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AdS strings with torsion: Noncomplex heterotic compactifications
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Combining the effects of fluxes and gaugino condensation in heterotic supergravity, we use a ten-
dimensional approach to find a new class of four-dimensional supersymmetric AdS4 compactifications on
almost-Hermitian manifolds of SU�3� structure. Computation of the torsion allows a classification of the
internal geometry, which for a particular combination of fluxes and condensate, is nearly Kähler. We argue
that all moduli are fixed, and we show that the Kähler potential and superpotential proposed in the
literature yield the correct AdS4 radius. In the nearly Kähler case, we are able to solve the H Bianchi
identity using a nonstandard embedding. Finally, we point out subtleties in deriving the effective
superpotential and understanding the heterotic supergravity in the presence of a gaugino condensate.
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I. INTRODUCTION

Understanding how to fix the expectation values of
moduli in compactifications of string theory has driven
much of the progress made in discovering and categorizing
string vacua over the last few years. The key points are that
supergravity form flux can provide potentials for moduli
and that compactification manifolds other than the tradi-
tional Calabi-Yau 3-fold (CY3) simply have fewer moduli
(for topological reasons). At tree level, these ‘‘flux vacua’’
are relatively tractable. For example, in some type IIB
backgrounds, fluxes simply warp the CY3, fix the complex
structure moduli, and generate zero vacuum energy [1].
Similarly, in heterotic vacua with H flux, the compact
manifold is non-Kähler and only the dilaton is unfixed
[2–6]. In more general cases, classification of
G structures has been employed to study the resulting
geometries and particularly the topological torsions of
the compactification manifolds.

As has been known for some time, nonperturbative
effects, such as gaugino condensation in the 4D effective
field theory, can also generate potentials for some moduli
[7,8]. In fact, it has turned out that these nonperturbative
effects happen to fix the moduli left unfixed by flux and
torsion [9]. In the end, the vacuum can be supersymmetric
with a negative cosmological constant; that is, they are
anti-de Sitter (AdS4) compactifications. Unfortunately,
however, these AdS4 compactifications, which have been
studied in type II and heterotic string theory, are only well
understood in the 4D effective field theory. A more com-
plete picture of the 10D physics would be useful, for
example, in resolving some disputes over the proper inter-
pretation of effective field theory in these vacua [10–13].
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In this paper, we investigate the 10D effects of gaugino
condensation, focusing on heterotic flux compactifications
because gauge degrees of freedom are conveniently de-
scribed in the bulk supergravity. In particular, we will see
the backreaction of both the flux and the condensate,
making use of G structures to describe supersymmetric
backgrounds. To our knowledge, this paper is the first use
of G structures to study supergravity gaugino condensa-
tion. Therefore, we will be relatively explicit in our calcu-
lations. We find that gaugino condensation is consistent
with supersymmetry in AdS4 � X6 compactifications
where X6 has SU�3� structure and belongs to a certain
class of almost-Hermitian manifolds. We find our back-
grounds to be consistent with the 4D superpotential com-
bining the effects of flux and gaugino condensation given
in [14], although we raise some questions about the deri-
vation of the superpotential. For specific choices of fluxes
and condensate, our compactification specializes to be-
come nearly Kähler (NK), which leads to many simplifi-
cations. In the NK case, we are able to use a nonstandard
embedding to solve the H flux Bianchi identity, which in
turn fixes the compactification and AdS4 scales.

Our paper is organized as follows. We begin in Sec. II
with a brief overview of flux vacua in type II and heterotic
string theories, including both nonperturbative effects and
their description in terms of G structures. The review
provides points of comparison to our work. Then, in
Sec. III we use the heterotic supersymmetry variation
equations to derive relations for the geometry in terms of
general fluxes and gaugino condensates. We then use these
relations to compute the components of the torsion and
classify the compactification manifold. Section IV deals
with the four-dimensional effective theory, discussing
moduli fixing and the 10D uplift of the gaugino conden-
sate. We also verify that the proposed superpotential and
Kähler potential yield the correct vacuum energy. We do
-1 © 2005 The American Physical Society
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find some subtleties related to the derivation of the super-
potential, which we describe in some detail. Specializing
our flux and condensate choices in Sec. V yields a NK
compactification. After discussing the NK geometry, we
revisit the now simpler and explicit gaugino condensate
and moduli fixing and, in addition, solve the Bianchi
identity. We end in Sec. VI with discussion and directions
of future interest.
II. REVIEW

We begin by briefly reviewing the effects of flux and
gaugino condensation in string theory compactifications.
We will particularly highlight the parallels between the
stories in the IIB and heterotic supergravities.

The inclusion of background fluxes in string compacti-
fications is an old idea [2–6] which has more recently been
applied very successfully to the moduli problem (see
[9,15–18] for some of the most recent examples).
Quantized Neveu-Schwarz–Neveu-Schwarz (NS) and
Ramond-Ramond (RR) fluxes can be wrapped on cycles
of the compactification manifold, inducing potentials for
many moduli and deforming the background geometry.
One can consider small additions of such fields perturba-
tively, ignoring their gravitational effects (e.g. [19,20]) and
keeping the simpler CY3 compactification. However, the
full backreaction modifies the internal space in compli-
cated but interesting ways so that it is no longer CY3.

In type IIB, [1] showed that, under some constraints on
the brane content, the compactification manifold remains
conformally CY3, even in the presence of NS and RR
fluxes. This relatively mild backreaction makes the dimen-
sional reduction somewhat easier to analyze. In the 4D
N � 1 effective theory, the fluxes induce a superpotential
of the form [21]

W �
Z
M
G ^� (1)

whereG, a combination of the RR and NS fluxes and axion
dilaton, is coupled to the geometry through the holomor-
phic 3-form �. The equations of motion require G to be
imaginary self-dual [supersymmetry further requires G to
be (2,1)], and the associated effective potential generically
fixes the dilaton and all the complex structure moduli.1

However, the Kähler moduli, and, in particular, the volume
modulus, remain unfixed, resulting in a no-scale
Minkowski compactification. See [22] for a review.

Starting with these self-dual flux solutions in IIB, T
dualizing twice and then S dualizing leads to solutions of
either IIB or heterotic string theory (depending on the
1Because the required calculations are prohibitively laborious,
general arguments for fixing complex structure moduli are
typically invoked. However, in [17] the fixing was demonstrated
explicitly for an example with only three complex structure
moduli.
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initial brane content) with only NS flux [23–25].
Similarly, solutions have been studied in type IIA [26–
30] and M theory [31–39] where fluxes also generate
torsion. While some connections between these many
flux vacua are known [25,40–44], the chain of U dualities
relating them remains to be worked out in entirety.

In the case of heterotic string theory, fluxes more dra-
matically affect the compactification geometry. Adding NS
flux H generates torsion in addition to warping, as implied
by the title of [2]. Imposing supersymmetry relates the flux
to the complex structure J by

dJ � ?H: (2)

Because J is closed for Kähler manifolds, the resulting
supersymmetric compactification has non-Kähler geome-
try. The low-energy superpotential is of the form [40,45]

W �
Z
M
�H � idJ� ^�: (3)

As in the IIB self-dual flux case, the effective potential
fixes the complex structure moduli. Because of the torsion,
some of the Kähler moduli, including the volume modulus,
are fixed as well [40,46]. From another point of view, rather
than fixing moduli, the compactification geometry consis-
tent with flux just does not have as many moduli. Here, the
analog of the IIB volume modulus is the dilaton, which is
absent from (3) and remains unfixed.

Supersymmetry of a non-Kähler compactification re-
quires, rather than a special holonomy group, a reduced
structure group for the tangent bundle. This occurs because
the supersymmetry transformations yield a spinor invariant
under the torsionful connection, which in turn defines a
G structure. Equivalently, the spinor bilinears define a set
of global, nonvanshing, G-invariant tensors. For G �
SO�n�, these tensors include a metric g and an oriented
volume �. In addition, G � U�m� means the manifold is
equipped with an almost-Hermitian metric, an almost com-
plex structure (ACS) J, and a holomorphic m-form �. As
we will discuss in more detail in Sec. III C, the torsion is
reflected in the derivatives of the invariant tensors. Six-
dimensional non-Kähler manifolds with SU�m� structure
have been discussed in heterotic [26,47,48], types IIA [26–
30], and IIB [49–52] strings. Compactifications of
M theory using G2 structures and SU�m� structures [31–
39] have also been studied.

The fact that the superpotentials (1) and (3) leave some
moduli unfixed led [9] to reconsider nonperturbative po-
tentials for the other moduli, following the arguments of
[7,8]. In pure 4D N � 1 non-Abelian gauge theory, the
gauge field F becomes strongly coupled at an energy scale
� and the gaugino condenses:

h��i ��3 �M3
UVe

�1=bg2
YM ; (4)

where MUV is the UV cutoff scale, b is an O�1� one-loop
determinant, and gYM is the 4D gauge coupling. This
-2
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condensate induces an effective superpotential of the form
[53]

W � e�1=bg2
YM : (5)

In the self-dual flux IIB vacua described above, [9]
showed that the superpotentials (1) and (5) can, in combi-
nation, freeze the remaining Kähler moduli, in particular,
the volume modulus. Specifically, if the gaugino conden-
sation occurs in a D7-brane gauge group, the gauge cou-
pling depends on the (fixed) dilaton and the volume
modulus. Therefore, the volume modulus is fixed as
well.2 Most relevantly for us, however, the combined flux
and gaugino superpotentials lead to supersymmetric AdS4

vacua [9,17,55]. In addition, metastable dS4 minima have
been constructed by adding branes [9] or otherwise break-
ing supersymmetry [56,57] to increase the vacuum energy.

