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We discuss an extension of a map between BPS states and free fermions. The extension involves states
associated with a full two matrix problem which are constructed using a sequence of integral equations. A
two parameter set of matrix model eigenstates is then related to states in SUGRA. Their wave functions
are characterized by nontrivial dependence on the radial coordinate of AdS and of the Sphere,
respectively. A kernel defining a one to one map between these states is then constructed.
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I. INTRODUCTION

Studies [1–8] of giant gravitons in AdS Supergravity
(and dual N � 4 SYM theory) have lead to a simple
(matrix model) picture for 1=2 BPS states. In particular a
free fermion model [8–10] of harmonic oscillators was
identified and shown to simulate fully the dynamics of
1=2 BPS states and their interactions. In [10] (referred to
as LLM) a classical Ansatz for AdS (bubbling) configura-
tions was constructed whose energy and flux were demon-
strated to be in a one to one correspondence with those of a
general fermionic droplet configuration. Further, relevant
studies of this free fermion map have recently been carried
out [11–33].

It is clear that it would be desirable to extend the map to
more general states and go beyond the simple case of free
fermions. This would require an investigation (and solu-
tion) of more complex two (or multi) matrix models—a
formidable task. In the present work we present a step in
this direction. We will attempt to extend the correspon-
dence from the fermionic family of states (representing a
single diagonal matrix) to a more general set associated
with states of a two matrix quantum mechanics. As was
already seen in [8] which concerned itself with the case of
1=2 BPS states one can start with a system of two matrices,
or a complex matrix and perform a truncation to a single
Hermitian matrix (in the manner analogous to a similar
phenomena in the quantum Hall effect). The reduction was
explained in [8] to be the Hilbert space equivalent of a
holomorphic projection where the set of observables are
given by traces of the complex matrix Z only. The intro-
duction of mixed traces, involving the second (conjugate)
matrix immediately leads to a nontrivial dynamical prob-
lem whose eigenstates were never constructed.

We will first address this problem of constructing invari-
ant eigenstates of the two matrix quantum system. For this
we develop in some detail a hybrid formalism, treating one
of the matrices fully in the standard collective field theory
manner, while the other is treated in the coherent state re-
presentation. This second matrix behaves then as an ‘‘im-
purity’’. The corresponding collective field theory of com-
bined, mixed traces is then worked out and is shown to lead
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to a sequence of eigenvalue equations. These equations are
seen to generalize an eigenvalue equation first found in
[34], and first solved for its eigenstates in [35], describing
angular degrees of freedom of the single matrix model. The
sequence of eigenvalue equations can be solved for the
present case of the oscillator potential. It provides a two
parameter set of energy (dilatation operator) eigenvalues
and a corresponding 2 dimensional space of eigen-
functions.

The central issue then becomes that of providing a
correspondence between the eigenstates of the matrix
model and states and eigenvalues in Supergravity. Here
we work in a linearized approximation specifying a class of
fluctuations with matching quantum numbers. The wave
functions, in the AdSxS background are nontrivial, being
given by hypergeometric functions or corresponding spe-
cial functions. Nevertheless, we describe a 1� 1 map
between a two dimensional subset and the two dimensional
set of wave functions given by the matrix model. This map
involves a transformation introduced originaly in the con-
text of the 2d black hole and the corresponding matrix
model [36]. This transform, appropriately interpreted, then
provides a one to one map between the gravity and matrix
model wave functions. We emphasize that being one to one
this map is different from the well known holographic pro-
jection. It is expected that further studies of the map will be
of relevance for reconstructing AdS quantum mechanics.

The outline of the paper is as follows. In Sec. II we give a
review of the simple matrix model and of the fermion map.
In Sec. III we address the two matrix problem describing
its collective field formulation. We derive a sequence of
eigenvalue equations and solve for eigenvalues and eigen-
functions. In Sec. IV we consider the wave functions of the
AdSxS SUGRA and specify the transform to the matrix
model eigenstates. Several Appendices contain further
details.

II. REVIEW

We begin by reviewing and clarifying the existing map
between the 1=2 BPS SUGRA configurations and the states
of the harmonic oscillator matrix model.
-1 © 2005 The American Physical Society
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The matrix model degrees of freedom originate from a
reduction of N � 4 Super Yang-Mills theory on R� S3.
The Hamiltonian is therefore the dilatation operator and
the Higgs fields become quantum mechanical matrix co-
ordinates �a�t�, a � 1 . . . 6. For the study performed in the
present paper one can concentrate on the dynamics of two
matrices

S �
1

2g2
YM

Z
dtTr

�
_�2

1 �
_�2

2 ��2
1 ��2

2 �
1

2
��1;�2�

2

�
:

The commutator interaction did not play a role in the 1=2
BPS correspondence and in what follows we will mainly
concern ourselves with the simple quadratic harmonic
oscillator model of two matrices

H �
1

2
Tr�P2

1 � P
2
2 ��2

1 ��2
2�:

The symmetries of this reduced theory are given by the
U�1� charge

J � Tr�P1�2 � P2�1�;

and an SL�2; R� symmetry algebra (allternatively SU�2�).
One has the complex matrices

Z �
1���
2
p ��1 � i�2� Zy �

1���
2
p ��1 � i�2�;

and the conjugates

� �
1���
2
p �P1 � iP2� � �i

@

@Zy

�y �
1���
2
p �P1 � iP2� � �i

@
@Z

:

Restriction to 1=2 BPS configurations corresponds in the
matrix model to considering a subset of correlators involv-
ing only the chiral primary operators of the general form

TrZk1TrZk2 	 	 	TrZkn :

For the corresponding reduction in Hilbert space one pro-
ceeds as follows (see [8,9]). It is useful to introduce the
operators

A � 1
2�Z� i��;

and

B � 1
2�Z� i��:

In terms of these, the Hamiltonian and the U�1� charge
read

H � Tr�AyA� ByB� J � Tr�AyA� ByB�:

One now has a sequence of eigenstates given by

Tr ��Ay�n�j0iE � J � n Tr��By�n�j0iE � �J � n

Tr��Ay�n�Tr��By�m�j0iE � n�m; J � n�m:
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Restriction to 1=2 BPS configurations corresponds in the
matrix model Hilbert space to a reduction to a subsector
given by A oscillators. It is useful to diagonalize A; Ay by
using the unitary symmetry

Aij � �i�ij Ayij � �yi �ij:

The measure in these variables shows that we can treat the
�i’s as fermionic variables. The Hamiltonian for these
fermionic oscillators is

H �
X
i

�yi �i:

The fermionic wave functions are

 F��1; �2; . . . ; �n� � e
�
P
i

��i�i
det

�l11 �l21 	 	 	 �lN1
�l12 �l22 	 	 	 �lN2
..
. ..

. ..
. ..

.

�l1N �l2N 	 	 	 �lNN

0BBBBB@
1CCCCCA:

After dividing the wave function by the Vandermonde
determinant, we have that

 B;l1;l2;...;lN ��1;�2; . . . ;�n��e
�
P
i

��i�i
�l1;l2;...;lN ��1;�2; . . .;�N�;

where �l1;l2;...;lN denotes the character of a representation of
SU�N� that corresponds to a Young tableaux with l1 boxes
in the first row, l2 boxes in the second one etc. Of special
interest is the sequence of states corresponding to repre-
sentations that contains 1 row of l boxes

 B;l1;l2;...;lN ��1;�2; . . . ;�n��e
�
P
i

��i�i
�l;0;...;0

�e
�
P
i

��i�i
�l;0;...;0��1;�2; . . . ;�N�;

and another sequence that corresponds to a representation
that contains 1 column of l boxes

 B;l1;l2;...;lN ��1; �2; . . . ; �n� � e
�
P
i

��i�i
�l;0;...;0

� e
�
P
i

��i�i
�1;1;...;1;0;...;0

� ��1; �2; . . . ; �N�:

In the fermionic picture [37] the first set of states represents
particles and the second holes. These were explained in
[6,8,9] to correspond to a giant graviton in AdS and to a
giant graviton on the sphere, respectively. In terms of the
moments

