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Asymptotic thermal quark masses and the entropy of QCD in the large-Nf limit
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We study the thermodynamics of QCD in the limit of large flavor number (Nf) and test the proposal to
resum the physics of hard thermal loops (HTL) through a nonperturbative expression for the entropy
obtained from a �-derivable two-loop approximation. The fermionic contribution to the entropy involves
a full next-to-leading order evaluation of the asymptotic thermal quark mass, which is nonlocal, and for
which only a weighted average value was known previously. For a natural choice of renormalization scale
we find remarkably good agreement of the next-to-leading order HTL results for the fermion self-energy
and in turn for the entropy with the respective exact large-Nf results, even at very large coupling.
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1For an attempt to achieve a comparable resummation directly
in terms of the pressure see [25].
I. INTRODUCTION

The perturbative series for the thermodynamic potentials
of hot QCD is by now known up to and including order
g6 log�g� [1–4], with g �

������������
4��s
p

being the Yang-Mills
coupling constant. Taken at face value, this series is poorly
convergent and suffers from a strong dependence on the
renormalization point even at temperatures many orders of
magnitude higher than the QCD scale �QCD. However, this
problem is not specific to QCD at high temperature, which
has a nonperturbative sector starting to contribute at order
g6. Similarly poor convergence behavior appears also in
simple scalar field theory [5], and even in the case of
large-N �4 theory [6], where all interactions can be re-
summed in a local thermal mass term, as soon as one starts
expanding out in a series of powers and logarithms of the
coupling.

Various mathematical extrapolation techniques have
been tried to restore the convergence of the perturbative
series, such as Padé approximants [7–9], self-similar ap-
proximants [10], and Borel resummation [11,12]. A more
physically motivated proposal for reorganizing thermal
perturbation theories is called ‘‘screened perturbation the-
ory’’ [13,14]. This is a variant of a variational perturbation
theory, where the tree-level Lagrangian is modified so that
it includes a mass term, which is then determined by a
variational principle (minimal sensitivity). In the case of
gauge theories, the prefactor of the gauge-invariant non-
local and nonlinear hard-thermal-loop (HTL) action
[15,16] is used for this purpose in a generalization of this
approach to QCD by Andersen, Braaten, Petitgirard, and
Strickland [17–20].

The HTL action is the correct leading-order effective
action for soft modes at energies parametrically smaller
than the temperature. However it is somewhat problematic
to also use it at hard scales, which are responsible for the
leading terms in the thermodynamic potential, albeit the
problems with thermal perturbation theory clearly come
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from screening effects at soft scales. Indeed
(HTL)screened perturbation theory changes the ultraviolet
structure and requires an ad hoc renormalization of addi-
tional UV singularities.

An alternative proposal for resumming the physics of
hard thermal loops was put forward in Refs. [21–24]1 and
is based on a nonperturbative expression for the entropy
density that can be obtained from a �-derivable two-loop
approximation [26]. Here the emphasis is fully on a qua-
siparticle picture, whose residual interactions are assumed
to be weak after the bulk of the interaction effects have
been incorporated in the spectral data of the quasiparticles.
As opposed to methods based on ‘‘screened perturbation
theory,’’ �-derivable approximations have better proper-
ties with respect to renormalization. They are renormaliz-
able in the case of scalar field theories [27–32], although in
gauge theories the question of renormalizability remains
still open. However, when combined with HTL approxi-
mations, they define UV finite physical quantities without
introducing spurious counterterms [21–23].

These approaches indeed succeed in taming the plasmon
term �g3 that spoils the apparent convergence of strict
perturbative expansions in g and comparison with existing
lattice data suggest that the entropy of QCD for T � 3Tc
can indeed be accounted for remarkably well when the
leading-order interactions are resummed into spectral
properties of HTL quasiparticles [21–23].

Since this success is gauged mostly from the comparison
with lattice data, it is desirable to have other possibilities
for testing these resummation prescriptions. In Ref. [33] it
was suggested to use the large flavor-number (Nf) limit of
QED and QCD for that purpose. The thermodynamic
potential has been worked out in Ref. [33–35] to order
-1 © 2005 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.72.125005


BLAIZOT, IPP, REBHAN, AND REINOSA PHYSICAL REVIEW D 72, 125005 (2005)
N0
f and to all orders in g2Nf, which is kept finite as the limit

Nf ! 1, g! 0 is taken.
Large-Nf QCD is no longer asymptotically free. In this

limit the renormalization scale dependence is determined
(nonperturbatively) by the one-loop beta function accord-
ing to

1

g2
eff���

�
1

g2
eff��

0�
�

log��0=��

6�2 ; (1)

where we have defined g2
eff � g2Nf=2 (in QED we would

have g2
eff � g2Nf). There is a Landau singularity in the

vacuum gauge field propagator at Q2 � �2
L with

�L � ��MSe
5=6e6�2=g2

eff � ��MS�; (2)

where ��MS is the scale of modified minimal subtraction.
However, although the large-Nf theory has an unavoidable
ambiguity associated with its UV completion, in the ther-
modynamic potential the magnitude of the ambiguity is
suppressed by a factor �T=�L�

4, which in practice means
that the Landau pole problem can be ignored for all cou-
plings geff� ��MS � �T� & 6. Since strict perturbation the-
ory appears to work only for geff & 2, this gives enough
room for testing improvements of thermal perturbation
theory.

In this paper we shall test the HTL resummation pro-
posed in Refs. [21–23], which use the nonperturbative
expression for the entropy obtained from a �-derivable
two-loop approximation. In the large-Nf limit, a complete
HTL resummation involves, in particular, the evaluation of
next-to-leading order (NLO) thermal quark masses at
asymptotic hard scales. In one-loop HTL-resummed per-
turbation theory, these thermal masses are nonlocal, i.e.
functions of momentum, and so far only a certain weighted
average was known, and this only to next-to-leading order
in the coupling. In this paper we shall perform a complete
HTL evaluation, which resums an infinite series in the
coupling, and we compare with the numerical evaluation
of the exact large-Nf values. A corresponding evaluation
of the entropy shows considerable improvement compared
to a previous evaluation using the averaged asymptotic
masses at next-to-leading order in HTL-resummed pertur-
bation theory [36]. Although at larger coupling the HTL
results have a large renormalization scale dependence,
choosing the scale of fastest apparent convergence repro-
duces the exact large-Nf result for all g2

eff with a quality
comparable to an optimized g6 result [35].

The organization of this paper is as follows: In Sec. II we
first review the �-derivable approximation to the entropy.
At two-loop order we present the remarkably simple qua-
siparticle formulas for the entropy and number density
which can be used both in the large-Nf limit and for an
HTL approximation. In Sec. III we discuss the issue of
renormalization both from the perspective of the thermo-
dynamic potential and of the quasiparticle entropy and
125005
number density. In Sec. IV we evaluate the fermion self-
energy, which plays a central role in the quasiparticle
entropy expressions, and which requires to solve a techni-
cal problem related to the necessity of eliminating the
Landau pole by a momentum cutoff. Such a cutoff has to
be imposed in a way which respects Euclidean rotational
invariance in order to avoid spurious contributions in al-
ready renormalized expressions [derived in dimensional
regularization as we shall use modified minimal subtrac-
tion (MS)]. Since the quasiparticle entropy is formulated in
Minkowski space, this requirement leads to intricacies in
the numerical evaluation, whose results are finally given in
Sec. V. There we present the numerical results for the
complete large-Nf entropy and the complete momentum-
dependent asymptotic thermal quark masses together with
their respective HTL approximations. We find remarkable
agreement of the latter with the exact results provided the
HTL approximation is used in a nonperturbative manner
(i.e., not truncating at the order of perturbative accuracy)
and an optimized renormalization scale is chosen. In this
case, the agreement is comparable to optimized results
using perturbative results through order g6.

At this point it is useful to specify the notation to be used
throughout the paper. As gauge group we take SU�N�, soN
denotes the number of quark colors. As already said, Nf is
the number of quark flavors. The number of gluons is
denoted by Ng � N2 � 1. We use the Minkowski metric
g�� � ��;�;�;�� and denote by capital letters 4-
momenta P with components P� � �p0;p�, so that P2 �
p2

0 � p2. In finite temperature calculations, we are led to
set p0 � i!n, where !n is a Matsubara frequency (!n �
n�� where n is an even integer for bosons and odd integer
for fermions). We shall denote the typical sum integrals
that occur at finite temperature by the following shorthand
notation:

ZX
P
f�P� �

1

�

X
n

Z d3p

�2��3
f�i!n;p�: (3)

At zero temperature, the sum over Matsubara frequencies
is replaced by an integral over the imaginary energy axis,
leading to an Euclidean integral denoted by

Z
PE

f�P� �
Z i1

�i1

dp0

2�i

Z d3p

�2��3
f�p0;p�: (4)

For an integral over the four components of a four-vector,
we simply write

Z
P
f�P� �

Z 1
�1

dp0

2�

Z d3p

�2��3
f�p0;p� �

Z
p0

Z
p
f�P�:

(5)

We denote the free propagator by �0�P� � �1=�P2 �M2�
or, in its spectral representation, by
-2
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�0�!;p� �
Z
p0

�0�P�
p0 �!

; (6)

where ! is a complex energy variable, and the spectral
function is �0�P� � 2���p0�	�P

2 �M2�. The free fer-
mion propagator is then given by S0�P� � �P6 �M��0�P�
or, in its spectral form, by

S0�!;p� �
Z
p0

�P6 �M��0�P�
p0 �!

