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A phenomenological approach for the universal mass matrix model with a broken flavor 2$ 3
symmetry is explored by introducing the 2$ 3 antisymmetric parts of mass matrices for quarks and
charged leptons. We present explicit texture components of the mass matrices, which are consistent with
all the neutrino oscillation experiments and quark mixing data. The mass matrices have a common
structure for quarks and leptons, while the large lepton mixings and the small quark mixings are derived
with no fine-tuning due to the difference of the phase factors. The model predicts a value 2:4� 10�3 for
the lepton mixing matrix element square jU13j

2, and also hm�i � �0:89� 1:4� � 10�4 eV for the
averaged neutrino mass which appears in the neutrinoless double beta decay.
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I. INTRODUCTION

It has been established through the discovery of neutrino
oscillation [1] that neutrinos have finite masses and mix
one another with near bimaximal lepton mixings
�sin22�12 � 1, sin22�23 ’ 1� which are in contrast to small
quark mixings. In order to explain the large lepton mixing
and small quark mixing, mass matrix models with various
structures have been investigated in the literature [2–12].
For example, it is argued that the large lepton mixing can
be explained by mass matrices with a flavor 2$ 3 sym-
metry [13–28]. We think that quarks and leptons should be
unified. Therefore, it is interesting to investigate a possi-
bility that all the mass matrices of the quarks and leptons
have the same matrix form, which leads to large lepton
mixings and small quark mixings. The mass matrix model
with the universal form for quarks and leptons is also
useful when it is embedded into a grand unified theory
(GUT).

In this paper, we discuss a Hermit mass matrix model
with a universal form given by

M �
0 ae�i� ae�i�

00

aei� b ce�i�
0

aei�
00

cei�
0

b

0B@
1CA; (1.1)

where a, b, and c are real parameters and�,�0, and�00 are
phase parameters. It is important from a phenomenological
point of view to parametrize the texture components of the
mass matrix as the first step to make a GUT scenario.
Assuming that neutrinos are the Majorana particles, we
present the texture components of the universal mass ma-
trices which will lead to the Cabibbo–Kobayashi–
Maskawa (CKM) [29] quark mixing and the Maki–
Nakagawa–Sakata (MNS) [30] lepton mixing which are
consistent with the present experimental data. Here we
explore a phenomenological mass matrix model base on
the flavor 2$ 3 symmetry. Our mass matrices have a
broken flavor 2$ 3 symmetry for quarks and charged
06=73(1)=013008(9)$23.00 013008
leptons by introducing the 2$ 3 antisymmetric parts of
their mass matrices. We assume that this broken flavor 2$
3 symmetry is due to the 120 Higgs scalar in the SO(10)
GUT model, while mass matrices contributed from 10 and
126 Higgs scalars are 2$ 3 symmetric.

This article is organized as follows. In Sec. II, our mass
matrix model is presented. In Sec. III, we discuss the
diagonalization of the mass matrix of our model. The
analytical expressions of the quark and lepton mixings of
the model are given in Sec. IV. Section V is devoted to a
summary.
II. MASS MATRIX MODEL

In this paper, we propose the following mass matrices:
Mu �

0 1��
2
p e�i�uAu

1��
2
p e�i�uAu

1��
2
p ei�uAu

Bu�Du
2

Bu�Du
2

1��
2
p ei�uAu

Bu�Du
2

Bu�Du
2

0BB@
1CCA

�

0 0 0
0 0 iCu
0 �iCu 0

0@ 1A; (2.1)
Md �

0 1��
2
p e�i�dAd

1��
2
p e�i�dAd

1��
2
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Bd�Dd
2

Bd�Dd
2
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2
p ei�dAd

Bd�Dd
2

Bd�Dd
2
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�

0 0 0
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0@ 1A; (2.2)
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2
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2

