necessary for BK at NLO.

For n staggered quark flavors, spontaneous breakdown
of the approximate SU�4n� chiral symmetry by the vac-
uum,

SU�4n�L � SU�4n�R ! SU�4n�V; (B1)

leads to 16n2 � 1 PGBs. We collect them into an SU�4n�
matrix,

� � exp�i�=f�; (B2)

where � is a traceless 4n� 4n matrix with 4� 4 subma-
trices:

� �

U �� K� � � �

�� D K0 � � �

K� K0 S � � �

..

. ..
. ..

. . .
.

0BBBB@
1CCCCA; (B3)

U �
X16

a�1

UaTa; etc: (B4)

and f is normalized such that f� 	 132 MeV. We use
Euclidean gamma matrices as the SU�4� generators:

Ta � f�5; i��5; i��	; ��; �Ig; (B5)

where �I is the 4� 4 identity matrix. The quark mass
matrix is also of size 4n� 4n, but has trivial (singlet) taste
structure:
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M �

muI 0 0 � � �

0 mdI 0 � � �

0 0 msI � � �

..

. ..
. ..

. . .
.

0BBBB@
1CCCCA: (B6)

Under chiral symmetry transformations, � transforms as

�! L�Ry; (B7)

L 2 SU�4n�L; R 2 SU�4n�R: (B8)

The standard S�PT power-counting scheme is26

p2 	 m 	 a2; (B9)

so the lowest-order Lagrangian is of O�p2; m; a2�:

L� �
f2

8
Tr�@��@��y� �

1

4
�f2 Tr�M��M�y�

�
2m2

0

3
�UI �DI � SI�2 � a2V ; (B10)

where Tr is the full 4n� 4n trace in both flavor and taste
space, � is a dimensionful constant of O��QCD�, and V is
the taste-symmetry breaking potential.

The taste-breaking potential leads to important proper-
ties of staggered mesons. For discussion of these features it
is useful to separate V into single and double trace opera-
tors:

V �U�U0; (B11)

�U � C1Tr���n�5 ���n�5 �y�

� C3
1

2

X
	

�Tr���n�	 ���n�	 �� � H:c:�

� C4
1

2

X
	

�Tr���n�	5 ���n�5	�� � H:c:�

� C6

X
�<	

Tr���n��	���n�	��y�; (B12)
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�U0 � C2V
1

4

X
	

�Tr���n�	 ��Tr���n�	 �� � H:c:�

� C2A
1

4

X
	

�Tr���n�	5 ��Tr���n�5	�� � H:c:�

� C5V
1

2

X
	

�Tr���n�	 ��Tr���n�	 �y��

� C5A
1

2

X
	

�Tr���n�	5 ��Tr���n�5	�y��; (B13)

where ��n�T is a 4n� 4nmatrix with an ordinary 4� 4 taste
matrix, �T , repeated along the diagonal:

��n�T �

�T 0 0 � � �

0 �T 0 � � �

0 0 �T � � �

..

. ..
. ..

. . .
.

0BBBB@
1CCCCA: (B14)

The single trace operators in U split the tree-level PGB
masses into degenerate groups:

�m2
��LO � ��mi �mj� � a

2�F; (B15)

where �F is different for each of the five SO�4�-taste irreps
P, A, T, V, and I.27 The double trace operators in U0

generate hairpin diagrams (quark disconnected contrac-
tions) for flavor-neutral, taste-vector and axial-vector
PGBs. Both U and U0 produce interaction vertices among
even numbers of PGBs. In addition, the m2

0 term, present
because only the overall singlet can be integrated out of the
theory, generates flavor-neutral, taste-singlet hairpins.

It is easy to generalize the standard staggered chiral
Lagrangian to quenched and partially quenched theories.
For a PQ theory with N � nval � nsea quarks andM � nval

ghosts, the chiral symmetry group is SU�4Nj4M�L �
SU�4Nj4M�R and breaks to SU�4Nj4M�V . The net result
is that there are more PGBs, and all of the traces become
supertraces (Tr! Str) in the chiral Lagrangian.
APPENDIX C: DETERMINATION OF CHIRAL BK
OPERATORS

Here we determine all of the mesonic operators which
contribute to Mlat, and consequently to BK, at LO and
NLO in our power counting. There are quite a few such
operators because the continuum SU�3�flavor is enlarged to
the graded, staggered symmetry SU�4Nval � 4Nseaj4Nval�
on the lattice. Fortunately, the fact that OK is invariant
under the lattice U�1�A symmetry protects the number of
operators that contribute to BK from becoming unwieldy.

We first enumerate the operators which contribute to BK
at tree level. These include the standard BK chiral operator,
and are relatively easy to determine, even in the staggered
27We assume in this expression that the quark flavors i and j are
different.
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theory. Next we enumerate the operators which contribute
to BK at 1 loop. These can come either from operator
mixing on the lattice or from insertions (at the quark level)
of the staggered action with the BK operator. We then
determine the analytic contributions to BK at NLO, relying
heavily on constraints from U�1�A symmetry and from CP
plus s$ d interchange. Finally we discuss the parametric
dependence of the various operator coefficients on the
lattice spacing, a, and the strong coupling constant, �.

1. Operators that contribute at lowest order

We must map the staggered quark-level operator,
Ostaggered
K , onto operators in the chiral effective theory.