; (7)

where we used the fact that �0�P� is an odd function in p0

to replace !
0 by p0
0 in P6 within the integral.
(a) (b) (c) (d)

FIG. 1. Diagrams for � at 2-loop order in QCD. Wiggly, plain,
and dotted lines refer, respectively, to gluons, quarks, and ghosts.
Only diagram (d) contributes at next-to-leading order in the
large-Nf limit.
II. �-DERIVABLE TWO-LOOP ENTROPY AND
HTL RESUMMATION

A. Generalities

�-derivable approximations [37] are constructed from
the two-particle-irreducible (2PI) skeleton expansion
[38,39]. In the latter, the thermodynamic potential is ex-
pressed in terms of dressed propagators (G for bosons, S
for fermions) according to

�	G; S
 � 1
2T Tr logG�1 � 1

2T Tr �G� T T r logS�1

� T Tr �S� T�	G; S
; (8)

where ‘‘Tr’’ refers to full functional traces Tr � tr
R�

0 d��R
x ! �V tr

RP
K and �	G; S
 is the sum of 2-particle-

irreducible ‘‘skeleton’’ diagrams. In gauge theories, one
either has to assume a ghost-free gauge such as temporal
axial gauge or to include the bosonic Faddeev-Popov ghost
propagator Ggh. For simplicity we shall assume a ghost-
free gauge in the general discussion. At both the level of
HTL approximations and in the large-Nf limit, we can and
shall use the Coulomb gauge for this purpose instead of the
somewhat problematic [40] temporal axial gauge.

Standard contour integration gives

�	G; S
=V � tr
Z
K
n�k0� Im	logG�1�K� ���K�G�K�


� 2 tr
Z
K
f�k0� Im	logS�1�K� � ��K�S�K�


� T�	G; S
=V; (9)

where tr denotes a trace over discrete labels only. The
Bose-Einstein and Fermi-Dirac factors are defined as
n�!� � �e!=T � 1��1 and f�!� � �e�!���=T � 1��1,
respectively.

The self-energies � � G�1 �G�1
0 and � �

S�1 � S�1
0 , where G0 and S0 are bare propagators, are

themselves functionals of the full propagators. They are
determined by the stationarity property,

	�	G; S
=	G � 0 � 	�	G; S
=	S; (10)
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according to

	�	G; S
=	G � 1
2�; 	�	G; S
=	S � ��: (11)

The �-derivable two-loop approximation consists of
keeping only the two-loop skeleton diagrams (see Fig. 1),
which leads to a dressed one-loop approximation for the
self-energies (11). In a gauge theory this generally intro-
duces gauge dependences (which are parametrically sup-
pressed, though [41]). However, the further approx-
imations put forward in Refs. [21–23] are manifestly
gauge independent in the �-derivable two-loop
approximation.

A self-consistent two-loop approximation for � has a
remarkable consequence for the first derivatives of the
thermodynamic potential, the entropy and the number
densities:

S �
@P
@T

���������
; N �

@P
@�

��������T
; P � ��=V: (12)

Because of the stationarity property (10), one can ignore
the T and � dependences implicit in the spectral densities
of the full propagators, and differentiate exclusively the
statistical distribution functions n and f in (9). Now the
derivative of the two-loop functional T�	G; S
 at fixed
spectral densities of the propagators G and S turns out to
cancel part of the terms Im��G� and Im��S� in (9):

S02-loop � �
@�T�2-loop�

@T

��������G;S
�tr

Z
K

�
@n�k0�

@T
Re � ImG

� 2
@f�k0�

@T
Re � Im S

�
� 0; (13)

leading to the remarkably simple formulas [22,23,26]:

S � �tr
Z
K

@n�k0�

@T
	Im logG�1 � Im � ReG


� 2 tr
Z
K

@f�k0�

@T
	Im logS�1 � Im � Re S
; (14)

N � �2 tr
Z
K

@f�k0�

@�
	Im logS�1 � Im � Re S
; (15)

where we have dropped the label ‘‘2-loop’’ that could be
attached to S and N .
-3
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Through these formulas, effectively one-loop integrals,
all interactions below perturbative order g4 are summa-
rized by spectral data only, which shows that entropy and
density are the preferred quantities for a quasiparticle
description. In particular, the term g3, which usually spoils
the apparent convergence of strict perturbative expansions,
is now incorporated in a nonpolynomial expression, to-
gether with (incompletely resummed) higher-order terms.

Moreover, these expressions are UV finite as soon as the
self-energies are, and thus the former are useful as a
starting point for further approximations. In Refs. [21–
23] it was proposed to use the gauge-invariant hard thermal
loops for this purpose. Before considering HTL’s, we recall
some general properties of self-energies.

B. Bosonic and fermionic self-energies

In the Coulomb gauge, the gauge propagator can be
decomposed into a longitudinal and a transverse contribu-
tion,

G00�K� � GL�K�; Gij�K� �
�
	ij �

kikj
k2

�
GT�K�;

(16)

and we define corresponding self-energy components
through

GL�K� �
�1

k2 ��L�K�
; GT�K� �

1

�K2 ��T�K�
:

(17)

Longitudinal and transverse spectral functions are intro-
duced according to

GL�!; k� � �
1

k2 �
Z
k0

�L�K�
k0 �!

;

GT�!; k� �
Z
k0

�T�K�
k0 �!

:

(18)

In the following it will be convenient to write the tem-
poral component of the Coulomb gauge propagator alter-
natively as

G00�K� �
k2

0 � k
2

k2 G‘�K�; (19)

and the Dyson equations as

G�1
T � �k2

0 � k
2 ��t;th ��t;vac;

G�1
‘ � �k

2
0 � k

2 ��‘;th ��‘;vac;
(20)

such that �T � �t;th ��t;vac but �‘;th ��‘;vac �
��L�k2

0 � k
2�=k2. Here we have separated off the vacuum

(T;�! 0) limit of the self-energy components. In the
large-Nf limit, we shall have that �t;vac � �‘;vac � �vac

even in the noncovariant Coulomb gauge.
The most general form of the self-energy � at finite

temperature and density can be written as
125005
��K� � a�K�
0 � b�K�k̂  �� c�K�: (21)

We define the projection of the self-energy on K6 �M as

���K� � tr	�K6 �M���K�


� 4!a�!; k� � 4kb�!; k� � 4Mc�!; k�: (22)

In the massless case, c�K� � 0, and the quark propagator at
finite temperature or density can be split into two separate
components with opposite ratio of chirality over helicity:

���K� �
1

�!� 	k����K�

; (23)

where

���K� � b�K� � a�K�: (24)

Furthermore, ���K� and ���K� on the light cone ! � �k
are related by

���! � �k; k� �
1

4k
���! � �k; k� (25)

(see also Appendix B for a relation between �� and ��).

C. HTL approximation of the self-consistent entropy

The HTL effective action [15,16] is an effective action
for soft modes with energy scales �gT, which are, at least
parametrically, at smaller energy than the hard modes
defined by the temperature scale T (or the chemical poten-
tial when�� T). At hard scales, the HTL effective action
is no longer accurate, except at small virtuality, but this is
indeed the phase space domain which contributes the
leading-order interaction terms / g2 in the expressions
(14) and (15). The order g2 contribution is obtained by
expanding out the propagators and keeping a single self-
energy insertion. In SU�N� gauge theory with Ng�N2�1
gluons and Nf massless quarks this leads to

S 2 � 2Ng
Z
K

@n�k0�

@T
Re �T Im

1

k2
0 � k

2

� 4NNf
Z
K

@f�k0�

@T

�
Re �� Im

1

k0 � k

� Re ��Im
1

k0 � k

�
; (26)

and similarly in the density expression. The imaginary part
of the free propagator puts the self-energy insertions on the
light cone, where they are accurately (to order g2) given by
the HTL value2 of the transverse component of the gluon
self-energy �T,

�̂ T�k0 � k� � m̂2
1 �

1
2m̂

2
D; (27)
-4



δΣl δΣt

FIG. 3. Same as Fig. 2 for the NLO contributions to 	� at hard
momentum. Although in the large-Nf limit these diagrams are
also suppressed individually by a factor of Nf, they nevertheless
contribute to the entropy at order N0

f.

δΠb
l δΠb

tδΠa
l δΠa

t

FIG. 2. NLO contributions to 	�T at hard momentum. Thick
dashed and wiggly lines with a blob represent HTL-resummed
longitudinal and transverse propagators, respectively. In the
large-Nf limit the blobs represent full 1-loop resummed propa-
gators. In this limit, these diagrams are suppressed by a factor of
1=Nf.
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and the HTL value of �� �
1
2 � ~


~k =j ~kj � 
0��,

�̂��k0 � �k� �
M̂2
1

2k
�
M̂2

k
; (28)

even though k is no longer soft [42,43]. The leading-order
terms in the interaction contribution to the thermodynamic
potentials S and N are thus related to the ‘‘asymptotic’’
thermal masses m1 and M1 of hard gluons and fermions,
respectively. As indicated in Eqs. (27) and (28), at leading
order these are proportional to the HTL Debye mass m̂D

and HTL fermionic plasma frequency M̂, given by

m̂ 2
D � �2N � Nf�

g2T2

6
� Nf

g2�2

2�2 ;

M̂2 �
g2Cf

8

�
T2 �

�2

�2

�
;

(29)

for (uniform) quark chemical potential � and Cf � �N2 �

1�=�2N�.
However, higher-order contributions in the thermody-

namic potential cannot be calculated by expanding out the
self-energies in the expressions for the thermodynamic
potentials given in Sec. II A as this would lead to infrared
divergences in the electrostatic sector. At least the Debye
mass that appears in the static propagator needs to be
resummed, after which one can calculate systematically
up to and including order g6 log�g�. But already the first
contribution from the soft sector, the ‘‘plasmon term’’ / g3

spoils the apparent convergence of a strict perturbative
series.