0BB@
1CCA; (2.6)

where Mu, Md, Me, and M� are mass matrices for up-
quarks (u; c; t), down-quarks (d; s; b), charged leptons
(e;�; �), and neutrinos (�e; ��; ��), respectively. The
mass matrices MD and MR are, respectively, the Dirac
and the right-handed Majorana type neutrino mass matri-
ces, from which with the seesaw mechanism [31] we derive
M�. Here Af, Bf, Cf, and Df are real parameters and �u

and �d are phase parameters with f � u; d; e, and �.
Let us mention a particular feature of these mass matri-

ces with respect to the flavor 2$ 3 symmetry. We assume
that the neutrino mass matrix has only a 2$ 3 symmetric
part. In the mass matrices for quarks and charged leptons,
the 2$ 3 antisymmetric terms (the second terms) are
added as broken 2$ 3 symmetric parts, in addition to
the 2$ 3 symmetric terms (the first terms). This structure
is motivated by the SO(10) GUT model in which 10, 120,
and 126 Higgs scalars contribute to the fermion mass
matrices, together with the following assumptions:
(i) The contribution from the 120 Higgs scalar is 2$ 3
antisymmetric, while those from 10 and 126 Higgs scalars
are 2$ 3 symmetric for quarks and charged leptons.
(ii) There exists the contribution to the Dirac type neutrino
mass matrix MD from only the 10 and 126 Higgs scalars.
and (iii) The texture components of the broken 2$ 3
symmetric parts are assumed to have different forms be-
tween quarks and charged leptons, which derives a differ-
ence between the small quark mixing and the large lepton
mixing. Namely, we assume that the mass matrices Mu and
Md are superpositions of the common real symmetric
matrices S and S0 and pure imaginary antisymmetric one
A and that Me, MD, and MR consist of the common real
symmetric matrices S00 and S000 and pure imaginary anti-
013008
symmetric one A0, as follows.

Mu � �uS � �uS
0 � �uA; (2.7)

Md � �dS � �dS
0 � �dA; (2.8)

Me � �eS00 � �eS000 � �eA0; (2.9)

MD � �DS
00 � �DS

000; (2.10)

MR � �RS000; (2.11)

M� � �MT
DM

�1
R MD; (2.12)

where the matrices S, S0, S00 and S000 are 2$ 3 symmetric
too, and A and A0 are 2$ 3 antisymmetric too. Here �i,
�i, �i (i � u; d; e), �D, �D, and �R are real coefficient
parameters. Note that the 2$ 3 symmetry of the model is
broken through only A in the quark sector and A0 in the
lepton sector.

Some semiempirical approaches for mass matrices with
the similar structure to the above Eqs. (2.7), (2.8), (2.9),
(2.10), (2.11), and (2.12) have been proposed in the litera-
ture. For example, Gronau, Johnson, and Schechter [4]
have discussed a model which consists of combining the
Fritzch [2] and Stech [3] ansatz for quarks. They use the
combination of the symmetric mass matrix with an anti-
symmetric one, although they do not use the 2$ 3 sym-
metry. An extension to leptons based on a SO(10) GUT
model has been investigated with use of the type I and
type II seesaw mechanism for neutrino masses [7,8]. In the
present paper, we use the 2$ 3 symmetry for a common
origin of the small quark and the large lepton mixings. This
is the large difference between our model and the other
2$ 3 symmetry models [13–21].

The mass matrix Mf (f � u; d; e, and �) given in
Eqs. (2.1), (2.2), (2.3), and (2.4) has a common structure
when it is expressed with a unitary matrix Qf as follows:

Mf � Qf
cMfQ

y
f ; for f � u; d; and e;

Mf � Qf
cMfQT

f ; for f � �
(2.13)

where cMf (f � u; d; e, and �) is one of the seesaw-
invariant type of mass matrix defined by [32]

cMf �

0 Af 0
Af Bf Cf
0 Cf Df

0B@
1CA: (2.14)

Here the unitary matrices Qf are given by

Qu �

1 0 0
0 1��

2
p ei�u 1��

2
p iei�u

0 1��
2
p ei�u � 1��

2
p iei�u

0B@
1CA; (2.15)
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Qd �

1 0 0
0 1��

2
p ei�d 1��

2
p iei�d

0 1��
2
p ei�d � 1��

2
p iei�d

0B@
1CA; (2.16)

Qe �

1 0 0
0 1��

2
p ei	=4 1��

2
p iei	=4

0 1��
2
p e�i	=4 � 1��

2
p ie�i	=4

0B@
1CA; (2.17)

Q� �

1 0 0
0 1��

2
p 1��

2
p i

0 1��
2
p � 1��

2
p i

0B@
1CA: (2.18)

