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Nonsupersymmetric attractors
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We consider theories with gravity, gauge fields and scalars in four-dimensional asymptotically flat
space-time. By studying the equations of motion directly we show that the attractor mechanism can work
for nonsupersymmetric extremal black holes. Two conditions are sufficient for this, they are conveniently
stated in terms of an effective potential involving the scalars and the charges carried by the black hole. Our
analysis applies to black holes in theories with N =< 1 supersymmetry, as well as nonsupersymmetric
black holes in theories with N* = 2 supersymmetry. Similar results are also obtained for extremal black
holes in asymptotically anti—de Sitter space and in higher dimensions.
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I. INTRODUCTION

Black holes in N = 2 supersymmetric (SUSY) theories
are known to exhibit a fascinating phenomenon called the
attractor mechanism. There is a family of black hole solu-
tions in these theories which are spherically symmetric,
extremal black holes, with double-zero horizons.' In these
solutions several moduli fields are drawn to fixed values at
the horizon of the black hole regardless of the values they
take at asymptotic infinity. The fixed values are determined
entirely by the charges carried by the black hole. This
phenomenon was first discussed by [1] and has been
studied quite extensively since then [2—10]. It has gained
considerable attention recently due to the conjecture of
[11] and related developments [12—15].

So far the attractor phenomenon has been studied almost
exclusively in the context of BPS black holes in the N =
2 theories. The aim of this paper is to examine if it is more
general and can happen for nonsupersymmetric black holes
as well. These black holes might be solutions in theories
which have no supersymmetry or might be nonsupersym-
metric solutions in /N° = 1 supersymmetric theories.

There are two motivations for this investigation. First, a
nonsupersymmetric attractor mechanism might help in the
study of nonsupersymmetric black holes, especially their
entropy. Second, given interesting parallels between flux
compactifications and the attractor mechanisms, a nonsu-
persymmetric attractor phenomenon might lead to useful
lessons for nonsupersymmetric flux compactifications. For
example, it could help in finding dual descriptions of such
compactifications. This might help to single out vacua with
a small cosmological constant. Or it might suggest ways to
weight vacua with small cosmological constants preferen-
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'By a double-zero horizon we mean a horizon for which the
surface gravity vanishes because the gq, component of the metric
has a double zero (in appropriate coordinates), as in an extremal
Reissner-Nordstrom black hole.
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tially while summing over all of them.” These lessons
would be helpful in light of the vast number of vacua
that have been recently uncovered in string theory [16].

An intuitive argument for the attractor mechanism is as
follows. One expects that the total number of microstates
corresponding to an extremal black hole is determined by
the quantized charges it carries, and therefore does not vary
continuously. If the counting of microstates agrees with the
Bekenstein-Hawking entropy, that is the horizon area, it
too should be determined by the charges alone. This sug-
gests that the moduli fields which determine the horizon
area take fixed values at the horizon, and these fixed values
depend only on the charges, independent of the asymptotic
values for the moduli. While this argument is only sugges-
tive what is notable for the present discussion is that it does
not rely on supersymmetry. This provides further motiva-
tion to search for a nonsupersymmetric version of the
attractor mechanism.

The theories we consider in this paper consist of gravity,
gauge fields and scalar fields. The scalars determine the
gauge couplings and thereby couple to the gauge fields. It
is important that the scalars do not have a potential of their
own that gives them, in particular, a mass. Such a potential
would mean that the scalars are no longer moduli.

We first study black holes in asymptotically flat four
dimensions. Our main result is to show that the attractor
mechanism works quite generally in such theories pro-
vided two conditions are met. These conditions are suc-
cinctly stated in terms of an “‘effective potential”’ Vg for
the scalar fields, ¢;. The effective potential is proportional
to the energy density in the electromagnetic field and arises
after solving for the gauge fields in terms of the charges
carried by the black hole, as we explain in more detail
below. The two conditions that need to be met are the
following. First, as a function of the moduli fields Vg
must have a critical point, 9;V.(¢;0) = 0. And second,
the matrix of second derivatives of the effective potential at

*For a recent attempt along these lines where supersymmetric
compactifications have been considered, see [14,15].