With the above nonperturbative expressions for entropy
and density it is now possible to resum simultaneously the
effects of Debye screening and other collective phe-
nomena, such as dynamical screening and Landau damp-
ing. At soft momentum scales, these are determined to
leading order by the HTL self-energy expressions

�̂ L�k0; k� � m̂2
D

�
1�

k0

2k
log
k0 � k
k0 � k

�
;

�̂T�k0; k� �
1

2

�
m̂2
D �

k2
0 � k

2

k2 �̂L

�
;

(30)

and

�̂��k0; k� �
M̂2

k

�
1�

k0 � k
2k

log
k0 � k
k0 � k

�
: (31)

Now Dyson-resumming these self-energies into dressed
propagators and inserting them into the entropy formula
(14) turns out to account for only a fraction of the plasmon
term�g3. In the entropy formula (14) the larger part of the
plasmon term arises from hard momentum scales, namely,
from corrections to the leading-order asymptotic masses.

Calculation of the next-to-leading-order corrections to
the asymptotic thermal masses (27) and (28) itself requires
HTL resummation. However, because they are given by
125005
self-energies with a hard external momentum, they involve
only a single HTL propagator and no HTL vertices, see
Figs. 2 and 3.

These corrections to the asymptotic thermal masses are,
in contrast to their leading-order (HTL) values, nontrivial
functions of the momentum,

	m2
1�k� � Re	�T�k0 � k�;

	M2
1�k� � Re 2k	���k0 � k�:

(32)

At next-to-leading order HTL perturbation theory these
expressions can be evaluated only numerically. However,
through their contribution to the plasmon term, the follow-
ing weighted averages are determined to order g3 and given
by remarkably simple results [21–23]:

�	m2
1 �

R
dkk @n�k�@T 	m2

1�k�R
dkk @n�k�@T

� �
1

2�
g2NTm̂D �O�g4�;

(33)

�	M2
1 �

R
dkk @f�k�@T 	M2

1�k�R
dkk @f�k�@T

� �
1

2�
g2CfTm̂D �O�g

4�:

(34)

Note that these results pertain only to the hard excita-
tions; corrections to the various thermal masses of soft
excitations are known to differ substantially from (33).
For instance, the relative correction to the gluonic plasma
frequency [44] at k � 0, 	m2

pl:=m̂
2
pl:, is only about a third

of �	m2
1=m

2
1; the NLO correction to the non-Abelian

Debye mass on the other hand is even positive for small
coupling and moreover logarithmically enhanced [45],
-5
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FIG. 4. Fermion bubble resummation contributing to the
pressure to next-to-leading order in the 1=Nf expansion.

3We stress here that viewed as a functional of G� ! G, the
right-hand side of Eq. (38) is not stationary at G�1

� � G�1
0 ���

and thus one cannot use the same simplifications to compute the
entropy as in the 2PI framework. In order to do so, one should
rather work with Eq. (37).
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	m2
D � �

1

2�
g2NTm̂D log

c
g
; (35)

where the constant under the logarithm is nonperturbative
and cannot be calculated by weak-coupling techniques.
However these corrections to the dispersion laws at soft
momenta lead to contributions to the thermodynamic po-
tential which are beyond the perturbative accuracy of the
two-loop functionals (14) and (15), and thus we do not
include them in our definition of next-to-leading-order
HTL approximation of the entropy or density. This we
instead define as an evaluation of (14) and (15) with
HTL propagators and self-energies, which at hard mo-
menta include the complete corrections to the asymptotic
thermal masses (32). In Refs. [21–23,36] only the averaged
next-to-leading order asymptotic masses (33) and (34)
were taken into account.

In this paper we shall evaluate the complete momentum
dependence of the next-to-leading order asymptotic quark
masses 	M2

1�k�, which is the only correction also relevant
at large Nf. While both (33) and (34) are suppressed by
1=Nf in the large-Nf limit, the latter eventually gets multi-
plied by a factor Nf. We then compare with the exact
nonperturbative results that one can derive in the
large-Nf limit [33–35].

III. LARGE-Nf EXPANSION OF THE
THERMODYNAMIC POTENTIAL

We shall now focus on the large-Nf limit of the thermo-
dynamic potential, which is nonperturbative in the effec-
tive coupling constant and therefore requires
nonperturbative renormalization. In this respect we extend
the previous derivations of Ref. [33–35] to include non-
zero quark masses (see also [46]), even though the final
numerical evaluation will be carried out only for the mass-
less case. We then discuss the special features of the self-
consistent entropy and density expressions in the large-Nf
limit.

A. Large-Nf limit of the 2PI thermodynamic potential

The thermodynamic potential of Eq. (8) is given in terms
of full propagators G and S and the � functional, the sum
of all 2PI diagrams. In the large-Nf limit, the � functional
reduces to a single two-loop skeleton diagram, namely, the
last one of those displayed in Fig. 1. Only this diagram
remains of order 1 when g2 ! 0,Nf ! 1with fixed g2

eff /

g2Nf �O�1�. Furthermore, the fermion propagator in this
diagram can be replaced by the free one, since a fermion
self-energy is of order �� 1=Nf. Hence,

�	G; S
 ! ��	G
 �
1
2 Tr���G� (36)

where �� is a fermion bubble involving the free fermion
propagator S0, and is proportional to g2

eff . From a varia-
tional point of view, �� is now a fixed quantity, and the
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self-consistent � defined through Eq. (11) is equal to it
because ��	G
 is linear in G. Hence, � �
2	��	G
=	G � ��. On the other hand, S � S0 is no
longer a variational quantity at all. We thus have

�	G; S
 ! ��	G
 � �T Tr logS�1
0 �

1
2T Tr logG�1

� 1
2T Tr��G� ���	G
; (37)

which, when evaluated at its extremal point and setting
G�1
� � G�1

0 ���, reduces to3

��	G�
 � �PV � �T Tr logS�1
0 �

1
2T Tr logG�1

� : (38)

Diagrammatically, the pressure at leading order (N1
f) is

thus just given by the free fermion loop. It contains an
overall, temperature-independent divergence which can be
eliminated by subtracting the corresponding vacuum pres-
sure:

Pf0 � NNf tr
�ZX

K
logS�1

0 �
Z
KE

logS�1
0

�
: (39)

In Eq. (39) and in the rest of this section (III A), we perform
explicitly flavor and color traces. Thus the symbol ‘‘tr’’
only denotes a trace over spin indices. The next-to-leading
order contribution �N0

f is obtained from the resummation
of the bosonic self-energy � (see Fig. 4) on the gluon
propagator (ring resummation):

���
b �Q� � g2

eff tr
ZX

K

�S0�K�
�S0�K �Q�; (40)

which one can split into a vacuum and a thermal piece (see
Appendix A 1):

���
b;vac�Q� � g2

eff tr
Z
KE


�S0�K�

�S0�K �Q�;

���
th �Q� � �2g2

eff tr
Z
K

��K6 �M��0�K�
�S0�K �Q�;

(41)

with �0�K� � ��k0�f�jk0j��0�K�.
This function �0�K� is a particular combination of the

thermal factor and the spectral density which appears
systematically when isolating thermal contributions in
-6



Zδ A +

FIG. 5 (color online). Role of the counterterm 	ZA: every time
that a fermion bubble is inserted, one has to insert the corre-
sponding counterterm 	ZA to absorb the subdivergence.

δM Zδ ψ

FIG. 6 (color online). Fermion ‘‘counterterms’’ eliminating
next-to-leading order divergences in the bubble resummation
of Fig. 4.

FIG. 7 (color online). Potential singularity with the structure of
a fermion self-energy insertion. It appears when one of the
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the Matsubara formalism [47]. The thermal factor f�jk0j�
only involves positive energies and thus the thermal con-
tribution is UV finite. We will also need the dominant UV
asymptotic behavior of ���

th . Since the momentum K is cut
off by the temperature, the leading asymptotic behavior at
large Q is a priori determined by S0�K �Q� � 1=Q.
However, since the gluon self-energy is an even function
of Q, this asymptotic behavior is in fact improved to
1=Q2.4

The vacuum piece ���
b;vac is UV divergent (hence the

label ‘‘b’’ standing for ‘‘bare’’). However, to the same order
in Nf, one can add the counterterm 	ZAfQ

2g�� �Q�Q�g,
with 	ZA adjusted in order to absorb the divergence. The
UV finite self-energy then reads

���
vac�Q� � g2

eff tr
Z
KE


�S0�K�
�S0�K �Q�

� 	ZAfQ2g�� �Q�Q�g: (42)

The role of 	ZA in the ring resummation is illustrated in
Fig. 5. In general, the ring resummation does not account
for all the next-to-leading order contributions. Indeed, the
fermionic mass and field strength counterterms (	M and
	Z ) are of order 1=Nf, and can be inserted in a fermion
loop (see Fig. 6) to generate a contribution of order N0

f.
This contribution is needed to remove potential subdiver-
gences as illustrated in Fig. 7.

