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Nonperturbative quark-antiquark production from a constant chromoelectric field via the
Schwinger mechanism
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We obtain an exact result for the nonperturbative quark (antiquark) production rate and its pT
distribution from a constant SU(3) chromoelectric field Ea with arbitrary color index a by directly
evaluating the path integral. Unlike the WKB tunneling result, which depends only on one gauge invariant
quantity jEj, the strength of the chromoelectric field, we find that the exact result for the pT distribution
for quark (antiquark) production rate depends on two independent Casimir (gauge) invariants, EaEa and
�dabcE

aEbEc�2.
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Nonperturbative quark-antiquark pair production from a
constant chromoelectric field is widely employed to study
hadronization at low pT in high energy e�e� and pp
collisions [1]. In these approaches, the color flux-tube
energy density or the string tension is related to the con-
stant chromoelectric field strength jEj. In high energy
heavy-ion collisions at the RHIC and the LHC [2], a
classical chromo field might be formed just after two nuclei
pass through each other [3,4]. In order to study the pro-
duction of a quark-gluon plasma from a classical chromo
field, it is necessary to know how quarks and gluons are
formed from the latter. In a recent paper [5], we have
derived a formula for the rate for nonperturbative gluon
pair production and its pT distribution from a constant
SU(3) chromoelectric field with arbitrary color index a
via vacuum polarization. In this paper we will extend our
study to quark-antiquark pair production.

We will not employ Schwinger’s proper time method [6]
in our calculation. Although this method is widely used to
obtain the total fermion production rate dN=d4x [6,7] (for a
review see [8]), this method cannot be used to obtain the pT
distribution of the rate dN=d4xd2pT . For this purpose the
WKB tunneling method [9,10] has been used in the past to
approximate the pT distribution for the quark (antiquark)
production rate. Although the WKB tunneling result for the
pT distribution is correct in QED, it is not necessarily true
in QCD because of the presence of the nontrivial color
generators in the fundamental and adjoint representations
of SU(3). For this reason we will directly evaluate the path
integral in this paper and obtain an exact result for the pT
distribution of the nonperturbative quark (antiquark) pro-
duction rate from a constant chromoelectric field with
arbitrary color in the gauge group SU(3). We find that,
unlike the WKB tunneling result, which depends on one
gauge invariant quantity jEj, the strength of the chromo-
electric field [9,10], the exact result for the pT distribution
for the quark (antiquark) production rate depends on two
independent gauge invariants, EaEa and �dabcEaEbEc�2.
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We obtain the following formula for the number of
nonperturbative quarks (antiquarks) produced per unit
time, per unit volume, and per unit transverse momentum
from a given constant chromoelectric field Ea:

dNq; �q
dtd3xd2pT

� �
1

4�3

X3

j�1

jg�jj ln�1� e
�f���p2

T�m
2��=jg�jjg�;

(1)

where m is the mass of the quark. This result is gauge
invariant because it depends on the following gauge in-
variant eigenvalues:
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where � is given by

cos 23� � 3C2=C
3
1: (3)

These eigenvalues only depend on two independent
Casimir invariants for SU(3),

C1 � EaEa; C2 � �dabcEaEbEc�2; (4)

where a; b; c � 1; . . . ; 8. Note that 0 � cos23� � 1 be-
cause C3

1 	 3C2 and both C1 and C2 are positive. The
integration over pT in Eq. (1) reproduces Schwinger’s
result for total production rate dN=d4x [7].

The exact result in Eq. (1) can be contrasted with the
following formula obtained by the WKB tunneling method
[9]:

dNq; �q
dtd3xd2pT

�
�jgEj

4�3 ln�1� e�f���p
2
T�m

2��=jgEjg�: (5)

In our result in Eq. (1) the symmetric tensor dabc appears.
Hence the WKB tunneling method does not reproduce the
correct result for the pT distribution of the quark (anti-
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quark) production rate from a constant chromoelectric field
Ea. We now present a derivation of Eq. (1).