In a heterotic CY3 compactification, gaugino condensa-
tion on its own drives the 4D dilaton to the strong coupling
region. However, when the condensate is balanced against
H flux, the 4D dilaton is finite, and the vacuum is a no-scale
Minkowski spacetime with broken supersymmetry [7,8].
Even though the cosmological constant vanishes, the
superpotential W � 0. This solution is nontrivial, as the
wrapped fluxes are quantized and fractional values are
needed to match the exponentially small contribution of
the condensate [58].3 From a 10D perspective, SU�3�
holonomy of the CY3 requires that the flux and the con-
densate be �3; 0� � �0; 3� forms. More recently, AdS4 and
even de Sitter vacua have been shown to arise from gau-
gino condensation in the strong string coupling limit (het-
erotic M theory) [59–61]. Finally, [14] has, analogously to
the IIB case, considered adding gaugino condensation to
compactifications with both H flux and torsion.
III. CONDITIONS FOR SUPERSYMMETRIC AdS4

In this section, we will examine the conditions for
supersymmetry in heterotic supergravity in the presence
of both H flux and gaugino condensation. We will find that
gaugino condensation is actually consistent with super-
symmetry in AdS4 � X6 compactifications. In particular,
we will study the backreaction of the condensate, using the
G-structure formalism. Since this is the first use of
G structures to study supergravity gaugino condensation,
our calculations will be relatively explicit.

As it turns out, the H flux and gaugino condensate
induce a significant backreaction on the geometry of the
compact manifold X6. In the well-studied [2,4–
6,25,40,45,46,62] case of supersymmetric Minkowski
2Instantonic D3 branes can introduce a similar nonperturbative
superpotential, and leading order �0 corrections additionally
restore dependence of the potential on the volume modulus [54].

3In [58], one-loop corrections were used to fix the volume
modulus. Alternatively, world sheet instantons, as with the IIB
D3 instantons, can give a potential to Kähler moduli.
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compactifications, the H flux generates a torsion and the
internal manifold ceases to be Kähler. We will see a similar
but even more dramatic effect in the AdS4 case here.

A. Ansatz and SU�3� structure

To set our field conventions, we give here the string-
frame action of the effective supergravity for the bosonic
fields and gaugino [63]4

S �
1

2�2
10

Z
d10x

�������
�g
p

e�2�
�
R� 4@M�@M��

1

2

��������H
�

1

2
�

��������2
�
�2

10

2g2
10

Tr�F2 � 4 ���MDM��
�
; (6)

where

�MNP �
�2

10

g2
10

Tr ���MNP� (7)

is the gaugino condensate, 2�2
10 � �2��

7�04, and
�2

10=g
2
10 � �0=4 (see [64]). Index, form, and spinor con-

ventions are given in Appendix A. For convenience, we
will define T � H � 1

2 �. We will work in string frame
with a metric ansatz of the form

ds2 � e2Aĝ��dx
�dx� � gmndx

mdxn (8)

where ĝ�� is an AdS4 metric of radius R and gmn is the
metric on the internal space X6. We will at times factor out
the volume modulus by writing gmn � e2u~gmn, where the
volume of X6 is V6 � e6u�2�

�����
�0
p
�6 and ~gmn is a fiducial

metric with volume ~V6 � �2�
�����
�0
p
�6. In the interest of

preserving SO�3; 2� symmetry, we take the other fields
neither to depend on nor have components in the AdS4

directions.
The string-frame supersymmetric variations of the dila-

tino 	, gaugino �, and gravitino  M are


	 � �
1

2
@M��M"�

1

24
HMNP�MNP"

�
1

96
�MNP�MNP"; (9)


� � �1
4FMN�MN"; (10)


 M � rM"�
1

8
HMNP�NP"�

1

96
�NPQ�NPQ�M":

(11)

The supersymmetry parameter " is a 10D Majorana-Weyl
spinor with positive chirality which we decompose into 4D
and 6D positive chirality Weyl spinors, � (anticommuting)
and � (commuting), as
4Compared with [63], we have made the following rescalings:
�BdR �

���
2
p
�,  BdR �

���
2
p
 , HBdR � H=3

���
2
p

, and �BdR �

e2�=3.
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" � eA=2�� 	 �� �
 	 �
�; (12)

where the warp factor is included for convenience of
normalization. Because " is Majorana, there is only one
independent positive chirality 6D spinor, meaning the so-
lution has an SU�3� structure. We will see later that we can
normalize �y� � 1.

With that normalization, we can define the SU�3� struc-
ture in terms of

Jm
n � �i�y
m

n�; �mnp � �T
mnp�: (13)

By the Fierz identities for �, J is an almost complex
structure (J2 � �1), and (with J written as a form)

J ^� � 0; � ^ �� � �
4i
3
J ^ J ^ J: (14)

The SU�3� structure determines the almost-Hermitian met-
ric gmn and volume form � � �i=8�� ^ ��. � is �3; 0� with
respect to J and imaginary self-dual. See, for example, [65]
for a review of SU�n� structures. Henceforth, if we count
holomorphic and antiholomorphic indices on a form, we do
so with respect to J.

B. Algebraic relations

In supersymmetric vacua, the supersymmetric variations
(9)–(11) are all required to vanish. We start by inserting
(12) into the� component of (11), noting that the covariant
derivative is

r�" � r̂�"�
1
2��

N@NA"

� eA=2�
�� 	 ��m�
 �
1
2@nA


n�� � 
��


	 �� �m�� 1
2@nA


n�
�
; (15)

where m is proportional to the 4D superpotential and is
related to the AdS4 radius R and cosmological constant �
by

jmj �
1

2R
�

1

2

�������
j�j

3

s
(16)

(in 4D string frame). The second equality of (15) follows
from the AdS4 covariant derivative r̂�� � � �m
��
 for a
Weyl Killing spinor (see [34,37]). Subdividing (11) by 4D
(or 6D) chirality gives

1

96
�mnp


mnp� �
1

2
@mA


m��m�
: (17)

Similarly, the dilatino variation (9), combined with (17),
becomes

1

24
Tmnp


mnp� �
1

2
@m��� 3A�
m�� 3m�
: (18)

Now we can simplify in terms of the SU�3� structure.
Using (17), its adjoint, and some gamma matrix algebra,
we compute
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1

16
�mnpJnp �

1

96
�npq�yf
m; 
npqg� � @nAJmn: (19)

In terms of our form notation (A2), this is

J 5 � � �8dA 5 J: (20)

Furthermore, multiplying (17) by �T , we find

� 5 � � �16m: (21)

Similarly, using (18) we can compute

J 5 T � 2d�3A��� 5 J; (22)

� 5 T � 12m: (23)

Using (B11), we have altogether

� � �2� �m��m ��� ��0 � 4J ^ �dA 5 J�;

T � 3
2� �m��m ��� � T0 � J ^ �d�3A��� 5 J�;

(24)

where J 5 �0 � � 5 �0 � 0 and similarly for T0. Finally,
the gaugino variation gives conditions which are familiar
from Calabi-Yau compactifications [66]:

F 5 � � J 5 F � 0: (25)

With respect to the ACS, these conditions are respectively
F � F�1;1� and the Donaldson-Uhlenbeck-Yau equation.

We should note that we have not imposed that � �
a�� �a �� as in the usual CY compactification. In particu-
lar, Eq. (20) is not identically zero. Instead, our condensate
is intentionally general at this stage, and we will further
address the dimensional reduction of the gaugino in
Sec. IV B.

C. Differential relations and torsion

We return now to the gravitino variation. Multiplying
(17) by 
q and rearranging using some gamma matrix
algebra, we get

1

96
�mnp


mnp
q� �
1

16
�qmn


mn��
1

2
@mA�

�
1

2
@mA
q

m��m
q�

: (26)

Then we can write the internal components of (11) as

rm� �
1
2@nA
m

n�� 1
8Tmnp


np��m
m�
: (27)

Note that (27) implies5 that we can set �y� � 1 constant.
Therefore, the SU�3� structure is properly normalized.

While the current form of (27) is useful for our calcu-
lations, it is also instructive to see that � is parallel with
respect to a torsionful connection. Inserting �y� � 1, we
can use the Fierz identity (B8) along with some gamma
matrix algebra and the anti-self-duality of �� to write
-4
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�� mpq
pq� � 8
m�
 and similarly �mpq
pq� � 0:

(28)

Inserting these into (27), we find

rm� �
1
2@nA
m

n�� 1
8�mnp


np�; (29)

where the (intrinsic) torsion is

�mnp � Tmnp � �m�m
np �m ��m

np: (30)

It is also important to interpret the spinor equations (27)
and (29), starting with (27). Although the last term seems
unusual, (27) is actually just a Killing spinor equation for a
Weyl spinor, much like the Killing equation for a spinor in
AdS4. Here, though, we have a connection with contorsion
�pmn � 2gm�p@n
A�

1
2Tpmn. To write (27) in a canonical

form, shift the contorsion into the covariant derivative and
define �0 � ei�=2�i�=4�� e�i�=2�i�=4�
 where m �
ei�jmj. Then we have rm�0 � �ijmj
m�0, the defining
equation for a real Killing spinor [67]. On the other hand,
(29) shows that � is parallel with respect to an alternative
connection, one with contorsion �pmn � 2gm�p@n
A�
1
2 �pmn. In the more familiar CY3 compactification, the
Killing spinor is parallel with respect to the Levi-Cività
connection, meaning that the manifold has SU�3� holon-
omy, not just SU�3� structure.