© 2005 The American Physical Society


http://dx.doi.org/10.1103/PhysRevD.72.124021

GOLDSTEIN et al.

the critical point, 9;;Vs(¢h;9), must have only positive
eigenvalues. The resulting attractor values for the moduli
are the critical values, ¢;,. And the entropy of the black
hole is proportional to V(¢;q), and is thus independent of
the asymptotic values for the moduli. It is worth noting that
the two conditions stated above are met by BPS black hole
attractors in an N° = 2 theory.

The analysis for BPS attractors simplifies greatly due to
the use of the first order equations of motion. In the non-
supersymmetric context one has to work with the second
order equations directly and this complicates the analysis.
We find evidence for the attractor mechanism in three
different ways. First, we analyze the equations using per-
turbation theory. The starting point is a black hole solution,
where the asymptotic values for the moduli equal their
critical values. This gives rise to an extremal Reissner-
Nordstrom black hole. By varying the asymptotic values a
little at infinity one can now study the resulting equations
in perturbation theory. Even though the equations are
second order, in perturbation theory they are linear, and
this makes them tractable. The analysis can be carried out
quite generally for any effective potential for the scalars
and shows that the two conditions stated above are suffi-
cient for the attractor phenomenon to hold.

Second, we carry out a numerical analysis. This requires
a specific form of the effective potential, but allows us to go
beyond the perturbative regime. The numerical analysis
corroborates the perturbation theory results mentioned
above. In simple cases we have explored so far, we have
found evidence for only a single basin of attraction,
although multiple basins must exist in general as is already
known from the SUSY cases.

Finally, in some special cases, we solve the equations of
motion exactly by mapping them a solvable Toda system.
This allows us to study the black hole solutions in these
special cases in some depth. Once again, in all the cases we
have studied, we can establish the attractor phenomenon.

It is straightforward to generalize these results to other
settings. We find that the attractor phenomenon continues
to hold in anti—de Sitter space (AdS) and also in higher
dimensions, as long as the two conditions mentioned above
are valid for a suitable defined effective potential. There is
also possibly an attractor mechanism in de Sitter space
(dS), but in the simplest of situations analyzed here some
additional caveats have to be introduced to deal with
infrared divergences in the far past (or future) of dS space.

This paper is structured as follows. Black holes in
asymptotically flat four-dimensional space are analyzed
first, in Secs. II, III, and IV. The discussion is extended to
asymptotically flat space-times of higher dimension in
Sec. V. Asymptotically AdS space is discussed next in
Sec. VL

As was mentioned above our analysis in the asymptoti-
cally flat and AdS cases is based on theories which have no
potential for the scalars so that their values can vary at
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infinity. Some comments on this are contained in Sec. VIIL.
With 2N =1 SUSY such theories can arise, with the
required couplings between scalars and gauge fields, and
are at least technically natural. In the absence of super-
symmetry there is no natural way to arrange this and our
study is more in the nature of a mathematical investigation.
We follow in Sec. VIII, with some comments on the
attractor phenomenon in dS. Finally, in Sec. IX we show
that nonextremal black holes do not have an attractor
mechanism. Thus, the double-zero nature of the horizon
is essential to draw the moduli to fixed values.

Several important intermediate steps in the analysis are
discussed in Appendixes A, B, C, and D.

Some important questions are left for the future. First,
we have not analyzed the stability of these black hole
solutions. It is unlikely that there are any instabilities at
least in the S-wave sector. We do not attempt a general
analysis of small fluctuations here. Second, in this paper
we have not analyzed string theory situations where such
nonsupersymmetric black holes can arise [17]. This could
include both critical and noncritical string theory. In the
case of N = 1 supersymmetry it would be interesting to
explore if there is partial restoration of supersymmetry at
the horizon. Given the rotational invariance of the solutions
one can see that no supersymmetry is preserved in between
asymptotic infinity and the horizon in this case.