This is done most simply by first splitting the operator
into spin vector and spin axial-vector parts, mapping these
operators onto mesonic operators, and then taking appro-
priate linear combinations to get chiral operators which
correspond to the staggered BK operator.

We first separate Ostaggered
K into two pieces28:

O V � �s1��� 
 �5�d1��s2��� 
 �5�d2�; (C1)

O A � �s1����5 
 �5�d1��s2����5 
 �5�d2�: (C2)

The BK matrix element is proportional to their sum:

M staggered
K / hK0

2j�OV �OA�jK
0
1i: (C3)

As in Ref. [26], we label these four-fermion operators by
the spin and taste in each bilinear, such that OV / �V � P�
and OA / �A� P�. Note the convention that A � ��5 


�5�, where the pair of spin (or taste) matrices are in
separate bilinears, such that

O staggered
K / �V � P� � �A� P� (C4)

in this condensed notation.
We now use spurion analysis as in Refs. [10,26] to

determine the resulting chiral operators. The chiral struc-
ture of four-fermion operators with spins V or A is

O F � �
X
�

�QR��� 
 FR�QR �QL��� 
 FL�QL�
2;

(C5)

where the upper and lower signs correspond to V and A,
respectively, and FL;R are Hermitian taste matrices. When
we promote the taste matrices to spurion fields, FL;R must
transform in the following way so that OF is invariant
under chiral transformations:

FL ! LFLLy; FR ! RFRRy: (C6)

We will set FL and FR to the appropriate matrices at the
end.
28From now on we suppress color indices because both color
contractions lead to the same chiral operators.
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TABLE I. The two linearly independent O�p2� operators cor-
responding to ��V � A� � F�. The� signs correspond to spins V
and A, respectively. Derivatives act only on the object immedi-
ately to the right.

Operator

��Str��@��yFL�@��yFL� � Str��y@��FR�y@��FR��
��Str��@��yFL�Str��@��yFL�

� Str��y@��FR�Str��y@��FR��
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We first note that chiral operators which result from two
left-handed (or two right-handed) taste spurions have a
relative minus sign when they come from a spin V versus
a spin A four-fermion operator, whereas those that result
from one left-handed and one right-handed taste spurion do
not. Thus only operators built out of two spurions with the
same handedness remain after taking the linear spin com-
bination �V � A�which corresponds to Ostaggered

K . There are
no such operators without derivatives, and two such line-
arly independent ones with two derivatives. These are
shown in Table I.

The expression in Eq. (C5) can be made to have the same
flavor and taste structure as Ostaggered

K by setting the two
spurions, which we now call F1 and F2, equal to sparse
matrices with a single �5 in either the s1d1 or s2d2
location. With this replacement the first operator in
Table I becomes

O N
� �

X
�

�Str��@��yF1�@��yF2�

� Str��y@��F1�y@��F2�� (C7)

and the second becomes

O K
� �

X
�

�Str��@��yF1�Str��@��yF2�

� Str��y@��F1�Str��y@��F2��: (C8)

Since OK
� has the same left-left current structure as the

standard continuum full QCD operator [18], it should
contribute to BK at tree level, and it does. The matrix F1

annihilates the K0
1 (an s1d1 meson) while F2 produces the

K0
2 (a d2s2 meson).
Because BK in continuum �PT only depends on a single

parameter [18], the coefficients of OK
� and ON

� cannot be
independent. We can determine their precise relationship
using the fact that both operators in the chiral effective
theory arise from the same quark-level operator, Ostaggered

K :

O staggered
K 			!S�PT

CK
�O

K
� � CN

�O
N
� ; (C9)

but they have nonvanishing tree-level matrix elements
between different types of kaons. In particular, while OK

�

only has a tree-level matrix element between K0
1 and K0

2
(by construction), ON

� only has one between mixed kaons,
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i.e. s1d2 and s2d1:

hK0
1PjC

K
�O

K
� � CN

�O
N
� jK

0
2Pi �

32CK
�

f2 m2
K; (C10)

hK0
1

mix

P jC
K
�O

K
� � CN

�O
N
� jK

0mix
2P i �

8m2
KC

N
�

f2 : (C11)

By comparing the same two matrix elements at the quark
level we can extract the ratio CK

� :CN
� . As written in Eq. (6),

Ostaggered
K can contract with K0

1 and K0
2 , but not the mixed

kaons. However, it can be Fierz transformed into an op-
erator with the appropriate mixed-flavor structure, at the
cost of introducing new tastes. Using the Fierz-
transformation rules in Appendix A of Ref. [27], we find
that

��V � A� � P� 			!Fierz1
4��V � A� � �S� P� T � V � A��:

(C12)

Thus the ratio of the two matrix elements is

hK0
1PjO

staggered
K jK0

2Pi

hK0
1

mix

P jO
staggered
K jK0mix

2P i
� 4; (C13)

and CK
� � CN

� . The Fierz transformation also reveals why
the seemingly ‘‘extra’’ operator, ON

� , is necessary in the
chiral effective theory—it accounts for the fact that
Ostaggered
K has a nonvanishing tree-level matrix element

between flavor-mixed kaons of all tastes.