�i �
XN
j�0

�ij;

one obtains Schur polynomials representing these states

�l;0;...;0��1;�2; . . . ;�N��Pl��1;�2; . . . ;�N�

�1;1;...;1;0;...;0��1;�2; . . . ;�N�� ���
lPl���1;��2; . . . ;��N�:
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They are exact eigenstates of a cubic collective field theory
representing the bosonized version of 1d fermions. In
terms of a two dimensional density field ��x; y; t� the
Hamiltonian is simply

H �
1

2

Z
dx
Z
dy�x2 � y2���x; y; t�:

Together with the nontrivial symplectic form

L0 � 2�
Z
dx
Z
dy��x�G�x� x0� _~��x0�;

one has a topological 2� 1 dimensional scalar field theory
[38] which can be reduced to a 1� 1 dimensional collec-
tive field theory describing the dynamics of the boundary
(of the droplet) y
�x; t� by

S �
1

2�

Z
dt
Z
dx�y�@�1

x _y� � y�@�1
x _y� � ��y

3
� � y

3
��

� x2�y� � y����:

One can parametrize the boundary in terms of radial coor-
dinates, in which the Lagrangian becomes quadratic. This
is a simple manifestation of the integrability of this theory.
This goes as follows:

Consider a closed curve ~r�s; t� in R2 with parameter s
which in our case describes the boundary of the fermi sea
in the phase space. In general the equation of motion can be
written in the form

@t ~r� @s ~r � @sA� ~r�;

with A�~r� defining the model that we are studying. For the
case of free fermions in an oscillator potential one has

A� ~r� � 1
2~r

2:

If we parametrize the curve as

~r�x; t� � xx̂� y
�x; t�ŷ;

we recover

@t ~r� @x ~r � @ty
 @ty
 � �
1
2@x�y

2

 � x

2�:

If instead one uses polar coordinates to parametrize the
boundary

~r��; t� � ���; t� cos���x̂� ���; t� sin���ŷ;

and in this case we have

@t ~r� @� ~r �
1
2@t�

2��; t� @t�
2 � @��

2:

It is instructive to derive the above linear equation of
motion from the nonlinear one by using the field dependent
coordinate transformation. It is simply given by

x � ����x; t�; t� cos���x; t��

y� � ����x; t�; t� sin���x; t��:
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These are then the action-angle coordinates for the
dynamics of the boundary.

In their work Lin, Lunin and Maldacena [10] have
identified a nonlinear Ansatz for 10d Sugra which exactly
reduces to the above, bosonic Hamiltonian of 1d fermions.
To summarize the main features of the Ansatz, one has first
the 10 dimensional metric

ds2 � �h�2�dt� Vidx
i�2 � h2�dy2 � dxidxi�

� yeGd�2
3 � ye

�Gd ~�2
3

h�2 � 2y coshG;

y@yVi � �ij@jz;

y�@iVj � @jVi� � �ij@yz;

z �
1

2
tanhG

and a corresponding Ansatz for the gauge fields.
The only unknown function z is shown to obey the

Laplace equation:

@i@iz� y@y

�@yz
y

�
� 0;

which is solved as a boundary value problem:

z�x1; x2; y� �
y2

�

Z
D

z�x01; x
0
2; 0�dx

0
1dx

0
2

��x� x0�2 � y2�2

Vi�x1; x2; y� �
�ij
�

Z
D

z�x01; x
0
2; 0��xj � x

0
j�dx

0
1dx

0
2

��x� x0�2 � y2�2
:

Remarkably, the flux and the energy of this general con-
figuration were shown by LLM to take the form of the
bosonized free fermion droplet

N �
1

4�2l2P

Z
dx1

Z
dx2

�
u�t; x1; x2� �

1

2

�
� �

1

4�@2

Z
dx1

Z
dx2�x2

1 � x
2
2�

�
u�t; x1; x2� �

1

2

�
�

1

8�2
@

2

�Z
dx1

Z
dx2x2

1 � x
2
2

�
u�t; x1; x2� �

1

2

��
2
:

It should be stressed that even though these expressions
look two dimensional, effectively this is still only a 1
dimensional correspondence (it is described explicitly by
the 1� 1 dimensional bosonic scalar field theory). In
addition to the formulas for the flux and the energy one
also needs the symplectic form (which should coincide
with the symplectic form established by Iso, Karabali
and Sakita [38]) for the 2d fermion droplet. Another,
simple way to see the one dimensionality is by an analysis
of linearized fluctuations (we give this in Appendix A).
One has

S �
X
n>0

1

2

Z
dt
�

1

n2 _p2
n � _q2

n � n
2q2

n � p
2
n

�
;
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in agreement with the well known quadratic action for
chiral primaries in AdS:

S �
X
n

8R8
AdSn�n� 1�

�n� 1�2

Z
AdS5

dx5 �����������
gAdS5
p

� ���n���n � n�n� 4���n��n�:

It is supersymmetry which requires that �@t � @��� � 0
which for the 0� 1 dimensional variables means that the
‘‘angular momentum’’ is equal to the energy. Choosing an
opposite chirality for the fermions we would have had the
condition �@t � @��� � 0 which would flip the sign in the
relation between energy and ‘‘angular momentum’’.
III. MATRIX MODEL EIGENPROBLEM

We have seen in the discussion that the treatment of 1=2
BPS states corresponds to a reduction, namely, to one
matrix quantum mechanics given by the canonical set A
and Ay. It is our interest to extend this correspondence to a
larger set of states. In the matrix model they will be states
involving the two matrices (A and B) of a two matrix
model. This can be stated as a two matrix problem, with
two hermitian matrices M and N in a quadratic potential,
i.e., with Hamiltonian

H � �
1

2
Tr
�
@
@M

@
@M

�
�

1

2
Tr�M2� �

1

2
Tr
�
@
@N

@
@N

�
�

1

2
Tr�N2�: (1)

Using creation-annihilation operators for the matrix Nij in
a coherent basis, the Hamiltonian takes the form consid-
ered in this article:

Ĥ � �
1

2
Tr
�
@
@M

@
@M

�
�

1

2
Tr�M2� � Tr

�
B
@
@B

�
: (2)

We consider the action of this Hamiltonian on functionals
of invariant variables (loops)

�� �k; s � 0; 1; 2; . . .��;

where the  �k; s � 0; 1; 2; . . .� are states with s ‘‘B impu-
rities’’:

 �k; 0� � Tr�eikM�

 �k; 1� � Tr�BeikM�

 �k; 2� �
Z k

0
dk0Tr�Beik

0MBei�k�k
0�M�

. . . (3)

In terms of the eigenvalues �i and the angular variables
V of the matrix M � V�V�, we have
125009
 �k; 0� � �ie
ik�i

 �k; 1� � �i�V�BV�iieik�i

 �k; 2� � �2i�i;j�V
�BV�ij�V

�BV�ji
eik�j

��j � �i�

. . . (4)

Using the chain rule, we obtain for the matrix M kinetic
energy operator on the wave functional:

�
1

2
Tr
�
@
@M

@
@M

�
� �

1

2
�s

Z
dk Tr

�
@2 �k; s�
@M@M

�
@

@ �k; s�

�
1

2
�s;s0

Z
dk
Z
dk0

� Tr
�
@ �k; s�
@M

@ �k0; s0�
@M

�
�

@2

@ �k; s�@ �k0; s0�
:

As it is traditional [39], we introduce the notation:

�
1

2
Tr
�
@
@M

@
@M

�
� �

1

2
�s

Z
dk !�k; s�

@
@ �k; s�

�
1

2
�s;s0

Z
dk
Z
dk0

���k; s:k0; s0�
@2

@ �k; s�@ �k0; s0�
; (5)

!�k; s� splits the loop  �k; s� and ��k; s:k0; s0� joins the
two loops  �k; s� and  �k0; s0�.