Note that the structure of Qf mentioned above is the same
for all the quarks and leptons except for the phase factors in
it. It should be also noted that Eq. (2.13) implies that the
mass matrix Mf is transformed to cMf by using a rebasing
of the quark and lepton fields, respectively.
III. DIAGONALIZATION OF THE MASS MATRIX

We now discuss a diagonalization of the mass matrixMf

given in Eq. (2.13). First let us discuss the diagonalization
of the mass matrix cMf given in Eq. (2.14), which appears

as a part of Mf. This cMf is diagonalized by an orthogonal
matrix Of as discussed in Refs. [23,24];

OT
f

0 Af 0
Af Bf Cf
0 Cf Df

0B@
1CAOf �

�m1f

m2f

m3f

0B@
1CA:

(3.1)

Here m1f, m2f, and m3f are eigenvalues of Mf. Explicit
expressions of the orthogonal matrix Of, and components
Af, Bf, Cf, and Df in terms of m1f, m2f, and m3f are
presented in Appendix A. Namely, the mass matrix Mf is
diagonalized as

UyLfMfULf�

�m1f

m2f

m3f

0B@
1CA for f�u;d; and e;

(3.2)

UyLfMfU
�
Lf �

�m1f

m2f

m3f

0B@
1CA for f � �: (3.3)

where the unitary matrix ULf is given by

ULf � QfOf: (3.4)

Here we list the expressions for Of and Qf in order:
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Of ’

1
������
m1f

m2f

q ������������
m1fm2

2f

m3
3f

r
�

������
m1f

m2f

q
1

������
m1f

m3f

q
������������
m2

1f

m2fm3f

r
�

������m1f

m3f

q
1

0BBBBBBB@

1CCCCCCCA for f� u;d; and e;

(3.5)

O� �

������������
m2

m2�m1

q ������������
m1

m2�m1

q
0

�
������������
m1

m2�m1

q ������������
m2

m2�m1

q
0

0 0 1

0BBB@
1CCCA; (3.6)

and

Qf �

1 0 0
0 1��

2
p ei�f 1��

2
p iei�f

0 1��
2
p ei�f � 1��

2
p iei�f

0B@
1CA for f � u and d;

(3.7)

Qe �

1 0 0
0 1��

2
p ei	=4 1��

2
p iei	=4

0 1��
2
p e�i	=4 � 1��

2
p ie�i	=4

0B@
1CA; (3.8)

Q� �

1 0 0
0 1��

2
p 1��

2
p i

0 1��
2
p � 1��

2
p i

0B@
1CA: (3.9)

Here, miu, mid, mie, and mi��i � 1; 2; 3� are, respectively,
the masses of up-quarks, down-quarks, charged leptons,
and neutrinos, which we shall denote as �mu;mc;mt�,
�md;ms;mb�, �me;m�;m�� and �m1; m2; m3�.

Furthermore, the neutrino mass matrix is diagonalized
as

U0yL�MfU
0�
L� �

m1

m2

m3

0@ 1A; (3.10)

where the unitary matrix U0L� is given by

U0L� � UL�P� � QfOfP�: (3.11)

Here, in order to make the neutrino masses to be real
positive, we introduced a diagonal phase matrix P� defined
by

P� � diag�i; 1; 1�: (3.12)
IV. CKM QUARK AND MNS LEPTON MIXING
MATRICES

Next we discuss the CKM quark mixing matrix V and
the MNS lepton mixing matrix U of the model, which are
given by

V � UyLuULd � OT
uQ
y
uQdOd; (4.1)
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U � UyLeU
0
L� � OT

eQ
y
eQ�O�P�: (4.2)

From Eqs. (3.7), (3.8), and (3.9), we obtain

QyuQd �

1 0 0
0 ei��d��u� 0
0 0 ei��d��u�

0@ 1A; (4.3)

QyeQ� �

1 0 0
0 1��

2
p 1��

2
p

0 � 1��
2
p 1��

2
p

0B@
1CA: (4.4)

It should be noted that QyeQ� takes quite a different struc-
ture from that of QyuQd in our model. Namely, QyuQd is a
diagonal phase matrix, while QyeQ� represents a mixing
matrix with a maximal lepton mixing between the second
and third generations. Therefore, the large lepton mixing is
realized with no fine-tuning in our model.