2. Operators that contribute at NLO

BK receives NLO contributions from a host of additional
operators because of lattice discretization effects. In order
to determine all such operators we must consider the three
different ways in which they can arise at the quark level:
through perturbative matching, mixing with higher-
dimension operators, and insertions of operators from the
staggered action.

a. 1-loop matching coefficients

Lattice operators can mix with each other as long as they
are in the same representation of the symmetry group that
maps a hypercube onto itself. Consequently, lattice opera-
tors which correspond to continuum operators with a par-
ticular spin and taste mix with other operators that
correspond to a different continuum spin and taste.
Specifically, although Ostaggered

K in the continuum is strictly
a ��V � A� � P� four-fermion operator, once it is put on the
lattice it mixes with ��V � A� � P� and other spin-taste
structures. Like all taste-breaking effects, this operator
mixing is due to hard gluon exchange, so the amount of
mixing can be calculated perturbatively in �. Such 1-loop
‘‘matching coefficients’’ for staggered four-fermion opera-
tors have been calculated for both naive fermions and using
-19



TABLE II. Mesonic operators corresponding to the four-fermion operators listed in Eq. (C15).
Repeated indices are summed with the constraint that � � 	 in the taste tensor matrices.

Four-fermion operator Chiral operator

�V � S� and �A� S� ! Str��I��I�
y�

�V � T� and �A� T� ! Str���	��	��y�
�S� V� and �P� V� ! Str�����Str����y�

Str�����Str����� � Str����y�Str����y�
Str�������� � Str����y���y�

�S� A� and �P� A� ! Str���5��Str��5��y�
Str���5��Str��5��� � Str���5�y�Str��5��y�
Str���5��5��� � Str���5�y�5��y�

29We note as an interesting aside that O1I
� does not appear in the

staggered chiral Lagrangian because, if �I is flavor diagonal, it is
just a trivial constant.
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hypercubic fat links [14]. Some of this operator mixing is
accounted for and removed in present lattice calculations
of BK. It is now standard to use 1-loop matching coeffi-
cients to remove the O��=4�� mixing between the desired
��V � A� � P� lattice operator and the unwelcome ��V �
A� � P� lattice operator. This still leaves mixing at O��2�
with ��V � A� � P� and at O��=4�� with wrong-taste
operators. We discuss them in turn.

Lattice operators with spin structure �V � A� contribute
to BK, albeit suppressed by O��2�. Recall from the pre-
vious section that such operators arise from the combina-
tion of one left-handed spurion and one right-handed
spurion, where FL and FR transform as in Eq. (C6). Here
we need only consider operators without derivatives. This
is because any two-derivative operators are of O��2p2� and
can only contribute to BK at NLO through analytic terms,
which we determine separately in Appendix C 3. There is
only one operator without derivatives,

O 1P
� � Str�F1�F2�y�; (C14)

and it cannot contribute to BK until 1 loop because of its
flavor structure. Note that the 1-loop contribution of O1P

� is
of NLO in our power counting because its coefficient is of
O��2� and the loop momentum further suppresses it by
O�p2�.

Lattice calculations to date have not taken into account
the O��=4�� mixing between ��V � A� � P� and lattice
operators of different tastes. BK therefore receives contri-
butions from wrong-taste lattice operators, but suppressed
by O��=4��. Using the matching coefficients from
Ref. [14] we find that the desired lattice operator mixes
with the following eight four-fermion operators at 1 loop:

�V � S�; �A� S�; �V � T�; �A� T�; �S� V�;

�S� A�; �P� V�; �P� A�; �T � V�; �T � A�;

(C15)

as well as taste off-diagonal operators, i.e. those in which
the two bilinears have different tastes, and operators which
violate rotational and SO�4�-taste symmetry. We map all of
these quark-level operators onto chiral operators using a
straightforward generalization of the spurion analysis in
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Ref. [26] to flavor off-diagonal operators. Table II contains
the results. We do not show the chiral operators generated
by �T � V; A� because they are simply a subset of those
from �S; P� V; A�. Nor do we include taste off-diagonal
operators, as they do not contribute to any PGB quantities
of interest. Furthermore, we neglect operators which break
rotational and/or SO�4�-taste symmetry, as doing so would
require at least four repeated Lorentz indices in the chiral
operator. This would have to come from the presence of
four derivatives, four additional taste matrices, or two
derivatives and two taste matrices, and therefore be of a
higher order than we consider here.

Because these operators arise from mixing with
Ostaggered
K , they have the same flavor structure as the origi-

nal continuum operator. Thus ��	 ! F1T and �	� ! F2T ,
where F1T (F2T) is a sparse matrix with a single ��	 (�	�)
in the s1d1 (s2d2) location. We define F1I, F1I, F1V , F2V ,
F1A, and F2A analogously, such that the following eight
operators contribute to BK

29:

O 1I
� �

X
��	

Str�F1I�F2I�
y�; (C16)

O 1T
� �

X
��	

Str�F1T�F2T�y�; (C17)

O 1V
� �

X
�

�Str�F1V�F2V�� � Str�F1V�yF2V�y��;

(C18)

O 2V
� �

X
�

�Str�F1V��Str�F2V��

� Str�F1V�y�Str�F2V�y��; (C19)

O 3V
� �

X
�

Str�F1V��Str�F2V�y�; (C20)
-20



30Recall that we are using the terminology mix as shorthand for
this process of matching lattice operators onto those in the
continuum.