We will find it useful to introduce a density description,
or x representation:

 �x; s� �
Z dk

2�
e�ikx �k; s�;

 �k; s� �
Z
dxeikx �x; s�:

Any function of k (or x) transforms accordingly. Namely

!�x; s� �
Z dk

2�
e�ikx!�k; s�

��x; s; y; s0� �
Z dk

2�

Z dk0

2�
e�ikxe�ik

0y��k; s; k0; s0�:

For conjugates, we have

@
@ �x; s�

�
Z
dkeikx

@
@ �k; s�

;

@
@ �k; s�

�
Z dx

2�
e�ikx

@
@ �x; s�

:

In the density description, the kinetic operator then be-
-4
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comes

�
1

2
Tr
�
@
@M

@
@M

�
� �

1

2
�s

Z
dx!�x; s�

@
@ �x; s�

�
1

2
�s;s0

Z
dx
Z
dy��x; s:y; s0�

�
@2

@ �x; s�@��y; s0�
: (6)
A. Spectrum and fluctuations in the zero impurity
sector

Consider first the analysis for the spectrum of the zero
impurity problem. This sector corresponds to the Quantum
Mechanics of a single Hermitian matrix, and it has by now
a standard solution [39–41], which is briefly reviewed in
Appendix B. In this case, one has the standard cubic
Hamiltonian

H0
eff �

1

2N2

Z
dx@x��x� �x; 0�@x��x�

� N2

�Z
dx
�2

6
 3�x; 0� �  �x; 0�

�
x2

2
�	

��
; (7)

giving the well known Wigner distribution background in
the limit as N ! 1

� �x; 0� � ��0 �
������������������
2	� x2

q
�

��������������
2� x2

p
:

For the small fluctuation spectrum, one shifts the back-
ground

 �x; 0� � �0 �
1����
�
p

N
@x
; @x��x� � �

����
�
p

NP�x�;

to find the quadratic operator

H0
2 �

1

2

Z
dx��0P

2�x� �
1

2

Z
dx��0�@x
�

2:

The way to diagonalize is by now well known: one changes
to the classical ‘‘time of flight’’ q

dx
dq
� ��0; x�q� � �

���
2
p

cos�q�;

��0 �
���
2
p

sin�q�; 0 � q � �:

One obtains the equation for a 2d massless boson:

H0
2 �

1

2

Z
dqP2�q� �

1

2

Z
dq�@q
�2: (8)

In addition one needs to impose Dirichelet boundary
conditions at the classical turning points, for a consistent
time evolution of the constraint (B3). Therefore the spec-
trum in the zero impurity sector is

wj � j; �j � sin�jq�: (9)
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The following comment is in order: the harmonic oscil-
lator potential is special, in that the effective Hamiltonian
(7) can be equivalently written as (for discussions on the
relationship between the two rewritings in the context of
supersymmetric or stochastic stabilizations, see for in-
stance [42–45])

H0
eff �

1

2N2

Z
dx@x��x� �x; 0�@x��x� �

N2

2

�
Z
dx �x; 0�

�Z
dy
 �y; 0�
x� y

� x
�

2
:

It is then seen that the Wigner distribution background
also satisfies the well known Brezin, Itzykson, Parisi,
Zuber (BIPZ) [46] equationZ

dz
�0�z�
�x� z�

� x: (10)

Shifting about the background as above, we obtain for the
quadratic Hamiltonian

H0
2 �

1

2

Z
dx��0P

2�x� �
1

2

Z
dx��0

�Z dy
�

@y
�y�

x� y

�
2
:

This nonlocal Hamiltonian can be easily shown to be
equivalent to (8). Let us examine this in slightly more
detail: by changing to the classical time of flight q, we
obtain

H0
2 �

1

2

Z
dqP2�q� �

1

2

Z
dq
�
@q
Z dq0

�
��0�q0�
�q0�
x�q� � x�q0�

�
2
:

The above nonlocal integral operator plays a prominent
role in what follows and is discussed in Appendix C. Let us
denote it by

@q
Z dq0

�
��0�q0�f�q0�
x�q� � x�q0�

� �ij@qjf�q�;

and by abuse of language (it does not satisfy a Leibnitz
rule) refer to it as the ‘‘absolute derivative’’, for ease of
notation. We note that ��ij@qj�2 � @2

q and that the appro-
priate eigenfunctions of this operator are �n � sin�nq�
with eigenvalue n as shown in Appendix C. Therefore
the eigenfunctions (9) are also the solutions of

�i@t � ij@qj���q� � 0:
B. Quadratic Hamiltonian for states with impurities

We return now to the (pre-Hermitian) kinetic energy
operator (6) (or (5)). We note that

h �x; s�i � h �k; s�i � 0; s � 1; 2; 3; . . . :

This observation implies that for the multi-impurity spec-
trum it is sufficient to consider the zero impurity sector
Jacobian already discussed [47], i.e.,
-5
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@
@ �x; 0�

! J1=2 @
@ �x; 0�

J�1=2

�
@

@ �x; 0�
�

1

2

@
@ �x; 0�

lnJ
@

@ �x; s�

!
@

@ �x; s�
; s � 1; 2; 3; :::

where, to leading order in N

@x
@ lnJ
@ �x; 0�

� @x
Z
dy��1�x; 0; y; 0�!�y; 0�

� 2
Z
dy
 �y; 0�
�x� y�

: (11)

Let us now identify the terms in (6) which determine the
quadratic operator in the multi-impurity sector.

We look for terms of the form  �x; s�@=@ �x; s�; s > 0
when  �x; 0� ! �0�x�. Contributions of this form con-
tained in the first term of (6) result from splittings of the
loop  �x; s� into a zero impurity loop and another with s
impurities. We will denote this amplitude by �!�x; s�.

Contributions contained in the second term of (6) are
obtained as a result of the similarity transformation de-
scribed above, when we replace @=@ �x; 0� !
��1=2�@=@ �x; 0� lnJ. We therefore obtain:

Hs
2 � �

1

2

Z
dx �!�x; s�

@
@ �x; s�

�
1

2

�
Z
dx
Z
dy��x; 0:y; s�

@ lnJ
@ �x; 0�

@
@ �y; s�

: (12)

In a problem involving joining and splitting of loop
states, the issue of closure of loop space is an important
one. The first term in (12) always closes. This is because

�!�k; s� � �2
Z k

0
dk0k0 �k0; s� �k� k0; 0�:

This result is a straightforward application of a result
established in [48]. In the x representation,

�!�z; s� �
Z dk

2�
e�ikz �!�k; s�

� �2
�
 �z; s�

Z
dx

�0�x�

�x� z�2
��0�z�

�
Z
dx

 �x; s�

�x� z�2
�
Z
dx�0�x�@z

�
 �z; s�
�z� x�

��
:

Substituting this expression into (12) we obtain

Hs
2 �

Z
dx
Z
dz
�0�z� �x; s� �  �z; s��0�x�

�x� z�2
@

@ �x; s�

�
Z
dx
Z
dz
�0�z� �x; s�
�x� z�

@x
@

@ �x; s�

�
1

2

Z
dx
Z
dy��x; 0:y; s�

@ lnJ
@ �x; 0�

@
@ �y; s�

: (13)
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In general, for an arbitrary potential, the last term in (13)
involving ��x; 0:y; s� will not close. We will argue in the
following that for the harmonic oscillator potential this
term closes, by considering explicitly s � 1; 2; 3 and then
arguing for the general case.