The Lagrangian density for a quark in a non-Abelian
background field Aa� is given by

L � � i���ijp̂6 � gT
a
ijA6

a� �m�ij� 
j � � iMij�A� 

j; (6)

where p̂� is the momentum operator and Taij is the genera-
tor in the fundamental representation of gauge group SU(3)
with a � 1; 2 . . . 8 and i; j � 1; 2; 3. The vacuum to vac-
uum transition amplitude in the presence of the non-
Abelian background field Aa� is given by

h0j0i �

R
�d � ��d �ei

R
d4x � jMjk�A� kR

�d � ��d �ei
R
d4x � jMjk�0� k

� Det�M�A��=Det�M�0�� � eiS
�1�
: (7)

The one loop effective action becomes

S�1�q �q � �iTr ln���ijp̂6 � gT
a
ijA6

a� �m�ij�

� iTr ln��ijp̂6 �m�ij�: (8)

The trace Tr contains an integration over d4x, a sum over
color and Lorentz indices and a trace over Dirac matrices.
Since the trace is invariant under transposition we also get

S�1�q �q � �iTr ln���ijp̂6 � gT
a
ijA6

a� �m�ij�

� iTr ln��ijp̂6 �m�ij�: (9)

Adding both of the above equations we get

2S�1�q �q � �iTr ln���ijp̂6 � gT
a
ijA6

a�2 �m2�ij�

� iTr ln��ijp̂6
2
�m2�ij�; (10)

which can be written as

2S�1�q �q � �iTr ln
�
��ijp̂� gT

a
ijA

a�2 �
g
2
���T

a
ijF

a��

�m2�ij

�
� iTr ln��ijp̂2 �m2�ij�: (11)

Since it is convenient to work with the trace of the
exponential, we replace the logarithm by

ln
a
b
�
Z 1

0

ds
s
�eis�b�i�� � eis�a�i���: (12)

We assume that the constant electric field is along the
z-axis (the beam direction) and we choose the gauge Aa0 �
0 so that Aa3 � �E

ax̂0 [5]. The color indices (a � 1; . . . ; 8)
are arbitrary. Since �ij � TaijE

a has three eigenvalues we
write after diagonalization

��d�ij � ��1; �2; �3�: (13)
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The trace over the Dirac matrices (trD) gives

tr D�e
is�g=2����TaijF

a��

� � 4 cosh�sgTaijE
a�: (14)

To reduce this problem to the motion of one harmonic
oscillator, we make a similarity transformation [5,11]
(we also make a similarity transformation in the group
space) and obtain

tr De
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a���m2�ij�

� 4 cosh�sg��d�il�
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where pT �
�����������������
p2

1 � p
2
2

q
is the transverse momentum of the

quark or antiquark (transverse to the electric field direc-
tion). Hence, from Eqs. (11) and (12) we find
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The trace tr denotes an integral over a complete set of x
eigenstates. We add complete sets of pj eigenstates, and
obtain
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s
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The s-integral at fixed pT is convergent at s! 0, but the
integration over pT yields an extra factor 1=s so now it
seems divergent. However, charge renormalization cures
this ultraviolet problem by subtracting also the term linear
in s in the expansion of coshsg�j= sinhsjg�jj. The integral
is well behaved as s! 1. To perform the s contour
integration, we use the well-known expansion

1

sinhx
�

1

x
� 2x

X1
n�1

��1�n

x2 � n2�2 ; (18)

and then we formally replace s by �is (as first advocated
by Schwinger in QED). The integral is now real, except for
half-circles around the poles at sjg�jj � �in� for n �
1; 2; 3 . . . . The 1=x term in (18) cancels against the 1=s
term in (17). This yields the probability for quark (anti-
quark) production per unit time and per unit volume
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Wq �q � 2 ImL�1�
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Now all that is left is to determine the eigenvalues �j (j �
1; 2; 3) of the matrix �ij � TaijE

a in the fundamental rep-
resentation of the gauge group SU(3). Evaluating the traces
of �ij, �2

ij, and the determinant of �ij, we find

�1 � �2 � �3 � 0; (20)

�2
1 � �

2
2 � �

2
3 �

1
2E

aEa; (21)

and

�1�2�3 �
1

12
�dabcE

aEbEc�; (22)

the solution of which is given by Eq. (2).
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In this paper we have obtained an exact result for the rate
for nonperturbative quark (antiquark) production and its
pT distribution in a constant chromoelectric field Ea with
arbitrary color index a via vacuum polarization. We have
used the background field method of QCD with the gauge
group SU(3). The pT distribution for quark (antiquark)
production can be applied at the RHIC and the LHC
colliders. We find that, unlike the WKB tunneling method,
the pT distribution of the quark or antiquark production
rate depends on two independent Casimir (gauge) invari-
ants, EaEa and �dabcEaEbEc�2.
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