31Note that these mixings are independent of both the choice of
gauge links and the choice of how to construct gauge-invariant
operators.
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O 1A
� �

X
�

�Str�F1A�F2A�� � Str�F1A�yF2A�y��;

(C21)

O 2A
� �

X
�

�Str�F1A��Str�F2A��

� Str�F1A�y�Str�F2A�y��; (C22)

O 3A
� �

X
�

Str�F1A��Str�F2A�y�: (C23)

Moreover, since Eq. (C15) turns out to be a complete list of
U�1�A and SO�4�-rotation invariant four-fermion opera-
tors, these are also the only wrong-taste operators that
can contribute to BK at O��2�. Thus all of the operators
in Eq. (C23) have two independent coefficients, one of
O��=4�� and the other of O��2�. Note that, as one would
expect, such wrong-taste operators can only contribute to
the BK matrix element through loops. Such contributions
are of NLO in our power counting because of the factor of
�=4� or �2 in the coefficients and the further suppression
of O�p2� by the loop momentum. We therefore do not need
to consider wrong-taste operators with derivatives.

b. Dimension 8 quark-level operators

The four-fermion operator Ostaggered
K is dimension 6. As

discussed in the previous subsection, it mixes with other
dimension 6 operators on the lattice, but such mixing is due
to gluon exchange and suppressed by �=4�. Therefore the
naively discretized version of the continuum operator,
Ostaggered;lat
K , generates the dominant contribution to the

lattice K0
2 � K

0
1 matrix element, Mlat. However, many

higher-dimension quark-level operators respect the same
lattice symmetries as Ostaggered

K and thus can also contribute
to BK on the lattice. Dimension 7 and 8 quark-level opera-
tors are explicitly suppressed in the action relative to
dimension 6 operators by factors of a and a2, respectively,
so they can map onto chiral operators which generate 1-
loop contributions to BK at NLO. In fact, because a2 �
�2 � �=4� in our power counting, they are just as or more
important than the dimension 6 operators which contribute
through mixing. Fortunately we need not go higher than
dimension 8 at the quark level because 1-loop contribu-
tions to BK from dimension 9 operators are at least
O�a3p2� and thus of higher than NLO.

At the quark level, dimension 7 operators contain four
fermions plus either a derivative or a factor of the quark
mass matrix. However, all dimension 7 quark-level opera-
tors turn out to be taste off diagonal [28], and therefore
cannot contribute to any PGB processes of interest. Thus
we move on to dimension 8 quark-level operators, which
contain four fermions plus two derivatives, two factors of
the quark mass matrix, or one of each. Dimension 8
operators with one derivative and one mass matrix must
have a single nontrivial spin or taste matrix (either V or A)
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in order to contract up the free derivative index. Such
operators are either spin off diagonal or taste off diagonal;
both are irrelevant. Dimension 8 operators with two mass
matrices map onto chiral operators with at least two mass
spurions. Because they also carry a factor of a2 from the
action, such operators are of O�a2m2� or higher in our
power counting and can be neglected. We therefore need
only consider dimension 8 four-fermion operators with two
derivatives that possess the same lattice symmetries as
Ostaggered
K . Enumerating all such operators would be a tedi-

ous exercise in staggered group theory. Fortunately, this
exercise is unnecessary if we start with all chiral operators
which could contribute to BK at NLO and work backwards.

All chiral operators which arise from dimension 8 quark-
level operators automatically come with a power of a2.
Thus, in order to generate 1-loop contributions to BK at
NLO, they cannot contain any derivatives or be suppressed
by additional powers of a or�. All of the operators listed in
Table II satisfy this condition. In fact, it turns out that there
are no additional chiral operators which are invariant under
U�1�A and derivative free. Therefore all of the chiral op-
erators in Eqs. (C14) and (C16)–(C23) should contribute to
BK both through 1-loop mixing, suppressed by O��=4��,
and through dimension 8 operators, suppressed by O�a2�.

Yet there is a subtlety—not all a2’s are created equal.
This is because, at the quark level, taste-changing four-
fermion interactions require gluon exchange, and therefore
have hidden powers of � which do not appear explicitly in
the chiral effective Lagrangian, Eq. (B10). We must there-
fore consider the O�“a2”� operators in more detail to allow
correct extrapolation of lattice data.

In the case of matching the continuum version of
Ostaggered
K onto dimension 8 lattice four-fermion operators,

we want to find the dimension 8 operators that match onto
��V � A� � P� without gluon exchange, because they truly
contribute at O�a2�. Any other dimension 8 operators
contribute at O��a2� or higher, and thus are of at least
NNLO in our power counting. As discussed in both
Refs. [29,30], lattice bilinears of different spins and tastes
‘‘mix’’30 with each other at tree level in perturbation
theory, but to all orders in a, simply because of the fact
that the spinor components of staggered fermions are
spread out over a hypercube.31 Fortunately, at tree level,
one can consider the two bilinears in each four-fermion
operator separately. Thus, in order to determine which
four-fermion operators mix at O�a2�, one needs only find
which bilinears mix at O�1�, O�a�, and O�a2�. The product
of two O�a� bilinears, or of one O�1� and one O�a2�
-21



FIG. 3 (color online). Schematic of BK vertex modification
due to the insertion of an operator from the staggered action. In
the first diagram the square represents the original BK vertex and
the circle represents the inserted strong four-fermion vertex. In
the second diagram the square represents the resulting local
vertex in the effective theory.
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bilinear, will be a four-fermion operator that mixes at
O�a2�.