C. The one impurity sector

It is straightforward to show that in this case

��k; 0:k0; 1� � �kk0 �k� k0; 1�;

from which it follows

��x; 0; y; 1� � @x@y� �x; 1���x� y��:

The term involving ��x; 0:y; 1� in (13) becomes

1

2

Z
dx
Z
dy��x; 0:y; 1�

@ lnJ
@ �x; 0�

@
@ �y; 1�

�
1

2

Z
dx@x

@ lnJ
@ �x; 0�

 �x; 1�@x
@

@ �x; 1�

�
Z
dx
Z
dz

�0�z�
�x� z�

 �x; 1�@x
@

@ �x; 1�
;

where we have used (11). We observe that this term cancels
exactly a similar term in (13), and we obtain the final form
for the quadratic Hamiltonian in the 1 impurity sector:

Hs�1
2 �

Z
dx
Z
dz
�0�z� �x; 1� �  �z; 1��0�x�

�x� z�2
@

@ �x; 1�
:

(14)

The rescaling (B6) leaves the above Hamiltonian invariant,
or equivalently the above Hamiltonian is of order 1 (N0) in
N, as was the case in the zero impurity sector. Writing the
operator as Z

dx
Z
dy �x; 1�K�x; y�

@
@ �y; 1�

;

we obtainZ
dyK�x; y�

@
@ �y; 1�

�
Z
dy

�0�y�

�x� y�2

�
@

@ �x; 1�

�
@

@ �y; 1�

�
:

Acting on a wave functional

� �
Z
dzf�z� �z; 1�;

we obtain the Marchesini-Onofri kernel [34,35,49,50]Z
dy

�0�y�

�x� y�2
�f�x� � f�y�� �

�
�
d
dx

Z
dy

�0�y�
�x� y�

�
f�x�

�
d
dx

Z
dy
�0�y�f�y�
�x� y�

:

Using (10), the first term yields �f�x�, and by changing to
-6
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the time of flight coordinates the kernel can be written as

�f�q� �
i

��0
j@qj���0�q�f�q��;

or, for the spectrum equation

��1� ij@qj����0�q�f�q�� � w���0�q�f�q��:

As described in Appendix C the spectrum and eigenfunc-
tions of this operator are

wn � n� 1; �s�1
n �

sin�nq����
2
p

sin�q�
; n � 1; 2; . . . :

For the harmonic oscillator potential, these are the well
known Tchebychev polynomials of the second kind.
Adding the contribution from the Tr�B@=@B� term of the
Hamiltonian we obtain

wn � n; �s�1
n �

sin�nq����
2
p

sin�q�
; n � 1; 2; . . . : (15)
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D. The two impurities sector

For two impurities, we have

��k0; 0:k; 2� � �2k0

Z
dk0k0Tr�Bei�k�k

0�MBei�k
0�k0�M�

� �2k0�i;j�V
�BV�ij�V

�BV�ji

�

�
�ik

ei�k�k0��i

��i � �j�
� eik0�i

eik�i � eik�j

��i � �j�2

�
;

and

��x; 0:y; 2� � �2i@x@y�i;j�V
�BV�ij�V

�BV�ji��x� y�

�
��y� �i�
��i � �j�

� 2i@x�i;j�V�BV�ij

��V�BV�ji��x� �i�

�
��y� �i� � ��y� �j�

��i � �j�
2 :

The ��x; 0:y; 2� term in (13) takes the form
1

2

Z
dx
Z
dy��x; 0:y; 2�

@ lnJ
@ �x; 0�

@
@ �y; 2�

� �i
Z
dx
Z
dy
�

�i;j�V�BV�ij�V�BV�ji��x� y�

�
��y� �i�
��i � �j�

@x
@ lnJ
@ �x; 0�

@y
@

@ �y; 2�
��i;j�V�BV�ij�V�BV�ji��x� �i�

�
��y� �i� � ��y� �j�

��i � �j�2
@x

@ lnJ
@ �x; 0�

@
@ �y; 2�

�
� �2i

Z
dx�i;j�V

�BV�ij�V
�BV�ji

��x� �i�
�x� �j�

Z
dz

�0�z�
�x� z�

@x
@

@ �x; 2�

� 2i
Z
dy�i;j�V

�BV�ij�V
�BV�ji

��y� �i�

��i � �j�
2

�Z
dz

�0�z�
��i � z�

�
Z
dz

�0�z�
��j � z�

�
@

@ �y; 2�
:

For the harmonic oscillator potential, we can use the result
(10), so that

1

2

Z
dx
Z
dy��x; 0:y; 2�

@ lnJ
@ �x; 0�

@
@ �y; 2�

� �2i
Z
dx�i;j�V

�BV�ij�V
�BV�ji

��x� �i�
�x� �j�

�
Z
dz

�0�z�
�x� z�

@x
@

@ �x; 2�
� 2i

Z
dy�i;j�V

�BV�ij

� �V�BV�ji
��y� �i�
�y� �j�

@
@ �y; 2�

: (16)

But from (4),
 �x; 2� �
Z dk

2�
e�ikx �k; 2�

� �2i
Z dk

2�
e�ikx�i;j�V

�BV�ij�V
�BV�ji

�
eik�j

��j � �i�

� �2i�i;j�V�BV�ij�V�BV�ji
��x� �j�

�x� �i�
:

This allows us to express (16) entirely in terms of the
density  �x; 2� as
-7
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1

2

Z
dx
Z
dy��x; 0:y; 2�

@ lnJ
@ �x; 0�

@
@ �y; 2�

�
Z
dx
Z
dz

�0�z�
�x� z�

 �x; 2�@x
@

@ �x; 2�
�
Z
dx �x; 2�

�
@

@ �x; 2�
:

As was the case for the one impurity sector, the first term
above cancels the similar term in (13), and we obtain for
the quadratic Hamiltonian in the 2 impurity sector:

Hs�2
2 �

Z
dx
Z
dz
�0�z� �x; 2� �  �z; 2��0�x�

�x� z�2
@

@ �x; 2�

�
Z
dx �x; 2�

@
@ �x; 2�

: (17)

This is a shifted Marchesini-Onofri operator. It can be
recast in the form:

��2� ij@qj����0�q�f�q�� � w���0�q�f�q��:

The spectrum and eigenfunctions of this operator are

wn � n� 2; �s�2
n �

sin�nq����
2
p

sin�q�
; n � 1; 2; . . . :

Adding the contribution from the Tr�B@=@B� term of the
Hamiltonian we obtain

wn � n; �s�2
n �

sin�nq����
2
p

sin�q�
; n � 1; 2; . . . : (18)

E. Multi-impurity spectrum

The pattern that emerges from the above discussion is
clear: for s impurities and the harmonic oscillator poten-
tial, one obtains a shifted Marchesini-Onofri operator with
spectrum and eigenfunctions

wn � n� s; �s
n �

sin�nq����
2
p

sin�q�
; n � 1; 2; . . . :

When the contribution from the Tr�B@=@B� is added, we
have for the full Hamiltonian

wn � n; �s
n �

sin�nq����
2
p

sin�q�
; n � 1; 2; . . . : (19)

To provide further evidence of this pattern, the 3 impurity
case is treated explicitly in Appendix D. We also checked
that by introducing multi local densities and then project-
ing to the 2 and 3 impurity states discussed here, we obtain
the spectrum described above.

To summarize, as the U�1� charge operator Ĵ it is rep-
resented by

DONOS, JEVICKI, AND RODRIGUES
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Ĵ � �
1

2
Tr
�
@
@M

@
@M

�
�

1

2
Tr�M2� � Tr

�
B
@
@B

�
;

and consequently j � n� 2s. Together with the energy
eigenvalues w � n, these specify a two parameter family
of states and a two dimensional complete set of
eigenfunctions.
IV. SUGRA MAP

In this section we would like to identify the states of
Sugra fluctuations and establish a one to one map with the
eigenstates of the matrix problem found in the previous
section. With the two matrices we hope to explore the extra
coordinate which will be related to the radial coordinate of
AdS and S. Since the other angular coordinates are
ignored, it is sufficient to concentrate on the small fluctua-
tion equations associated with AdS3 � S3 (the analysis for
AdS5 � S5 reaches an identical conclusion). We have ob-
tained in the matrix model solution a two parameter se-
quence of states with the eigenvalues J � j and
w � j� 2n. It is easy to find a corresponding sequence
of states, which have the same eigenvalues. Actually there
are two sequences, one with nontrivial functional depen-
dence in the radial variable of AdS and the other in S. This
situation is familiar from giant gravitons.