To understand the relation between SU�3� holonomy and
structure, it is useful to examine the torsion in more detail.6

What is important is not the contorsion itself (in fact, it is
possible to remove the warp factor term from the contor-
sion by rescaling the internal metric to gmn � e2A �gmn) but
the intrinsic torsion, or simply the torsion. The torsion �
cannot be removed by any conformal rescaling, and it is
actually a topological quantity. The torsion gives a topo-
logical obstruction to special holonomy (of the Levi-Cività
connection) for X6. Rather, after metric rescaling, it is the
connection with torsion � which has SU�3� holonomy. We
can see this obstruction directly in the SU�3� structure. The
torsion, thought of as an su�3� valued one-form, can be
decomposed into five irreducible SU�3� modules Wi,
which give dJ and d� as follows:

dJ �
3i
4
�W1

��� �W1�� �W3 � J ^W4; (31)

d� � W1J ^ J� J ^W2 �� ^W5: (32)

Decomposing the torsion with respect to the ACS, dJ has
�3; 0� and �0; 3� parts which give W1 and �W1 and a �2; 1� �
�1; 2� part which can further be decomposed into a primi-
tive part W3 and a nonprimitive part J ^W4. Similarly, d�
has a �3; 1� part W5 and a primitive �2; 2� part J ^W2. The
nonprimitive �2; 2� piece of d� redundantly gives W1.
Additionally, 3W4 � 2W5 is conformally invariant.
6See Appendix C for the definition of the torsion compared to
the contorsion.
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What, then, are the derivatives of the SU�3� structure
tensors in our compactification? Using (13) and (29), we
find that

rmJn
p � �@qA�gmnJ

pq � gpqJmn � 

p
mJn

q � 
qnJm
p�

� 1
2�mn

qJq
p � 1

2�mq
pJn

q; (33)

showing that J is covariantly constant with the appropriate
contorsion (once again, the @A terms can be removed by
rescaling the metric). Since � is the SU�3� holonomy
torsion, this is consistent with the fact that J is an SU�3�
singlet.

For computing dJ there is a more useful expression of
rJ, which we find starting from (27). After some gamma
matrix algebra, we arrive at

rmJn
p � �@qA�gmnJ

pq � gpqJmn � 

p
mJn

q � 
qnJm
p�

� 1
2Tmn

qJqp �
1
2Tmq

pJnq � 2 Im� �m�mn
p�: (34)

We can relate (34) to (33) using the Fierz identity (B7),
which yields

�mn
p �

i
2

�mn
qJq

p �
i
2

�mq
pJn

q: (35)

[In fact, deriving (35) is one step in showing that � is �3; 0�
with respect to J.] Continuing, we antisymmetrize to find

�dJ�mnp � 6@�mAJnp
 � 3T�mq
qJp
q � 6 Im� �m�mnp�:

(36)

To substitute in for T
�mq

qJp
q, we use (18) to write

�3T
�mn

qJp
q �
�i
12
Tmnp�y�
mnp; 
qrs
��

1

6
Tqrs�mnpqrs

� 6@�m��� 3A�Jnp


� �?T�mnp � 12 Im� �m�mnp�: (37)

Plugging into (36), we find

dJ � 2d��� 2A� ^ J� ?T � 6 Im� �m��: (38)

Taking the Hodge dual of T from (24),

?T �
3i
2

�m��
3i
2
m ��� d�3A��� ^ J� ?T0: (39)

The expression for dJ becomes

dJ �
3i
2
�m ��� �m�� � ?T0 � d��� A� ^ J: (40)

Reading directly from (40), W1 � 2m, W4 � d��� A�,
and W3 � ?T0.

We can perform a similar calculation to find d�. Some
gamma matrix algebra yields

�d��mnpq � 3�dA ^��mnpq � 6Tm�s
s�pq
s

� 8mRe��y
mnpq��: (41)

Again, we use (18) to substitute in for Tm�ss�pq
s as
-5
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6Tm�n
s�pq
s � 2�d��� 3A� ^��mnpq

� 6mRe��y
mnpq��: (42)

Then

d� � d�2�� 3A� ^�� 2mJ ^ J: (43)

It is easy to confirm the result for W1, and we see W5 �
�d�2�� 3A�. Finally, we can conclude that W2 � 0,
since there is no primitive piece of d�.

To summarize, we have found the torsion classes of X6

to be

W1 � 2m; W2 � 0; W3 � ?T0;

W4 � d��� A�; and W5 � �d�2�� 3A�:
(44)
D. Almost-Hermitian geometry

Manifolds withU�m� structure, called almost-Hermitian
manifolds, were classified [68] into 16 categories depend-
ing on which components W1 to W4 of the torsion are
nonzero. For a manifold to be complex, both W1 � 0 and
W2 � 0 are required. Simply put, on a complex manifold,
dJ should have no �3; 0� � �0; 3� parts, and d� should have
no �2; 2� parts ( just by counting holomorphic indices).
Some examples of almost-Hermitian manifolds are given
in Table I along with their nonzero torsion components and
whether or not they are complex.

It may be helpful to place some familiar examples in this
context. If the first four torsion components are all zero, the
manifold is Kähler. The vanishing ofW5 in addition signals
that the manifold is Calabi-Yau. The non-Kähler compac-
tifications considered in [2,4–6,25,40,45,46,62] are in fact
Hermitian with W5 � �2W4, and they are conformally
balanced [26,65]. Half-flat manifolds have also been of
recent interest [29,42,47,49,69,70].

In our AdS4 � X
6 examples, we have found that generi-

cally X6 has nonzero W1, W3, W4, and W5. The internal
TABLE I. Almost-Hermitian manifolds are classified by tor-
sion.

Manifold name W1 W2 W3 W4 W5 Complex?

Hermitian 0 0 W3 W4 W5 Y
Balanced 0 0 W3 0 W5 Y
Special Hermitian 0 0 W3 0 0 Y
Kähler 0 0 0 0 W5 Y
Calabi-Yau 0 0 0 0 0 Y
Nearly Kähler W1 0 0 0 0 N
Almost Kähler 0 W2 0 0 0 N
Quasi-Kähler W1 W2 0 0 0 N
Half flat ImW1 ImW2 W3 0 0 N
Semi-Kähler W1 W2 W3 0 0 N
G1 W1 0 W3 W4 W5 N
G2 0 W2 W3 W4 W5 N
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manifold X6 is therefore not complex, but is of the type G1

[68]; however, there are some interesting special cases. Let
us start by taking m � jmjei� and redefining � � iei��0,
soW1 is purely imaginary when (31) and (32) are written in
terms of �0. Then, for J 5 T � 0,W4 � �2=3�W5 � d�, so
X6 is conformally half flat with W2 � 0. If we additionally
have J 5 � � 0, W4 � W5 � 0, and X6 is actually half
flat.7 Under the further condition that the primitive part
of T (and therefore ?T) vanishes, then X6 is conformally
nearly Kähler (for J 5 � � 0) or actually nearly Kähler (J 5

� � 0). We will return in some detail to the case of NK X6

in Sec. V.
IV. THE 4D EFFECTIVE THEORY

In this section, we will relate the supersymmetric back-
grounds discussed above to the 4D effective field theory
that arises from the compactification. First, we give a
dictionary relating parameters of the 10D and 4D descrip-
tions, naturally leading to a discussion of moduli fixing.
Then we raise more subtle issues regarding the gaugino
condensate. Finally, we give a consistency check for pro-
posed Kähler and superpotentials, finding a puzzle for the
superpotential.

A. Dictionary and moduli fixing

To understand the interplay between the 4D and 10D
physics in our AdS4 backgrounds, we should begin by
understanding the dimensional reduction of the fields.
Along the way, we will see how different moduli are fixed
in different manners.

First off, the Einstein frame is defined with respect to the
4D part of the string-frame metric by gE;�� � e6u�2�g��,
and the Planck mass is m2

P � 1=��0 (see Appendix D).
Note that we are including the moduli expectation values in
the rescaling, so they do not enter in the Plank mass. Then,
converting to the Einstein frame, the action (6) for the
gauge fields reduces to

SF � �
1

4g2
YM

Z
d4x

����������
�gE
p

TrF��F
��
E ;

1

g2
YM

�
1

4�
e6u�2�;

(45)

where the subscript E on the gauge field denotes that the
spacetime indices have been raised with the Einstein-frame
metric.8 The gauge theory is weakly coupled in the regime
of large radius and/or weak coupling.
7Note that this is a different class of half-flat manifolds than
that considered in [29].

