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Majorana fermions and CP violation from 5-dimensional theories: A systematic approach
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Within five-dimensional compactified theories we discuss generalized periodicity and orbifold bound-
ary conditions that allow for mixing between particles and antiparticles after a shift by the size of extra
dimensions or after the orbifold reflection. A systematic strategy for constructing 4-dimensional models is
presented, in particular, we find a general form of the periodicity and orbifold conditions that are allowed
by consistency requirements. We formulate general conditions for a presence of massless Kaluza-Klein
modes and discuss remaining gauge symmetry of the zero-mode sector. It is shown that if the orbifold
twist operation transforms particles into antiparticles then the zero-mode fermions are 4-dimensional
Majorana fermions. The possibility of explicit and spontaneous CP violation is discussed. General
considerations are illustrated by many Abelian and non-Abelian examples.
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I. INTRODUCTION

In the standard model (SM), the Higgs mechanism is
responsible for generation of fermion and vector-boson
masses. This mechanism, though it leads to renormalizable
and unitary theories, has severe naturality problems asso-
ciated with the so-called ‘‘hierarchy problem’’ [1]. The
tree-level version of this problem reduces to the fact that
a possible (and in the context of grand unified theories even
necessary) huge ratio of mass scales is adopted without any
explanation (aside from a desire to make these models
phenomenologically viable). Radiative corrections usually
exacerbate this problem as the quadratic corrections to the
scalar masses tend to destabilize the original ratio, which
requires order-by-order fine tuning of the parameters.

Extra dimensional extensions of the SM offer a novel
approach to the gauge symmetry breaking in which the
hierarchy problem could be either solved or at least refor-
mulated in terms of geometry of the higher-dimensional
space. Among various attempts in this direction it is worth
mentioning the following:
(i) T
he spontaneous breaking of gauge symmetries by
imposing nontrivial boundary conditions along the
extra (compactified) dimensions; the so-called
Scherk-Schwarz (SS) mechanism [2].
(ii) S
ymmetry breaking through a nonzero vacuum
expectation value of extra components of the
higher-dimensional gauge fields; the Hosotani
mechanism [3].1
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(iii) G
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auge symmetry braking by asymmetric boundary
conditions (BC) in models of extra dimensions
compactified on an interval [5].
It is worth noting that even though 5D gauge theories are
nonrenormalizable, nevertheless, as is has been recently
verified [6], the effective 4-dimensional (4D) theories are
tree-level unitary.

In a recent publication [7] we have shown that 5D
quantum electrodynamics compactified on a circle violates
CP either explicitly through a nonsymmetric BC or, what
is theoretically much more appealing, spontaneously
through a nonzero one-loop vacuum expectation value
for the zero Kaluza-Klein (KK) mode of the extra compo-
nent of the U(1) gauge field. The implementation of this
idea in a realistic model of CP violation (CPV) based on a
5D theory requires that the theory produce the correct
chiral and flavor structures in the light sector. We consider
this latter issue in this paper.

In order to produce a chiral effective 4D theory we will
follow a standard approach and consider a 5-dimensional
gauge theory compactified on the S1=Z2 orbifold. We will,
however, modify and generalize the usual treatment by
allowing nonstandard twist operations. Specifically (y de-
notes the coordinate of S1=Z2 and L the radius of S1) under
the translation y! y� L, or under orbifold Z2 reflection
y! �y we will allow mixing between particles and their
charge-conjugated counterparts. Such mixing offers a par-
ticularly useful way to construct models that generate
spontaneous CPV in the same spirit as in [7]; theories of
this type are characterized by a nonstandard orbifold parity
for the fifth component of the gauge field, as only then the
corresponding zero mode survives, and it is the vacuum
expectation value of this zero mode that is responsible for
CPV. In this case, however the corresponding 4D compo-
© 2005 The American Physical Society
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nents do not have a zero mode, and this corresponds to a
reduction of the light-sector gauge group. We show below
that this situation is indeed realized when nontrivial orbi-
fold boundary conditions are chosen.

Allowing the boundary conditions to mix particles and
antiparticles often reduces by one half the fermionic de-
grees of freedom and the surviving KK modes (including
zero modes) behave as 4D Majorana fermions. Such a
mechanism will be described below and will be of use
when constructing models for neutrino physics within the
context of higher-dimensional theories

The paper is organized as follows. In Sec. II we fix our
notation and we consider the basic properties of the 5D
theory including gauge symmetry and discrete symmetries.
Section V contains discussion of zero-mode sector with
general conditions which must be satisfied for the existence
of zero modes. In Sec. III we illustrate the general discus-
sion within Abelian theories containing one or two fermi-
onic fields. Section IV shows non-Abelian examples of
models with the generalized BC. Summary and conclu-
sions are presented in Sec. VI. The appendix contains a
detailed discussion of the single Abelian fermion and of the
possibility for the spontaneous CPV.
II. GENERAL CONSIDERATIONS

A. The Lagrangian

We will consider a general 5-dimensional (5D) gauge
theory with the gauge fields AM coupled to a fermionic
multiplet �. The corresponding Lagrangian takes the form

L � �
1

4

X
a

1

g2
a
FaMNF

aMN � ���i�NDN �M��; (1)

where DN � @N � ig5AN , AN � AaNT
a. We assume a gen-

eral gauge group (not necessarily simple), where the gauge
couplings are all expressed in units of g5 (which proves
convenient since these couplings are not dimensionless)
and are absorbed in the definition of the gauge fields; the
group generators Ta are assumed to be Hermitian. All
fermions are collected in the multiplet � that is in general
reducible, and may contain several submultiplets trans-
forming according to the same gauge-group irreducible
representation2. We will allow all fields to propagate
throughout the 5D manifold.

We assume that the global topology of the 5-dimensional
space-time is M4 � �S1=Z2�. We denote by x�;� �
0; . . . ; 4 the M4 coordinates (with x0 the only timelike
2We could, in principle, consider a nonstandard kinetic term,
� Z�N@N , with Z a Hermitian matrix. However, if we restrict

ourselves to nontachyonic theories, then the eigenvalues of Z
must be positive, so in the diagonal basis we have Z � K2, where
K is a real diagonal matrix. The rescaling  ! K�1 would
bring the kinetic term to its standard canonical form adopted in
(1).
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direction); and by y that of S1=Z2, with 0 � y � L and y
identified with �y. The metric is assumed to be flat, with
convention gNM � diag�1;�1;�1;�1;�1� with the last
entry associated with S1=Z2.

Given this space-time structure the fields can have non-
trivial boundary conditions (BC) in the y coordinate, both
under translations y! y� L and inversions y! �y. We
will consider the most general boundary conditions al-
lowed by the gauge and Lorentz (in M4) symmetries,
which may involve both the fields and their charge con-
jugates. Such mixed BC can violate some of the global
symmetries, and the conditions under which this occurs
and its consequences will be investigated below. It is worth
emphasizing that the theory is defined by (1) together with
the imposed BC, all of which we assume fixed.

In order to simplify our notation we will often suppress
the dependence of fields on x, and write e.g. ��y� or AM�y�
instead of ��x; y� and AM�x; y�, respectively; it should be
understood that whenever a field depends on y it is also a
function of x.

B. Periodicity

As mentioned above we will discuss generalized peri-
odicity conditions that allow mixing between particles and
antiparticles:

�L=R�y� L� � �L=R�L=R�y� ���L=R�c
L=R�y�;

AN�y� L� �
�
�Uy1AN�y�U1 �P1�;

�Uy2A
T
N�y�U2 �P2�;

(2)

where �c denotes the charged-conjugate field C5� � �T with
C5 the 5D charge conjugation operator defined by the
relation ��0C

y
5�0�NC5 � �TN ,3 U1;2 are global elements of

the gauge group while the matrices � and � are matrices
constrained by requiring invariance of L under the so-
called twist operation defined by the right-hand side of
(2). In particular, it is easy to see that the invariance of the
fermionic kinetic term ��i�N@N� requires �L � �R � �
and �L � �R � �. Therefore we will consider only the
nonchiral BC ��y� L� � ���y� ����c�y�. Note that
the matrices � and � in general affect both flavor and
gauge indices.