Once all subdivergences are eliminated, there remains
an overall, temperature-independent divergence in the
pressure, which can be eliminated by subtracting the vac-
uum pressure at next-to-leading order:

P� Pf0 � NNf tr
�ZX

K
�	M � K6 	Z �S0

�
Z
KE

�	M � K6 	Z �S0

�

�
Ng
2

tr
�ZX

Q
log�G�1

0 ���

�
Z
QE

log�G�1
0 ��vac�

�
: (43)

It is perhaps surprising that the first line of this formula did
4A more detailed analysis of the asymptotic behavior can be
found in the appendix of Ref. [33].
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not appear in the general derivation given at the beginning
of this section. This is because the derivation there was
made using bare quantities. If one rewrites Eq. (38) in
terms of renormalized quantities, one generates these extra
terms. Performing the Matsubara sums in Eq. (43), one
obtains

P� Pf0 � �NNf tr
Z
K
�	M � K6 	Z ��K6 �M��0�K�

� Ng tr
Z
Q
��q0�n�jq0j� Im log�G�1

0 ���

�
Ng
2

tr
Z
QE

	log�G�1
0 ���

� log�G�1
0 ��vac�
: (44)

The pressure in Eq. (44) contains a contribution carrying
the counterterms, a second contribution which is explicitly
finite due to the presence of the factor n�jq0j�, and a
potentially divergent part which reads (A ’ B here means
that the divergent parts of A and B coincide)

�P� Pf0�
div ’ �

Ng
2

tr
Z
QE

	log�G�1
0 ���

� log�G�1
0 ��vac�
; (45)

or, after performing the traces explicitly (see also [34]),

�P� Pf0�
div ’ �Ng

Z
QE

�
log

�
1�

�t;th

�Q2 ��vac

�

�
1

2
log

�
1�

�‘;th

�Q2 ��vac

��
: (46)
fermionic momenta is kept fixed while all others momenta are
taken to infinity. The structure of the diagram needed to absorb
this potential singularity is exactly that of the diagram in Fig. 6.
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Using the asymptotic behavior of �t;th and �‘;th which can
be found in the appendix of Ref. [33], one can show that the
potential divergent term arises from the leading terms in
the expansion of the logarithms:

�P� Pf0�
div ’ �

Ng
2

Z
QE

�‘;th � 2�t;th

�Q2 ��vac

� �
Ng
2

Z
QE

���
th G

vac
��; (47)

or using the expression (41) for ���
th and Cf � Ng=�2N�,

�P�Pf0�
div’NNf tr

Z
K
�K6 �M��0�K�

�

�
g2Cf

Z
QE


�S0�K�Q�
�Gvac
���Q�

�
: (48)

As we shall see in Sec. IV B, in the process of performing
the analytic continuation in k0 of the quantity in brackets in
the formula above, one has to deform the contour of theQE
integration in order to avoid crossing singularities.
However, here we are only interested in the UV contribu-
tions. Since contour deformation will only be necessary for
QE � 2k � 2k0 as we will see at the end of Sec. IV B 1, we
can identify the integral over QE with the vacuum fermion
self-energy [see Eq. (69) below], and write

�P� Pf0�
div ’ �NNf tr

Z
K
�K6 �M��0�K��b;vac	Gvac
�K�:

(49)

We now add this divergent contribution to that of the
counterterms 	M and 	Z and get

�P� Pf0�
ct�div ’ �NNf tr

Z
K
�K6 �M��0�K�		M

� K6 	Z ��b;vac	Gvac
�K�
; (50)

which can be made finite by a suitable adjustment of 	M
and 	Z .

In the massless case the divergences associated with the
fermionic self-energies do not contribute to the pressure.
As M vanishes, and K6 � 0, it is clear that 	M does not
contribute. One can verify that 	Z does not contribute in
two ways. From (50) we have

�P� Pf0�
ct 			! NNf	Z tr

Z
K
K6 �0�K�K6

� 2�NNf	Z tr
Z
K
f�jk0j�	�K

2�K2 � 0: (51)

Equivalently, one can rewrite the potentially divergent
piece as

�P�Pf0�
div 			!NNf tr

Z
K
K6 �0�K��b;vac	Gvac
�K�

�2�NNf
Z
K
f�jk0j�	�K2� ��vac	Gvac
�K�: (52)
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As we shall explain in Sec. IV C, ��vac	Gvac
 �
tr�K6 �vac	Gvac
� vanishes on the light cone. This result is
in one-to-one correspondence with the fact that, in the
massless case, the large-Q contribution of the integrand
in (47) vanishes after integration over Q [33,34]. This is
due to the vanishing of the angular integral and requires
that numerical computations use a cutoff respecting
Euclidean symmetry. Although we shall eventually work
with renormalized quantities obtained in the symmetry-
preserving dimensional regularization, the numerical
evaluations require a cutoff to eliminate the Landau pole
of the large-Nf theory. As we shall discuss further in
Sec. IV, if this cutoff does not respect Euclidean rotation
invariance, it leads to spurious contributions.

With renormalized self-energy �, Eq. (44) reduces in
the massless case to [33–35]

P� Pf0 � �
Ng
2

tr
�ZX

Q
log�G�1

0 ���

�
Z
QE

log�G�1
0 ��vac�

�
: (53)
B. Large-Nf limit of the self-consistent entropy

The entropy could be obtained by taking a total deriva-
tive of the pressure with respect to the temperature. Using
Eq. (53) for the pressure, this leads to

S � S0 �
d�P� P0�

dT

� �tr
Z
K

@n�k0�

@T
Im log�G�1G0�

� tr
Z
K
n�k0� Im

�
G
d��

dT

�
(54)

where G�1 � G�1
0 ��� and we subtracted the fermionic

and the bosonic interaction-free contributions to the pres-
sure P0 � Pf0 � P

b
0 . Note that the overall temperature-

independent divergence that is present in the pressure
disappears when considering the entropy. As we shall
see, the only remaining divergences are associated with
the self-energies. This is, however, not manifest in
Eq. (54), where the second term is potentially divergent
for k0 ! �1.

Using that ��	G
 is a two-loop diagram for which S0 as
defined in Eq. (13) vanishes identically, we have

@�T��	G
�
@T

��������G
� tr

Z
K

�
@n�k0�

@T
Re �� ImG

� 2
@f�k0�

@T
Re � Im S0

�
; (55)

where � is the O�N�1
f � fermionic self-energy obtained by

calculating the one-loop diagram composed of a bare
-8
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fermion propagator and a full large-Nf gauge boson propa-
gator (see Sec. IV).

On the other hand,

@�T��	G
�
@T

��������G
�

@
@T

�
T
2

Tr���G�
���������G

�
@
@T

�
tr
Z
K
n�k0� Im���G�

���������G

� tr
Z
K

@n�k0�

@T
Im���G�

� tr
Z
K
n�k0� Im

�
G
d��

dT

�
: (56)

Combining Eqs. (54)–(56) yields

S � S0 � �tr
Z
K

@n�k0�

@T
	Im log�G�1G0� � Im � ReG


� 2 tr
Z
K

@f�k0�

@T
Re � Im S0; (57)

where S0 denotes the ideal-gas limit of the entropy.
This expression can in fact be derived also from the 2-

loop-�-derivable expression for the entropy, Eq. (14). In
the large-Nf limit, the full gauge boson self-energy �
reduces to the fermion loop involving undressed propaga-
tors. Any fermion self-energy diagram insertion (Fig. 3) in
� would bring in a factor g2 without a factorNf, leading to
a subleading correction. However, one fermion self-energy
has to be included in tr logS�1 � tr log�S�1

0 � �� in order
to produce contributions of orderN1

f andN0
f. The integrand

of the fermionic terms in the 2-loop entropy and density,
Eqs. (14) and (15), therefore simplifies according to

Im logS�1 � Im � Re S! Im logS�1
0 � Im��S0�

� Im � Re S0 �O�N
�1
f �

! Im logS�1
0 � Re � Im S0:

(58)

This enables us to recover Eq. (57) for the entropy, while
we get

N �N 0 � �2 tr
Z
K

@f�k0�

@�
Re � Im S0 (59)

for the contribution of order N0
f to the density.

In contrast to Eq. (54), Eq. (57) is a manifestly ultravio-
let finite expression as soon as propagators and self-
energies are made finite through renormalization, and it
naturally identifies bosonic and fermionic quasiparticle
entropies, S � Sb � Sf, with vanishing residual interac-
tions S0.

C. HTL approximation of the large-Nf entropy

In the large-Nf limit, the two expressions for the en-
tropy, Eqs. (54) and (57), are completely equivalent.
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However, this equivalence is broken once one starts ap-
proximating the gluon self-energy �� by its HTL limit
which has different behavior at large momentum. Doing so
leads to uncanceled UV divergences in Eq. (54), whereas
the entropy formula (57) that was derived using the statio-
narity of the thermodynamic potential for self-consistent
solutions remains finite. In the following we shall inves-
tigate the quantitative difference it makes to approximate
the full large-Nf gluon self-energy by its HTL approxima-
tion and define

Ŝ � S0 � tr
Z
K

@n�k0�

@T
	Im log�Ĝ�1G0� � Im �̂ Re Ĝ


� 2 tr
Z
K

@f�k0�

@T
Re �	Ĝ
 Im S0

� S0 � Ŝb � Ŝf; (60)

where �̂ and Ĝ denote the gluon HTL self-energy and
propagator, respectively. The numerical evaluation of this
expression does not contain spurious divergences, because
Re �	Ĝ
 on the light cone is UV finite as we will show in
Sec. IV C. This is the advantage of using the self-consistent
2PI formulation rather than a direct ring resummation.