8We are implicitly assuming that the moduli are frozen at their
expectation values. Further, for simplicity, we are assuming that
the dilaton and warp factor are constant over the compactifica-
tion. This assumption does not actually change the results
qualitatively.
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The gaugino decomposes under dimensional reduction
as

� � ��6 	 �4 � �
6 	 �


4� � �KK; (46)

where �4 carries all the gauge indices and �6 satisfies a
zero mode equation (other polarizations are superpartners
of other polarizations of the gauge field and are lumped
with higher Kaluza-Klein modes in �KK). Using a
Majorana spin flip identity (and dropping KK modes), we
can reduce the gaugino action from (6) to

S� � �
2

g2
YM

Z
d4x

����������
�gE
p

Tr ��E

�
EDE;��E;

�E � exp
�

3�� 9u
2

�
�4:

(47)

The important point is that the canonically normalized
gaugino in the Einstein frame is rescaled from the dimen-
sionally reduced gaugino given in (46). In fact, the rescal-
ing is precisely the appropriate rescaling for a field of
dimension m3=2.9 Therefore, if h�
E�Ei � �3

E sets the scale
of gaugino condensation in the Einstein frame, we see that
mass rescaling simply tells us that �3 � h�
4�4i is the
equivalent mass scale in the string frame. From (46), we
can therefore write

�mnp �
�2

10

g2
10

�hTr�
4�4i��T6
mnp�6�

� hTr ��4�


4i��

y
6
mnp�



6�
 � �0mnp

�
�0

4
��3��T6
mnp�6� �

��3��y6
mnp�


6�
 � �0mnp:

(48)

This is the relation between the 4D and 10D descriptions of
the condensate (�0 is the expectation value of other
Kaluza-Klein modes, presumably generated by some other
quantum effect). For now, let us assume that a significant
portion of �T6
mnp�6 lies along �; then we have �0�3 �

jmj. The effective field theory description of gaugino con-
densation is consistent as long as the condensate scale is
less than the Kaluza-Klein scale, �� mKK � e�u=

�����
�0
p

,
which we find is valid as long as

3u� 1
2 ln��0jmj2� � 0: (49)

Fortunately, (49) is satisfied in the large radius regime of
the compactification as long as the AdS4 radius is suffi-
ciently large.

Now we are in position to see how the 4D dilaton
modulus S and the radial modulus T are fixed, which we
understand from the point of view of the effective field
theory.10 Analogously to CY3 compactifications [7], the
9Note that because it is a connection, the gauge field is not
rescaled.

10The moduli are defined in Appendix D.
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superpotential becomes

W � C�T� � AeiaS: (50)

The effective potential freezes the vacuum expectation
value of the dilaton. Similarly, because of the torsion dJ
in the superpotential (3), we expect C to depend on T, so
the supergravity is no longer no scale, and T will be fixed.
Any complex-structure-like moduli will presumably be
fixed by additional dependencies in C and A.

Simultaneously, in our supersymmetric vacuum, the
vacuum value ofW determines the (negative) cosmological
constant. In the string frame, as we mentioned in Eq. (16),
the superpotential therefore determines m, which is a
derived value, like a modulus. To evaluate m, we note
that in a supersymmetric AdS4 vacuum all contributions
to the superpotential should be of similar magnitude, which
agrees with our 10D results (24) and (40). In fact, (21) and
(24) set the condensate proportional to the AdS4 scale m.
Combining the expressions for the condensate scale gives
an approximate equation giving the � in terms of m and u.
We find

m� �0�3 �
e�3ueiaS�����

�0
p ; (51)

using the Kaluza-Klein mass as the ultraviolet cutoff of
Eq. (4). Assuming that we can obtain the small coupling
regime in the gauge theory, the AdS4 is large and nearly
flat, with a very tiny cosmological constant. Additionally,
(51) implies that the effective field theory approximation is
valid [see (49)].

Before we reinterpret some of the above in 10D lan-
guage, we should also give a caveat. In checking the
validity of the effective theory and in estimating the
AdS4 curvature, we have assumed that �T6
mnp�6 �

�mnp, which is true for CY3 compactifications. However,
as we will discuss in further detail in IV B below, in these
non-Kähler examples the zero mode �6 may lead to other
components.

We can also understand how most of the moduli are
fixed from a 10D perspective. Starting with complex-struc-
ture-like moduli, we note that X6 is not complex, and the
torsion can greatly reduce the number of deformations of
the almost complex structure. One argument that the re-
maining moduli are fixed is similar to that of [71] for CY3

compactifications with flux and condensates: As in the CY3

case, H � A�� �A ���� � � . On the CY3, the � � � vanish,
and the flux H takes only quantized values [71]. The
complex structure moduli are therefore fixed to discrete
values that allowH to lie in the integral cohomology. In our
vacua, dH � 0, so the precise quantization condition is not
known. However, we expect that there will be some quan-
tization mechanism, which will again force � to take a
compatible form and freeze the complex-structure-like
moduli.
-7
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For the volume modulus u, the situation is similar to the
case of the vanishing condensate, in which the radial
modulus is fixed by flux via the torsion constraint (2). In
our AdS4 case, (2) is generalized to (40). Now u is fixed by
the presence of nonzeroW3 as can be seen by the following
scaling argument: Under the dilation u! u� c and m!
e�cm,

gmn ! e2cgmn; Jmn ! e2cJmn;

�mnp ! e3c�mnp:
(52)

However, we do not expect that the primitive T0, and
therefore W3, should scale under the dilation; for example,
if it is closed, H0 should be an element of the integral
cohomology. Therefore, under the scaling, dJ ! e2cf3i2 �

�m ��� �m�� � d��� A� ^ Jg � �?T�0 � e2cdJ. The re-
scaled manifold is not a solution, and u is not a modulus;
from the perspective of the 4D theory, it must develop a
potential (possibly a very steep one). In fact, a similar
scaling argument has been given in the absence of a
gaugino condensate, see [25,40].

The H flux definition in terms of Chern-Simons forms
(or equivalently its Bianchi identity) gives an alternate and
comprehensive way to understand moduli fixing from the
10D perspective. As discussed in [40,62], H appears as
torsion in the Lorentz-Chern-Simons term, so H is defined
only implicitly. The key point is that solving for H also
constrains u. In fact, in the most general case, there should
be enough components of H to constrain additional
complex-structure-like moduli, as well. Finally, because
H has components proportional to m, we expect that m is
constrained. In Sec. V D, we will show that, for the special
case of a nearly Kähler compactification, the Bianchi
identity simplifies considerably and can be solved using a
nonstandard embedding to give an explicit value for m.

B. Gaugino condensate

We remind the reader that � � a�� �a �� when we
consider gaugino condensation in Calabi-Yau compactifi-
cations. However, we have so far allowed a more general
form of � for two reasons. One is that we wish to leave
open the possibility that 10D quantum effects may turn on
different components of the gaugino condensate than the
4D effective theory. We will not say anything concrete
about this possibility, but we return to this point in
Sec. VI E. The other reason that we have left � general
is that we do not expect the 4D condensate to lift to � �
a�� �a �� in a compactification with torsion. We will
explain why here.

Let us begin by briefly considering the dimensional
reduction of the gaugino. The Kaluza-Klein zero modes
[given by �6 in (46)] satisfy the Dirac equation following
from the action (6)
126001
�

mDm � @m�2A���
m �

1

24
Tmnp
mnp

�
� � 0; (53)

where we use the full spinor � to include the full gauge
structure. However, because the unbroken low-energy
gauge group commutes with the background gauge fields
Am, the (adjoint) gaugino zero modes are neutral under the
gauge background. Therefore, we can replace Dm ! rm
and �! �6 in (53).

It is straightforward to see that �6 � �, the supersym-
metry parameter, in the case of a CY3 compactification.
Simply put, on a CY3 (with or without gaugino condensate
and compensating H flux), the Dirac equation is

mrm�6 � 0, while � is the unique covariantly constant
spinor. Clearly, then, with the same normalization, �6 �

�. In that case, (48) gives � � a�� �a �� .
On the other hand, in our solutions, the gaugino Dirac

equation (53) is generally not the same as the Dirac equa-
tion following from the supersymmetry equation (29). For
example, if there is any primitive part of T, it appears in
different proportions in the two Dirac equations, as do the
warp factor and dilaton. In other words, �6 is not a singlet
of the SU�3� structure. So, in general, we do not expect the
low-energy condensate to lift to � � a�� �a �� .

A very interesting question, then, is whether the back-
ground � is always the same as the uplift of the 4D gaugino
condensate, or whether some other 10D quantum effects
are responsible for some components of the background
condensate �. That is, can � be identified with the con-
densate of the effective theory in our backgrounds? While
we cannot find the gaugino zero mode in all backgrounds,
we will see in Sec. V B that the answer is ‘‘yes’’ in some
backgrounds, while the effective theory cannot account for
all of the condensates in other backgrounds.

C. A check of potentials

Now we will present a consistency check of proposals
for both the superpotential and Kähler potential. The ap-
propriate generalization of the Gukov-Vafa-Witten super-
potential for the heterotic theory has been argued
[14,45,46] to include both the contributions of torsion
and gluino condensation. Consistent with those calcula-
tions, we employ the ansatz

W �
m3
p�������

4�
p

1

�2�
�����
�0
p
�5

Z
�H� bidJ� c�� ^ ~�: (54)

The 3-form ~� � e�3u� corresponds to the fiducial metric
~gmn.11 To agree with [14,45,46] in our conventions, we
should take b � �1.