Let us discuss the quark and lepton mixing matrices in
detail.

A. CKM quark mixing matrix

We obtain the CKM quark mixing matrix V as follows:

V � OT
uQ
y
uQdOd (4.5)

�

1
�����
mu
mc

q ���������
mum2

c

m3
t

r
�

�����
mu
mc

q
1

�����
mu
mt

q
��������
m2
u

mcmt

q
�

�����
mu
mt

q
1

0BBBBBBB@

1CCCCCCCA

T

1 0 0

0 ei��d��u� 0

0 0 ei��d��u�

0BB@
1CCA

�

1
�����
md
ms

q ���������
mdm

2
s

m3
b

r
�

�����
md
ms

q
1

�����
md
mb

q
���������
m2
d

msmb

r
�

�����
md
mb

q
1

0BBBBBBBB@

1CCCCCCCCA: (4.6)
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The explicit magnitudes of �i; j� elements of V are obtained
as

jV12j ’

��������
�������
md

ms

s
�

�������
mu

mc

s
ei��d��u�

��������
� j0:224� 0:06ei��d��u�j; (4.7)
jV23j ’

��������
�������
md

mb

s
�

�������
mu

mt

s ��������� 0:0336; (4.8)
jV13j ’

��������
������������
mdm2

s

m3
b

vuut �

�������������
mumd

mcmb

s
ei��d��u�

��������
� j0:000 22� 0:0021ei��d��u�j: (4.9)
Here we have used the following numerical values for the
quark masses estimated at the unification scale � � MX,
which are presented in Appendix B.

mu�MX��1:04�0:19
�0:20 MeV; md�MX��1:33�0:17

�0:19 MeV;

mc�MX��302�25
�27 MeV; ms�MX��26:5�3:3

�3:7 MeV;

mt�MX��129�196
�40 GeV; mb�MX��1:00	0:04 GeV:

(4.10)
By using the rephasing of the up- and down-quarks,
Eq. (4.6) is changed to the standard representation of the
CKM quark mixing matrix,
Vstd � diag�ei

u
1 ; ei


u
2 ; ei


u
2 �Vdiag�ei


d
1 ; ei


d
2 ; ei


d
2 � �

c13c12 c13s12 s13e�i�

�c23s12 � s23c12s13e
i� c23c12 � s23s12s13e

i� s23c13

s23s12 � c23c12s13e
i� �s23c12 � c23s12s13e

i� c23c13

0B@
1CA:
(4.11)
Here 
qi comes from the rephasing in the quark fields to
make the choice of phase convention. The CP violating
phase � in Eq. (4.11) is predicted with the expression of V
in Eq. (4.6) as

� � arg
��
VusV

�
cs

VubV
�
cb

�
�

jVusj
2

1� jVubj
2

�
’ �u ��d � 	:

(4.12)

The predicted values of jV12j, jV23j, jV13j, and � are
functions of a free parameter �u ��d as shown in
Eqs. (4.7), (4.8), (4.9), and (4.12). They are roughly con-
sistent with the following numerical values at � � MX,
which are estimated from the experimental data observed
at the electroweak scale � � MZ by using the renormal-
ization group equation and presented in Appendix B:

jV0
12j � 0:2226� 0:2259; jV0

23j � 0:0295� 0:0387;

(4.13)

jV0
13j � 0:0024� 0:0038; �0 � 46
 � 74
: (4.14)
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B. MNS lepton mixing matrix

We obtain the MNS lepton mixing matrix U as follows:

U � OT
eQ
y
eQ�O�P� (4.15)

�

1
�����
me
m�

q ����������
mem2

�

m3
�

r
�

�����
me
m�

q
1

�����
me
m�

q
����������
m2
e

m�m�

r
�

�����
me
m�

q
1

0BBBBBBB@

1CCCCCCCA
T

1 0 0
0 1��

2
p 1��

2
p

0 � 1��
2
p 1��

2
p

0B@
1CA

�

������������
m2

m2�m1

q ������������
m1

m2�m1

q
0

�
������������
m1

m2�m1

q ������������
m2

m2�m1

q
0

0 0 1

0BBB@
1CCCAP�

’

c1i s1 � 1��
2
p

�����
me
m�

q
� 1��

2
p s1i

1��
2
p c1

1��
2
p

1��
2
p s1i � 1��

2
p c1

1��
2
p

0BBB@
1CCCA; (4.16)

with

s1 �

�������������������
m1

m2 �m1

s
; c1 �

�������������������
m2

m2 �m1

s
: (4.17)