The motivation for considering the option P2 is to allow
for the presence of the charge-conjugate gauge fields in the
BC in parallel with our choice of fermionic boundary
conditions, which also involve charge-conjugate fields. It
3Whenever an explicit representation is needed for the Dirac
matrices we will adopt the Dirac representation. In this case
C5 � �1�3. The 5D parity, which will be relevant later, is
defined by �! P� with P � �0�4. We also choose i�4 �
��5 � i�0�1�2�3. Note that in 5D, the parity reflection is
defined [8] such that one spatial component is preserved: x0;4 !
x0;4 and xi ! �xi, for i � 1; 2; 3.
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should be emphasized that a linear combination of P1 and
P2 is not allowed since it does not leave the gauge-kinetic
term invariant.4

In describing the constraints imposed by the invariance
of L under (2) it proves convenient to introduce the fol-
lowing notation:

� 	
�

�c

�

�
; A 	

�
� ���

� ��

�
;

�a 	
�Ta 0

0 �T�a

�
; U1 	

�U1 0

0 U�1

�
;

U2 	

�
0 U�2
U2 0

�
;

(3)

in terms of which the fermionic periodicity conditions are
simply

��y� L� �A���y�: (4)

Requiring invariance of the kinetic term ��i�NDN� gives
the following conditions on the acceptable BC:

A yA � 1; P1: 
�a;U1A� � 0;
P2: 
�a;U2A� � 0: (5)

Decomposing � into a set of gauge multiplets f rg each
transforming as an irreducible representation of the gauge
group, we find that A can mix  r with  s (via �) or with
 cu (via �) provided  s and  cu belong to the same irre-
ducible representation as  r. We will discuss this in detail
in Sec. II F.

The conditions for the mass term to be invariant under
the twist operation can be derived in the same way, we find


A;M� � 0; M 	

�
M 0
0 �M�

�
: (6)

We note that it is possible to choose a basis where the
fermion fields are simply periodic: writing A� � eiK, the
fields (see also [9]):

�0�y� � e�iKy=L� (7)

satisfy �0�y� L� � �0�y�. Such a transformation, how-
ever, generates a nonstandard y and A-dependent mass
term. We do not use the above field redefinition because of
this complication.

C. Orbifold reflections

In a similar way we adopt the most general twist trans-
formation for the orbifold reflection y! �y. The BC read
4For Abelian groups there appears to be an additional sign
freedom since the gauge-kinetic term is even in A. One can
verify, however, that this is in fact covered by either P1 or P2.
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���y� � �5B
���y�

AN��y� �
�
��1�sN ~Uy1AN�y� ~U1 �R1�;

��1�1�sN ~Uy2A
T
N�y� ~U2 �R2�;

(8)

where sN � �N;4, ~U1;2 are global gauge transformations
and

B 	

�
�~� ~��

~� ~��

�
: (9)

Requiring now the invariance of L under (8) implies

B yB � 1; R1: 
�a; ~U1B� � 0;
R2: 
�a; ~U2B� � 0;

(10)

where

~U 1 	

�
~U1 0
0 ~U�1

�
; ~U2 	

�
0 ~U�2
~U2 0

�
: (11)

The mass term is invariant under the orbifold twist (8)
provided

fB;Mg � 0: (12)
D. Consistency conditions

The periodicity and reflection transformations are not
independent since�y � 
��y� L�� � L and���y� � y.
These imply, respectively,

B �ABA; (13)

B 2 � 1; (14)

for the fermions. For the Pi� Rj BC (i; j � 1; 2) the
corresponding constraints on the gauge bosons give (no
sum over i and j)


�a;
~V jV i

~V jV
y
i � � 0; (15)


�a;
~V

2
i � � 0; (16)

where V 1 �U1;
~V 1 �

~U1 and V 2 �U�
2;

~V 2 �
~U�

2.

These conditions imply that ~V jV i
~V jV

y
i and ~V

2
i

belong to the center of the group. If the representation
generated by f�ag is split into its irreducible components,
the projection of these matrices onto each irreducible sub-
space must be proportional to the unit matrix as a conse-
quence of the Schur’s lemma. We now examine this and
other similar restrictions imposed by the local symmetry.
-3
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E. Gauge invariance

Under a gauge transformation � the fields transform as

AN ! A0N �
1

ig5
�DN�y and

�! �0 �
�

�� 0
0 �

�
� 	 O��:

(17)

For the theory to be gauge invariant the gauge-transformed
fields should satisfy the same boundary conditions5 (2) and
(8):

�0�y� L� �A��0�y�;

�0��y� � �5B
��0�y�;

(18)

A0N�y� L� �
�
�Uy1A

0
N�y�U1 �P1�;

�Uy2A
0T
N �y�U2 �P2�;

A0N��y� �
�
��1�sN ~Uy1A

0
N�y� ~U1 �R1�;

��1�1�sN ~Uy2A
T
N�y� ~U2 �R2�:

(19)

We consider first the constraints implied by imposing P1.
Using the transformation properties of � we find that this
choice of BC respects gauge invariance provided

O �y� L� �AO�y�Ay �P1�: (20)

Similarly, the transformation properties of the gauge fields
require

��DN�y�y�L � �U
y
1 �DN�yU1�y; (21)

which leads to

��@N�y�y�L � �U
y
1 ��@N�y�U1�y;


Ta;�y�y�U1��y� L�Uy1 � � 0;
(22)

where we used (2) to express AN�y� L� in terms of AN�y�.
In terms of O these constraints become

�O@NO
y�y�L � �U

y
1O�@NO

y�U1�y;


�a;O
y�y�U1O�y� L�U

y
1 � � 0:

(23)

Using then (20) we find


O@NOy;U1A� � 0; 
�a;OyU1AOAyUy
1 � � 0;

(24)

where O is evaluated at y.
For connected gauge groups one can always write

O�y� � exp�i!a�y��a�; in this case the first equation in
(24) is satisfied once (5) is imposed. The second equation
in (24) is also satisfied since by (5) U1A commutes with
5Note that the gauge invariance defined as a gauge trans-
formation preserving the Lagrangian and the BC corresponds
to ‘‘the residual gauge invariance’’ in the language used by
Hosotani in the fourth paper of Ref. [3].
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all the O. So, the bosonic BC are gauge invariant as a
consequence of the symmetry of the Lagrangian under the
twist operation (2) and of the gauge symmetry of the
fermionic BC (18).

Similar arguments for the other three types of boundary
conditions show that for any choice Pi� Rj the theory
retains its local symmetry provided (5) and (10) are valid
and if the gauge transformations are restricted by the
conditions

O �y� L� �AO�y�Ay and O��y� � BO�y�By:

(25)

For non-Abelian groups it is not too difficult (at least for
infinitesimal transformations) to show that the converse,
i.e. that the gauge invariance of the bosonic BC (19)
implies that the invariance of the fermionic ones (18)
[which is equivalent to (25)] also holds, provided (5) and
(10) are satisfied. In other words, the bosonic BC are gauge
invariant if and only if the fermionic BC are gauge invari-
ant, provided the theory is symmetric under the twist
operations (5) and (10). For Abelian groups a similar
calculation leaves a phase ambiguity.

When the fields are expanded in Fourier series, condi-
tions (5) and (10) often forbid the presence of zero modes
for some of AaN . The absence of certain gauge-boson zero
modes is directly related to constraints which must be
satisfied by the gauge functions !a�y� to obey (25).

For instance, as a prelude to the discussion of various
Abelian examples in Sec. III A, it is worth listing here for a
U�1� gauge theory the forbidden gauge-boson modes to-
gether with the restrictions on the allowed gauge trans-
formation that follow from (25):
(i) P
-4
1=P2: The gauge invariance of BC requires peri-
odicity (P1) or antiperiodicity (P2); ��y� L� �
���y� [��y� is the U(1) gauge function: AM !
AM � @M�]. Note that for P2 the antiperiodicity
of A��y� eliminates a massless photon for this
choice of BC.
(ii) R
1=R2: Here for the invariance of the BC one needs
���y� � ���y�. In particular a massless gauge-
boson mode is not allowed by the odd boundary
condition R2.
Note that y-independent gauge transformations are not
allowed for P2 or R2 due, respectively, to the antiperio-
dicity or asymmetry of ��y�; in these cases the gauge
symmetry of the zero-mode sector (i.e. KK modes of
y-independent 5D fields) is broken completely. This will
be discussed in detail in Sec. V B.