The Kähler potential for a CY3 compactification is given
by
-8
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K � �3 ln��i�T � �T�� � ln��i�S� �S��

� ln
�

i

�2�
�����
�0
p
�6

Z
~� ^ �~�

�
� 3 log2 (55)

in terms of the 4D superfields S and T and the rescaled
holomorphic 3-form ~�.12 In terms of 10D variables, the
Kähler potential is simply

K � 2�� 12u� 4 log2: (56)

Unfortunately, the moduli spaces of non-Kähler manifolds,
even those with SU�3� structure, are unknown, and (55)
appears inapplicable. However, as argued in [47,48], we
can perhaps think of X6 as a deformation of a Calabi-Yau
for which (55) is valid (this assertion is supported by direct
calculation on half-flat manifolds [47]). Alternately, [48]
further notes that for manifolds with a single Kähler modu-
lus, the Kähler potential is sufficiently simple as to be
universal. We will adopt (55) as an ansatz whose consis-
tency is verified by the calculation of this section. For
simplicity’s sake, we are ignoring any possible effect
from a warp factor.

The 4D effective potential in the Einstein frame is now
given by [see (D3)]

V � m�2
P eK

�X
a;b

Ka �bDaW �D �b
�W � 3jWj2

�
(57)

where the sum is over all moduli a and b and Ka �b �
@a �@ �bK. Because we are considering a supersymmetric
vacuum, the Kähler covariant derivatives vanish, leaving
only the final term to give the cosmological constant. As a
first check, we can confirm that the proposed potentials
give the correct cosmological constant for our background.

Plugging from Eqs. (24) and (40) into the superpotential
and using �� ^ ~� � 8ie3u~�, we find immediately

W � i
m3
P�������

4�
p �2�

�����
�0
p
��4� 12b� 16c�e3um: (58)

Putting everything together, the absolute Einstein-frame
cosmological constant is

�E � �
V

m2
P

� 3�m2
P�
0e2��6uj1� 3b� 4cj2jmj2

�
1

4
e2��6uj1� 3b� 4cj2�s (59)

after using (16) and (D2), where �s is the (absolute)
cosmological constant in the string frame. The exponential
of the moduli is precisely the necessary combination for
conversion of a mass dimension 2 constant between
frames, so the Kähler potential and superpotential are
consistent if

1� 3b� 4c � �2: (60)
12The 4D superfields are defined in Appendix D.
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Some consistent solutions are

b � 1; c � �1; b � 1; c � 0;

b � �1; c � 1
2; b � �1; c � 3

2:
(61)

We can also check the superpotential and Kähler poten-
tial by computing the supersymmetry variation of the
Einstein-frame gravitino. For our metric ansatz (8), the
gravitino with the canonical supersymmetry transforma-
tion in the Einstein frame is

 E;� � �� 	 ���
� 	 �



� e�3u���=2� � � ���
1
2�

m m � 	�
: (62)

Here �M is still the 10D string-frame Dirac matrix, and �
and �
 are the positive and negative chirality spinors in
4D. This linear combination is the same one which diag-
onalizes the gravitino kinetic term. After some algebra, we
find


�� � e�3u���=2

�
r�� �

1

48
Hmnp

��mnp
��


�
1

2
�y
m�rm�
�
��


�
: (63)

Note that any contributions from � have canceled between
the external gravitino variation and the dilatino variation.
Using (28), we can rewrite the last term as

�
1

2
�y
m�rm�
� � �

1

16
�T
nprm�
 ��mnp

�
i

48
�dJ�mnp ��mnp �

1

16

��rm�T�
np�
 ��mnp; (64)

and the last term vanishes, again because of (28). In the
end, then,


�� � e�3u���=2

�
r�� �

1

48
�H � idJ�mnp ��mnp
��




�
:

(65)

Again, all variables on the right-hand side of (65) are given
in the 10D string frame. From [72], we know that the
second term in the gravitino variation must be proportional
to eK=2 �W, so we find (up to the overall phase)

W �
m3
p�������

4�
p

1

�2�
�����
�0
p
�5

Z
�H � idJ� ^ ~�; (66)

consistent with the second solution of (61).
Oddly, the superpotential derived in this way does not

contain the gaugino condensate �, in contrast to the pro-
posal of [14]. Our result is especially counterintuitive
because the effective 4D field theory certainly gains a
nonperturbative superpotential associated with gaugino
condensation. Furthermore, our result (65), when evaluated
in our AdS4 backgrounds, gives r�� � � �m
��
, which
-9
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is exactly the substitution we used in Eq. (15). In other
words, (66), when evaluated on the background fields,
gives exactly the value of the 4D superpotential we as-
sumed at the start. (Unfortunately, we cannot compare
directly to the 4D effective superpotential in terms of the
gauge coupling because the exact coefficients of the ap-
propriate terms are not known for that formula.) It would
therefore seem inconsistent to add a nonperturbative super-
potential. One possible resolution is that, in the ‘‘dictio-
nary’’ between the 10D supergravity and 4D effective
theory, H or dJ includes the nonperturbative part of the
superpotential; we will return to this question in our dis-
cussion of future directions.

V. NEARLY KÄHLER COMPACTIFICATION

We have found in Sec. III that generically X6 has non-
zero W1, W3, W4, and W5 and is of type G1. However, by
imposing certain conditions on the choice of fluxes and
condensates, we can easily turn off all the torsions but W1,
making the manifold nearly Kähler. Nearly Kähler com-
pactifications have been of recent interest in massive
type IIA supergravity [28,73],M theory [36], and heterotic
strings [48]. In this section, we will first list some proper-
ties of NK manifolds and relate them to our compactifica-
tions; in following subsections, we elaborate on our earlier
discussions in the special case of an NK compactification.

A. Nearly Kähler geometry

Nearly Kähler manifolds, in many ways the simplest
non-Kähler manifolds, have been studied by Gray [74–
76] and have many interesting mathematical properties.13

The defining property of NK 2n folds is weak SU�n�
holonomy, which appears in the SU�3� holonomy of the
torsional derivative. Among other curvature identities,
every NK manifold in six dimensions is Einstein and has
vanishing first Chern class [76]. In addition, the cone over
any six-dimensional NK manifold will have holonomy G2

[78–80].
Many examples of NK manifolds are known due to a

theorem by Gray [81] that 3-symmetric spaces14 have an
NK metric and ACS (or are products of such manifolds).
Furthermore, [81] showed that 3-symmetric spaces can be
identified in a natural way with cosets of connected Lie
groups and proceeded to classify such cosets. For example,
the simplest of a NK manifold is the sphere S6 ’
G2=SU�3�.

Another nice result in the mathematical literature is due
to Grunewald [82], regarding the Killing spinor. Any spin
manifold with a real Killing spinor, with respect to the
13For a more recent work which reviews the properties of NK
manifolds see [77].

14A 3-symmetric space has global isometries �p for each point
p, where p is the fixed point of �p. Each �3

p � 1 and is
holomorphic with respect to a canonically associated ACS.
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Levi-Cività connection, is NK, and, conversely, any NK
manifold has a real Killing spinor. In fact, following from
(69), the Killing number is jmj=2. This point is important
in ensuring that supersymmetry is truly preserved for an
NK compactification with the appropriate constraints on
the flux backgrounds (in other words, given an NK mani-
fold and the appropriate algebraic relations for the flux and
condensate, there does exist an appropriate supersymmetry
transformation parameter on the manifold). Additionally,
[67] has shown that manifolds with real Killing spinors are
compact.

Let us now remind the reader of the appearance of NK
manifolds in our supersymmetric backgrounds. In general,
the supersymmetric vacua described in Sec. III C are not
NK because W3, W4, and W5 are nonvanishing. However,
as mentioned in Sec. III D, we can set the primitive part
T0 � 0 (implying H0 � �0=2) to remove the W3 torsion.
Then choosing the nonprimitive J 5 T � 0, we find that X6

is conformally NK [meaning that W4 � �2=3�W5]. Finally,
requiring J 5 � � 0 also forces W4 � W5 � 0, so we have
a truly nearly Kähler manifold. In the following, we will
distinguish two cases: �0 � 0, which we will simply call
NK, and �0 � 0, which we will denote NK0. It is useful
also to simplify (for either case)

H � 1
2� �m��m ���; (67)

� � �2� �m��m ��� f��0 for NK0g; (68)

� � 1
2� �m��m ���: (69)
B. Gaugino condensation for NK

At the end of Sec. IV B, we asked if the background �
can be identified with the gaugino condensate of the effec-
tive field theory. Although we do not know the general
answer, we will show here that such an identification is
consistent in NK compactifications.