Let us also briefly comment on some of the literature of
especial relevance. The importance of the effective poten-
tial, Vg, for 2N = 2 black holes was emphasized in [7,9].
Some comments pertaining to the nonsupersymmetric case
can be found, for example, in [7]. A similar analysis using
an effective one-dimensional theory, and the Gauss-Bonett
term, was carried out in [18]. Finally, while the thrust of the
analysis is different, our results are quite closely related to
those in [19] which appeared while this paper was in
preparation (see also [20] for the 3-dimensional case). In
[19] the entropy (including higher derivative corrections) is
obtained from the gauge field Lagrangian after carrying out
a Legendre transformation with respect to the electric
parameters. This is similar to our result which is based
on V. As was mentioned above, Vg, is proportional to
the electromagnetic energy density i.e., the Hamiltonian
density of the electromagnetic fields, and is derived from
the Lagrangian by doing a canonical transformation with
respect to the gauge fields. For an action with only two-
derivative terms, our results and those in [19] agree [21].

II. ATTRACTOR IN FOUR-DIMENSIONAL
ASYMPTOTICALLY FLAT SPACE

A. Equations of motion

In this section we consider gravity in four dimensions
with U(1) gauge fields and scalars. The scalars are coupled
to gauge fields with dilatonlike couplings. It is important
for the discussion below that the scalars do not have a
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potential so that there is a moduli space obtained by vary-
ing their values.
The action we start with has the form,

S = % f d*x=G(R — 2(0¢,)> = fap(b)Fs,FPH7).
(1)

Here the index i denotes the different scalars and a, b the
different gauge fields and F,, stands for the field strength
of the gauge field. f,,(¢;) determines the gauge couplings;
we can take it to be symmetric in a, b without loss of
generality.

The Lagrangian is

L =(R—20¢:) = fa()Fi, F*). 2
Varying the metric gives®
R,uv - 28M¢iav¢i = zfab(d)i)Fap,)lFbV/\ + %G/.LV'E’ (3)
The trace of the above equation implies
R —2(3¢;)*> = 0. 4

The equations of motion corresponding to the metric,
dilaton and the gauge fields are then given by

Ruy =20,:0,¢: = fup(b)F,\ F? )
B A O

1

— 1
ma,u,( _Ga'u(bl) = Zai(.fab)Fa,u,I/Fb’uV’ (6)

3, (V=G fap(P)F*+") = 0.
The Bianchi identity for the gauge field is
OMFVP+6,,FPIL+8’,F#V=O, (7

We now assume all quantities to be a function of r. To
begin, let us also consider the case where the gauge fields
have only magnetic charge, generalizations to both electri-
cally and magnetically charged cases will be discussed
shortly. The metric and gauge fields can then be written as

ds? = —a(r)*de* + a(r)~2dr? + b(r)2dQ?, (8)

F® = Q9 sin0dé A déb. 9)

Using the equations of motion we then get

22
R, = ﬁveff(ff’i), (10)

1
Rgyg = ﬁVeff(d)i)’ (11)

where

*In our notation G v Tefers to the components of the metric.
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Veir(hi) = fur($:) 0500, (12)

This function, Vg, will play an important role in the
subsequent discussion. We see from Eq. (10) that up to
an overall factor it is the energy density in the electromag-
netic field. Note that V(¢;) is actually a function of both
the scalars and the charges carried by the black hole.

The relation, R, = (a®>/b*)R,y, after substituting the
metric ansatz implies that

(@(r)b*(r)" = 2. (13)

The R,, — (G,,/G,;)R,, component of the Einstein equa-
tion gives
bll 5
o= —(0,9” (14)
b
Also the R,, component itself yields a first order “energy”
constraint,

2 B _ 1 202( h1)2
—1+a*b” + S = ?(Veff((bi)) + a’b*(¢'). (15)
Finally, the equation of motion for the scalar ¢, takes the
form,

9;Vest
2%

We see that V (¢;) plays the role of an effective potential
for the scalar fields.

Let us now comment on the case of both electric and
magnetic charges. In this case one should also include
“axion” type couplings and the action takes the form,

ar(a2b26r¢i) = (16)

§= % fd‘*xﬁ(R = 200> = fap(D)F,, FOH

1.
— S Fap(GF o FLem?0). a7)

We note that £, (¢,) is a function independent of f,,(¢b;),
it can also be taken to be symmetric in g, b without loss of
generality.