Though the BC may reduce the gauge symmetry within
the zero-mode sector, the whole theory remains 5D gauge
invariant. It is not difficult to show that, at least for
infinitesimal gauge transformations, there exists a basis
(in general different basis must be adopted for the period-
icity and the orbifold conditions) such that (25) reduces to
!a�y� L� � �!a�y� and !a��y� � �!a�y� (signs are
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uncorrelated). Therefore, choosing appropriate values for
!�0� and!��L=2� it is always possible to find all nonzero,
continuous and differentiable !a�y� such that (25) is sat-
isfied. The initial symmetry group remains unchanged
since all !a�y� are nonzero, though their functional form
is constrained by the above periodicity and reflection con-
ditions. For a similar discussion see also [10].

For example, consider an SU(2) theory with a single
doublet and (P1� R1) BC. Taking � � U1 � i�3, ~� �
�i ~U1 � �1 and � � ~� � 0 (so A;B � 1) the condi-
tions, (25), on the gauge transformation functions � �
exp�i�a!a� imply

!1�y� � �!1�y� L� � �!1��y�;

!2�y� � �!2�y� L� �!2��y�;

!3�y� � �!3�y� L� � �!3��y�:

(26)

Therefore the theory (including the BC) will have a local
SU(2) symmetry provided the !a�y� satisfy the above
constraints. If we had chosen instead � � U1 � ~� �
~U1 � 1, � � ~� � 0 (A � B � 1) then the BC are
gauge invariant provided !a�y� � !a�y� L� � !a��y�
�a � 1; 2; 3�; since the !a are all nonzero, this is again a
local SU(2) theory, but not with the same local group as in
the first case, in fact, the only common element is � � 1.
This also illustrates another interesting fact, namely, that
nontrivial choices of A and B, i.e. A � 1 and B � 1, do
not reduce the 5D local symmetry group (as we have just
argued the group remains the same), but it may simply
change it as we have observed in the above example.

Let us briefly discuss the gauge symmetry of the zero-
mode sector in the above example (26). For y-independent
transformations the periodicity condition P1 requires
!1;2 � 0, while R1 requires !3 � 0. In this case the gauge
group of the light sector is completely broken.

The above scheme of gauge symmetry breaking in the
zero-mode sector by BC (the Scherk-Schwarz mechanism)
could be also viewed from the following perspective. The
5D gauge symmetry is associated with a set of uncon-
strained gauge functions !a�y�. Imposing BC restricts
the set of allowed !a�y�’s, for instance requiring them to
be antiperiodic and even. Therefore the symmetry is ‘‘re-
duced’’ by which we mean that none of the generators is
broken (none of the !a is required to vanish identically by
the BC) and yet the zero-mode sector has only a subgroup
of the original group. For instance, in a U�1� gauge model
with R2, A��y� has no zero mode.

F. General solutions for the allowed boundary
conditions

The conditions (5) and (10) significantly constrain the
form of A and B. To derive the general structure of these
matrices we decompose � in terms of multiplets  r being
each in an irreducible representation r of the gauge group.
125012
As a preliminary result we first show that when r is com-
plex we can assume without loss of generality that  
contains no multiplet transforming according to the
complex-conjugate irreducible representation �r.

To see this first note that given the structure of the
Lagrangian we can assume that the mass matrix is diago-
nal, and we will denote by mr the eigenvalue associated
with  r. Then if the theory does originally contains a
fermion multiplet  �r transforming according to the irre-
ducible representation �r, the terms in L where this field
appears are

L �r � � �r
i�
N�@N � ig5Ta �rAaN� �m�r� �r; (27)

where the T� �r�a generate the corresponding representation. It
is then possible to define a field  0r � � �r�

c (that trans-
forms according to the complex-conjugate irreducible rep-
resentation r) in terms of which

L �r � � 0r
i�
N�@N � ig5TarA

a
N� �m

0
r� 

0
r; (28)

where m0r � �m�r and T�r�a � ��T
� �r�
a ��. Since we can re-

place each  �r by its corresponding  0r, we can assume that
� contains no multiplets in the complex-conjugate irre-
ducible representation �r.

This way of eliminating conjugate representations does
not lead to any simplifications for real or pseudoreal rep-
resentations ru since the corresponding generators satisfy

T� �ru�a � 
�T�ru�a �� � SuT
�ru�
a Syu ; (29)

for some unitary matrix Su that is (anti)symmetric for
(pseudo)real representations.

The above arguments imply that we can choose fields
such that

Ta � diag�   ;1n‘ � T
�r‘�
a ;    ;1nu � T

�ru�
a ;   �; (30)

where we assume the theory contains n‘ flavors in the
complex irreducible representation r‘ and nu flavors in
the (pseudo)real irreducible representation ru. In this ex-
pression as in the rest of the paper a matrix of the form F �
G is understood as having F (G) act on the flavor (gauge)
indices, and 1n denotes the n� n unit matrix.

Letting d‘;u be the dimension of r‘;u we define

F � diag�   ;1n‘ � 1d‘ ;    ;1nu � 1du ;    ;    ;1n‘
� 1d‘ ;    ;1nu � Su;   �; (31)

so that �a � F�0aF
y, where

�0a � diag�   ;1n‘ � T
�r‘�
a ;    ;1nu � T

�ru�
a ;    ;    ;1n‘

� T��r‘�a ;    ;1 � Taru;   �: (32)

Adopting the Schur’s lemma and the grand orthogonal-
ity theorem [used to eliminate the possibility that the T�r�a
might be linearly dependent] the twist-invariance condi-
tions 
�0a; FyUiAF� � 0, 
�0a; Fy ~UiBF� � 0, imply that
-5



6For a noncomplex representation (dropping the u subscript)
and taking a basis where Ci are the Cartan generators and E� the
root generators, the conjugate representation is generated by
C0i � SCiSy � �Ci; E0� � SE�Sy � �E�� from which it fol-
lows that S2 commutes with all the generators and so S2 � �1
for some complex number �, j�j � 1. Redefining S! S=

����
�
p

shows we can take S2 � 1.
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FyUiAF and Fy ~UiBF have no entries connecting two
inequivalent representations, and that entries connecting
equivalent representations will be diagonal in the gauge
indices. Explicitly we obtain

FyUiAF�

X‘�1d‘ 0 0 0
0 Xu�1du 0 Y0u�1du
0 0 X0‘�1d‘ 0
0 Yu�1du 0 X0u�1du

0
BBB@

1
CCCA;

Fy ~UiBF�

~X‘�1d‘ 0 0 0
0 ~Xu�1du 0 ~Y0u�1du
0 0 ~X0‘�1d‘ 0
0 ~Yu�1du 0 ~X0u�1du

0
BBB@

1
CCCA:

(33)

If Ui � expfiuiaTag, we denote by Ui;‘ � expfiuiaTar‘g,
i � 1; 2 and similarly for Ui;u, ~Ui;‘ and ~Ui;u. Then, using
the unitarity of Ui and F we find

P1 : � � diag�   ; X1;‘ �U
y
1;‘;    ; X1;u �U

y
1;u;   �;

� � diag�   ; 0;    ; Y1;u �U
T
1;uSu;   �;

P2 : � � diag�   ; 0;    ; Y2;u �U
y
2;uSu;   �;

� � diag�   ; X2;‘ �UT
2;‘;    ; X2;u �UT

2;u;   �;

R1 : ~� � �diag�   ; ~X1;‘ � ~Uy1;‘;    ; ~X1;u � ~Uy1;u;   �;

~� � diag�   ; 0;    ; ~Y1;u � ~UT
1;uSu;   �;

R2 : ~� � �diag�   ; 0;    ; ~Y2;u � ~Uy2;uSu;   �;

~� � diag�   ; ~X2;‘ � ~UT
2;‘;    ; ~X2;u � ~UT

2;u;   �:

(34)

The specific form of A and B in (3) and (9) allows
X0u; Y

0
u; ~X0u; ~Y0u to be written in terms of Xu; Yu; ~Xu; ~Yu, but

these relations will not be displayed as they are not needed.
The unitarity of A and B implies

Xyi;‘Xi;‘ � 1n‘; ~Xyi;‘ ~Xi;‘ � 1n‘;

Xyi;uXi;u � Y
y
i;uYi;u � 1nu; ~Xyi;u ~Xi;u � ~Yyi;u ~Yi;u � 1nu;

XTi;uYi;u � �Y
T
i;uXi;u; ~XTi;u ~Yi;u � � ~YTi;u ~Xi;u; (35)

where the upper (lower) signs correspond to (pseudo)real
irreducible representations.