It will be clear that while the integer valued eigenvalues
easily agree (between the matrix model and supergravity),
the comparison of their wave functions is much less trivial
and also much more interesting. In Sugra the wave func-
tions are given as nontrivial special functions, while in the
solution of the matrix eigenvalue problem they take the
form of ordinary plane waves . The later obviously happens
after the change from eigenvalue coordinate to the ‘‘time of
flight’’ coordinate. We will establish a relationship be-
tween the two pictures in terms of a kernel describing a
(canonical) change of variables.

A. The LLM kernel

It is useful first to work out the form of the kernel for the
case of 1=2 BPS states given by the LLM map. For this one
has to consider the LLM construction and perform the
small fluctuation analysis. We do this in Appendix Awhere
we also give the details of a transformation to the Lorentz-
De Donder gauge. Furthermore, from now on the time of
flight q will be denoted by �.

Let us concentrate on the fluctuations associated with
the metric g ~� ~�. In the gauge of LLM the perturbation
�g ~� ~� reads
�g ~� ~� � �2 sinh� sin�

���������������������
1� 2uAdS

1� 2uAdS

s
1

�1� 2uAdS�
2

~ud ~�2
3 � sin2�

1

2�

Z 2�

0
d�

�1� a2�2

�1� a2 � 2a cos������2
X
j

aje
ij�

a �
cos�

cosh�

(20)
-8



MATRIX MODEL MAPS IN AdS/CFT CORRESPONDENCE PHYSICAL REVIEW D 72, 125009 (2005)
The aj’s are harmonic oscillator amplitudes. The rele-
vant gauge transformation can be written in integral form
as

�� � �
sin� cos�

cosh2�� cos2�

X
j

aje
ij�

� � tan�
1

2�
a2

1� a2

�
Z 2�

0
d�

1� a2

1� a2 � 2a cos�����

X
j

aje
ij�: (21)
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Performing the gauge transformation we have

�g ~� ~�� sin2�
1

2�

�
Z 2�

0
d�

1�4a2�a4�4a3 cos�����

�1�a2�2acos������2
X
j

ajeij�:

(22)
In this form we see the relation
2jjj�j�t; �;�; �� �
1

2�

Z 2�

0
d�

1� 4a2 � a4 � 4a3 cos�����

�1� a2 � 2a cos������2
aje

ij�: (23)
After performing the field dependent gauge transforma-
tion in order to recognize the primary field coming from
the metric and the three form one has the relation

jjj�j�t; �;�; �� �
1

2�
eijt

Z 2�

0
d�KLLM��;�; �j��eij�;

(24)

where the kernel is given by

KLLM��;�; �j�� �
1� 4a2 � a4 � 4a3 cos�����

�1� a2 � 2a cos������2

a �
cos�

cosh�
: (25)
At this point we notice that a < 1 at points where the
measure of AdS3 � S3 is nonzero. In this region, we may
consider introducing a cutoff L limiting the angular mo-
mentum j. We then have the kernel

jjj�j�t; �;�; �� �
1

2�
eijt

Z 2�

0
d�KLLM

L ��;�; �j��eij�;

jjj � L 0 �
1

2�
eijt

Z 2�

0
d�KLLM

L ��;�; �j��eij�;

jjj>L:

(26)

The kernel with the cutoff is given by
KLLM
L ��;�; �j�� � KLLM��;�; �j�� �

� cos�L������ � a cos��L� 1�������

1� a2 � 2a cos�����
aL

�
aL cos��L� 2������� � �1� L� 2La2� cos��L� 1�������

�1� a2 � 2a cos������2
aL

�
�a2�L� 1� cos��L� 1������� � a�2� 2L� La2� cos�L������

�1� a2 � 2a cos������2
aL: (27)
We see that we have a strong convergence

lim
L!1

KLLM
L ��;�; �j�� � KLLM��;�; �j��: (28)

B. Correspondence with the 2d black hole

To proceed with the construction of the kernel in our
more general two dimensional case, it is also useful to take
note of a correspondence with an equivalent problem that
was considered in the case of a 2d black hole. We show in
what follows that there is a simple connection between
‘‘off-shell’’ black hole wave functions and on-shell AdS
wave functions that we have identified.

The wave functions that we consider correspond to
highest weight states on SO�4� but with a nontrivial de-
pendence on the radial coordinate of AdS

f � cosl���eil� �t; ��:

We have the following eigenequation for  

�cos2���@2
t  � cos2���@2

� � cot���@� � l�l� 2� 

) �@2
t  � @2

� �
1

cos��� sin���
@� �

l�l� 2�

cos2���
 ;

with the integration measure

dm �
�������
�g
p

g00dtd� � tan���d�:

A change to a new function
-9
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R �
1

cos���
 ;

with the new measure

dm �
1

2
sin�2��dtd�;

leads to the equation

�@2
t R�

1

cos���

�
@2
� �

1

cos��� sin���
@�

�
cos���R

�
l�l� 2�

cos2���
R

or

@2
�R� 2 cot�2��@�R �

l�l� 2� � 1

cos2���
R�!2R� R:

This can be compared with the 2d black hole equation[36]

defined as a coset fSL�2; R�=U�1�. For the case of the
Lorentzian black hole they are specified by the eigenvalue
equation

�0T�
 �
�
�

1

4
� �2

�
T�


) �
1

4 sinh�r2�
@2
�T

�

 � @

2
rT

�

 � coth�r�@rT

�



�

�
�

1

4
� �2

�
T�


)
1

sinh�r2�

2T�
 � @

2
rT

�

 � coth�r�@rT

�



�

�
�

1

4
� �2

�
T�
 ;

and the inner product is defined through the integration
measure

hT�
 jT
�0

0 i � ��
� 
0�

Z 1
0
dr sinh�r��T�
 �r��


T�
0


0 �r�:

We see that the two problems are related, through the
following transformation transformations

l! 1� 2i
 !! i2� �!
i
2
�r� ��

In Ref. [36], a transformation was constructed relating
the wave functions in the black hole case to those of a c �
1 matrix model. The transformation reads

T�
 �
Z �1
�1

dt0
Z �1

0
d��

�
sinh

�
r
2

�
sinh

�
2t0
3
� �

�
� cosh�2��

�
e�4i�t0=3� cos�4���:

and it involves a nontrivial kernel which specifies a ca-
nonical transformation from one problem to another. In the

DONOS, JEVICKI, AND RODRIGUES
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present case we will follow the construction of [36] and
construct an analogous kernel which will relate AdS (and
S) wave functions to those of the matrix eigenvalue
problem.

C. The AdS kernel

We first give the main formulas defining the AdS kernel.
The wave functions obey the equations

r2
S3�j;n�t; �;�; �� � �jjj�jjj � 2��j;n�t; �;�; ��

r2
AdS3�j;n�t; �;�; �� � jjj�jjj � 2��j;n�t; �;�; ��

� i
@
@�

�j;n�t; �;�; ��

� j�j;n�t; �;�; ��;

(29)

and have an explicit solution in terms of hypergeometric
functions

�j;n�t; �;�; �� � e�j=jjj�i!j;ntcosjjj�e�j=jjj�ij�cosh��jjj�2n�

� �F�1� j� n;�n; 1;�sinh2��

!j;n � jjj � 2n: (30)

We now use the integral representation

�j;n�t; �;�; �� � e�j=jjj�i!j;nt
I
C
dz

1

i2�z
�cosh�e��j=jjj�i�

� �cosh�� z sinh����jjj�2n

�

��
cosh�
z
� sinh��

�

�
cosh�� z sinh��e�2�j=jjj�i�

�
n

� e�j=jjj�i!j;nt
I
C
dz

1

i2�z
�e�j=jjj�i�w�jjj�2n

� �e�2�j=jjj�i�v�n; (31)

where

w �
1

cosh��cosh�� z sinh��

v �
�

cosh�
z
� sinh�

�
�cosh�� z sinh��

(32)

jjj � 2n � L (33)

to derive the kernel defined through

jjj�j;n � e�j=jjj�i!j;nt
1

4�2

Z 2�

0
d�

Z 2�

0
d�

� KL��;�; �j�; ��ei�j=jjj���jjj�2n���n��;