The equation of motion for the metric which follows
from this action is unchanged from Eq. (5). While the
equations of motion for the dilaton and the gauge field
now take the form,

1 1
ﬁaﬂ(v—G8“¢5) = Zai(fab)F ,u,VFbM

1. -
+ gai(fab)Fa/Lvap(reuypo”
(18)

0 (N=G(fap(p)FH" + 1f  FP  €#7P7)) = 0. (19)

With both electric and magnetic charges the gauge fields
take the form,
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~ 1
F = fab(¢i)(er - fch;‘n)ﬁdl Adr
+ 0% sinfdé A d¢, (20)

where 0%, O,, are constants that determine the magnetic
and electric charges carried by the gauge field F*, and f*
is the inverse of f,;.* It is easy to see that this solves the
Bianchi identity Eq. (7), and the equation of motion for the
gauge fields Eq. (19).

A little straightforward algebra shows that the Einstein
equations for the metric and the equations of motion for the
scalars take the same form as before, Eqs. (13)—(16), with
Vet now being given by

Veff(qsi) = fab(Qea - facQﬁz)(er - fbsz‘l)
+ far OO 1)

As was already noted in the special case of only magnetic
charges, V. is proportional to the energy density in the
electromagnetic field and therefore has an immediate
physical significance. It is invariant under duality trans-
formations which transform the electric and magnetic
fields to one another.

Our discussion below will use (13)—(16) and will apply
to the general case of a black hole carrying both electric
and magnetic charges.

It is also worth mentioning that the equations of motion,
Egs. (13), (14), and (16) above can be derived from a one-
dimensional action,

S = % ] dr<(a2b)/b’ — @’ (¢') - %) (22)

The constraint, Eq. (15) must be imposed in addition.

One final comment before we proceed. The Eq. (17) can
be further generalized to include nontrivial kinetic energy
terms for the scalars of the form,

f &' =Gl(—g, ()b a ). (23)

The resulting equations are easily determined from the
discussion above by now contracting the scalar derivative
terms with the metric g;;. The two conditions we obtain in
the next section for the existence of an attractor are not
altered due to these more general kinetic energy terms.

B. Conditions for an attractor

We can now state the two conditions which are sufficient
for the existence of an attractor. First, the charges should be
such that the resulting effective potential, V., given by
Eq. (21), has a critical point. We denote the critical values

“We assume that f,, is invertible. Since it is symmetric it is
always diagonalizable. Zero eigenvalues correspond to gauge
fields with vanishing kinetic energy terms, these can be omitted
from the Lagrangian.
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for the scalars as ¢; = ¢ ;9. So that
i Vett(Pio) = O. (24)

Second, the matrix of second derivatives of the potential at
the critical point,

M;; = 30,0, Verr (o) (25)
should have positive eigenvalues. Schematically we write
M;; > 0. (26)

Once these two conditions hold, we show below that the
attractor phenomenon results. The attractor values for the
scalars are’ ¢; = ¢q.

The resulting horizon radius is given by

bl = Verr(¢io) 27
and the entropy is
Spn = $A = b}, (28)

There is one special solution which plays an important
role in the discussion below. From Eq. (16) we see that one
can consistently set ¢; = ¢;o for all values of r. The
resulting solution is an extremal Reissner-Nordstrom
(ERN) black hole. It has a double-zero horizon. In this
solution d,¢; = 0, and a, b are

ag(r) = (1 - r—”)

where ry is the horizon radius. We see that a2, (a3)’ vanish
at the horizon while by, bj, are finite there. From Eq. (15) it
follows then that the horizon radius by is indeed given by

i = by = Ver(dio), (30)

and the black hole entropy is Eq. (28).

If the scalar fields take values at asymptotic infinity
which are small deviations from their attractor values we
show below that a double-zero horizon black hole solution
continues to exist. In this solution the scalars take the
attractor values at the horizon, and a?, (a?)’ vanish while
b, b’ continue to be finite there. From Eq. (15) it then
follows that for this whole family of solutions the entropy
is given by Eq. (28) and, in particular, is independent of the
asymptotic values of the scalars.