We do so using Eqs. (26) and (27) in Ref. [30]. We find
that the dimension 3 bilinear ����1� �5� 
 �5� mixes
with taste V dimension 4 bilinears at O�a�. It also mixes
with dimension 3 and 5 taste P bilinears at O�1� and O�a2�,
respectively. Because spin off-diagonal four-fermion op-
erators cannot contribute to PGB processes, we are re-
stricted to multiplication of each of these bilinears by
itself. For example, we can multiply the bilinear �1�
��� times itself to generate the four-fermion operatorX

�

X
	

QD��I 
 ���QQD	�I 
 �	�Q: (C24)

The above operator is simply a generalization of the di-
mension 6 four-fermion operator �S� V� to dimension 8.
The derivatives give it the appropriate dimension, and
allow it to have both SO�4� rotational symmetry breaking
(� � 	) and conserving (� � 	) pieces.

It is clear now that the lattice version of Ostaggered
K really

only mixes at O�a2� with dimension 8 quark-level opera-
tors that have spin-taste structures �S� V�, �P� V�, �T �
V�, ��V � A� � P�, and ��V � A� � P� along with two
derivatives. These lead to the four chiral operators O1V

� ,
O2V
� , O3V

� , and O1P
� .32 We therefore conclude that their

coefficients are of O�a2�, while the rest of the operators
enumerated in this section can be neglected. This is sum-
marized in the second column of Table IV.

c. Insertions of the staggered action

The lattice operator mixing discussed in the past two
subsections is not particularly intuitive because it stems
from perturbation theory and complicated lattice symme-
tries. In contrast, the fact that operators from the staggered
action modify the quark-level BK operator, Ostaggered

K , can
be shown through a simple diagrammatic argument.
Consider the four-fermion Ostaggered

K and another four-
fermion operator from the staggered action. Two of the
quarks in Ostaggered

K can contract with two of the quarks in
the other operator to form a 1-loop diagram with four
external quarks, as shown in Fig. 3. This produces a local
operator in the chiral effective theory because the loop
propagates over O�1=�QCD�, rather than over O�1=m��.

It corrects Ostaggered
K at O�a2

�� because all of the dimension
6 four-fermion operators in the staggered action are taste
breaking. Such O�a2

�� corrections turn out to be numeri-
cally enhanced, however, so they are still of NLO in our
power counting. We must therefore determine all chiral
operators produced by combining Ostaggered

K with each of
32They also lead to higher-order chiral operators which break
SO�4� taste symmetry, corresponding to the piece of Eq. (C24)
with � � 	.
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the dimension 6 four-fermion operators in the staggered
action.

Reference [10] developed a method for combining four-
fermion operators at the chiral level. Essentially, one forms
chirally invariant operators which contain two taste spu-
rions from the first four-fermion operator and two from the
second. Ostaggered

K has spin-taste structure ��V � A� � P�,
so the two taste spurions from Ostaggered

K must transform as
in Eq. (C6). Moreover, we learned in Appendix C 1 that
only operators with two left-handed (or two right-handed)
taste spurions survive after taking the linear spin combi-
nation �V � A�. In contrast, the four-fermion operator may
have any spin—V, A, S, P, or T—combined with an
appropriate taste to maintain overall U�1�A invariance.
Furthermore, the two taste spurions from the inserted
four-fermion operator must be flavor diagonal because
the action does not change quark flavor.

Operators with spins V or A can have tastes S, P, or T,
and their taste spurions transform as Eq. (C6). Generically,
there are three possible ways of combining these spurions
with those from Ostaggered

K :

�FLFL��F
0
LF
0
R� � p:c:; �FLFL��F

0
LF
0
L� � p:c:;

�FLFL��F0RF
0
R� � p:c:;

(C25)

where ‘‘p.c.’’ indicates parity conjugate. Here the un-
primed spurions are from Ostaggered

K and the primed are
from the four-fermion operator in the staggered action.
Because the two FL’s will ultimately have different off-
diagonal flavor structures, they must be separated by at
least one � field on either side within a supertrace. We use
this fact to eliminate a few operators. Consequently, these
spurion combinations only lead to two nontrivial generic
chiral structures, shown at the top of Table III. To produce
operators which contribute to BK we let FL ! F1&F2 and
F0R ! �I, �5, or ��	. It is easy to see that the chiral
operators are trivial when the taste spurions from the
quark-level operator in the action are just the identity.
Thus we are left with four new operators which contribute
to BK with coefficients of O�a2

��:

O 2P
� � Str��5�F1�y�5�F2�y� � p:c:; (C26)
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TABLE III. Mesonic operators corresponding to insertions of four-fermion operators from the
staggered action. F1 and F2 are flavor off diagonal and come from the BK quark-level operator.
The remaining taste matrices are flavor diagonal. Repeated indices are summed with the
constraint that � � 	 in the taste tensor matrices. The notation ‘‘p.c.’’ indicates the parity
conjugate of the previous operator. The difference between upper and lower panels is described
in the text.