The explicit magnitudes of �i; j� elements of U are

jUj ’

������������
m2

m2�m1

q ������������
m1

m2�m1

q
1��
2
p

�����
me
m�

q
1��
2
p

������������
m1

m2�m1

q
1��
2
p

������������
m2

m2�m1

q
1��
2
p

1��
2
p

������������
m1

m2�m1

q
1��
2
p

������������
m2

m2�m1

q
1��
2
p

0BBBB@
1CCCCA: (4.18)

Therefore, we obtain

tan 2�solar �
jU12j

2

jU11j
2 ’

m1

m2
; (4.19)

sin 22�atm � 4jU23j
2jU33j

2 ’ 1; (4.20)

jU13j
2 ’

me

2m�
: (4.21)

In the following discussions we consider the normal
mass hierarchy m1 <m2 � m3 for the neutrino masses.
Then the evolution effects which only give negligibly small
correction effects can be ignored. Scenarios in which the
neutrino masses have the quasidegenerate or the inverse
hierarchy will be denied from Eqs. (4.19) and (4.24).

It can be seen from Eq. (4.16) that the large lepton
mixing angle between the second and third generation is
well realized with no fine-tuning in the model. It should be
noted that the present model leads to the same results for
013008
�solar and �atm as the model in Ref. [25], while a different
feature for jU13j

2 is derived.
On the other hand, we have [33] a experimental bound

for jU13j
2
exp from the CHOOZ [34], solar [35], and atmos-

pheric neutrino experiments [1]. From the global analysis
of the SNO solar neutrino experiment [33,35], we have
�m2

12 and tan2�12 for the large mixing angle (LMA)
Mikheyev-Smirnov-Wolfenstein (MSW) solution. From
the atmospheric neutrino experiment [1,33] , we also
have �m2

23 and tan2�23. These experimental data with 3�
range are given by

jU13j
2
exp < 0:054; (4.22)

�m2
12 � m2

2 �m
2
1 � �m2

sol � �5:2� 9:8� � 10�5 eV2;

(4.23)

tan 2�12 � tan2�sol � 0:29� 0:64; (4.24)

�m2
23 � m2

3 �m
2
2 ’ �m2

atm � �1:4� 3:4� � 10�3 eV2;

(4.25)

tan 2�23 ’ tan2�atm � 0:49� 2:2: (4.26)

Hereafter, for simplicity, we take tan2�atm ’ 1. Thus, by
combining the present model with the mixing angle �sol,
we have

m1

m2
’ tan2�sol � 0:29� 0:64: (4.27)

Therefore we predict the neutrino masses as follows.

m2
1 � �0:48� 6:8� � 10�5 eV2;

m2
2 � �5:7� 16:6� � 10�5 eV2;

m2
3 � �1:4� 3:4� � 10�3 eV2:

(4.28)

Let us mention other predictions in our model. Our model
imposes a restriction on jU13j as

jU13j
2 ’

me

2m�
� 2:4� 10�3: (4.29)

Here we have used the running charged lepton masses at
the unification scale � � �X [36]:me��X� � 0:325 MeV,
m���X� � 68:6 MeV, andm���X� � 1171:4	 0:2 MeV.
The value in Eq. (4.29) is consistent with the present
experimental constraints Eq. (4.22).