Since dA � d� � 0 in the NK case, the gaugino zero
mode Dirac equation (53) becomes the covariant Dirac
equation for the connection with torsion �� � T=3 �

� �m��m ���=2 with the specific form of T given by (67)
and (68). But the supersymmetry parameter � is constant
with respect to the SU�3� structure torsion (69), which is
the same. Therefore, the gaugino zero mode is �6 � �.
Then the uplifted 4D condensate (48) is just � �
�2

10=g
2
10�h�



4�4i�� h ��4�



4i

���, which is consistent with
the 10D decomposition for NK compactifications. In other
words, � can be generated completely by the condensate in
the effective 4D theory. However, in the NK0 case, the
additional background condensate �0 is not of the correct
form and must therefore be generated by some as yet
unknown quantum effect.
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C. Moduli fixing for NK

In the NK case, the moduli fixing is slightly different
from the general case described in Sec. IVA. Because
W3 � 0, it would seem that u is now unfixed. However,
we can use a scaling argument instead to fix the size of X6

in terms of the AdS4 scale m. For a dimensionless NK
manifold of unit radius, the almost complex structure J0

and SU�3� structure �0 are related by [83]

dJ0 �
3i
2
� ��0 ��0�; d�0 � 2J0 ^ J0: (70)

We have already computed the derivatives of J (40) and �
(43), which in the NK case reduce to

dJ �
3i
2
�m ��� �m��; d� � 2mJ ^ J: (71)

To compare the two formulas, we need to rescale the unit
radius NK manifold, first by giving it dimensionful coor-
dinates. Since our fiducial metric has volume �2��6�03, we
rescale the coordinates by x! 2�

�����
�0
p

=!1=6
6 , where !6 is

the volume of the unit NK manifold.15 Additionally, in
rescaling ~gmn ! gmn, we must rescale the ACS and 3-
form, so we eventually get

J �
4�2�0

!1=3
6

e2uJ0; � �
8�3�03=2

!1=2
6

e3u�i��0 (72)

(including a possible phase � for the 3-form).
Equations (70) and (71) match for

m �
!1=6

6

2�
�����
�0
p e�u�i�: (73)

So, for the NK solution, the AdS4 and compactification
scales are essentially the same (differing by a factor of
order unity). The criterion (49) for the validity of effective
field theory is therefore only satisfied in the NK case if

u &
1

2
ln2��

1

12
ln!6; (74)

which means the compactification is in the large radius
regime only if!6 is sufficiently small. For example, for the
case of S6, !6 is small enough that u & 1=2 is valid. The
direct relation between m and u also means that the NK
manifold has no radial modulus, properly speaking.
Because changing m changes the AdS4 boundary condi-
tions, u corresponds to a non-normalizable mode.

In the general case we found weakly coupled solutions
with large u and exponentially large AdS4 radius, but
unfortunately, that is no longer possible for NK compacti-
fications. Using (73) in (51), the equation for the dilaton
now becomes
15For example, for S6, !6 � 16�3=15.
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2u��e6u�2�; (75)

which, in the most optimistic case, gives u�0 and g2
YM &1.

Incidentally, [15,57] argued that the general superpoten-
tial ansatz (54) cannot be responsible for fixing complex
structure moduli unless there is �2; 1� � �1; 2� flux.
However, our NK background should have no massless
scalars. The resolution is that, due to the relation (71), there
are no variations of � independent of variations of J. That
is to say, NK manifolds have no ‘‘complex structure’’
moduli. In fact, [48] has already proposed that NK mani-
folds have no such moduli.

As we mentioned in the general analysis of moduli
fixing (Sec. IVA), the H flux Bianchi identity also con-
strains the moduli. Since the NK SU�3� structure is so
simple, we can solve the Bianchi identity, which we dis-
cuss in the following section.

D. Bianchi identity

We have yet to consider the restrictions imposed by the
Bianchi identity for H,

dH �
�0

4

�
TrR� ^ R� �

1

30
TrF ^ F

�
(76)

where R� is the Ricci two-form constructed using the
torsion �� � �H. Note that this is opposed to the curva-
ture R��� constructed with the torsion � associated with the
SU�3� structure given in Eq. (30).

An advantage of the NK case over our more general one
(or even NK0) is that the Bianchi identity becomes suffi-
ciently tractable that we can make explicit computations.
In particular, a significant simplification results from the
fact that, in the NK case, (67) and (69) imply �� �
��m ��� �m��=2 � ��.

In torsion-free CY3 compactifications, the Bianchi iden-
tity is typically simplified by imposing the standard em-
bedding of the spin connection into the gauge connection,
canceling to two terms on the right-hand side of (76) to
yield dH � 0 and breaking the gauge group from E8 ! E6

We could employ a similar tactic here, but since (67) and
(70) gives

dH � 2jmj2J ^ J; (77)

setting TrR� ^ R� �
1
30 TrF ^ F would mean m � 0, re-

quiring a CY3 compactification with no flux or condensate
and a Minkowski spacetime. Instead we will try to embed a
more general spin connection with torsion proportional to
� into the gauge connection.

We denote by R� the Riemann curvature constructed
using the torsion �� � �� � ��m ��� �m��=2. Using
identities (C1) and (C3), we can relate R�, of which R� �
R�1 is a special case, to R��� � R1, which for consistency
we will hereafter denote R�:
-11
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R�mnpq � R�mnpq � ��� 1�r�
�p�q
mn �

�� 1

2
�mnr�pq

r

�
��� 1�2

2
�rn�q�p
mr: (78)

Since � is an SU�3� invariant tensor, the covariant deriva-
tive vanishes. Simplifying the other terms using (B6) gives

R�mnpq � R�mnpq �
1

2
jmj2

�
�2 � 1

4
�J ^ J�mnpq

�
��� 1���� 3�

2
JmnJpq �

��� 1���� 3�

2

� �gmpgnq � gmqgnp�
�
: (79)

We can then plug (79) into TrR� ^ R�. With some ex-
tensive algebra, we obtain

TrR� ^ R� � TrR� ^ R� � 6��� 1�2jmj4J ^ J: (80)

In order to simplify cross terms in the expansion of the
trace, we use (29) and (C4) to deduce that

R�mnpqJ
pq � 0; R

��mn
sr�J ^ J�pq
rs � 4R��mnpq
:

(81)

From (79) with � � 0, we find R��mnpq
 � �
1
3 jmj

2�J ^
J�mnpq.

Setting � � �1 in (80) enables us to substitute TrR� ^
R� for TrR� ^ R� in the Bianchi identity (76). A natural
idea would now be to embed the SU�3� spin connection
with torsion � into the gauge connection. However, setting
1

30 TrF ^ F � TrR� ^ R� and employing (77) reduces
(76) to

2jmj2J ^ J � �24�0jmj4J ^ J; (82)

whose only solution is an unacceptable m � 0.
Instead, we use (80) again to write

TrR� ^ R� � TrR� ^ R� � 6��� 3���� 1�jmj4J ^ J:

(83)

We impose a nonstandard embedding with 1
30 TrF ^ F �

TrR� ^ R�. Any connection with torsion other than � has
holonomy SO�6� rather than SU�3�, so this embedding
breaks the gauge group E8 ! SO�10� or SO�32� !
SO�26�. The Bianchi identity (76) is now just a condition
on m,

�0jmj2 �
1

3��� 3���� 1�
; (84)

which has positive solutions for jmj when � <�1 or � >
3. To our knowledge, there seems to be no reason why � is
constrained (within the allowed region), but, once it and m
are chosen, changing � would be a non-normalizable mode
in AdS4 and therefore not a modulus. This is as we dis-
cussed in the previous subsection. In a sense, the AdS4
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radius determines the embedding of the spin connection
into the gauge connection.

Unfortunately, this embedding also breaks supersymme-
try16 because, in general, R�mnpqJpq � 0 (the only excep-
tion is R�). Therefore, in our embedding, F 5 J � 0, which
means that the gaugino variation does not vanish. There are
three reasons why we are not concerned with this violation
of supersymmetry. First, NK compactifications are neces-
sarily toy models since (75) implies that the 4D theory is
not weakly coupled. In addition, this supersymmetry
breaking is formally a subleading effect in m & 1.
Finally, it is not unreasonable to expect that a supersym-
metric solution to the Bianchi identity will generally re-
quire an expansion in �0 and the introduction of sources
such as NS5 branes.
VI. DISCUSSION OF OPEN QUESTIONS

In this section, we will discuss open questions about
supersymmetry and gaugino condensation in the heterotic
theory.

A. Superpotential

In Sec. IV C, we realized that the superpotential of the
4D effective theory is still not completely understood. We
can point out two related issues that, as yet, lack
explanations.

First, our supersymmetric AdS4 backgrounds are incom-
patible with a superpotential of the form

R
�T � idJ� ^�,

even though that form is suggested by the 10D supergravity
action [14]. In particular, we showed in (61) that such a
superpotential leads to the wrong value of the cosmological
constant. Additionally, reminding ourselves of CY3 com-
pactifications with gaugino condensates confirms that the
superpotential cannot depend on H and � only through T.
In those compactifications, at least to lowest order, the
vacua are no scale and Minkowski, as can be seen in the
effective theory. However, supersymmetry is broken by the
condensate, which implies that the superpotential cannot
vanish, W � 0. On the other hand, T � 0 in CY3 compac-
tifications. So, indeed, even though � enters the supergrav-
ity only through T, the effective superpotential has some
alternate dependence on �.

More disturbing, perhaps, is our discovery that � does
not seem to enter the superpotential at all, which we found
by computing the Einstein-frame gravitino supersymmetry
variation. Certainly, we know that the condensate generates
a nonperturabative superpotential in the effective field
theory. Perhaps this nonperturbative superpotential should
not appear in our semiclassical treatment of the back-
ground, even though we explicitly left � � 0. On the other
hand, adding any new contribution to the superpotential
-12
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would conflict with our initial choice of the AdS4 Killing
spinor.