General structure Specific operator

Str�FL�F0R�yFL�F0R�y� � p:c: ! Str�F1F2� � p:c:
Str��5�F1�y�5�F2�y� � p:c:
Str���	�F1�y�	��F2�y� � p:c:

Str�FL�F0R�y�Str�FL�F0R�y� � p:c:! Str�F1�Str�F2� � p:c:
Str��5�F1�y�Str��5�F2�y� � p:c:
Str���	�F1�y�Str��5��	��y� � p:c:

Str�FL ~FL�yFL� ~FR� � p:c: ! Str�F1���yF2���� � p:c:
Str�F1��5�yF2��5�� � p:c:

Str�FL ~FL�y�Str�FL� ~FR� � p:c: ! Str�F1���y�Str�F2���� � p:c:
Str�F1��5�y�Str�F2��5�� � p:c:

Str�FL ~FL�yFL ~FL�y� � p:c: ! Str�F1���yF2���y� � p:c:
Str�F1��5�yF2�5��y� � p:c:

Str�FL ~FL�y�Str�FL ~FL�y� � p:c: ! Str�F1���y�Str�F2���y� � p:c:
Str�F1��5�y�Str�F2�5��y� � p:c:
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O 3P
� � Str��5�F1�y�Str��5�F2�y� � p:c:; (C27)

O 2T
� �

X
��	

Str���	�F1�y�	��F2�y� � p:c:; (C28)

O 3T
� �

X
��	

Str���	�F1�y�Str��	��F2�y� � p:c:

(C29)

Operators with spins S or P can have tastes V or A.33

Their chiral structure is as follows:

O 0
F � �QL�1 
 ~FL�QR �QR�1 
 ~FR�QL�

2; (C30)

where the upper and lower signs correspond to spin S and
P, respectively, so their taste spurions must transform as

~F L ! L ~FLR
y; ~FR ! R ~FRL

y: (C31)

As before, there are three possible ways of combining these
spurions with those from Ostaggered

K :

�FLFL�� ~FL ~FR� � p:c:; �FLFL�� ~FL ~FL� � p:c:;

�FLFL�� ~FR ~FR� � p:c: (C32)

These spurion combinations generate the four nontrivial
chiral structures shown in the lower panel of Table III. In
this case, to produce operators which contribute to BK we
let FL ! F1&F2 and ~FL; ~FR ! �� or ��5. Because two of
the taste matrices are diagonal, the following (and similar)
33We choose to neglect spin T in this discussion because it
ultimately leads to a subset of operators already generated by
spins S and P.
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relations allow further simplification of the resulting op-
erators:

��F1�� � �F1; ��F1 � F1A; ��5F1 � F1V:

(C33)

Such simplification reveals that these operators are none
other than O1P

� and O1V
� –O3A

� . However, here they have
arisen through insertions of the staggered action rather than
lattice operator mixing.

In principle, we must also consider insertions of the
dimension 4 quark mass term, which can modify
Ostaggered
K in a similar manner to the four-fermion operators

already considered. The resulting chiral operators would
contain the two taste spurions from Ostaggered

K and a mass
spurion, and thus be of O�m� in our power counting.
However, it turns out that there are no such operators for
quite a simple reason. Recall that, since F1 and F2 are
flavor off diagonal, they must either be separated by a �
field on both sides or be in different supertraces, each with
a �. A single mass spurion is insufficient for meeting this
criterion. Therefore operators with mass spurions only
contribute to BK at NLO through analytic terms, which
we discuss next.

3. Analytic NLO contributions

We finally consider analytic NLO contributions to the
BK matrix element, MK. Many operators generate contri-
butions with the same quark mass dependence; it is unnec-
essary to separate them in fits to lattice data. Thus rather
than enumerating all possible operators, we can determine
-23
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all linearly independent functions of the quark masses,
allowing symmetries to do much of the work.

Given our power-counting scheme, generically six types
of operators can contribute to MK:

O�p4�; O�“a2”p2�; O�“a4”�; O�m2�; O�p2m�;

O�“a2”m�; (C34)

where quotation marks indicate that a2 can be interchanged
with either �2, �=4�, or a2

�. We can immediately rule out
contributions from O�p4� operators because there are four
derivatives but only two fields upon which they can act. We
can also rule out NLO analytic contributions from O�“a4”�
operators. Without derivatives or mass matrices the only
possible matrix element from such operators is / “a4”.
However, this contribution does not vanish in the chiral
limit, and therefore violates the U�1�A symmetry possessed
by Ostaggered

K , so it cannot occur. Effectively, U�1�A forces
all tree-level matrix elements between taste-�5 kaons to
vanish in the chiral limit.34

Determination of the NLO analytic contributions to MK
from O�“a2”p2� operators is also straightforward. The
derivatives must act on the two external kaons, bringing
down a factor of p2

K which becomesm2
K when the kaons are

on shell. Therefore the first NLO analytic term in the
expression for MK is

Am2
K; (C35)

where A is an undetermined coefficient that is, in principle,
suppressed by either a2, �2, �=4�, or a2

�. For fitting it is
important to know whether or not A does, in fact, depend
upon all four expansion parameters. Operators of O�a2p2�
come from mixing with dimension 8 operators. Recall
from Appendix C 2 b that ��V � A� � P� mixes with taste
P and taste V operators at O�a2�. The operator OK

� itself
comes from a taste P quark-level operator, so its coeffi-
cient, CK

� , receives a correction of O�a2�. One can also
easily map the quark-level operator ��V � A� � P� onto a
two-derivative chiral operator that contributes to MK at
tree level:

Str ��@��yF1�Str��y@��F2�: (C36)

Although we lump all NLO analytic contributions to MK
of the form a2m2

K together, we note that it would be
important to separate the correction to CK

� from the rest
if one were to do a fit including some NNLO terms.
Operators of O��2p2� come from perturbative matching
with all tastes of four-fermion operators on the lattice,
which we discussed in Appendix C 2 a. As we just showed,
mixing with taste P four-fermion operators leads both to
corrections to CK