Next let us discuss the CP-violation phases in the lepton
mixing matrix. The Majorana neutrino fields do not have
the freedom of rephasing invariance, so that we can use
only the rephasing freedom of Me to transform Eq. (4.16)
to the standard form
-5
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Ustd � diag�ei�
e
1 ; ei�

e
2 ; ei�

e
2�U

�
c�13c�12 c�13s�12ei� s�13ei������

��c�23s�12 � s�23c�23s�13e
i���e�i� c�23c�12 � s�23s�12s�13e

i�� s�23c�13e
i�����

�s�23s�12 � c�23c�12s�13ei���e�i� ��s�23c�12 � c�23s�12s�13ei���e�i����� c�23c�13

0B@
1CA: (4.30)
Here, �ei comes from the rephasing in the charged lepton
fields to make the choice of phase convention. The
CP-violating phase ��, the additional Majorana phase �
and � [37,38] in the representation Eq. (4.30) are calcu-
lable and obtained as

�� � arg
�
U12U

�
22

U13U
�
23

�
jU12j

2

1� jU13j
2

�
’ 	;

� � arg
�
U12

U11

�
’ �	=2; � � arg

�
U13

U11
ei��

�
’ 	=2;

(4.31)

by using the relation me � m� � m�.
We also predict the averaged neutrino mass hm�i which

appears in the neutrinoless double beta decay [38] as
follows:

hm�i � jm1U2
11 �m2U2

12 �m3U2
13j �

mem3

2m�

� �0:89� 1:4� � 10�4 eV: (4.32)

This value of hm�i is too small to be observed in near future
experiments [39].

V. SUMMARY

We have investigated a Hermite mass matrix model
given in Eqs. (2.1), (2.2), (2.3), (2.4), (2.5), and (2.6). In
this model, the mass matrices for quarks and charged
leptons are assumed to have a term in which the 2$ 3
symmetry is maximally broken. The mass matrices for up-
quarks, down-quarks, charged leptons, and neutrinos have
a common structure as shown by cMf in Eq. (2.7) when it is
expressed after rebasing of the quark and lepton fields. The
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large lepton mixing angle between the second and third
generation is realized with no fine-tuning in our model.
The model is almost consistent with the present data in the
quark as well as lepton sectors. The model also predicts
jU13j

2 ’ me
2m�
� 2:4� 10�3 for the lepton mixing matrix

element U13, and neutrino masses shown in Eq. (4.28) are
obtained from the neutrino oscillation data for �sol, �m2

23,
and �m2

12. We also predict hm�i � �0:89� 1:4� �
10�4 eV for the averaged neutrino mass which appears in
the neutrinoless double beta decay.
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APPENDIX A: DIAGONALIZATION OF MASS
MATRIX dMf

For the purpose of making this paper self-contained,
here we summarize the diagonalization of mass matrixcMf (f � u; d; e and �) defined by

cMf �

0 Af 0
Af Bf Cf
0 Cf Df

0B@
1CA; (A1)

for up-quarks, down-quarks, charged leptons, and
neutrinos.

1. Mass matrix dMf for quarks and charged leptons

For quarks and charged leptons (f � u, d, and e), let us
take a following choice for cMf:
cMf �

0 Af 0
Af Bf Cf
0 Cf Df

0B@
1CA �

0
�����������������
m1fm2fm3f

m3f�m1f

q
0�����������������

m1fm2fm3f

m3f�m1f

q
m2f

�������������������������������������
m1fm3f�m3f�m2f�m1f�

m3f�m1f

r
0

�������������������������������������
m1fm3f�m3f�m2f�m1f�

m3f�m1f

r
m3f �m1f

0BBBBBBB@

1CCCCCCCA: (A2)

This is diagonalized by an orthogonal matrix Of as (see Refs. [23,24])

OT
f

0 Af 0
Af Bf Cf
0 Cf Df

0B@
1CAOf �

�m1f

m2f

m3f

0B@
1CA: (A3)

Here mif�i � 1; 2; 3� are eigenmasses and Of is given by
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Of �

����������������������������������
m2fm2

3f

�m2f�m1f��m2
3f�m

2
1f�

r ��������������������������������������������������
m1fm3f�m3f�m2f�m1f�

�m2f�m1f��m3f�m2f��m3f�m1f�

r ����������������������������������
m2

1fm2f

�m3f�m2f��m2
3f�m

2
1f�

r
�

����������������������������������
m1fm3f

�m2f�m1f��m3f�m1f�

q ����������������������������������
m2f�m3f�m2f�m1f�

�m2f�m1f��m3f�m2f�

r ����������������������������������
m1fm3f

�m3f�m2f��m3f�m1f�

q
����������������������������������
m2

1f�m3f�m2f�m1f�

�m2f�m1f��m2
3f�m

2
2f�

r
�

��������������������������������������������������
m1fm2fm3f

�m3f�m2f��m2f�m1f��m3f�m1f�

q �����������������������������������
�m3f�

2�m3f�m2f�m1f�

�m2
3f�m

2
2f��m3f�m2f�

r

0BBBBBBBBB@

1CCCCCCCCCA
’