It is in fact instructive to evaluate the difference between
Eq. (60) and a direct HTL approximation of d�P� P0�=dT
as given by Eq. (54). In the large-Nf limit the equivalence
of the two entropy formula stems from Eqs. (55) and (56)
which combine together into

tr
Z
K

@n�k0�

@T
Im �� ReG� 2 tr

Z
K

@f�k0�

@T
Re � Im S0

� �tr
Z
K
n�k0� Im

�
G
d��

dT

�
: (61)

In the HTL approximation, it is possible to derive a similar
formula by exploiting the fact that Eqs. (55) and (56) are
valid for any G provided one maintains the functional
relation of � to G. The value of �� does not need to be
changed. Thus, if we replace G! Ĝ, �! �	Ĝ
, we
obtain

tr
Z
K

@n�k0�

@T
Im �� Re Ĝ� 2 tr

Z
K

@f�k0�

@T
Re �	Ĝ
 Im S0

� �tr
Z
K
n�k0� Im

�
Ĝ
d��

dT

�
: (62)

Now we add a common term to both sides in order to obtain
the 2PI HTL entropy in the form:

Ŝ�
d
dT
��P�Pf0�j��!�̂�� tr

Z
K

@n�k0�

@T
Im��̂����ReĜ

� tr
Z
K
n�k0�Im

�
Ĝ
�
d�̂

dT
�
d��

dT

��
: (63)

The last two terms are the ones corresponding to the
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temperature dependent singularities in a direct HTL ap-
proximation on ring diagrams.

Returning to the expression (60), we observe that the
large-Nf limit leads to rather different simplifications in
the bosonic and the fermionic contributions. In the bosonic
part Ŝb, the NLO contributions 	� displayed in Fig. 2 do
not appear because they are of order N�1

f . The NLO
contribution 	� of Fig. 3 is also of order N�1

f , but it
does contribute to the fermionic entropy because there
are Nf fermions. However, 	� is not Dyson-resummed
because for Nf ! 1 only one insertion of 	� survives.

Because of the factor Im S0, the fermion self-energy in
(57) and (60) is evaluated on mass shell and, because the
integral is dominated by hard momenta, the fermionic
contribution to the entropy can be identified with a
weighted average over a momentum-dependent asymptotic
quark mass. For the entropy5 at zero chemical potential, we
can define

�S � S0�f � �2 tr
Z
K

@f�k0�

@T
Re � Im S0

� �4NNf
Z

k

@f�k�
@T

M2
1�k�
2k

� �
NNfT

6
�M2
1;

(64)

although, as we shall see,M2
1�k� and �M2

1 do not need to be
positive.

In perturbation theory we have in the massless case and
at zero chemical potential

Nf �M2
1 �

�
g2

eff

2
�
g3

eff���
3
p
�
�O�g4

eff�

�
CfT2; Cf �

Ng
2N

;

(65)

where the calculation of the contribution / g3 requires
HTL resummation as shown in Fig. 3. The latter is respon-
sible for 3=4 of the plasmon term in the thermodynamic
potential; the remaining 1=4 of the plasmon term comes
from the soft momentum regime of the bosonic entropy
(57).

In the following we shall derive and evaluate numeri-
cally the quantities M2

1�k� and �M2
1 in the large-Nf limit.

These will be compared with strictly perturbative results
and HTL approximations where all the higher-order terms
generated by HTL resummation are retained. This will
allow us to test the proposal of complete HTL resummation
not only with respect to the entropy of large-Nf QCD but
also with respect to the asymptotic thermal quark masses.

IV. FERMION SELF-ENERGY

In this section we shall calculate the fermionic self-
energy � in the large-Nf limit as it is needed in the self-
5For the quark density a different weighted average would be
relevant.
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consistent entropy and number density formula Eqs. (57)
and (59). It corresponds to the one-loop diagram of Fig. 3
with an undressed fermion line and a dressed gluon propa-
gator which resums the fermion bubbles in analogy to
Fig. 4. The fermion self-energy requires mass and wave
function renormalization: ��K� � �b�K� � 	M� K6 	Z 
with the bare self-energy �b given by

�b�K� � �g
2Cf

ZX
Q

�S0�K �Q�


�G���Q�: (66)

It enters the fermionic contribution to the entropy in the
second line of Eq. (57) as

S f � Sf0 � �NNf
Z

k

1

2"k

�
@f�"k�
@T

Re ���"k; k�

�
@f��"k�
@T

Re ����"k; k�
�
; (67)

with ���K� from Eq. (22). In the massless case this reduces
to (see Appendix B)

S f � Sf0 � �NNf
Z

k

1

k
@f�k�
@T

Re ���k0 � k; k�: (68)

We note here that the frequency carried by K in Eq. (66)
is imaginary (Matsubara frequency). In contrast the evalu-
ation of the entropy needs the discontinuity of the fermion
self-energy across the real axis. The analytical continu-
ation of (66) is described in detail in Sec. IV B. To that
purpose, it is convenient to split the self-energy into a
vacuum and a thermal piece �b � �b;vac � �th with re-
spect to the overall loop momentum Q. The thermal piece
is finite and its analytical continuation causes no troubles
(see Sec. IVA). In contrast, the correct evaluation of the
vacuum part with respect to the integral over Q needs that
we maintain Euclidean invariance (see Sec. IV B). We thus
compute it by replacing the discrete sum in (66) by a
continuous integral, leading to a 4-dimensional Euclidean
integral:

�b;vac�K� � �g2Cf
Z
QE


�S0�K �Q�
�G���Q�: (69)

This contribution also carries temperature dependences,
but only through the gluon propagator. It contains UV
divergences which in the massless case disappear from
the entropy formula as it is clear by looking at the con-
tribution of the counterterms (once again the trace is
performed over the Lorentz group):

Re ��ct��"k; k� � Re tr	�K6 �M��	M � K6 	Z �
k0��"k

� 4M	M� 4M2	Z : (70)

In Sec. IV C, we give a direct proof of the finiteness of
Re ��b;vac. In what follows, we drop the label ‘‘b’’ on the
projected self-energy which reads
-10
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���K� � tr	K6 ��K�


� �g2Cf
ZX

Q
tr	K6 
�P6 
�
�0�P�G���Q�;

P � K �Q:

(71)

Evaluating the trace over 
 matrices, one obtains

���K� � �4g2Cf
ZX

Q
	K�P� � P�K�

� K  Pg��
�0�P�G���Q�: (72)

In order to pursue the calculation, we need to specify a
gauge. We shall use the Coulomb gauge from Sec. II B. By
plugging G���Q� from Eq. (16) into Eq. (72), we obtain
two components to ��:

��L�K� � �4g2Cf
ZX

Q
	k0p0 � k  p
�0�P�GL�Q�;

��T�K� � �8g2Cf
ZX

Q
	k0p0 � �q̂  k��p  q̂�
�0�P�GT�Q�;

(73)

where k0, q0 and p0 are evaluated at the Matsubara fre-
quencies k0 � i!, q0 � i!n and p0 � i!m � i!� i!n.

A. Matsubara sums and thermal contributions

The contributions to � that we labeled as ‘‘thermal’’ are
those which after performing the Matsubara sum in (73)
contain a thermal factor n�jp0j� or f�jp0j� which vanishes
when T ! 0. Note that these contributions do not account
for the complete temperature dependences of �, since part
of the latter is implicit in the dressed gluon propagator. The
Matsubara sums are performed in Appendix A 2. The result
is

��L;th�K� � 4g2Cf
Z
P
	k0p0 � k  p
�0�P�GL�K � P�

� 4g2Cf
Z
Q
	k0�k0 � q0� � k  p


� �0�K �Q��L�Q�; (74)

��T;th�K� � 8g2Cf
Z
P
	k0p0 � �q̂  k��p  q̂�


� �0�P�GT�K � P� � 8g2Cf
Z
Q
	k0�k0 � q0�

� �q̂  k��p  q̂�
�0�K �Q��T�Q�; (75)

with �0�P� � ��p0�f�jp0j��0�P� and �L;T�Q� �
��q0�n�jq0j��L;T�Q� and K� � �i!l;k�. These integrals
are UV finite thanks to the presence of the thermal factors.
The continuation to the real axis k0 � i!l ! k0 � !� i�
and the light-cone limit !! k pose no problems, since the
integrand is always well defined. After performing the
angular integrals analytically, one can perform the remain-
ing 2-dimensional integrals numerically.
125005
Since integrations in ��th are effectively cut off by the
temperature, the necessity of introducing an ultraviolet
cutoff below the scale of the Landau pole is no practical
problem for temperatures T � �L. The results will be
independent on how such a cutoff is introduced.
However, this will be different for the remaining ‘‘vac-
uum’’ contributions.

B. Vacuum contributions and renormalization

The remaining contributions �vac, which contain tem-
perature dependences (only) through the spectral data of
the gluon propagator, can be computed by replacing the
discrete sum in (73) by a continuous integral, yielding a
4-dimensional Euclidean integral:

��vac
L �K���4g2Cf

Z
QE

	k0p0�k p
�0�P�GL�Q�;

��vac
T �K���8g2Cf

Z
QE

	k0p0��q̂ k��p  q̂�
�0�P�GT�Q�;

(76)

where K � �k0; k� � �i!l;k�, P � �p0;p� � �i!m; p�,
and Q � �q0; q� � �i!n; q� have imaginary frequency to
start with, and P�Q � K. Since our theory contains a
Landau pole, we have to introduce a cutoff below that
scale, and it is important that this cutoff is implemented
in a Euclidean-invariant way even when the result would
be finite in dimensional regularization.

1. Cutoff implementation example

To give an example of difficulties encountered with a
non-Euclidean-invariant cutoff, consider the expression
J�K� � I�K� � I�0� with

I�K� �
Z
QE

1

�Q� K�2
: (77)

This quantity appears in the calculation of ��vac	G0
�K� and
we would like to evaluate it on the light cone K2 � 0. In
dimensional regularization one can shift the integration
momentum, and the result is 	I�K� � I�0�
 ! 	I�0� �
I�0�
 � 0 for arbitrary Euclidean momentum K. Hence,
the light-cone value of J is zero. Is it possible to recover
this result by using an explicit cutoff?