� and to a new operator. This time they
34Of course, this is nothing more than a restatement of the fact
that taste-�5 mesons are lattice Goldstone bosons, but we have
nevertheless checked this result explicitly.
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produce contributions to MK of the form �2m2
K. In con-

trast, operators of O�p2�=4�� only come from perturba-
tive matching with wrong-taste dimension 6 four-fermion
operators. Because wrong-taste operators cannot contrib-
ute to MK at tree level, however, there is no analytic
contribution of the form m2

K�=4�. Finally, operators of
O�p2�2� come from insertions with operators in the action.
The insertion of Ostaggered

K with the taste-singlet dimension
6 four-fermion operator maps onto OK

� , but now at higher
order. Thus there is a NLO analytic correction to CK

� , and
therefore a contribution to MK, of the form a2

�m2
K. We

summarize the parametric dependence of the coefficient A
in Table V.

Determining the analytic NLO contributions to MK
from the last three types of operators requires a bit more
work. To do this, we utilize a symmetry of Ostaggered

K which
has not been explicitly needed until now: CPS symmetry
[31]. Recall that, because Ostaggered

K is a weak operator, it is
not parity invariant, as is the strong chiral Lagrangian.
However, it is invariant under CPS symmetry, and this
can be used to restrict the chiral operators to which it
corresponds. Standard CPS symmetry is CP plus d$ s
and md $ ms. In our case, because there are two sets of
valence quarks, we must impose a modified CPS symmetry
with both d1$ s1 and d2$ s2 so as to make the quark-
level operator invariant. At the chiral level, this corre-
sponds to the following transformations:

C : �$ �T;

P : �$ �y;

“ S”: d1$ s1; d2$ s2;

where the last line denotes an interchange of indices in
both � andM. One can easily show that all of the operators
enumerated in the previous subsections are already invari-
ant under this series of transformations. However, CPS
symmetry will prove important for restricting the analytic
contributions to MK.

First consider analytic contributions to MK from O�m2�
operators, which necessarily contain the two spurions from
Ostaggered
K plus two mass spurions. Because of the flavor

structure of F1 and F2, such operators will only produce
nonvanishing tree-level matrix elements if one mass spu-
rion is within each supertrace, e.g.,

Str �F1�My�Str�F2�My� � Str�F1M�y�Str�F2M�y�;

(C37)

Str �F1�My�Str�F2M�y� � Str�F1M�y�Str�F2�My�:

(C38)

Note that the second term in each operator is the CPS
conjugate of the first term. When contracted with an ex-
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TABLE V. Parametric dependence of NLO analytic contribu-
tions to BK. An entry of ‘‘1’’ indicates that the coefficient is a
constant at this order.

BK analytic term Coefficient dependence

Am2
K a2; �2; a2

�

Bm4
K 1

C�md �ms�
2 1

Dm2
K Tr�Msea� 1

TABLE IV. Parametric dependence of NLO BK operator co-
efficients. Each chiral operator can come from more than one
quark-level operator, and therefore enter the NLO expression for
BK multiplied by more than one expansion parameter.

BK operator Source—coefficient dependence
1-loop mixing? Dimension 8 op.? Action insertion?

O1P
� Yes—�2 Yes—a2 Yes—a2

�

O1T
� Yes—�=4�, �2 No No

O1V
� Yes—�=4�, �2 Yes—a2 Yes—a2

�

O2V
� Yes—�=4�, �2 Yes—a2 Yes—a2

�

O3V
� Yes—�=4�, �2 Yes—a2 Yes—a2

�

O1A
� Yes—�=4�, �2 No Yes—a2

�

O2A
� Yes—�=4�, �2 No Yes—a2

�

O3A
� Yes—�=4�, �2 No Yes—a2

�

O1I
� Yes—�=4�, �2 No No

O2P
� No No Yes—a2

�

O3P
� No No Yes—a2

�

O2T
� No No Yes—a2

�

O3T
� No No Yes—a2

�
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ternal K0
2 and a K0

1 , the first operator generates an analytic
term proportional to m2

d �m
2
s , while the second generates

one proportional to mdms. We choose to combine these
terms such that the new analytic contributions to MK at
NLO are of the form

Bm4
K; C�md �ms�

2: (C39)

Note that the second term vanishes quadratically as �md �
ms� ! 0.

Next consider O�p2m� operators which consist of the
two spurions from Ostaggered

K , two Lie derivatives, and a
mass spurion. To produce a nonvanishing matrix element,
each Lie derivative must be in a separate supertrace with
either F1 or F2, e.g.,

Str �F1�@��y�Str�F2�@��y�Str��My �M�y�; (C40)

Str �F1�@��y�Str�F2�@��y�My�

� Str�F1�@��y�Str�F2M�y�@��y�: (C41)

Once again, these operators are CPS invariant. The first
operator generates a term proportional to m2

KStr�M� �
m2
K Tr�Msea�, while the second generates one proportional

to m2
K�md �ms� / m4

K. Thus there is only one new ana-
lytic contribution to MK at NLO from such operators:

Dm2
K Tr�Msea�: (C42)

Lastly we consider O�“a2”m� operators. These contain
two spurions from Ostaggered

K , possibly two flavor-diagonal
taste spurions, and a mass spurion. Thus their tree-level
matrix elements are proportional to one power of the quark
mass, for which there are three possibilities: �md �ms�,
�md �ms�, and Tr�Msea�. However, “a2”�md �mS� is not
CPS invariant, and “a2”�md �ms� is included in the pa-
rameter A, so we need only consider analytic terms of the
form “a2” Tr�Msea�. The factor Tr�Msea� always arises from
the operator Str��My �M�y� when � � 1, so the only
operators that can produce tree-level contributions of the
form “a2” Tr�Msea� are simply the previously enumerated
O�a2�, O��2�, O��=4��, or O�a2

�� operators multiplied by
Str��My �M�y�. However, O�“a2”� operators cannot
generate tree-level contributions to MK because of the
U�1�A symmetry, so neither do these particular O�“a2”m�
ones.