1
������
m1f

m2f

q ������������
m1fm2

2f

m3
3f

r
�

������
m1f

m2f

q
1

������
m1f

m3f

q
������������
m2

1f

m2fm3f

r
�

������m1f

m3f

q
1

0BBBBBBBB@

1CCCCCCCCA
�for m3f  m2f  m1f�: (A4)
Here miu, mid, and mie�i � 1; 2; 3� are, respectively,
masses of up-quarks, down-quarks, charged leptons, and
neutrinos, which we shall denoted as �mu;mc;mt�,
�md;ms;mb�, and �me;m�;m��.

2. Mass matrix dM� for neutrinos

For neutrinos (f � �) we choose :

cM� �

0 A� 0
A� B� 0
0 0 D�

0@ 1A

�

0
������������
m1m2
p

0������������
m1m2
p

m2 �m1 0

0 0 m3

0BB@
1CCA: (A5)

Note we take C� � 0. This cM� is diagonalized as

OT
�

0 A� 0
A� B� 0
0 0 D�

0@ 1AO� �

�m1

m2

m3

0@ 1A; (A6)

where mi�i � 1; 2; 3� are neutrino masses and the orthogo-
nal matrix O� is given by

O� �

������������
m2

m2�m1

q ������������
m1

m2�m1

q
0

�
������������
m1

m2�m1

q ������������
m2

m2�m1

q
0

0 0 1

0BBB@
1CCCA: (A7)
APPENDIX B: EVOLUTION EFFECT

We have estimated the evolution effects for the CKM
matrix elements from the electroweak scale � � mZ to the
unification scale � � MX by using the two-loop renormal-
ization group equation (RGE) [minimal supersymmetric
standard model with tan� � 10 case] for the Yukawa
coupling constants. In the numerical calculations, we
have used the following running quark masses at � �
mZ and at � � MX [36]:
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mu�mZ� � 2:33�0:42
�0:45 MeV;

mc�mZ� � 677�56
�61 MeV;

mt�mZ� � 181	 13 GeV;

md�mZ� � 4:69�0:60
�0:66 MeV;

ms�mZ� � 93:4�11:8
�13:0 MeV;

mb�mZ� � 3:00	 0:11 GeV:

(B1)

mu�MX� � 1:04�0:19
�0:20 MeV;

mc�MX� � 302�25
�27 MeV;

mt�MX� � 129�196
�40 GeV;

md�MX� � 1:33�0:17
�0:19 MeV;

ms�MX� � 26:5�3:3
�3:7 MeV;

mb�MX� � 1:00	 0:04 GeV:

(B2)

We have calculated numerical values of the CKM mix-
ing matrix elements at� � MX from their observed values
at � � mZ. Namely using as inputs the observed quark
mixing angles and the CP violating phase at� � mZ given
by

sin�12�mZ��0:2243	0:0016;

sin�23�mZ��0:0413	0:0015;

sin�13�mZ��0:0037	0:0005;

��mZ��60
	14
;

(B3)

we obtain the following numerical values for the mixing
angles and the magnitude of the mixing matrix elements at
� � MX [28]:

sin�0
12 � 0:2226� 0:2259;

sin�0
23 � 0:0295� 0:0383;

sin�0
13 � 0:0024� 0:0038;

�0 � 46
 � 74
;

(B4)
jV0j �

0:9741� 0:9749 0:2226� 0:2259 0:0024� 0:0038
0:2225� 0:2259 0:9734� 0:9745 0:0295� 0:0387
0:0048� 0:0084 0:0289� 0:0379 0:9993� 0:9996

0@ 1A: (B5)
-7



KOICHI MATSUDA AND HIROYUKI NISHIURA PHYSICAL REVIEW D 73, 013008 (2006)
[1] Y. Fukuda et al. (Super-Kamiokande Collaboration), Phys.
Rev. Lett. 81, 1562 (1998); 86, 5651 (2001); Q. R. Ahmad
et al. (SNO Collaboration), Phys. Rev. Lett. 87, 071301
(2001); 89, 011301 (2002); K. Eguchi et al. (KamLAND
Collaboration), Phys. Rev. Lett. 90, 021802 (2003).