For simple potentials V¢ we find only one critical point.
In more complicated cases there can be multiple critical
points which are attractors, each of these has a basin of
attraction.

One comment is worth making before moving on. A
simple example of a system which exhibits the attractor
behavior consists of one scalar field ¢ coupled to two
gauge fields with field strengths, F%, a = 1, 2. The scalar

bo(r)=r (29)

3Scalars which do not enter in Ve are not fixed by the
requirement Eq. (24). The entropy of the extremal black hole
is also independent of these scalars.

124021-4



NONSUPERSYMMETRIC ATTRACTORS

couples to the gauge fields with dilatonlike couplings,

fab(d)) = eaa¢6ab' (31)
If only magnetic charges are turned on,
Veie = e®19(01)* + e®2%(0,)%. (32)

(We have suppressed the subscript m on the charges.) For a
critical point to exist a; and a, must have opposite sign.
The resulting critical value of ¢ is given by

2 1/(a;—ay)
eb0 = (_ a>(0,) ) . (33)
a;(0,)?
The second derivative, Eq. (25) now is given by
2y
O Vett _ 94142 (34)
d¢p?

and is positive if a, a, have opposite sign.

This example will be useful for studying the behavior of
perturbation theory to higher orders and in the subsequent
numerical analysis.

As we will discuss further in Sec. VII, a Lagrangian with
dilatonlike couplings of the type in Eq. (31), and additional
axionic terms (which can be consistently set to zero if only
magnetic charges are turned on), can always be embedded
in a theory with N = 1 supersymmetry. But for generic
values of a we do not expect to be able to embed it in an
N =2 theory. The resulting extremal black hole, for
generic a, will also then not be a BPS state.

C. Comparison with the N' = 2 case

It is useful to compare the discussion above with the
special case of a BPS black hole in an /N° = 2 theory. The
role of the effective potential, Vg for this case was em-
phasized in [7,9]. It can be expressed in terms of a super-
potential W and a Kahler potential K as follows:

Veie = eX[KUD,W(D;W)* + |W|?], (35)

where D;W = 9,W + 9;KW. The attractor equations take
the form,

D;W = 0. (36)
And the resulting entropy is given by
Seu = WX, 37)

with the superpotential evaluated at the attractor values.

It is easy to see that if Eq. (36) is met then the potential is
also at a critical point, 9,V = 0. A little more work also
shows that all eigenvalues of the second derivative matrix,
Eq. (25) are also positive in this case. Thus the BPS
attractor meets the two conditions mentioned above. We
also note that from Eq. (35) the value of V. at the attractor
point is V. = eX|W|%. The resulting black hole entropy
Egs. (27) and (28) then agrees with Eq. (37).
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We now turn to a more detailed analysis of the attractor
conditions below.

D. Perturbative analysis
1. A summary

The essential idea in the perturbative analysis is to start
with the ERN black hole solution described above, ob-
tained by setting the asymptotic values of the scalars equal
to their critical values, and then examine what happens
when the scalars take values at asymptotic infinity which
are somewhat different from their attractor values, ¢; =
bio-

We first study the scalar field equations to first order in
the perturbation, in the ERN geometry without including
backreaction. Let ¢; be an eigenmode of the second de-
rivative matrix Eq. (25).° Then denoting 6¢; = ¢; — ¢,
neglecting the gravitational backreaction, and working to
first order in 6¢;, we find that Eq. (16) takes the form,

2

= o, (600 = PP )
where 87 is the relevant eigenvalue of 9,0,V (¢ ;). In the
vicinity of the horizon, we can replace the factor 1/ 2 on
the right-hand side by a constant and as we will see below,
Eq. (38), has one solution that is well behaved and vanishes
at the horizon provided 87 = 0. Asymptotically, as r — o,
the effects of the gauge fields die away and Eq. (38)
reduces to that of a free field in flat space. This has two
expected solutions, 8¢; ~ const, and 6¢; ~ 1/r, both of
which are well behaved. It is also easy to see that the
second order differential equation is regular at all points
in between the horizon and infinity. So once we choose the
nonsingular solution in the vicinity of the horizon it can be
continued to infinity without blowing up.