4. Parametric dependence of operator coefficients

Many of the chiral operators enumerated in the previous
sections come from multiple quark-level operators. Thus
they can have multiple coefficients, each multiplied by a
different expansion parameter. While this does not affect
014003
the form of BK at NLO in S�PT, it certainly affects
extrapolation of lattice data using multiple lattice spacings.
Thus, for ease of use, we summarize the dependence of
the NLO operator coefficients on the various expansion
parameters in Table IV. All operators which come from
1-loop operator mixing have coefficients of O��2�,
O��=4��, or both, as described in Appendix C 2 a.
Operators which arise through mixing with dimension 8
four-fermion operators come in at O�a2�. Finally, operators
that arise from insertions of four-fermion operators are of
O��2a2�. Thus the various BK operators have anywhere
between 1 and 4 independent undetermined coefficients.
For example, O1V

� has four coefficients, multiplied by
�=4�, �2, a2, and a2

�, respectively, whereas O2P
� has a

single coefficient multiplied by a2
�.

Finally, for completeness, we include the dependence of
the various analytic terms on a and � in Table V.
-25



RUTH S. VAN DE WATER AND STEPHEN R. SHARPE PHYSICAL REVIEW D 73, 014003 (2006)
[1] J. Charles et al. (CKMfitter Group), http://ckmfitter.
in2p3.fr.

[2] M. Bona et al. (UTfit Collaboration), http://utfit.
roma1.infn.it.

[3] S. Eidelman et al. (Particle Data Group), Phys. Lett. B
592, 1 (2004).

[4] E. Gamiz, S. Collins, C. T. H. Davies, J. Shigemitsu, and
M. Wingate (HPQCD Collaboration), Nucl. Phys. B, Proc.
Suppl. 140, 353 (2005).

[5] W. Lee (private communication).
[6] C. Dawson (RBC Collaboration), Nucl. Phys. B, Proc.

Suppl. 140, 356 (2005).
[7] C. Aubin et al. (MILC Collaboration), Phys. Rev. D 70,

114501 (2004).
[8] C. Aubin and C. Bernard, Phys. Rev. D 68, 034014 (2003).
[9] C. Aubin and C. Bernard, Phys. Rev. D 68, 074011 (2003).

[10] S. R. Sharpe and R. S. Van de Water, Phys. Rev. D 71,
114505 (2005).

[11] C. Aubin and C. Bernard, Nucl. Phys. B, Proc. Suppl. 140,
491 (2005).

[12] G. Kilcup, R. Gupta, and S. R. Sharpe, Phys. Rev. D 57,
1654 (1998).

[13] D. Verstegen, Nucl. Phys. B249, 685 (1985).
[14] W. Lee and S. Sharpe, Phys. Rev. D 68, 054510 (2003).
[15] Q. Mason, P. Lepage, P. Mackenzie, H. Trottier, J. Hein,

C. Davies, and E. Follana (HPQCD Collaboration), Nucl.
Phys. B, Proc. Suppl. 119, 446 (2003).
014003
[16] C. Bernard (private communication).
[17] S. R. Sharpe and R. S. Van de Water, Phys. Rev. D 69,

054027 (2004).
[18] J. Bijnens, H. Sonoda, and M. B. Wise, Phys. Rev. Lett. 53,

2367 (1984).
[19] S. R. Sharpe, Phys. Rev. D 46, 3146 (1992).
[20] S. R. Sharpe and N. Shoresh, Phys. Rev. D 62, 094503

(2000).
[21] X. D. Ji, hep-lat/9506034.
[22] R. Gupta, T. Bhattacharya, and S. R. Sharpe, Phys. Rev. D

55, 4036 (1997).
[23] M. Crisafulli et al., Phys. Lett. B 369, 325 (1996).
[24] M. F. L. Golterman and K. C. L. Leung, Phys. Rev. D 57,

5703 (1998).
[25] D. Becirevic and G. Villadoro, Phys. Rev. D 69, 054010

(2004).
[26] W. Lee and S. Sharpe, Phys. Rev. D 60, 114503

(1999).
[27] S. Sharpe and A. Patel, Nucl. Phys. B417, 307 (1994).
[28] S. R. Sharpe, Nucl. Phys. B, Proc. Suppl. 34, 403

(1994).
[29] D. Daniel and S. Sheard, Nucl. Phys. B302, 471

(1988).
[30] A. Patel and S. Sharpe, Nucl. Phys. B395, 701 (1993).
[31] C. W. Bernard, T. Draper, A. Soni, H. D. Politzer, and

M. B. Wise, Phys. Rev. D 32, 2343 (1985).
-26