The consistency condition B � By requires, for com-
plex representations,

R1 : ~X1;‘ � ~c‘ ~Xy1;‘; ~U2
1;‘ � ~c‘1d‘ ; j~c‘j2 � 1;

R2 : ~X2;‘ � ~c‘ ~XT2;‘; ~U2;‘
~U�2;‘ � ~c‘1d‘ ; ~c2

‘ � 1;
(36)

while for real or pseudoreal representations we find

R1 : ~X1;u� ~cu ~Xy1;u; ~Y1;u��~cu ~YT1;u; ~U2
1;u� ~cu1du ; ~c2

u�1;

R2 : ~Y2;u� ~cu ~Yy2;u; ~X2;u� ~cu ~XT2;u; ~U2;u
~U�2;u� ~cu1du ; ~c2

u�1;

(37)
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where the (lower) upper sign refers to a (pseudo)real
representation. For R2 we used the fact that we can assume
S2
u � 1.6. Notice that the above constraints on the matrices
Ui;r are sufficient to obey the gauge-boson-consistency
constraints (16).

The constraints required by AB � �AB�y can be
obtained in a similar way. Using Table I we define the
matrices K and L. In order to fulfill the condition AB �
�AB�y these matrices should satisfy

K�r�ij � ��r�ij K
�r�y
ij ; L�r�ij � s�r�ij L

�r�T
ij ; �s�r�ij �

2 � 1 (38)

(no sum over i; j � 1; 2). For complex representations
j��‘�ij j � 1 while for noncomplex representations

��u�11 � �s
�u�
11 ; ��u�12 � s�u�12 ;

��u�22 � �s
�u�
22 ; ��u�21 � s�u�21 ;

(39)

where the upper (lower) sign refers to a (pseudo)real
representation. The corresponding restrictions on the ma-
trices Ui;r are given in Table II

It is worth noting that the consistency conditions (15)
also lead to constraints of the form given in Table II, but
with ��r�ij ; s

�r�
ij arbitrary complex numbers; the additional

restrictions (38) and (39) follow exclusively from the
Hermiticity of AB.

The expressions (34)–(37) and Table II together with
j��‘�ij j � 1 and (39) give the most general form for the
matrices A, B, Ui and ~Uj. In particular
(i) T
-6
he matrices �;�; ~� and ~� do not mix  r and  s
unless r is equivalent to s or �s.
(ii) F
or the BC P1 and R1 (P2 and R2), in the subspace
spanned by all multiplets in the same complex
irreducible representation r, the matrices � and ~�
(� and ~�) vanish. In contrast, � and ~� (� and ~�) are
direct products of unitary rotation in flavor indices
and global gauge transformation in gauge indices.
(iii) I
n the subspace spanned by all multiplets carrying
the same (pseudo) real irreducible representation r
in general � ( ~�) and � (~�) are nonzero.
One of the virtues of including the generalized twist
operations is that they allow all mixing consistent with
gauge invariance; a more restricted standard set (� � ~� �
0) of BC would not, for example, allow a mixing between
 r and  cr0 even though they might transform in the same
way under the local symmetry group. The price we pay for
this generalization is the breaking by the BC of global



TABLE I. Definition of the matrices K and L; the upper (lower) signs refer to (pseudo)real representations

BC Noncomplex Complex

P1� R1 K�u�11 � �X1;u
~X1;u � Y�1;u

~Y1;u L�u�11 � X�1;u
~Y1;u � Y1;u

~X1;u

K�u�12 � �X1;u
~Y2;u � Y

�
1;u

~X2;u L�u�12 � X�1;u
~X2;u � Y1;u

~Y2;u

K�u�21 � �Y2;u
~X1;u � X

�
2;u

~Y1;u L�u�21 � �Y
�
2;u

~Y1;u � X2;u
~X1;u

K�u�22 � �Y2;u
~Y2;u � X

�
2;u

~X2;u L�u�22 � �Y
�
2;u

~X2;u � X2;u
~Y2;u

K�‘�11 � �X1;‘
~X1;‘

P1� R2 L�‘�12 � X�1;‘
~X2;‘

P2� R1 L�‘�21 � X2;‘
~X1;‘

P2� R2 K�‘�22 � X�2;‘
~X2;‘
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fermion number (for noncomplex representations), and
possibly other global symmetries.

There is a comment here in order. The twist-invariance
conditions, (5) and (10) guarantee that the Lagrangian is
symmetric under the twist operations defined by (2) and
(8). In addition the fermionic and bosonic twist operations
must satisfy the consistency conditions, (13) and (14) and
(15) and (16), respectively. It is interesting to observe that
our general solutions (37) and Table II show that in fact the
fermionic consistency conditions (13) and (14) imply that
the bosonic ones (15) and (16) are satisfied. This remark-
able fact has been confirmed in all the examples considered
in Secs. III and IV; the solutions for Ui obtained by
imposing the fermionic consistency condition automati-
cally satisfy the bosonic ones.

G. Vacuum expectation values

One property exhibited by many 5D systems is the
possibility that A4 may acquire a vacuum expectation
value, which can lead to a variety of interesting consequen-
ces such as spontaneous breaking of CP [7]. In order to
determine the constraints imposed on such a vacuum ex-
pectation value by the various boundary conditions de-
scribed above we define

A 	

�
hA4i 0

0 �hA4i
�

�
; (40)

which is preserved by Pi� Rj provided


A;Ui� � 0; fA; ~Ujg � 0: (41)

For a non-Abelian group there are always nontrivial solu-
tions to these equations. For an Abelian groups, however,
only the case P1� R2 allows a nonzero vacuum expecta-
tion value. Note also that even if a nonzero vacuum expec-
tation value is allowed this does not imply that such a hA4i
will correspond to absolute minima of the effective poten-
tial; this can be only decided by explicitly calculating the
TABLE II. Constraints on the matrices U.

P1� R1 ~U1;rU1;r � ��r�11U
y
1;r

~Uy1;r

P1� R2 ~U2;rU1;r � s�r�12U
T
1;r

~UT
2;r

P2� R1 ~U�1;rU2;r � s�r�21U
T
2;r

~Uy1;r

P2� R2 ~U�2;uU2;r � ��r�22U
y
2;r

~UT
2;r
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effective potential and will depend on the fermion content
of the theory.

H. C, P and CP

In 5D the parity transformation acting on the space-time
points is defined as follows: x0;4 ! x0;4 and xi ! �xi, for
i � 1; 2; 3. Therefore for the parity acting on fermionic
fields and for the charge conjugation we obtain:

�!
P
�0�4�; �!

C
�c �

�
0 �1
1 0

�
�: (42)

Then under CP we obtain

�!
CP
�0�4D� 	 �0�4

�
0 �1
1 0

�
�; (43)

while the gauge fields transform as

Ai!
CP
� ATi ; A0;4!

CP
� AT0;4; (44)

where i � 1; 2; 3.
One can generalize these definitions by noting that the

kinetic term in L is invariant under unitary flavor mixing
[11] among fields belonging to the same representation, so
in (43) we can replace

D �

�
0 ���

� 0

�
with �y� � 1: (45)

In that general case we find

Ai!
CP
��ATi �y; A0;4!