What is the real story? One possibility is that the dictio-
nary from 10D variables to the 4D effective field theory is
nontrivial in the presence of gaugino condensates. In other
words, perhaps some of the H flux or torsion dJ contains
the nonperturbative part of the superpotential. One way this
idea could work out is that T is the fundamental flux
parameter, rather than H. In that case, the superpotential
would be written as W /

R
�T ��=2� idJ� ^�, explic-

itly displaying the nonperturbative component. However,
we think it more likely that the condensate affects the 10D
supergravity in some more subtle way. For example, the
gaugino kinetic term ��
MDM� should also acquire an
expectation value when the 4D gaugino condenses.
Specifically, making use of the decomposition (46) and
the gaugino zero mode Dirac equation (53), we can see that

h ���MDM�i �
1

24
Tmnp�h ��4�



4i�

y
6


mnp�
6

� h�
4�4i�
T
6


mnp�6�

�
1

4
T 5 � (85)

for zero-momentum gaugini in AdS4. Here, we assume that
the entire condensate is generated in the 4D effective
theory. Most likely, however, understanding all the effects
of the condensate in 10D will require understanding the
one-particle-irreducible (1PI) effective action of the
supergravity.

B. Equations of motion and Bianchi identity

In Sec. III we set the supersymmetry variations to zero in
order to find supersymmetric backgrounds. However, we
have not explicitly shown that these backgrounds are so-
lutions to the equations of motion; generally speaking, the
supersymmetry conditions do not imply all of the equa-
tions of motion. The independent equations of motion must
be imposed additionally to guarantee that the backgrounds
are indeed solutions. For example, the heterotic supersym-
metric background with constant dilaton presented in [14]
was shown in [65] not to satisfy the H and F equations of
motion. Similarly, in the context of massive IIA, [29]
argued that both the form field equations of motion and
Bianchi identity were additionally required for supersym-
metric vacua to be solutions.

In the case considered here, the gaugino condensate
makes the derivation of the equations of motion more
subtle. In particular, the expectation value of the gaugino
kinetic term should appear in the equations of motion.
Again, it seems likely that the appropriate 10D equations
of motion are given by the 1PI effective action of the
supergravity in the presence of a condensate.

In addition to the equations of motion, prospective so-
lutions must also satisfy the Bianchi identity. For the
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particular case of NK compactifications we were able to
make considerable progress by relying on a generalization
of the standard embedding. A similar calculation may be
possible for the less tractable general case. However, it
seems unlikely that the solution could be so simple. In
general, we will not be able to employ this approach, and
instead we may need to involve the gauge field in some
more complicated way. Perhaps a series of solutions in
powers of �0 is the best that we can expect, as in [40,62].

C. Topology change

One can approach flux vacua from two different direc-
tions. We have taken the view that one looks for self-
consistent combinations of compactification manifold,
fluxes, condensate, and AdS4 radius. The topological data
and choice of flux will be consistent with only discrete
values of continuous moduli, and not all discrete choices
will necessarily yield consistent backgrounds. In particu-
lar, CY3 compactifications with H flux are not supersym-
metric; different topological data, including non-Kählerity
(and noncomplexity if gaugino condensates are added), are
required. In this view, therefore, we do not describe the
fluxes as backreacting on a preexisting CY3 geometry.

However, one could instead choose to begin with a
particular flux-free CY3 compactification and then turn
on fluxes using appropriate branes as domain walls. This
is the context in which the backreaction of fluxes can be
made precise. In type II supergravity, [42] argued, in fact,
that NS5-brane domain walls in CY3 compactifications are
mirror symmetric to topology-changing domain walls (pre-
sumably wrapped Kaluza-Klein monopoles), which in fact
transform a CY3 into a half-flat manifold.

In our case, the reader might think that topology change
could occur via instantons, allowing the decay of non-
supersymmetric Minkowski vacua into our AdS4 vacua.
However, including gravitational effects, tunneling could
only occur if the Minkowski vacuum were lifted by loop or
string effects to de Sitter, and the end state would be a big
crunch universe rather than AdS4 [84]. Nonetheless, it
would be interesting to trace the connection between the
Minkowski and the AdS4 vacua.

D. Dualities

Another possible angle to explore is the existence of an
AdS4=CFT3 duality. Beyond the standard AdS/CFT dual-
ity with compact spheres (e.g. AdS5 � S5) [85], examples
of such dualities are known for cases where the compacti-
fication manifolds are more complicated, such as the mani-
fold T1;1 [86]. While one would expect the AdS4

compactifications studied here to have a 2�
1-dimensional CFT dual, we have few clues as to what
the dual theory would be. The ’t Hooft coupling is given by
the AdS4 scale to be 	� je�4iaSj, but we cannot say much
else. Some clue to the duality could be found by relating
our backgrounds to the near-horizon limit of some 2-brane
-13
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geometry and the IR limit of its world volume theory. For
an NK compactification, we could perhaps use the fact that
a cone with a NK base has holonomy G2, as suggested in
[28] in the type IIA context. Then our backgrounds would
be the near-horizon limit of a 2-brane at the tip of such aG2

cone. However, the heterotic string is lacking in 2-branes,
so such a picture would likely arise via some duality.

Similarly, an important goal to pursue is to relate the
many different types of flux compactifications in the vari-
ous different theories to each other, forming a single co-
herent picture. Besides relating to heterotic M-theory
solutions, heterotic flux vacua are U dual to much-studied
flux vacua in IIA [18,26–29], IIB [1,17,49,51,52], and
M theory [32,34–37]. Though in some examples these
dualities have been made explicit [40], the general con-
nections between all flux vacua have yet to be elucidated.
In addition to dualities, dynamical transitions among vacua
are possible. As noted above, certain vacua could be related
to others by domain walls or tunneling. A thorough under-
standing of these connections would be a basis for a
cartography of the landscape of flux vacua.

E. Future directions

In the analysis of Sec. III, rather than specifying the
gaugino condensate from the outset, we deliberately
worked with the most general case possible. We found
the usual condensate ���� c:c: consistent with the
NK compactification, but, in general, as seen from (20),
� also has �2; 1� and �1; 2� components. As discussed in
Sec. IV B, the usual condensation mechanism may gener-
ate these unusual components as a result of the non-Kähler
geometry. However, there may be other, as yet unknown,
mechanisms to generate such condensates, and we see no
reason to exclude them a priori.

Following this type of reasoning, one could further
generalize to consider the condensation of other, more
exotic fermion bilinears. Gravitinos and dilatinos, along
with other components of the gaugino, could conceivably
condense through some unknown quantum effect. One
could simply posit the existence of such a condensate
and investigate its effect on the supergravity solution.
However, we leave such explorations for future work. Of
course, it will be necessary to understand how the 10D 1PI
effective action is modified in the presence of general
condensates, just as we have noted above in the relatively
simpler case of gaugino condensation.

One could also investigate whether our AdS4 compacti-
fications can be lifted to dS4. Along the lines of [9], one
could add NS5 branes to break supersymmetry and in-
crease the vacuum energy. However, one would then
need to be sure to stabilize the NS5 moduli.

Further, the heterotic flux vacua discussed here should
lift to heterotic M theory in the strong coupling limit.
Heterotic M theory is attractive for phenomenological
model building, and flux compactifications of 11 dimen-
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sions with nonperturbative effects have been extensively
studied [87]. In addition to gaugino condensation on the E8

branes, open M5 brane instantons are needed to stabilize
the orbifold length. Furthermore, both AdS4 solutions [59]
and metastable dS4 vacua [60,61] have been constructed in
the context of heterotic M theory. In fact, our backgrounds
are the perturbative description of the AdS4 backgrounds in
[59], but including the backreaction of the condensate and
H flux.
VII. CONCLUSION

We have presented, from a primarily 10D perspective, a
class of supersymmetric heterotic AdS4 compactifications
with both H flux and gaugino condensation. The effects
combine to fix all the moduli and to yield a noncomplex
internal geometry. In the general case, we found super-
symmetric backgrounds at weak coupling and large inter-
nal volume with exponentially large AdS4 radius. We also
showed that proposed super- and Kähler potentials can
reproduce the correct 4D cosmological constant, although
there appear to be subtleties regarding the derivation of the
superpotential via dimensional reduction which are not yet
fully understood.

To elucidate the 10D geometry of the supersymmetric
AdS4 backgrounds, we used theG-structure formalism that
has been used extensively for flux vacua. To our knowl-
edge, this is its first application in the context of gaugino
condensation. The form of the condensate was left inten-
tionally general, so as to include the possibility of being
generated by nonstandard, possibly 10D, effects.
Furthermore, because we were not compactifying on a
CY3, a condensate resulting from the standard 4D mecha-
nism does not necessarily take the standard form in any
event.

For a particular choice of flux and condensate all the
torsion classes but one vanished, and we found the internal
manifold to be nearly Kähler, which greatly simplified the
analysis. Here the condensate took its usual form, the
internal and AdS4 sizes were roughly equal, and we solved
the Bianchi identity with a nonstandard embedding to give
an explicit value for m.