Let us first introduce a cutoff that violates Euclidean
invariance: a cutoff that only applies to three-dimensional
momenta, not to the frequency (note that we assume
imaginary values for q0 and k0 such that the integrand
does not contain any poles along the integration path):

I�K� �
2�

�2��4
Z i1

�i1

dq0

i

Z �

0
dq

Z 1

�1
d�cos�

�
q2

�q0 � k0�
2 � �q2 � k2 � 2qk cos�

� �
1

8�2 �2 �
1

24�2 k
2: (78)
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FIG. 8 (color online). The branch cut structure for the q0

integration in (79) with the logarithmic singularities at A � k0 �
jq� kj, B � k0 � jq� kj, C � k0 � jq� kj, D � k0 � jq�
kj. For purely imaginary k0 (in the plot just between B and C),
the integration path runs from �i

������������������
�2 � q2

p
to i

������������������
�2 � q2

p
and

does not cross any logarithmic branch cut.

FIG. 9 (color online). As the rotation k0 � i!! ! moves all
the singularities at the same time, we should also deform the
integration path in order to avoid crossing a singularity or branch
cut.
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The integrations over , q0, and q are straightforward (in
this order), but the result we obtain, I�K� � I�0� �
k2=24�2, is clearly in contradiction to the result of dimen-
sional regularization. This result turns out to be indepen-
dent of k0 and can thus trivially be continued to Minkowski
space leading to a nonzero value on the light cone. It turns
out that this is a consequence of having introduced a cutoff
procedure that violates Euclidean rotation invariance for
the expression I�K�.

Thus, if one has to split frequency and momentum, one
should still do it in a Euclidean-invariant way:

I�K� �
2�

�2��4
Z �

0
dq

Z i
�����������
�2�q2
p

�i
�����������
�2�q2
p

dq0

i

�
Z 1

�1
dx

q2

�q0 � k0�
2 � �q2 � k2 � 2qkx�

�
�

�2��4
1

k

Z �

0
dqq

Z i
�����������
�2�q2
p

�i
�����������
�2�q2
p

dq0

i

� log
�q0 � k0�

2 � �q� k�2

�q0 � k0�
2 � �q� k�2

: (79)

The angular integration along x � cos poses no problem
for imaginary q0 � i!n and k0 � i!l as the integrand is
finite and continuous for all �1 � x � 1. The integration
along q0 is more problematic as the integrand

log
�q0 � k0�

2 � �q� k�2

�q0 � k0�
2 � �q� k�2

(80)

has singularities at q0 � k0 � jq� kj and branch cuts
which might interfere with the integration path for an
external Minkowski K� � �!; k�. The particular form of
writing (80) this way [i.e. not splitting up the logarithm
log�X=Y� into logX� logY] leads to an analytic structure
in the q0 complex plane as shown in Fig. 8: a branch cut
connecting the left two singularities and a branch cut
connecting the rightmost two singularities. Note that if
we start with purely imaginary k0, the q0 integration poses
no problem since all singularities and branch cuts are away
from the imaginary integration axis (except for q � k).

In order to evaluate (79) on the light cone, we have to
rotate k0 from the imaginary to the real axis k0 � i!l !
!� i�. By doing so, all four singularities will move to the
right, and one of them will eventually cross the integration
path when Re k0 > jq� kj. We want I�K� to stay an ana-
lytic function. This is only possible if we avoid singular-
ities and branch cuts by deforming the (numerical)
integration path as shown in Fig. 9. A deformation of a
complex path that does not cross poles, singularities, or
branch cuts, will not change the result of a complex
integration.

Note that q � k gives a ‘‘pinch singularity,’’ that is a
point where in Fig. 8 two singularities pinch the integration
path. It turns out that in our case this singular point
corresponds to a discontinuity of the first derivative of
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the q integrand, but is otherwise harmless for the q inte-
gration. Also note that, when q > 2k � 2k0, we do not
have to deform the integration path as the point B � k0 �
jq� kj< 0 in Fig. 9 stays on the left side of the integration
path even on the light cone. We can choose the integration

path such that all path deformation is performed for QE ����������������������
�q2

0 � q
2

q
<�1 and no path deformation needed for

QE >�1 as long as the intermediate cutoff �1 > 2k.
Performing the numerical integration with the modified

path indeed gives the desired result I�K� � I�0� � 0 also
on the light cone, in accordance with dimensional regu-
larization. Blindly integrating across the branch cut with-
-12
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out deforming the integration path would give a wrong, nonvanishing result on the light cone.

2. Full cutoff implementation

We can now perform the angular integration in the vacuum contributions (76) and obtain

��vac
L �K� � �4g2Cf

2�

�2��4
Z �

0
dqq2

Z i
�����������
�2�q2
p

�i
�����������
�2�q2
p

dq0

i
GL�Q�

�

�
1�
�q0 � k0��q0 � 3k0� � q2 � k2

4kq
log
�q0 � k0�

2 � �q� k�2

�q0 � k0�
2 � �q� k�2

�
;

��vac
T �K� � �8g2Cf

2�

�2��4
Z �

0
dqq2

Z i
�����������
�2�q2
p

�i
�����������
�2�q2
p

dq0

i
GT�Q�

�

�
�
�q0 � k0�

2 � q2 � k2

2q2 �
��q0 � k0�

2 � k2�2 � q2�4k0�k0 � q0� � q2�

8kq3 log
�q0 � k0�

2 � �q� k�2

�q0 � k0�
2 � �q� k�2

�
:

(81)
The bare propagator �0�P� � �0�K �Q� gives the same
logarithmic expression of the form (80) as in our example.
But GL�Q� and GT�Q�, which contain the gluon self-
energies �L and �T, provide additional branch cut struc-
tures along the real q0 axis such that the path deformation
is further restricted as shown in Fig. 10. The integration
path goes from q0: �i

������������������
�2 � q2

p
! 0! k0�� !� i�� !

i
������������������
�2 � q2

p
.

Another numerical subtlety is involved: Keeping � small
but fixed will limit the upper integration bound of the q0

integration to i
������������������
�2 � q2

p
> i� (see Fig. 10) which means

that the q-integration is limited to 0 � q <
������������������
�2 � �2
p

. The
error introduced by this turns out to be at least of the order
O��2�.
FIG. 10 (color online). A general propagator with self-energy
� will introduce additional cuts and poles along the real q0 axis.
In this case, the integration has to go through the origin and k0

has to be shifted slightly off the real axis to k0 � !� i�.
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C. Renormalization

1. Large-Nf limit

As already mentioned, the disappearance of the counter-
terms 	Z and 	M from the entropy formula indicates that
Re ��vac has to be finite on the light cone. Since the propa-
gator G used to compute this quantity contains a Landau
pole, we have to be more specific about what we call
‘‘finite.’’ Re ��vac is computed with an explicit Euclidean-
invariant cutoff �� �L. The finiteness of Re ��vac means
that it is insensitive to � in a broad region of momenta
T � �� �L. In order to understand this more explicitly,
we can use the linearity of Re ��vac with respect to G in
order to write Re ��vac � Re ��vac	Gvac
 � Re ��vac	G�
Gvac
. Using the asymptotic behavior of �th, one can check
that the second term of this expression is insensitive to �.
Thus we only need to check the finiteness of Re ��vac	Gvac

on the light cone.

To do so, we start from Eqs. (81) and transform the
integration variables to 4-dimensional variables according
to
Z �

0
dqq2

Z i
�����������
�2�q2
p

�i
�����������
�2�q2
p

dq0

i
f�q0; q�

�
Z �

0
dQEQ

3
E

Z �

0
d�sin2�f�iQE cos�;QE sin��: (82)
The integrand can then be expanded for largeQE and, since
in the vacuum GT�QE� � G‘�QE� � �GL�QE�=sin2� �
�Q2

E ��vac�Q2
E��
�1 is independent of �, we can perform

the � integration and obtain
-13



BLAIZOT, IPP, REBHAN, AND REINOSA PHYSICAL REVIEW D 72, 125005 (2005)
Re ��vac
L �K� � �4g2Cf

2�

�2��4
Z �

0
dQEQ

3
EG‘�QE�

�
3

�
�

4k2

Q2
E

�
8k4

5Q4
E

�
4k2�9k4 � 42k2k2

0 � 35k4
0�

35Q6
E

�O
�

1

Q8
E

��
;

Re ��vac
T �K� � �8g2Cf

2�

�2��4
Z �

0
dQEQ

3
EGT�QE�

�
6

�
k2 � 3k2

0�

Q2
E

�
8k4�

5Q4
E

�
8�k6 � 7k4k2

0��

35Q6
E

�O
�

1

Q8
E

��
:

(83)
The first term of each expansion is logarithmically diver-
gent if transverse and longitudinal parts are taken sepa-
rately. Only when adding the components together to form
��vac�K� � ��vac

L �K� � ��vac
T �K�, the logarithmic divergence

vanishes on the light cone k2
0 � k2:

Re ��vac�K� � �4g2Cf
2�2

�2��4
Z �

0
dQEQ

3
EGvac�QE�

�

�
k2

0 � k
2

Q2
E

�
4k2�k2

0 � k
2��k2 � 5k2

0�

15Q6
E

�O
�

1

Q8
E

��
: (84)

2. HTL approximation

Unlike the case of large Nf, the disappearance of the
counterterms 	Z and 	M from the entropy formula can-
not be taken as an indication of the finiteness of
Re ��vac	Ĝ
. This is because Ĝ is built from approximations
of Feynman diagrams which may change its asymptotic
behavior. However, one can check that both transverse and
longitudinal HTL propagators can be expanded in the form

Ĝ�QE; �� �
1

Q2
E

�
1� f���

m2
D

Q2
E

�O
�
m4
D

Q4
E

��
: (85)

The additional angular dependence f��� is suppressed by a
factor m2

D=Q
2
E at large QE and therefore does not influence

the leading logarithmic divergent behavior of Eqs. (83) and
(84): the leading divergence still vanishes on the light cone.