CP
��AT0;4�y; (46)

where i � 1; 2; 3.
The condition for the invariance of the mass term under

CP is fM;Dg � 0, or, equivalently,M�� � ��M�. Since
M is Hermitian, we can always adopt a basis where it is real
and diagonal, in which case this condition reduces to

M;�� � 0. It follows that in the absence of CP violation
(CPV) we can find a basis where both M and � are
diagonal; one can then choose the field phases such that
the matrix D is given by the simple expression used in
(43). If, on the other hand � is such that (in a basis where
M is real and diagonal) 
M;�� � 0, then the mass term
will explicitly break CP.

The boundary conditions will preserve CP invariance
only if
-7



TABLE III. Matrices A;B for the Abelian models with one
fermion; u2 � v2 � 1 and s2

a;b � 1 (the signs sa and sb are
uncorrelated).

P1� R1 P1� R2 P2� R1 P2� R2

A sa1 u1� iv�3 �i�2 �i�2

B �sb�3 �1 �sb�3 sb�1
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A�;D� � 0; Ui � U�i �i � 1; 2�;

fB�;Dg � 0; ~Ui � ~U�i �i � 1; 2�;
(47)

or, equivalently,

�y�� � ��; �y~�� � ~��;

�T�� � ��; �T ~�� � ~��;
(48)

which, for � � 1, merely requires A and B to be real. If
any one of these conditions is violated the boundary con-
ditions will break CP explicitly.

This theory also contains a third source of CPV: the
vacuum expectation value of A4. If hA4i � 0 then we can
take this matrix as proportional to a Cartan generator7

which is a symmetric matrix; then

A4!
CP
� A4; (49)

so that such a vacuum expectation value violates CP
spontaneously.

Summarizing: the theory described by (1) will respect
CP only if 
M;�� � hA4i � 0 and if the conditions (47)
are obeyed.

The simplest illustration of CP violation in the context
of 5D models has been considered in [7]. It was shown
there that if at least two fermions are present, then for a
compactification on a circle a nonzero hA4i appears at the
one-loop level, so that CP could be broken spontaneously.
It turns out that in 4D theory, after a KK decomposition, in
a unitary gauge only the zero mode of A4 remains with CP
violating coupling of the form A4�x� n�x��a� ib�5� �x�,
where a; b are real numbers and  n�x� is the nth fermionic
KK mode. As shown in [7], an interaction of this form can,
for instance, lead at the one-loop level8 to nonzero electric
dipole moment of a fermion. An analogous example for the
orbifold compactification is discussed in the appendix.
III. ABELIAN EXAMPLES

In this section we will illustrate the consequences of the
above generalized boundary conditions for the case of an
Abelian group. We first study the case of a single fermion
and then that of two fermions that exhibit some new
features.

A. One fermion

For a single fermion of mass m and charge q (in units of
g5) we have M � m�3 and � � q�3 (there is a single
group generator so we drop the subindex a). Imposing the
previous constraints on A and B and using the freedom to
7That is, there is a group rotation that takes this matrix into a
Cartan generator times a real number

8As the vacuum expectation value of A4 is generated at the
one-loop, therefore in fact, the electric dipole moment emerges
at the two-loop level.
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choose the global phase of the fields to eliminate some of
the phases, we find the expressions in Table III. The bare-
mass term in L and a possible nonzero vacuum expectation
value hA4i are allowed only by the combination P1� R2;
in this case the mass term will conserve CP.

Whenever BC involving P2 are chosen the fermion field
obeys the periodicity condition ��y� L� � �c�y�, which
leads to ��y� 2L� � ���y�. Then

P2: ��y� �
1������
2L
p

X1
n��1

ei�n�1=2��y=L n;

 n � e�i�n�1=2�� c�n�1:
(50)

If we also impose R1 this expression is further constrained
by ���y� � sb�5��y�, as a result we find

 n �
� sb��1�n�2’

�
n

’n

�
;

’�n�1 � ��1�n�2’
�
n �P2� R1�;

(51)

where ’n is a 2-component spinor. For these boundary
conditions (P2� R1) a bare-mass term for the fermion is
not allowed in the Lagrangian, nonetheless the ’ receive a
mass of order 1=L from the kinetic terms:

Z L

0
dy ���4i@4� �

X1
n�0

isb��1�n��2n� 1�

2L
’Tn�2’n

� H:c: �P2� R1�: (52)

Similar results are obtained for P2� R2:

 n�
�
�isb�2’�n

’n

�
; ’�n�1���1�n�2’�n;

Z L

0
dy ���4i@4���

X1
n�0

sb��2n�1�

2L
’Tn�2’n�H:c:

�P2�R2�: (53)

If, on the other hand, we impose the periodicity condi-
tion P1 then ��y� L� � ei	��y� (corresponding to
cos	 	 u, sin	 	 v in Table III) and we can write

P1: ��y� �
1����
L
p

X1
n��1

 nei�2�n�	�y=L: (54)

If we also impose R2 then  n must obey  n � �5 cn and
this leads to
-8
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 n �
�
�i�2’�n
’n

�
�P1� R2�: (55)

In this case the bare-mass fermion term in the Lagrangian
is allowed since under the orbifold twist transformation,
 ! �5 

c, the 5D fermion mass term is invariant:

�  ! � � c c � �  : (56)

In addition, the kinetic term also generates a mass term:

Z L

0
dy ���i�4@4 �M�� �

X1
n��1

�
2M’yn’n �

�2�n� 	�
L

� �’Tn�2’n � H:c:�
�

�P1� R2�: (57)

When present, the vacuum expectation value hA4i will
generate an additional contribution to the mass. This im-
portant case is described in more detail in the appendix.

Finally, for the remaining P1� R1 case we find

��y�� sa
1����
L
p

X1
n��1

 ne2�iny=L;  �n� sb�5 n�
;

Z L

0
dy ���4i@4��

X1
n�1�


i
�2n�
��

L
� n�5 n �P1�R1�;

(58)

where 
 � �1� sa�=2.
It is worth pointing out that massless fermions are

present only when (P1� R1) BC are imposed with sa �
�1 or for (P1� R2) if M � 0 and 	 � 0. Note also that
the (P1� R1) case is the only one where KK fermions are
not restricted to be Majorana fermions. This is related to
the fact that these BC are invariant with respect to global
U(1) rescaling of the 5D fermion field ��y�; only for this
choice fermion number remains conserved. In all cases
containing P2 and/or R2
(i) P
9The
fore bo
2: ��y� L� / �c�y�,

(ii) R
2: ���y� / �c�y�,
so any global U(1) symmetry is broken by the fermionic
BC. Therefore the generalized BC discussed in this paper
provide a natural method of constructing 4D Majorana
fermions with masses of order 1=L. This can be useful
when building a realistic models for neutrino interactions,
especially if a seesaw mechanism is also implemented.

B. Two-Abelian fermions

The case for two-Abelian fermions can be studied along
similar lines. In this case we have M � diag�m1; m2�,
T � diag�q1; q2�

9 and
U(1) gauge symmetry implies that 
M;T� � 0, so there-
th M and T can be chosen diagonal.
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� �
�
 1

 2

�
: (59)

We assume that masses and charges are not zero. The
richest structure is allowed by the P1� R2 BC which we
consider first.

1. P1� R2 boundary conditions

This case has a special interest because it is the only one
(for the two-Abelian fermion model) that allows a nonzero
vacuum expectation value for A4. The BC for the gauge
fields are

AN�y� L� � AN�y�; A���y� � �A��y�;

A4��y� � A4�y�:
(60)

Concerning the fermions, the conditions 
A; �� �
fB; �g � 0 and 
A;M� � fB;Mg � 0 suggest that the
cases where jm1=m2j � jq1=q2j � 1 should be treated
separately. This, however is not the case.

Suppose, for example, that m1=m2 � q1=q2 � �1, then
the constraints on A and B imply ~� � � � 0. In addition,
the Lagrangian has a U�2� flavor symmetry that allows us
to choose � diagonal and ~� � 1. The boundary conditions
then reduce to

 i�y� L� � ei	i i�y�;  i��y� � �5 ci �y�

�i � 1; 2�;
(61)

so that each flavor has an expansion of the form (54) and
(55). Ifm1=m2 � q1=q2 � �1, then, following the discus-
sion of Sec. II F it is convenient to introduce  2 � � 02�

c so
that the new field has mass and chargem02 � �m2 � �m1,
q02 � �q2 � �q1; in terms of 1;  

0
2 the theory is identical

to the one just considered. If the masses and charges do not
satisfy jm1=m2j � jq1=q2j � 1 then gauge invariance re-
quires that the boundary conditions be again given by (61).