[2] H. Fritzsch, Phys. Lett. B73, 317 (1978); 85B, 81 (1979);
Nucl. Phys. B155, 189 (1979); L. F. Li, Phys. Lett. 84B,
461 (1979); H. Georgi and C. V. Nanopoulos, Nucl. Phys.
B155, 52 (1979); A. C. Rothman and K. Kang, Phys. Rev.
Lett. 43, 1548 (1979); A. Davidson, V. P. Nair, and K. C.
Wali, Phys. Rev. D 29, 1513 (1984); M. Shin, Phys. Lett.
145B, 285 (1984); H. Georgi, A. Nelson, and M. Shin,
Phys. Lett. 150B, 306 (1985); T. P. Cheng and L. F. Li,
Phys. Rev. Lett. 55, 2249 (1985).

[3] B. Stech, Phys. Lett. 130B, 189 (1983); G. Ecker, Z. Phys.
C 24, 353 (1984).

[4] M. Gronau, R. Johnson, and J. Schechter, Phys. Rev. Lett.
54, 2176 (1985); Phys. Rev. D 33, 2641 (1986).

[5] L. Wolfenstein, Phys. Rev. Lett. 51, 1945 (1983).
[6] K. Kang and M. Shin, Phys. Lett. 165B, 383 (1985); 185,

163 (1987).
[7] A. Bottino, C. W. Kim, H. Nishiura, and W.K. Sze, Phys.

Rev. D 34, 862 (1986).
[8] R. Johnson, S. Ranfone, and J. Schechter, Phys. Lett. B

179, 355 (1986); Phys. Rev. D 35, 282 (1987).
[9] G. C. Branco, L. Lavoura, and F. Mota, Phys. Rev. D 39,

3443 (1989).
[10] P. Ramond, R. G. Roberts, and G. G. Ross, Nucl. Phys.

B406, 19 (1993).
[11] D. Du and Z. Z. Xing, Phys. Rev. D 48, 2349 (1993); H.

Fritzsch and Z. Z. Xing, Phys. Lett. B 353, 114 (1995).
[12] K. Kang and S. K. Kang, Phys. Rev. D 56, 1511 (1997); H.

Nishiura, K. Matsuda, and T. Fukuyama, Phys. Rev. D 60,
013006 (1999); K. Matsuda, T. Fukuyama, and H.
Nishiura, Phys. Rev. D 61, 053001 (2000); K. Kang,
S. K. Kang, C. S. Kim, and S. M. Kim, Mod. Phys. Lett.
A 16, 2169 (2001); H. Fritzsch and Z. Z. Xing, Phys. Rev.
D 61, 073016 (2000); C. Giunti and M. Tanimoto, Phys.
Rev. D 66, 113006 (2002); M. Frigerio and A. Yu.
Smirnov, Nucl. Phys. B640, 233 (2002); Phys. Rev. D
67, 013007 (2003); P. F. Harrison and W. G. Scott, Phys.
Lett. B 547, 219 (2002); 594, 324 (2004); E. Ma, Mod.
Phys. Lett. A 17, 2361 (2002); Phys. Rev. D 66, 117301
(2002); K. S. Babu, E. Ma, and J. W. F. Valle, Phys. Lett. B
552, 207 (2003); Z. Z. Xing, Int. J. Mod. Phys. A 19, 1
(2004); M. Bando, S. Kaneko, M. Obara, and M.
Tanimoto, Phys. Lett. B 580, 229 (2004); O. L. G. Peres
and A. Yu. Smirnov, Nucl. Phys. B680, 479 (2004); C. H.
Albright, Phys. Lett. B 599, 285 (2004); J. Ferrandis and
S. Pakvasa, Phys. Lett. B 603, 184 (2004); S. T. Petcov and
W. Rodejohann, Phys. Rev. D 71, 073002 (2005); S. S.
Masood, S. Nasri, and J. Schechter, Phys. Rev. D 71,
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