V. NUMERICAL RESULTS

A. Numerical implementations

The evaluation of Eq. (76) requires three consecutive
numerical integrations (of which one is given by the com-
plex path described earlier) in order to obtain one value of
��! � k; g2

eff�. With our implementation this takes of the
order of 10 hours on a current PC (3 GHz). This has to be
integrated over to obtain the fermionic contribution to the
entropy Sfermion�g2

eff� for one point of g2
eff . Part of the code

was therefore ported to run in parallel and final results
could be obtained on the ECT� Teraflop Cluster within a
couple of weeks that would have taken years on a standard
PC.

It turns out that the numeric cancellation in the integrand
(76) for large q and (imaginary) q0 works best if one
integrates over 4-dimensional Euclidean spheres at fixed

QE �
���������������������
�q2

0 � q
2

q
first. No path deformation is needed as
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long asQE > 2k as was discussed at the end of Sec. IV B 1.
Unfortunately, the path deformation for 4-dimensional
angular variables turns out to be much more involved
(the corresponding deformed path could become infinitely
long due to inverse trigonometric functions), such that a
hybrid approach seems a good compromise between sim-
ple path-deformation for small QE and good convergence
properties for larger QE:

Z �

0
d4q �

Z �1

0
d4q�

Z �

�1

d4q

�
Z �1

0
dqq2

Z i
�����������
�2

1�q
2

p

�i
�����������
�2

1�q
2

p
dq0

i

Z
d�2

�
Z �

�1

dQEQ
3
E

Z
d�3 (86)

where �1 is an intermediate cutoff to be chosen such that
2k <�1 � � (in our implementation we chose �1 �
2:1k), and

R
d�2 and

R
d�3 denote the 3- and 4-

dimensional angular integrations. Practically, yet another
cutoff �1 <�2 <� is introduced, above which the angu-
lar integration

R
d�3 is performed analytically on the

high-temperature series expansion. This series expansion
is also used to show that neither large-Nf nor HTL gluon
self-energies contain logarithmically divergent pieces for
high momentum shells.

In order to correctly integrate all peaks along the com-
plex path, the routine for complex path integration is
enhanced by providing information about analytically or
numerically known positions in the complex plane of poles
of the propagator, !L�q� and !T�q� [48], singularities of
the logarithms and other singular points. The integration
path is divided into smaller segments in the vicinity of such
points where the integrand can rapidly change its value by
orders of magnitude.

B. Asymptotic thermal quark masses

Figures 11–13 show the results of a numerical calcula-
tion of the asymptotic thermal quark mass squared
M2
1�k� � 2kRe ��k0 � k� for three different values of

the coupling g2
eff� ��MS � �T� � 4, 9, and 16, and normal-

ized by T2Cf=Nf. (Recall that this quantity is of orderN�1
f ,

and it contributes to the entropy only because there are Nf
fermions.) The exact (nonperturbative) result obtained in
the large-Nf limit is given by the full lines.

As anticipated, the asymptotic thermal quark mass
squared is a nontrivial function of momentum. It is maxi-
mal for k� T and decays for large k� T. The fact that it
-14
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FIG. 13 (color online). Same as Fig. 11 for g2
eff��T� � 16.
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FIG. 12 (color online). Same as Fig. 11 for g2
eff��T� � 9.
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FIG. 11 (color online). Asymptotic thermal quark mass
squared (real part of the fermionic self-energy on the light
cone) as a function of k=T for g2

eff��T� � 4. The exact
large-Nf result is compared to the NLO-HTL calculation and
its relevant average value. The renormalization scale ��MS is
varied around the FAC-m scale by factors of 2 (see text).

ASYMPTOTIC THERMAL QUARK MASSES AND THE . . . PHYSICAL REVIEW D 72, 125005 (2005)
vanishes and even becomes negative at very small momen-
tum is not to be taken seriously. M1�k� is referred to as
asymptotic thermal quark mass, because only at hard k *

T does this have the interpretation of a quasiparticle mass;
for smaller k one would have to search for a self-
consistently determined pole of the dressed quark propa-
gator rather than evaluate the quark self-energy on the tree-
level mass shell, i.e. the light cone. M2

1�k� however also
becomes negative at very large momenta, k� T. This
means that the dispersion law for hard fermionic modes
eventually turns spacelike, which does not necessarily
signal an inconsistency of the theory. In fact, the group
velocity remains smaller than the speed of light for all k *

T. Negative M2
1�k� however opens up the possibility for

Čerenkov radiation and thus means that at the correspond-
ing values of k there is a qualitative difference to the
leading-order result M̂2

1 �
1
2g

2
effCfT

2=Nf.
The next-to-leading order result as obtained in HTL-

resummed perturbation theory (i.e., replacing the full
gauge boson propagator in the quark self-energy by its
HTL approximation) is given by the dashed lines in
Figs. 11–13. Qualitatively, the HTL result is similar to
the exact large-Nf result. Quantitatively, like every pertur-
bative result, it has a dependence on the renormalization
scale. The HTL result is displayed for a range of renor-
malization scales ��MS centered at ��FAC�m � exp�12�

E��T � 0:926�T which is the scale of fastest apparent
convergence with respect to the effective mass parameter
mE in dimensional reduction [3]. The upper (dotted) limit-
ing lines of the shaded bands correspond to 1

2� ��FAC�m,
while the lower (dashed) limiting lines correspond to 2�
��FAC�m. The renormalization scale dependence is seen to

increase with the coupling g2
eff , and also in the domain

where k� T. For large values of k, the HTL result for the
asymptotic mass squared turns more quickly negative than
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the full result, but in fact at large values of k the modes are
severely suppressed by the Bose-Einstein distribution fac-
tor. The range k� T is more relevant physically (in par-
ticular for the calculation of the entropy to be discussed
presently), and here the agreement with the exact large-Nf
result is much better.

For the computation of the fermionic contribution to the
entropy, the asymptotic thermal mass appears in the form
of the weighted average given in Eq. (64). This averaged
asymptotic thermal mass is given for the HTL approxima-
tion by the flat horizontal bands labeled �M2

1 (NLO-HTL).
For the entire range of couplings that we can consider
without becoming sensitive to the scale of the Landau
pole, the averaged asymptotic quark masses are compared
in Fig. 14. The full line is again the exact large-Nf result,
given as a function of g2

eff��T�. The short-dashed lines
correspond to the leading-order HTL value M̂2

1 with re-
normalization scale varied as before. The perturbative
next-to-leading order result (65) is given by the longer-
dashed lines. Finally, the full NLO-HTL-resummed result,
not truncated at order g3

eff , is given by the dash-dotted lines.
As one can see in Fig. 14, the NLO-HTL-resummed

result represents a considerable improvement over the
-15
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FIG. 14 (color online). Comparison of the averaged asymp-
totic thermal quark mass squared, �M2

1, in various approxima-
tions as explained in the text. The renormalization scale ��MS is
varied around the FAC-m scale by factors of 2.
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HTL-resummed result truncated at order g3
eff for g2

eff * 4,
which corresponds to m̂D=T * 1.

C. Numerical results for the entropy and discussion

Figure 15 shows the numerical results of the entropy
calculation. The full line is the entropy density S �
�@P=@T�� as it has been obtained earlier [33–35] by a
numerical derivative of the pressure P from Eq. (43) for
massless fermions m � 0. It is a very nontrivial numerical
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FIG. 15 (color online). Entropy in the large-Nf limit separated
into a bosonic and a fermionic part, corresponding, respectively,
to the first and second line of Eq. (57). The NLO-HTL approxi-
mation to the two parts of the entropy is depicted in dashed lines,
where the renormalization scale ��MS is varied around the FAC-
m scale by factors of 2. The combined NLO-HTL result shows
remarkable agreement with the exact large-Nf result for all
couplings with HTL Debye mass m̂D & 2:5T.
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test that the result for the entropy as obtained from the
�-derivable two-loop approximation, Eq. (14), reproduces
exactly the same result in the large-Nf limit, as has been
discussed in Sec. III A. Indeed, only after implementing the
correct path deformation for the calculation of �, we have
been able to reproduce the entropy to three or four digits,
where the accuracy was limited only by the high calcula-
tion cost for the multidimensional integrals. In Fig. 15 the
two curves lie perfectly on top of each other for the whole
range of couplings displayed.