We conclude that with an appropriate choice of fields the
two fermions decouple from each other when the boundary
conditions (P1� R2) are imposed. In this case the consid-
erations of the previous section determine the physics of
the model. In particular, for this choice of BC, CP is
violated either explicitly nonzero 	i or spontaneously by
one-loop vacuum expectation value of A4, see the
appendix.

2. P1�R1 boundary conditions

In this case the constraints are satisfied only when m1 �

m2 and q1 � �q2 and provided ~� � � � 0, ~� � ��1

with j�j � 1 and � � diag�ei	; e�i	�. The freedom to re-
define the global phase of the fields can then be used to set
� � 1, then we have

 1�y� L� � e�i	 1�y�;  1��y� � �5 c2�y�;

 2�y� L� � e�i	 2�y�;  2��y� � �5 
c
1�y�:

(62)
-9



TABLE IV. Matrices �; ~�;�; ~�; U and ~U for an SU�2� model
with one fermion doublet. The quantities listed satisfy jXij �
jYjj � j ~Xkj � j ~Ylj � 1, and the last column in the Rj table gives
the constraints on the matrices ~Ui imposed by the consistency
condition B � By.

� �

P1a X1U
y
1 0

P1b 0 Y1U
T
1�2

P2a Y2U
y
2�2 0

P2b 0 X2U
T
2

~� ~� ~Uj

R1a � ~X1
~Uy1 0 ~X2

1
~Uy1

R1b 0 ~Y1
~UT

1�2 � ~Uy1

R2a � ~Y2
~Uy2�2 0 ~Y2

2
~UT

2

R2b 0 ~X2
~UT

2
~UT

2
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This can be used to eliminate  2. The action then becomes
twice the action for  1 alone, with  1 obeying the above
periodicity condition; this case also reduces to a single-
fermion model.

3. P2� R1 boundary conditions

In this case the constraints are again satisfied only when
m1 � m2 and q1 � �q2 and provided ~� � � � 0, ~� �
��1 with j�j � 1 and

� �
�

0 ei�

ei�
0

0

�
: (63)

The freedom to redefine the global phase of the fields can
then be used to set � � 1; �0 � 0, then we have

 1�y� L� � e�i� 2�y�;  1��y� � �5 
c
2�y�;

 2�y� L� �  1�y�;  2��y� � �5 c1�y�:
(64)

Using this to eliminate  2, the action again becomes twice
the action for  1 alone, where  1 obeys  1�y� �
�5 

c
1��y� L� and  1�y� 2L� � ei� 1�y�. Solving these

yields

 1�y� �
1������
2L
p

X
ei ~!ny

�
ei
���2n�1���=2�2’�n

’n

�
;

~!n �
2�n� �

2L
:

(65)

4. P2� R2 boundary conditions

These constraints require m1=m2 � �q1=q2 � �1.
When m1 � m2 we again find ~� � � � 0, and using the
freedom to redefine the global phases allows us to choose
� � ei��1; ~� � 1. The boundary conditions then become

 1�y� L� � e�i� 2�y�;  1��y� � �5 c1�y�;

 2�y� L� � e�i� 1�y�;  2��y� � �5 
c
2�y�:

(66)

Again  2 can be eliminated and the action then becomes
twice the action for  1 alone; here the constraints on  1

give the expansion

 1�y� �
1������
2L
p

X
ei ~!ny

�
��1�n�1i�2’

�
n

’n

�
;

~!n �
�n� �
L

:

(67)

Whenm1 � �m2 similar arguments lead to � � ~� � 0,
� � ei��1; ~� � 1, and

 1�y� �
1������
2L
p

X
ei ~!ny

�
�i�2’

�
n

’n

�
;

~!n �
��n� 1=2� � �

L
:

(68)

As in the previous cases we can use the BC to eliminate  2,
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now in terms of a translated  1:  2�y� � ei� c1�y� L�.
The action then reduces to that for  1 alone, but with the
radius of the compact dimension equal to 2L.
IV. SIMPLE NON-ABELIAN CASES

A. SU(2) models

We consider a model with SU(2) as the gauge group and
where all fermions transform according to the fundamental
representation. This is a pseudoreal representation gener-
ated by the Pauli matrices �I; �2 plays the role of the
matrix Su of Sec. II F.

1. One doublet

When the theory contains a single SU(2) doublet, X; Y,
etc. of Sec. II F are just numbers, then since the represen-
tation is pseudoreal, (34) and (35) imply XiYi � ~Xi ~Yi � 0
(we drop the representation index u), which implies that for
this case either � or � vanish (similar conclusions can be
drawn for ~� and ~�). This leads to the possibilities listed in
Table IV.

The remaining consistency condition, AB � �AB�y

requires �~���� ~� to be Hermitian and �� ~���~� sym-
metric and leads to the following constraints

Pir � Rjs: � ~U�i Ui�
2 �

�
�~���212 r � s;
�12 r � s;

P1r � R2s:
�
��2

~U2U1�
2 � ��~��2 r � s;

~U2U1 � � ~U�2U1�
T r � s;

P2r � R1s:
�
� ~U1�2U2�

2 � ��� ~��2 r � s;
~U1U2 � � ~U�1U1�

T r � s;

where �; ~� are defined in Table V.
-10



TABLE V. The quantities �; ~� used in the definition of U and
~U for the SU�2� model with one fermion doublet.

P1a P1b P2a P2b

�: X1 Y�1 Y2 X�2

R1a R1b R2a R2b

~�: � ~X1
~Y�1 � ~Y2

~X�2

TABLE VI. Matrices ~�; ~�; ~U and the number ~c for an SU�2�
model with two fermion doublets.

~c ~� ~� ~U1

R1: �1 cos~�1 � 1 sin~��2 � �2 1

�1 cos~��3 � �3 sin~��1 � �1 i�3

~c ~� ~� ~U2

R2: �1 cos~��3 � �3 i sin~��1 � �1 i�1

�1 cos~�1 � 1 sin~��2 � �2 ��2

TABLE VII. The matrices �; ~�;� and ~� for an SU�3� model
with N triplets. The matrices Xi; ~Xj are unitary N � N matrices
restricted by the consistency conditions B � By and AB �
�AB�y as specified in (36), Table I, (38) and Table II.

P1 P2

� X1 �U
y
1 0

� 0 X2 �U
T
2

R1 R2

~� � ~X1 � ~Uy1 0
~� 0 ~X2 � ~UT

2
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2. Two SU(2) doublets

We have shown in (35) that for pseudoreal representa-
tions � (~�) and � ( ~�) can be simultaneously nonzero only
if at least two SU(2) pseudoreal multiplets are present; this
section illustrates such a scenario. For simplicity we will
restrict ourselves to the case of only two doublets.

Using then the freedom to make unitarity rotations of the
doublets (which might render a nondiagonal mass matrix)
it is straightforward to show that the rest of the conditions
(37) have the solutions10 presented in Table VI where the
first matrix in the direct product acts on the flavor indices
and the second on the gauge indices. We have used the fact
that the general solution to ~U2 � �1 is ~U � in̂  �, for an
arbitrary (real) unit vector n̂; similarly the solutions to
~U ~U� � �1 are ~U � ��2, and, finally, the solution to
~U ~U� � 1 is ~U � sin ~	� i cos ~	 l̂ � with ~	 real and l̂ a
real unit vector perpendicular to ŷ. We have used the free-
dom to make global gauge rotations to set n̂ � ẑ; l̂ �
x̂; ~	 � 0.

The general form of A follows from (35):

Xi � uiWi; Yi � viW
�
i �2 (70)

where Wi 2 SU�2� and juij2 � jvij2 � 1. These quantities
are restricted by the conditions given in Table I, (38) and
(39), Table II, but we will not study all possible cases as the
results are not illuminating. The most important feature of
this example is the presence of nonzero � and � (~� and ~�).