KL��;�; �j�; �� �
I
C

dz
i2�z

�FL�wj��GL�vj��

� 2 ~FL�wj�� ~GL�vj���: (34)
-10



MATRIX MODEL MAPS IN AdS/CFT CORRESPONDENCE PHYSICAL REVIEW D 72, 125009 (2005)
Explicitly, the functions involved in the definition of the kernel can be worked out after an introduction of a cutoff L for
convergence. They take the slightly long forms:

FL�wj�� �
1� 4w2 � w4 � 4w3 cos�����

�1� w2 � 2w cos������2
�
� cos�L������ � w cos��L� 1�������

1� w2 � 2w cos�����
wL

�
wL cos��L� 2������� � �1� L� 2Lw2� cos��L� 1�������

�1� w2 � 2w cos������2
wL

�
�w2�L� 1� cos��L� 1������� � w�2� 2L� Lw2� cos�L������

�1� w2 � 2w cos������2
wL (35)

GL�vj�� �
1� v2

1� v2 � 2v cos��� 2��
�
� cos�L��� 2��� � v cos��L� 1���� 2���

1� v2 � 2v cos��� 2��
vL (36)

~F L�wj�� �
1� w2

1� w2 � 2w cos�����
�
� cos�L������ � w cos��L� 1�������

1� w2 � 2w cos�����
wL (37)

~GL�vj�� �
v�v2 � 1� cos��� 2�� � 2v2

�1� v2 � 2v cos��� 2���2
�
vL cos��L� 2���� 2��� � �1� L� 2Lv2� cos��L� 1���� 2���

�1� v2 � 2v cos��� 2���2
vL

�
�v2�L� 1� cos��L� 1���� 2��� � v�2� 2L� Lv2� cos�L��� 2���

�1� v2 � 2v cos��� 2���2
vL:

(38)
D. The sphere kernel

We now consider the second sequence of wave func-
tions, which are characterized by a nontrivial dependence
on the radial coordinate of the sphere. The wave equations
read

r2
S3�j;n�t;�;�;�����jjj�2n��jjj�2n�2�

��j;n�t;�;�;��r
2
AdS3�j;n�t;�;�;��

��jjj�2n��jjj�2n�2��j;n�t;�;�;��

� i
@
@�

�j;n�t;�;�;��� j�j;n�t;�;�;��:

(39)

In the coordinate system where the metric is

ds2 � �cosh2�dt2 � d�2 � sinh2�d 2 � d�2

� cos2�d�2 � sin2�d ~ 2;

the normalizable solutions are given by

�j;n � e�j=jjj�i!j;nteij�cosh�jjj�2n�cosjjj

� �F�1� jjj � n;�n; 1; sin2��;

!j;n � jjj � 2n: (40)

We use the integral form of the wave functions
125009
�j;n�e�j=jjj�i!j;nteij�
I
C

dz
i2�z

�
cos��zsin�

cosh�

�
jjj�2n

�

� cos�� sin�
z

cos��zsin�

�
n

�e�j=jjj�i!j;nt
I
C
dz

dz
i2�z

�
cos��zsin�

cosh�
ei�j=jjj��

�
jjj�2n

�

� cos�� sin�
z

cos��zsin�
e�i2�j=jjj��

�
n

�e�j=jjj�i!j;nt
I
C
dz

dz
i2�z

�e�j=jjj�i�w�jjj�2n�e�2�j=jjj�i�v�n;

(41)

where C is the unit circle on the complex plane and we
defined

w �
cos�� z sin�

cosh�
v �

cos�� sin�
z

cos�� z sin�
: (42)

Introducing a cutoff on the angular momentum as we
had for the LLM case

jjj � 2n � L; (43)

we rewrite the wave function as
-11
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�jjj � 2n��j;n � e�j=jjj�i!j;nt
1

4�2

Z 2�

0
d�

Z 2�

0
d�KL��;�; �j�; ��ei�j=jjj���jjj�2n���n��;

KL��;�; �j�; �� �
I
C

dz
i2�z

FL�wj��GL�vj��:

(44)

The functions FL�wj�� and GL�vj�� specifying the kernel in this case are found to be given by

FL�wj�� �
1� 4w2 � w4 � 4w3 cos�����

�1� w2 � 2w cos������2
�
� cos�L������ � w cos��L� 1�������

1� w2 � 2w cos�����
wL

�
wL cos��L� 2������� � �1� L� 2Lw2� cos��L� 1�������

�1� w2 � 2w cos������2
wL

�
�w2�L� 1� cos��L� 1������� � w�2� 2L� Lw2� cos�L������

�1� w2 � 2w cos������2
wL; (45)

and

GL�vj�� �
1� v2

1� v2 � 2v cos��� 2��
�
� cos�L��� 2��� � v cos��L� 1���� 2���

1� v2 � 2v cos��� 2��
vL: (46)
Let us now make the following comment regarding the
cutoff that we have used. Since it imposes an upper limit on
angular momenta it clearly plays a role of the ’exclusion
principle’. Its removal seems to lead to singularities both in
the sphere and the AdS case. One should remember then
that this analysis is done at the linearized level, so there is
no essential difference between the two cases. We can also
show that if we restrict our attention to 1=2 BPS wave
functions (which would correspond to n � 0), the above
kernel reduces to the kernel that we have found from the
LLM construction. We notice that the function FL�wj�� is
analytic in the unit circle C of the z-plane for every value of
the remaining variables.

jjj�j;0 � eijt
1

4�2

Z 2�

0
d�

Z 2�

0
d�KL��;�; �j�; ��eij�:

(47)

Performing the integral over � givesZ 2�

0
d�GL�vj�� � 1; (48)

which establishes the resultZ 2�

0
d�KL��;�; �j�; �� �

I
C

dz
i2�z

FL�wj��

� FL�wj��jz�0

� KLLM
L ��;�; �j��: (49)

V. CONCLUSION

We have in the present work considered the simple a
complex two matrix model with a purpose of developing
further its correspondence with AdS eigenstates. We de-
velop a (hybrid) formalism to construct a two dimensional
sequence of invariant matrix model eigenstates. Here one
125009
of the (matrix) degrees of freedom is treated in a density
representation (in a manner analogous to the one matrix
collective field theory), while the other is represented in the
coherent state picture. This leads to a sequence of (integral)
equations which we then solve for the case of the oscillator
potential. The two dimensional set of eigenstates extends
the one dimensional space representing the eigenstates of
free fermions. As such this extension allows a nontrivial
probe of one further extra dimension . This as we argue can
be mapped into either the radial coordinate of AdS or the
radial coordinate of the sphere.

The mapping between states of the matrix model and the
wave functions of SUGRA is one to one. As such it differs
from the holographic map where one of the dimensions is
projected out. In the present case the map can be described
by a (two dimensional) kernel in paralel with similar maps
in the case of 2d noncritical string theory. We also note that
leg factors of this kind were found in the pp-wave map of
[51].

When applied to a one dimensional subspace of 1=2 BPS
wave functions our kernel reduces to the (linearized) map
of LLM. In the construction of the extended map one
seemingly requires a cutoff providing an interesting im-
plementation of the ’exclusion principle’. The understand-
ing of this cutoff is clearly of further interest.