We show the results in a range of couplings g2
eff��T� &

36 where the influence of the Landau pole can be ne-
glected. As in [33–35] we obtain differences in the entropy
on the percent level for the largest couplings g2

eff� ��MS �

�T� � 36 by varying the numerical cutoff �2 � a�2
L in

the range a � 1=4::1=2.
According to Eq. (57), the large-Nf entropy as well as

the HTL approximation thereof is composed of a bosonic
and a fermionic contribution. The fermionic one is entirely
given by the weighted average (64) of the asymptotic
thermal quark mass that we have discussed above and it
is reproduced in Fig. 15 by the line marked ‘‘fermion,’’
together with its NLO-HTL approximation. The calcula-
tion of the bosonic contribution is less demanding compu-
tationally. The result is shown by the line marked ‘‘boson’’
in Fig. 15. The HTL approximation to the bosonic contri-
bution does not require NLO corrections to the asymptotic
bosonic masses in the large-Nf limit, and it has been
calculated completely already in Refs. [21,23]. Evaluated
for the range of renormalization scales considered here, it
gives the band below the line marked boson. Perhaps
fortuitously, the errors of the bosonic contribution to the
HTL approximation of the entropy are opposite in sign
from those of the fermionic contribution. The sum total
turns out to reproduce the exact result with astounding
accuracy up to g2

eff � 16. For larger coupling the renor-
malization scale dependence quickly becomes enormous,
however the central value determined by the optimized
scale ��MS � ��FAC�m remains amazingly close to the exact
result for all values of geff . In Ref. [35] a similarly suc-
cessful approximation was constructed by using optimized
renormalization scales on a perturbative result, which how-
ever required to include all contributions up to and includ-
ing order g6

eff .
In Fig. 16 the exact and the NLO-HTL result is also

compared to simpler approximations. The short-dashed
lines give the strictly perturbative result up to and including
order g3

eff , the longer-dashed lines labeled ‘‘NLA’’ (next-
to-leading approximation) show the result of comparing
the bosonic HTL entropy with a perturbative approxima-
tion to the averaged asymptotic thermal quark mass pre-
sented before in Ref. [36]. The latter corresponds to the
large-Nf limit of the HTL-resummed entropies obtained in
Refs. [21–23]. While this does lead to an important im-
provement for couplings such that m̂D=T & 1:5, it is re-
-16
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FIG. 16 (color online). Entropy in the large-Nf limit, compar-
ing the exact large-Nf result to the strictly perturbative expan-
sion through order g3

eff , the NLA result, and the NLO-HTL
result. The renormalization scale ��MS is varied around the
FAC-m scale by factors of 2.
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markable that a complete HTL resummation in the asymp-
totic thermal mass can push the range where HTL resum-
mation works well up to m̂D=T � 2:5.

VI. CONCLUSIONS AND OUTLOOK

We have calculated the large-Nf limit of the entropy of
ultrarelativistic gauge theories by evaluating separately the
contributions from bosonic and fermionic quasiparticles.
Since in the large-Nf limit, the 2-loop �-derivable ap-
proximation becomes exact, this allowed us to assess the
error that is being made when fully dressed propagators
and self-energies are replaced by their HTL approx-
imations.

In the case of the bosonic contributions, these approx-
imations correspond to replacing a full fermion loop in the
dressed gluon propagator by its HTL approximation. The
fermionic contributions to the entropy, on the other hand,
involve the momentum-dependent asymptotic thermal
quark mass where the HTL approximation has to be carried
to next-to-leading order. In both cases the HTL approxi-
mation turned out to give remarkably good results when
compared with the exact large-Nf results, even for fairly
large coupling. Combining these contributions, the final
result for the entropy in the NLO-HTL approximation
turned out to be amazingly accurate up to m̂D=T � 2:5,
and even beyond when the renormalization scale is fixed by
the requirement of fastest apparent convergence of the
electric mass in dimensional reduction. Its quality is then
comparable to optimized perturbative results including
terms through order g6

eff . This supports the conclusions of
Ref. [49,50] where optimized dimensional-reduction re-
sults for QCD to order g6 log�g� were found to agree
well with available lattice data and in turn with the esti-
mates from the HTL entropy.
125005
The improvement achieved by including the full mo-
mentum dependence of asymptotic thermal masses and
keeping all effects of the resummation of hard thermal
loops is encouraging for further developments of this ap-
proach. A straightforward extension of the present calcu-
lations would be the inclusion of finite quark chemical
potential. The calculation of quark densities and quark
number susceptibilities [51–53] for small-Nf QCD within
NLO-HTL resummation in fact requires exclusively the
asymptotic quark thermal masses that were calculated in
the present work for zero chemical potential. By also
calculating the full momentum-dependent asymptotic
gluon masses, one could finally complete the existing
HTL results [21–23] for the entropy of full QCD in the
2-loop �-derivable approximation.
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APPENDIX A: MATSUBARA SUMS

1. Gluon self-energy

The gluon self-energy to leading order in Nf is given by

���
b �Q� � g2

eff tr
ZX

K

�S0�K�


�S0�P�; (A1)

with P � K �Q. It is convenient to split this self-energy
into a vacuum and a thermal piece �b � �b;vac ��th (the
label ‘‘b’’ stands for bare and is here to remind that the
vacuum piece contains UV divergences). The vacuum
piece is simply obtained by replacing the discrete
Matsubara sum by a continuous integral, thus leading to
a 4-dimensional Euclidean integral:

���
b;vac�Q� � g2

eff tr
Z
KE


�S0�K�

�S0�P�: (A2)

The thermal piece is obtained after performing the
Matsubara sums and separating the thermal dependent
pieces. A convenient way to proceed is to introduce the
spectral representation (7) for each of the fermionic propa-
gators:

���
b �Q� � g2

eff tr
Z
p0

Z
k0

Z
k

��K6 �M��0�K�
��P6 �M�

� �0�P�
1

�

X
l

1

�k0 � i!l��p0 � i!m�
; (A3)

where !m � !l �!n and q0 � i!n. One can now easily
perform the Matsubara sum and extract the thermal depen-
dent part:
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1

�

X
l

1

�k0 � i!l��p0 � i!l � i!n�
�
�f�k0� � f�p0�

p0 � k0 � i!n

�
���k0�f�jk0j� � ��p0�f�jp0j�

p0 � k0 � i!n
� vac; (A4)

where we have used f�k0� � ��k0� � ��k0�f�jk0j�. The
thermal part of the gluon self-energy now reads (we do not
use the label ‘‘b’’ since this contribution is UV finite)

���
th �Q� � g2

eff tr
Z
p0

Z
k0

Z
k

��K6 �M��0�K�


��P6 �M�

� �0�P�
���k0�f�jk0j� � ��p0�f�jp0j�

p0 � k0 � q0
: (A5)

Using the spectral representation for the fermion propaga-
tor, the parity properties of ��� together with a straight-
forward change of variables (which is justified since the
cutoff can be sent to infinity in the thermal contribution),
one obtains

���
th �Q� � �2g2

eff tr
Z
K

��K6 �M��0�K�


�S0�K �Q�;

(A6)

with �0�K� � ��k0�f�jk0j��0�K�.
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2. Fermion self-energy

In this section, we compute the fermionic Matsubara
sums:

��L�K���4g2Cf
ZX

Q
	k0p0�k p
�0�P�GL�Q�;

��T�K���8g2Cf
ZX

Q
	k0p0��q̂ k��p  q̂�
�0�P�GT�Q�;

(A7)

with P � K �Q. To that aim, we use the spectral repre-
sentations (7) and (18). The longitudinal part gives

��L�K��4g2Cf
Z

q

Z
p0

	k0p0�kp

1

q2�0�P�
1

�

X
n

1

p0� i!m

�4g2Cf
Z

q

Z
p0

Z
q0

	k0p0�kp


��0�P��L�Q�
1

�

X
n

1

�p0� i!m��q0� i!n�
; (A8)

where i!m � i!l � i!n and k0 � i!l. The Matsubara
sums give
1

�

X
n

1

p0 � i!l � i!n
� �n��p0 � i!l� � f��p0� � ���p0�f�jp0j� � vac;

1

�

X
n

1

�p0 � i!l � i!n��q0 � i!n�
�
n�q0� � f��p0�

p0 � q0 � i!l
�
��q0�n�jq0j� � ��p0�f�jp0j�

p0 � q0 � i!l
� vac;

(A9)
where we have used f��p0� � �p0� � ��p0�f�jp0j� and
n�q0� � ���q0� � ��q0�n�jq0j�. Then, we have

��L;th�K� � �4g2Cf
Z

q

Z
p0

	k0p0 � k  p


�
1

q2 �0�P���p0�f�jp0j�

� 4g2Cf
Z

q

Z
p0

Z
q0

	k0p0 � k  p
�0�P��L�Q�

�
��q0�n�jq0j� � ��p0�f�jp0j�

p0 � q0 � k0
; (A10)

We can now use the spectral representations backwards to
write [we change variables in the second line q! p, this is
possible since the cutoff can be sent to infinity in the
thermal contributions; the first line then cancels against
the 1=q2 contribution from Eq. (18)]:

��L;th�K� � 4g2Cf
Z
P
	k0p0 � k  p
�0�P�GL�K � P�

� 4g2Cf
Z
Q
	k0�k0 � q0� � k  p


� �0�K �Q��L�Q�; (A11)
with �0�P� � ��p0�f�jp0j��0�P� and �L�Q� �
��q0�n�jq0j��L�Q�. In the same way, one obtains for the
transverse piece

��T;th�K��8g2Cf
Z
P
	k0p0��q̂ k��p  q̂�
�0�P�GT�K�P�

�8g2Cf
Z
Q
	k0�k0�q0���q̂ k��p  q̂�


��0�K�Q��T�Q�; (A12)

with �T�Q� � ��q0�n�jq0j��T�Q�.
APPENDIX B: RELATION BETWEEN �� AND ��

�� and �� from Eq. (24) can be related to each other by
application of the Schwarz reflection principle: It can be
shown that b�k0 � i!l; k� � b��i!l; k� is a purely real
quantity in Euclidean space (i.e. along the imaginary axis
k0 � i!l), as is ia�i!l; k� � �ia

��i!l; k�. The Schwarz
reflection principle implies that in a rotation from
Euclidean to Minkowski space k0 � i!l ! !� i� on
the one hand and k0 � i!l ! �!� i� on the other, the
-18
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values of b can be related via b�k0 � !� i�; k� �
b���!� i�; k�. The same holds for ia�!� i�; k� �
�ia���!� i�; k�. Combining the two results as in �� �
b� a (and ��� � b� � a�) gives

���!� i�; k� � �����!� i�; k�: (B1)

This result is of course also valid for finite �, i.e. all ! � 0
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and � > 0. Particularly for �! 0 this implies

Re ���! � k; k� � Re ���! � �k; k�

�
1

4k
Re ���! � �k; k�: (B2)
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