B. N SU(3) triplets

In this section we consider a theory with gauge-group
SU(3) containing N triplets and �N antitriplets. Using the
results obtained at the end of Sec. II F we can replace all
antitriplets by their charge conjugates and obtain a theory
where all fermions transform as a 3 of SU(3); because of
this we take �N � 0. In this case

�a �
1N � �a 0

0 �1N � ��a

� �
; (71)

where 1N denotes the N � N unit matrix in flavor space
and f�ag denote the usual Gell-Mann matrices.11.
10Since there is only one representation present we drop the
subscript u.

11It is worth noting that an SU(3) Hermitian matrix can be
written in the form ��1=3�13 �

��������
4=3

p
‘̂a�a with

P
a‘̂

2
a � 1‘̂a ����

3
p
dabc‘̂b‘̂c [dabc denote the fully symmetric SU(3) symbols]..
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If the boundary condition P1 is chosen then the con-
straint (5) implies � � X1 �U

y
1 ;� � 0; in contrast if P2 is

imposed then � � 0;� � X2 �UT
2 with similar results for

Rj. These results are summarized in Table VII.

V. CONDITIONS FOR THE PRESENCE OF ZERO
KK MODES

In order to extract the 4D particle content of this type of
theories the standard approach is to expand the fields as
Fourier series in the compact coordinate. For fermion fields
the resulting Fourier modes can have 3 possible contribu-
tions to their mass: those generated by M, those generated
by the ��@4� term and, finally, those generated by ��hA4i�
(whenever a nonzero vacuum expectation value is present).
The scale of the last two contributions is set by 1=L and is
therefore relatively high. The SM light fermions are pre-
sumably much lighter than the compactification mass scale
1=L, therefore in any realistic setup, the SM fermions are
supposed to be zero modes, avoiding at least the large
��@4� contribution to their mass. In considering the phe-

nomenology of the class of 5D models discussed in this
paper, it is useful to determine and discuss the general
conditions that allow for the existence of such zero-modes,
this is our task for this section.

Light fermions12 may exist provided the boundary con-
ditions allow zero modes and if hA4i � 0 [as can occur if
one of the conditions (47) is not satisfied]. Specifically, we
12The terms / M in (1) may generate a small mass for some of
the fermion zero modes.

-11



14The necessary existence of ~��1 is guaranteed by the unitarity
of B. In this case a charge-conjugated field appears in the
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assume that the conditions ��y� �AT��y� L� �
�5B

T���y� allow the expansion of � in terms of a com-
plete set of modes, ��x; y� �

P
�n�x�vn�y� (examples are

provided in Sec. III). Massless modes are associated with a
basis function v0 that is independent of y. Writing �0 �
�c; �T and substituting into (4) and (8) gives

�1�A���0 � 0; �1� �5B
���0 � 0: (72)

In order to avoid having �0 � 0 as the only solution we
must have det�1�A�� � det�1� �5B

�� � 0.
Using (3) and (9) these constraints on the light modes

become

�1� ��L � ���R�c; �1� ~��L � �~���R�c;

�L � ��
� � 1��R�

c; ~�L � �~�
� � 1��R�

c:
(73)

Assuming � � ~� � 0, the only possible solution of the
above equations is � � 1 and ~� � 1 with L � 0 or � � 1

and ~� � �1 with R � 0. It is worth noting that this
special case is the standard strategy adopted in the context
of universal extra dimensions in order to construct chiral
effective 4D theory.

Other solutions must be considered on a case by case
basis. Note however that if det ~� � 0, then the two equa-
tions involving ~� and ~� are equivalent: from B � By �
B�1 we find ~�� ~� � 1� ~�2 and ~� ~� � ~�� ~�, so, if ~� has
an inverse, so do 1� ~�; this also shows that ~���1�1�
~�� � �1� ~����1~� which proves the assertion. Therefore
one of the constraints involving ~� and ~� in (73) can be
dropped.

From (2) and (8) one can easily find the necessary
conditions which must be fulfilled for gauge-boson zero
modes to exist. Denoting by â; b̂; . . . the gauge indices
associated with these zero modes we find that the 4D gauge
fields A�â have a zero mode provided 
�â;Ui� � 0 and

�â; ~Uj� � 0. The zero mode of A4

a is present if 
�â;Ui� �

0 and f�â; ~Ujg � 0.
As we have already observed in Sec. III, when P2 or R2

boundary conditions are adopted, half of fermionic degrees
of freedom is eliminated and KK modes are constrained by
the Majorana condition. In particular, the fermionic zero
modes may satisfy the generalized Majorana 4D condition:

 � NC4� ��
T; (74)

where C4 is the 4D charge conjugation operator,13, and N
acts on flavor and gauge indices. In this case we can
express  as

 �
�
N�2’

�

’

�
; (75)

where ’ denotes a 2-component spinor and �2 acts on the
13In the Dirac representation C4 � �0�2 while the 5D one is
C5 � �1�3. It is useful to note that �5C5 � �iC4.
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Lorentz indices. Consistency of this expression requires
NN� � 1.

For the Majorana spinor  , the conditions (72) become

�1� ��’� i���2’� � 0; �N��� ��N��’ � 0;

�N��� ��N�’� � 0; �N � i~����2’� � ~�’ � 0;

�N�~�� ~��N��’ � 0; �N� ~�� � ~�N�’� � 0: (76)

It is useful to illustrate the above conditions by certain
special cases:
(i) I
orbifold
15For

Dirac an
16Agai

-12
f � � 0 and � � 1 (A � 1, so periodic fermi-
onic fields), and ~� � 0 then it is easy to see from
(76) that more than one flavor is needed to have a
Majorana zero mode.
(ii) I
f ~� � 014 then there is always a Majorana zero
mode with N � �i~�y. This case is illustrated by
the BC �P1� R2� for a single Abelian fermion, if
u � 1; v � 0 (	 � 0) are chosen, see Table III,
then N � �i. In that case the bare mass is allowed,
therefore, as shown in (57), the zero KK mode is
massive15.
(iii) I
f ~� � 016, �� � 1 and � is invertible (so charge-
conjugated field appears in the periodicity BC) then
again there exists a Majorana zero mode if N �
�i��1�1� ���~�� and if this matrix satisfies the
constraints of the last two columns in (76). For an
Abelian model this again requires more than one
flavor: the single-fermion case would correspond to
the �P2� R1� BC for which, using Table III, ~� �
sb;� � 1;� � ~� � 0. In this case, however
N�~�� ~��N� � 2i, so that the corresponding equa-
tion in (76) implies ’ � 0.
A. Examples

A simple situation that allows for the presence of light
modes is realized by taking A � 1 (periodic fermions),
and assuming det ~� � 0, then we have

�R�c � ��~�
���1�1� ~��L; (77)

or, equivalently,

 �
� ~��� ~��i�2�

�

�

�
; (78)

where � is a two-component spinor (�2 acts on Lorentz
indices, ~� and ~� on flavor indices). Using unitarity of B
and invariance of the mass term under the orbifold twist
BC.
a fermion which satisfies the Majorana condition the
d the Majorana mass terms are identical.

n the unitarity of B shows that ~� � 0.



17An example would be an SU(3) theory with fermions in the
fundamental (complex) representation where the light-sector
gauge group is reduced to SU(2) that has only noncomplex
representations.
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one can show that in this case the mass term in the
Lagrangian becomes

�M � �2�yM� (79)

having taken M real and diagonal. The diagonal elements
of M could be chosen arbitrarily small. Note that if ~� � 0
then the zero mode  is a Majorana type fermion that
receives its mass from the bare-mass term M.

For a specific example let us consider an SU(2) theory
containing two doublets (we still assume A � 1). The
representation is pseudoreal generated by the Pauli matri-
ces�I;�2 plays the role of the matrix Su of Sec. II F. In this
case we will write T � � 1;  2�

T where  i (i � 1; 2) are
doublets with the flavor index i (the gauge index is not
displayed). The matrix B was determined in Sec. IVA, see
Table VI.