It should be commented that much like in the 1=2 BPS
case of free fermions the model considered is that of simple
decoupled harmonic oscillators. Yang-Mills type interac-
tions present in the full theory might be of relevance but are
not included in our study. For the case of 1=2 BPS corre-
lators there are theorems regarding the absence of coupling
constant corrections. It can be hoped that this will persist
for the present set of states. Certainly, the effect of coupling
constant correction deserves to be investigated (e.g., [52]).
It is also of interest to extend the present map to a still
larger set of eigenstates.
-12
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APPENDIX A: EXPANDING THE LLM SOLUTION
IN FLUCTUATIONS

In this section we would like to expand the circular
droplet solution in ‘‘off-shell’’ fluctuations of the matrix
model and see the equations of motion these fluctuations
satisfy from the bosonic equations of motion of gravity.
This analysis was also performed independently in a recent
paper [26].
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The general 1=2 BPS LLM solution for the metric is
determined by the function

u�x1; x2; y� �
y2

�

Z
d~x2u�~x1; ~x2; 0�

1

�� ~x� ~~x�2 � y2�2
;

with u�~x1; ~x2; 0� being the phase space distribution of the
fermions in the matrix model picture. Parametrizing the
boundary of the fermi surface using the polar coordinates
representation

~x 2
1��; t� � ~x2

2��; t� � R2
AdS �

X
n>0

pn�t� sin�n�� � nqn�t�

� cos�n��;

the phase space density becomes
u�r; �; 0; t� � ��
� ���������������������������������������������������������������������������������������
R4

AdS �
X
n>0

pn�t� sin�n�� � nqn�t� cos�n��
s

� r
�
�

1

2
;

and after approximating at first order in perturbations
pn; qn the distribution becomes.

u�r; �; 0; t� �
1

2
� ��R2

AdS � r� � ��R
2
AdS � r�

�X
n>0

pn�t�

2R2
AdS

� sin�n�� � n
qn�t�

2R2
AdS

cos�n��
�
:

The field that is produced is given then by

u�r;�; y; t� � uAdS�r;�; y; t� � ~u�r;�; y; t�

u�r;�; y; t� � uAdS�r;�; y; t� �
y2

2�

Z 2�

0
d ~�

�

P
n>0
pn�t� sin�n ~�� � nqn�t� cos�n ~��

�R4
AdS � r

2 � y2 � 2rR2
AdS cos� ~�����2

:

The above integral can be computed from the more generalZ 2�

0
d�

ein�

�a� 2 cos����2
�

1

i

I
C
dz

zn�1

�z2 � az� 1�2

�
1

i

I
C
dz

zn�1

�z� z��2�z� z��2

� 2�
d
dz

zn�1

�z� z��
2

��������z�z�

� 2�
zn�

�z� � z��2

�
n�

z� � z�
z� � z�

�
;

z
 �
a


��������������
a2� 4
p

2
:

Where the contour C is the unit circle on the complex plane
of integration and we only picked the contribution from z�
which is the root that is inside the circle for a > 2.
After setting

y � R2
AdS sinh� sin� r � R2

AdS cosh� cos�;

the result is given by

u��;�; �; t� � uAdS��;�; �; t� �
1

R4
AdS

sinh2�sin2�

�cosh2�� cos2��2

�
X
n>0

�
cos�

cosh�

�
n
�
n�

cosh2�� cos2�

cosh2�� cos2�

�
� �pn�t� sin�n�� � nqn�t� cos�n���;

where

uAdS��;�; �; t� �
1

2

sinh2�� sin2�

sinh2�� sin2�
:

The perturbation of the metric on S5 is given by

1

R2
AdS

d~s2
S5��

2

sinh�sin�
�cosh2�sin2��sinh2�cos2��

�
uAdS��������������������

1�4u2
AdS

q ~ud�2
4cosh�sinh�sin2�VAdS

���������������������
1�4u2

AdS

q
� ~Vrd�d��

�4sinh�sin�VAdS
���������������������

1�4u2
AdS

q ~V�

��
8sinh�sin�uAdSV

AdS2

�����������������������
1�4u2

AdS3

q ~u

��
2cosh2�cos2�uAdS

sinh�sin�
��������������������
1�4u2

AdS

q ~u
�
d�2

��2sinh�sin�

��������������������
1�2uAdS

1�2uAdS

s
1

�1�2uAdS�
2

~ud ~�2
3:
-13
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At this point we would like to show that the degrees of
freedom qn; pn turn on the chiral primary fields �I of IIB
SUGRA on AdS5 � S5. After performing the field depen-
dent coordinate transformation

�!��
1

2R4
AdS

sin�cos�

cosh2��cos2�

�
X
n>0

�
cos�

cosh�

�
n
�pn�t�sin�n���nqn�t�cos�n���

�!��
1

R4
AdS

cos2� tanh�

cosh2��cos2�

�
X
n>0

�
cos�

cosh�

�
n
�pn�t�sin�n���nqn�t�cos�n���

t! t�
1

R4
AdS

X
n>0

�
cos�

cosh�

�
n
�pn�t�cos�n���qn�t�sin�n���;

the �� and ~S3 components of the first order perturbed
metric are scaled by

2

R4
AdS

�n�1�
X
n>0

�
cos�

cosh�

�
n
�pn�t�sin�n���nqn�t�cos�n���:

After this observation we may identify the chiral primary
fields

�
n �
1

8R4
AdS

n� 1

n
�nqn � ipn�

�
cos�

cosh�

�
n
:

The correctly normalized action for the chiral primaries as
given by Seiberg et al. reads

S �
X
n

8R8
AdSn�n� 1�

�n� 1�2

Z
AdS5

dx5 �����������
gAdS5
p

� ���n���n � n�n� 4���n��n�;

which after performing the spatial integral on AdS5 gives

S �
X
n>0

1

2

Z
dt
�

1

n2
_p2
n � _q2

n � n2q2
n � p2

n

�
;

and for each n we have a four dimensional phase space.
Supersymmetry requires that �@t � @��� � 0 which for
our 0� 1 dimensional variables means that the ‘‘angular
momentum’’ is equal to the energy. Choosing an opposite
chirality for the fermions we would have had the condition
�@t � @��� � 0 which would flip the sign in the relation
between energy and ‘‘angular momentum’’.
APPENDIX B: HERMITICITY AND THE ZERO
IMPURITY SECTOR

The zero impurity sector is the usual single matrix
problem for Mij. We are interested in fluctuations about
this single matrix background. As is now well known [39–
41], this background is only exhibited as the stationary
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point of an explicitly Hermitian effective potential. We
recall the construction of this effective Hamiltonian [39].

In order to take into account the nontrivial Jacobian J
involved in the change from the original variables to loop
variables, one needs to implement the similarity transfor-
mation (i is a generic loop variable)

@i ! J1=2@iJ�1=2 � @i �
1

2
@i lnJ:

The Jacobian satisfies [39]

�ij@j lnJ � !i � @j�ji:

The terms of the kinetic energy operator that are sufficient
to generate the background and fluctuations are then [53–
55]

�1
2@i�ij@j �

1
8!i�

�1
ij !j: (B1)

In the zero impurity sector,

!�k; 0� � �k
Z k

0
dk0 �k0; 0� �k� k0; 0�

��k; 0; k0; 0� � �kk0 �k� k0; 0�
(B2)

The x representation of  �k; 0� is the usual density of
eigenvalues:

 �x; 0� � �i��x� �i�;

and

��x; 0; y; 0� � @x@y� �x; 0���x� y��

!�x; 0� � �2@x

�
 �x; 0�

Z
dz
 �z; 0�
x� z

�
:

From (B1) we then obtain the form of the effective
Hamiltonian which is sufficient for the discussion of back-
ground generation and fluctuations:

H �
Z
dx
Z
dy
�
�

1

2

@
@ �x; 0�

��x; 0; y; 0�
@

@ �y; 0�

�
1

8
!�x; 0���1�x; 0; y; 0�!�y; 0��

�
Z
dx �x; 0�

�
x2

2
�	

��
;

where the Lagrange multiplier 	 enforces the constraintZ
dx �x; 0� � N: (B3)

Since

@x@y�
�1�x; 0; y; 0� �

��x� y�
 �x; 0�

;

andZ
dx �x; 0�

�Z
dy
 �y; 0�
x� y

�
2
�
�2

3

Z
dx 3�x; 0�; (B4)
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the effective Hamiltonian becomes:

�
1

2

Z
dx@x

@
@ �x; 0�

 �x; 0�@x
@

@ �x; 0�

�
Z
dx
�
�2

6
 3�x; 0� �  �x; 0�

�
x2

2
�	

��
: (B5)

To exhibit explicitly the N dependence, we rescale

x!
����
N
p

x  �x; 0� !
����
N
p

 �x; 0�

�i
@

@ �x; 0�
� ��x� !