Despite the progress made here, important issues re-
main, such as verifying the equations of motion and solv-
ing the Bianchi identity in the general case. The generation
and effects of exotic gaugino or other fermion condensates
pose interesting questions. More broadly, we have yet to
really explore the connections, via dualities or domain
walls, of the compactifications presented here to all the
other extant flux vacua.
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[91] appeared, which also discusses heterotic compactifi-
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work from a more ten-dimensional point of view.
APPENDIX A: FORM AND SPINOR
CONVENTIONS

For our index conventions, we take upper case Latin for
the full ten dimensions, lower case Greek for the four
Poincaré invariant dimensions, and lower case Latin for
the internal dimensions. Hats denote tangent space indices.
We work in a signature in which timelike norms are
negative.

Our differential form conventions are as follows:

�012����d�1� � �
�������
�g
p

for d dimensions;

T�M1���Mp

�

1

p!
�TM1���Mp

� permutations�;

�?T�M1���Md�p
�

1

p!
�M1���Md�p

N1���NpTN1���Np
;

T �
1

p!
TM1���Mp

dxM1 � � � dxMp:

(A1)

Wedges and exterior derivatives are defined consistently
with those conventions. We also use the notation

�R 5 S�N1���Nq �
1

p!
RM1���MpSM1���MPN1���Nq ; (A2)

which is common in the G structure literature.
Gamma matrices in tangent space have the algebra

f�M̂;�N̂g � 2�M̂ N̂ . With these conventions, a Majorana
basis is real and symmetric for spacelike indices and anti-
symmetric for time. Gammas can be converted to coordi-
nate indices with the vielbein. We define
�M1���Mp � ��M1 � � ��Mp
. The chirality is given by

�
�b10�
� �0̂ � � ��9̂ �

1

10!
�M1���M10

�M1���M10 : (A3)

We can decompose the � matrices as

�� � 
� 	 1; �m � 
�4̂� 	 

m (A4)

with 4D and 6D chirality 
�4̂� � �i

0̂ � � �
3̂, 
�6̂� �

i
4̂ � � �
9̂. The 
� have the same symmetry and reality
properties as �M, while the 
m are imaginary and
antisymmetric.
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APPENDIX B: GAMMA MATRIX AND SU�3�
STRUCTURE IDENTITIES

A comprehensive list of (anti)commutators appears in
[88], although there is at least one typographical error. It is
necessary to replace

�
mnp; 
rst
 � 2
mnprst � 36
�rs
�mn
p


t
: (B1)

Contractions of gamma matrices are given by


a
m1���m2k

a � �d� 4k�
m1���m2k

; (B2)


a
m1���m2k�1

a � �4k� d� 2�
m1���m2k�1

: (B3)

Other useful identities are


mnp �
i
6

�6̂�


qrs�mnpqrs; 
mnpq �
i
2

�6̂�


rs�mnpqrs;

(B4)

�y
mnpqrs� � �i�mnpqrs (B5)

for positive chirality �. Using (B4), we can see that � as
defined in (13) is self-dual, ?� � i�. Self-duality implies

�mnp�mnp � 0; ��mnp�mnp � 48 (B6)

(when combined with the relation ?� � 1 for the associ-
ated volume form).

The Fierz identities that we use come from expanding in
terms of the complete set of 
 matrices. Specifically, we
find

��y �
1

8
�

i
16
Jmn
mn �

i
16
Jmn
mn
�6̂� �

1

8

�6̂�; (B7)

��T � �
1

48
�mnp


mnp (B8)

for the normalized positive chirality spinor � used in the
text. This identity can be used to show that JmnJnp � �


p
m

and also that

�J ^ J�mnpq � 6J�mnJpq
 � �mnpq
rsJrs � 2�?J�mnpq:

(B9)

Other helpful identities which follow from self-duality of
� and the Fierz identities are

�mnr ��pqr � 4
mn
�pq
 � 4Jm

�pJ
n
q
 � 8i
�m

�p Jq

n
;

�mnr�pqr � 0:
(B10)

The first of (B10) is also given in [52].
We can also decompose any tensor with respect to the

SU�3� structure. We write a real 3-form R and complex 4-
form S as

R �
3i
2

Im� �R1�� � R3 � J ^ R4;

S � S1J ^ J� J ^ S2 �� ^ S5:
(B11)
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We have labeled the components in a fashion consistent
with the torsion modulesWi in Eqs. (31) and (32). Then we
can invert (B11) to get

R1 � �
i
6

� 5 R; R4;p �
1

2
�J 5 R�p;

S1 �
1

12
�J ^ J� 5 S; S5;p �

1

24
� �� 5 S�p

(B12)

as in [27,65,69]. R3 and S2 are primitive in the sense that
J 5 R3 � 0 and J 5 S2 � 0.
APPENDIX C: CONTORSION AND INTRINSIC
TORSION

Here we present a brief review of various definitions and
identities involving torsions. These formulas and conven-
tions can be found, for example, in [89,90].

The difference between a torsional connection �� and the
torsion-free Levi-Cività connection � is the contorsion
tensor

�� m
np � �mnp � �mnp; �mnp � ��pnm; (C1)

where the antisymmetry follows from metric compatibility.
Then, because the vielbein must be covariantly constant
with respect both to the torsionful and torsionless deriva-
tives �r;r, the spin connection is shifted by

�!m
â
b̂
�!m

â
b̂
� �pmne

â
pe

n
b̂

� ��mâb̂ �for � totally antisymmetric�:

(C2)

The Riemann tensor is still given by the usual formulas

�Rm
npq � 2@�p ��mq
n � 2 ��m�pjrj

��rq
n;

�Râ
b̂
� d �!â

b̂
� �!â

ĉ ^ �!ĉ
b̂
:

(C3)

The (intrinsic) torsion � is defined by �r�n �rp
f �
��1=2��mnp �rmf for a scalar f and is related to the con-
torsion by 2�m

�np
 � �mnp. The torsion � is totally antisym-
metric and modifies the usual relations

� �rm; �rn
vp � �Rpqmnvq � �qmn �rqvp;

� �rm; �rn
 �
1
4

�Rmnpq
pq 
(C4)

for vectors and spinors. Also, the torsion gives a topologi-
cal obstruction to finding special holonomy with the Levi-
Cività connection, as reviewed in Sec. III C.
17The real parts of S and T are axions related to B�� and Bmn,
respectively.
APPENDIX D: SUPERGRAVITY POTENTIAL
NORMALIZATIONS

Here we will describe the normalization of the 4D N �
1 supergravity variables in the effective field theory de-
scription. We roughly follow [17]. After dimensional re-
duction on the metric gmn � e2u~gmn, we find a 4D string
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(or Jordan) frame action

S �
~V6

�2��7�04
Z
d4x

�������
�g
p

e6u�2�R�g� � � � � ; (D1)

where ~gmn has volume ~V6, and we have used the correct
string theory value for the 10D gravitational coupling.
Rescaling to the Einstein frame g�� � e2��6ugE;��, we
find

S �
Z
d4x

����������
�gE
p

�m2
p

2
R�gE� � V � � � �

�
;

m2
p

2
�

~V6

�2��7�04
:

(D2)

We have now included the N � 1 supergravity potential,
written in terms of the superpotential and Kähler potential
as

V �
1

m2
p
eK�Ki�|DiWD�|

�W � 3jWj2�; (D3)

where we can write �E � �V=m2
p for the absolute

Einstein-frame cosmological constant in an AdS4 vacuum.
Note that this sets our conventions for the cosmological
constant, as well. Henceforth, we will take ~V6 �

�2�
�����
�0
p
�6, as in the text, though the normalization can be

generalized. In this Appendix, we are approximating the
warp factor as trivial and the dilaton as constant over X6.

We take the heterotic superpotential of [14,45,46] (gen-
eralizing that of [21]) to be normalized as

W �
m3
p�������

4�
p

1

�2�
�����
�0
p
�5

Z
�H � ibdJ� c�� ^ ~�: (D4)

The factors of 2�
�����
�0
p

remove the dimensionality of the
integral, so that only the 4D Planck scale enters the super-
potential as a dimensional factor. The relative normaliza-
tions b; c of the torsion and condensate terms are addressed
in Sec. IV C. As discussed in Sec. IV C, we use the Kähler
potential

K � �3 ln��i�T � �T�� � ln��i�S� �S��

� ln
�

i

�2�
�����
�0
p
�6

Z
~� ^ �~�

�
� 
K; (D5)

where we have included a constant 
K in order to fix the
potential given a normalization of W. In terms of the 10D
variables, the 4D moduli are ImT � e2u, ImS � e6u�2� for
the heterotic theory.17 We are ignoring warping and also
variation of the dilaton in the compact space.

So to fix 
K, we consider the tension of a BPS domain
wall, which is given by the jump in superpotential over the
wall, T � 2eK=2j�Wj. If we take a CY3 compactification,
an NS5 brane on a SLAG 3-cycle c is a BPS domain wall.
Crossing the domain wall, the flux jumps one unit on the
dual cycle,

R
~c �H � 4�2�0 according to the Dirac quan-
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tization condition. Since c is calibrated, we find

j�Wj �
m3
p�������

4�
p

~Vc
�2�

�����
�0
p
�3
; (D6)

where ~Vc is the volume of c with respect to ~gmn. The
domain wall tension is then
126001
T �
~Vc���
8
p

1

�2��5�03
e��6ue
K=2: (D7)
Comparing to the Einstein-frame action of an NS5 brane
wrapping c, we find 
K � 3 ln2.
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