The simplest case corresponds to ~c � 1 in Table VI,
which we assume. This case illustrates the interesting
possibility of nonzero ~� and ~�, which can occur only if
there exist at least two multiplets transforming according
to the same pseudoreal representation, as was mentioned at
the end of Sec. II F. We find that Table VI and (73) imply
PR 1;2 � �i cot�~�=2��2�PL 2;1�

c (where �2 acts on the
gauge indices). In particular  2 can be expressed in terms
of  1:

 2 � i
�
cos~�� �5

sin~�

�
�2 c1 �R1; ~c � �1�: (80)

The light modes  can acquire a small mass of order M
provided fB;Mg � 0. This can occur for R1 and ~c � �1
or R2 and ~c � �1: in either of these casesM should satisfy
f�3;Mg � 0 and �1M�1 � M�, so that M � m1�1 �
m2�2; m1;2 real; the physical masses are simply

�
�������������������
m2

1 �m
2
2

q
.

Abelian examples of zero modes were briefly mentioned
in Sec. III. The possibility that the gauge fields A4 acquire a
vacuum expectation value contributing to the fermion mass
will not be discussed in detail here.

B. Gauge invariance

The conditions (73) need not be invariant under arbitrary
y-independent gauge transformations �,  ! ��x� [see
(17)], leading to a reduction of the gauge group for the light
sector. The specific constraints follow from the decompo-
sition (30) that allows us to write � � diag�   ;1d‘ �
�‘;   1du ��u;   � where �r denotes a gauge trans-
formation in the space corresponding to the irreducible
representation r.

Using this we then find from (73) [or equivalently from
(25) for y-independent �] that for noncomplex represen-
tations the BC are preserved by gauge transformations that
obey
125012
P1 : 
U1;u;�u� � 0; R1: 
 ~U1;u;�u� � 0;

P2: 
Syu U2;u;�u� � 0; R2: 
Syu  ~U2;u;�u� � 0;
(81)

where we use the same notation as in Sec. II F (see [12] for
related arguments in the case of standard BC).

It is easy to see that the � satisfying the constraints (81)
form a subgroup of the original gauge group and, in general
that its representation is complex. It is therefore possible to
use BC to select a light sector that has both a chiral
structure and a smaller gauge group. Such a breaking has
clear value in model building and will be investigated in a
future publication.

For complex representations we find the same conditions
for P1 and R1, but not when P2 or R2 are imposed:

P1: 
U1;u;�‘� � 0; R1: 
 ~U1;u;�‘� � 0;

P2: ��‘ � U2;‘�‘U
y
2;‘; R2: ��‘ �

~U2;‘�‘
~Uy2;‘:

(82)

For P2 and R2 these conditions cannot be satisfied by all
elements of the initial gauge group (since they would then
imply that the representation is noncomplex), so the gauge
group of the light sector must be smaller then the initial
group, and the light-sector fermions will transform accord-
ing to a noncomplex representation of this subgroup.17

Let us now consider the gauge invariance of the gauge-
boson light sector. As it was already mentioned earlier, the
gauge fields A�â will have a zero mode provided

P1: � Tâ � U1TâU
y
1 ; R1: � Tâ � ~U1Tâ ~Uy1 ;

P2: � T�â � U2TâU
y
2 ; R2: � T�â � ~U2Tâ ~Uy2 :

(83)

Comparing (81) and (82) with (83), it is easy to see that
both for noncomplex and for complex representations, the
generators Tâ that correspond to zero modes generate the
symmetry group of the light sector. In other words, the
gauge symmetry of the zero-mode sector can be easily
determined just by inspection of the massless vector
bosons.

As an example let us consider here SU(2) gauge theory
with a single doublet of fermions. We adopt the P1� R1
BC and choose

� � �3; � � 0; U1 � i�3;

~� � 1; ~� � 0; ~U1 � 1;
(84)

which is a slight modification of the example discussed at
the end of Sec. II E. In that section we found that the
symmetry of the light sector was completely broken due
to nontrivial orbifold BC (B � 1). Here we choose B � 1

so that the y-independent gauge transformations generated
by �3 are allowed, as a consequence the zero mode of A�3
-13
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survives. In turn, the light fermion modes obey

L � 0; ��3 � 1��R�
c � 0: (85)

The light sector contains only the A�3 massless gauge
bosons and a right-handed, charged (and therefore mass-
less), fermion.
VI. SUMMARY AND CONCLUSIONS

In this paper we considered a generic gauge theory in a
5-dimensional space compactified on M4 � �S1=Z2�, and
studied the effects of a generalized set of boundary con-
ditions (BC) that allow for mixing between particles and
antiparticles after a translation by the size of the extra
dimension or after an orbifold reflection.

We described the consequences of gauge invariance as
well as the general form of the boundary conditions con-
sistent with it. We also studied the behavior of this class of
theories under 5D parity (P), charge conjugation (C) and
CP. In particular we determined the conditions under CP
will be violated (explicitly) by the BC as well as sponta-
neously, through a possible vacuum expectation value of
the fifth component of the gauge fields.

We derived a simple set of conditions that determine the
light-particle content of the model and the corresponding
gauge subgroup, noting also the possibility that the light
fermions might have chiral structure and transform under
complex representations of the light-sector gauge group,
even though the underlying theory is vectorlike and con-
tains only real representations of the full gauge group. In
addition we derive the conditions under which the model
generates light Majorana particles.

We believe these aspects will be of relevance in con-
structing phenomenologically acceptable theories.

The general considerations were illustrated by many
Abelian and non-Abelian examples.
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APPENDIX: ONE ABELIAN FERMION

Here we will consider the one fermion case with �P1�
R2� BC. The fermion mass term (57), can be brought to the
standard real form m�phys�

n � n n through the following chi-
ral rotation18:

 n ! exp�i�5�n� n with tan�2�n� �
2�n� 	
ML

;

j�nj � �=4:
(A1)

From this we find that the physical fermion masses19 are

m�phys�
n �

���������������������������������������
M2 �

�
2�n� 	

L

�
2

s
: (A2)

From the orbifold conditions and from the reality of the
gauge field we have the following constraints for the
bosonic KK modes:

A�n � �A
�
�n � �A

�
�n��; A4

n � �A
4
�n � �A

4
�n�

�

(A3)

The above conditions allow us to rewrite the Lagrangian in
terms of non-negative modes only. In addition one can see
that A�n�0 � ReA�n � ImA4

n � 0. Adding the gauge fixing
Lagrangian,

L gf � �
1

2�

�
@�A

� � �@4A
4

�
2

(A4)

the gauge-kinetic energy terms read

LA �Lgf � �
1

2
����

1

2

X1
n�1

fB�n 
���!2
n�g�


� �1� ��1@�@
��B
n � B4
n��� �!2

n�B4
ng;

where LA � ��FMN�
2=4 and where we defined the fields

� 	 �
����
L
p

ReA4
n�0; B�n 	

������
2L
p

ImA�n ;

B4
n 	

������
2L
p

ReA4
n:

(A5)

In terms of the BN and the rotated fermion fields defined
in (A1) we obtain
Z L

0
dy ���i�NDN �M�� �

X
n

� n
i6@�m
�phys�
n � n � g�

X
n

� n
sin�2�n� � i�5 cos�2�n�� n �
g���
2
p

�
i
X
k>l

� k
cos��k � �l�

� i�5 sin��k � �l��6Bk�l l �
X
k>l

B4
k�l

� k
sin��k � �l� � i�5 cos��k � �l�� l � H:c:
�
; (A6)
in the Lagrangian; however, in the Abelian case considered here,

on value of A4 one should replace 	 by �	� g5qL
1=2hA4

0i�.
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where g � g5=
����
L
p

From these expressions one can obtain the effective
potential for the scalar �. Following [7] (including an
additional factor of 1=2 since we are dealing with
Majorana fermions) we find

Veff �
1

4�2L4 Re
Li5�� � 3xLi4�� � x2Li3���; (A7)
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where

x � ML;  � e�x�i�	�gLh�i�: (A8)

The absolute minima occur at 	� gLh�i �
��;�3�; . . . , but this does not lead to any physical CP
violation effects unless we add a second fermion with
different charge and/or different 	 (modulo �), see [7].
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