1

N
��x� 	! N	;

(B6)

and obtain

H0
eff �

1

2N2

Z
dx@x��x� �x; 0�@x��x�

� N2

�Z
dx
�2

6
 3�x; 0� �  �x; 0�

�
x2

2
�	

��
;

(B7)

which is Eq. (7) in the main text.
APPENDIX C: MARCHESINI-ONOFRI KERNEL

We consider the problem of finding the spectrum of the
operator Z ��

2
p

�
��
2
p dy

�0�y�

�x� y�2
�f�x� � f�y��

�

�
�
d
dx

Z ��
2
p

�
��
2
p dy

�0�y�
�x� y�

�
f�x� �

d
dx

�
Z ��

2
p

�
��
2
p dy

�0�y�f�y�
�x� y�

: (C1)

We start with the second term and consider the following
integral, in ‘‘time of flight’’ coordinates:Z �

��

dq
�
��0�q�

einq

x�q0� � x�q�
; n > 0:

Note that the range of the integral extends over a full period
2L � 2� of the classical motion. Therefore, the integral
above can be calculated by the residue theorem, by choos-
ing a vertical path from ��� i1 to ��, then along the
real axis from�� to�, and then along a vertical path from
� to �� i1, ‘‘closing’’ at�i1. The contribution fom the
vertical paths cancel, due to the periodicity of the classical
motion. The origin of the ‘‘time of flight’’ can always be
chosen so that the only poles on the real axis occur at q �
q0 and q � �q0, corresponding to an even (in q) ‘‘dis-
placement’’ x�q� and odd ‘‘velocity’’ ��0�q�. We alwyas
choose a principal value prescription for poles on the real
axis (half of the residue). If there are no other poles, as is
the case in general for stabilized potentials, we obtain the
result:
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Z �

��

dq
�
��0�q�

einq

x�q0� � x�q�
� 2i

Z �

0

dq
�
��0�q�

�
sin�nq�

x�q0� � x�q�

� �2i cos�nq0�:

In other wordsZ �

0

dq
�
��0�q�

sin�nq�
x�q0� � x�q�

� � cos�nq0�: (C2)

Therefore

@q
Z dq0

�
sin�nq0�

x�q� � x�q0�
� �ij@qj�sin�nq�� � n�sin�nq��:

In x space,Z ��
2
p

�
��
2
p dy

sin�nq�y��
�x� y�

� � cos�nq�x��:

It follows that the eigenvalue equation

d
dx

Z ��
2
p

�
��
2
p

dy
�
��0�y�fn�y�
�x� y�

� �nfn;

has solutions

fn�x� �
sin�nq�x��
��0

�
sin�nq�x�����
2
p

sin�q�x��
;

x�q� � �
���
2
p

cos�q�; �n � n:

This follows from the observation that in terms of time of
flight coordinates, the above spectrum equation takes the
form

@q
Z dq0

�
��0�q

0�fn�q
0�

x�q� � x�q0�
� �ij@qj���0�q�fn�q��:

Concerning the first term in (C1), we have already seen
for the main text that it can be obtained straightforwardly
from the result (Eq. (10))Z

dz
�0�z�
�x� z�

� x: (C3)

This equation is solved by the well known methods of
Ref. [46]. We point out that first term of (C1) can also be
obtained in general by considering the integralZ �

��

dq
�

���0�q��
2

�x�q0� � x�q��
2 ;

along the contour described above. There is now a contri-
bution from ‘‘infinity’’, and one obtains the result that the
above integral equals �1
-15
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APPENDIX D: THREE IMPURITIES

For three impurities, we have

��k; 3� �
Z k

0
dk2

Z k2

0
dk1Tr�Beik1MBei�k2�k1�MBei�k�k2�M�

� �3�i;j;k�V�BV�ij�V�BV�jk�V�BV�ki

�
eik�j

��j � �i���j � �k�
; (D1)
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and

 �x; 3� � �3�i;j;k�V
�BV�ij�V

�BV�jk�V
�BV�ki

�
��x� �j�

�x� �i��x� �k�
: (D2)
After some algebra, one obtains
��k0; 0:k; 3� � �k0�i;j;k�V�BV�ij�V�BV�jk�V�BV�ki

�
�3kei�k�k0��i

��i � �j���i � �k�
� 3iei�k�k0��i

�
1

��i � �k�
2��i � �j�

�
1

��i � �j�2��i � �k�

�
�

3ieik0�jeik�i

��j � �i�2��i � �k�
�

3ieik0�keik�i

��k � �i�2��i � �j�

�
;

and

��x; 0:y; 3� � �i;j;k�V�BV�ij�V�BV�jk�V�BV�ki

�
�3@x@y

�
��x� y�

��y� �i�
�y� �j��y� �k�

�
� 3@x

�
��x� �i���y� �i�

�

�
1

�y� �k�2
1

�y� �j�
1

�y� �j�2
1

�y� �k�

��
� 3@x

���x� �j���y� �i�
��j � y�2�y� �k�

�
� 3@x

�
��x� �k���y� �i�

��k � y�2�y� �j�

��
:

The ��x; 0:y; 3� term in (13) takes the form

1

2

Z
dx
Z
dy��x; 0:y; 3�

@ lnJ
@ �x; 0�

@
@ �y; 3�

� �
3

2
�i;j;k�V�BV�ij�V�BV�jk�V�BV�ki

Z
dx
Z
dy
�
��x� y�

�
��y� �i�

�y� �j��y� �k�
@x

@ lnJ
@ �x; 0�

@y
@

@ �y; 3�
� ��x� �i���y� �i�

�

�
1

�y� �k�
2

1

�y� �j�
1

�y� �j�
2

1

�y� �k�

�
@x

@ lnJ
@ �x; 0�

@
@ �y; 3�

�

���x� �j���y� �i�
��j � y�2�y� �k�

�
��x� �k���y� �i�

��k � y�2�y� �j�

�
@x

@ lnJ
@ �x; 0�

@
@ �y; 3�

�
:

For the harmonic oscillator potential, we use the results (11) and (10), so that we can write

@x
@ lnJ
@ �x; 0�

� 2
Z
dz

�0�z�
�x� z�

� 2z:

Then

1

2

Z
dx
Z
dy��x; 0:y; 3�

@ lnJ
@ �x; 0�

@
@ �y; 3�

� �3
Z
dx�i;j;k�V

�BV�ij�V
�BV�jk�V

�BV�ki
��x� �i�

�x� �j��x� �k�

�
Z
dz

�0�z�
�x� z�

@x
@

@ �x; 3�
� 3

Z
dy�i;j;k�V�BV�ij�V�BV�jk

��V�BV�ki��y� �i�
@

@ �y; 3�

�
�i

�y� �k�2
1

�y� �j�
�

�i
�y� �j�2

1

�y� �k�

�
�j

��j � y�2�y� �k�
�

�k
��k � y�2�y� �j�

�
�
Z
dx
Z
dz

�0�z�
�x� z�

 �x; 3�@x
@

@ �x; 3�
� 2

Z
dx �x; 3�@x

@
@ �x; 3�

:

Again, the first term above cancels the similar term in (13), and we obtain for the quadratic Hamiltonian in the 3 impurity
-16
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sector:

Hs�3
2 �

Z
dx
Z
dz
�0�z� �x; 3� �  �z; 3��0�x�

�x� z�2
@

@ �x; 3�

� 2
Z
dx �x; 3�

@
@ �x; 3�

: (D3)

This is again a shifted Marchesini-Onofri operator. The
spectrum and eigenfunctions of this operator are
125009
wn � n� 3; �s�3
n �

sin�nq����
2
p

sin�q�
; n � 1; 2; . . . :

Adding the contribution from the Tr�B@=@B� term of the
Hamiltonian we obtain

wn � n; �s�3
n �

sin�nq����
2
p

sin�q�
; n � 1; 2; . . . :

(D4)
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