Next, we include the gravitational backreaction. The
first order perturbations in the scalars source a second order
change in the metric. The resulting equations for metric
perturbations are regular between the horizon and infinity
and the analysis near the horizon and at infinity shows that
a double-zero horizon black hole solution continues to
exist which is asymptotically flat after including the
perturbations.

In short the two conditions, Eqgs. (24) and (26), are
enough to establish the attractor phenomenon to first non-
trivial order in perturbation theory.

®More generally if the kinetic energy terms are more compli-
cated, Eq. (23), these eigenmodes are obtained as follows. First,
one uses the metric at the attractor point, g;;(¢,9), and calculates
the kinetic energy terms. Then by diagonalizing and rescaling
one obtains a basis of canonically normalized scalars. The
second derivatives of V4 are calculated in this basis and give
rise to a symmetric matrix, Eq. (25). This is then diagonalized by
an orthogonal transformation that keeps the kinetic energy terms
in canonical form. The resulting eigenmodes are the ones of
relevance here.
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In 4 dimensions, for an effective potential which can be
expanded in a power series about its minimum, one can in
principle solve for the perturbations analytically to all
orders in perturbation theory. We illustrate this below for
the simple case of dilatonlike couplings, Eq. (31), where
the coefficients that appear in the perturbation theory can
be determined easily. One finds that the attractor mecha-
nism works to all orders without conditions other than
Eqs. (24) and (26).”

When we turn to other cases later in the paper, higher
dimensional or AdS space etc., we will sometimes not have
explicit solutions, but an analysis along the above lines in
the near horizon and asymptotic regions and showing
regularity in between will suffice to show that a smoothly
interpolating solution exists which connects the asymptoti-
cally flat region to the attractor geometry at the horizon.

To conclude, the key feature that leads to the attractor is
the fact that both solutions to the linearized equation for
8¢ are well behaved as r — o0, and one solution near the
horizon is well behaved and vanishes. If one of these
features fails the attractor mechanism typically does not
work. For example, adding a mass term for the scalars
results in one of the two solutions at infinity diverging.
Now it is typically not possible to match the well-behaved
solution near the horizon to the well-behaved one at infin-
ity and this makes it impossible to turn on the dilaton
perturbation in a nonsingular fashion.

We turn to a more detailed description of perturbation
theory below.

2. First order solution

We start with first order perturbation theory. We can
write

0d; = — ¢y = €y, (39)

where € is the small parameter we use to organize the
perturbation theory. The scalars ¢; are chosen to be eigen-
vectors of the second derivative matrix, Eq. (25).

From Egs. (13)—(15), we see that there are no first order
corrections to the metric components, a, b. These receive a
correction starting at second order in €. The first order
correction to the scalars ¢; satisfies the equation,

B?
3,(aghgo, i) = b—é b1, (40)
where (7 is the eigenvalue for the matrix Eq. (25) corre-
sponding to the mode ¢;. Substituting for ay, by, from

Eq. (29) we find

r— rH>(1/2)(t«/1+4B?/r§,—l) @)

r

b = cli(

"For some specific values of the exponent y;, Eq. (41), though,
we find that there can be an obstruction which prevents the
solution from being extended to all orders.
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We are interested in a solution which does not blow up at
the horizon, r = ry. This gives

b = C1i<r — rH>%, (42)

r

_ 1 A
yi—i( 1+r%1 1). (43)

Asymptotically, as r — o0, ¢;; — c¢y;, S0 the value of the
scalars vary at infinity as c;; is changed. However, since
vi >0, we see from Eq. (42) that ¢; vanishes at the
horizon and the value of the dilaton is fixed at ¢;, regard-
less of its value at infinity. This shows that the attractor
mechanism works to first order in perturbation theory.

It is worth commenting that the attractor behavior arises
because the solution to Eq. (40) which is nonsingular at
r = ry also vanishes there. To examine this further we
write Eq. (40) in standard form, [22],

where

2
LY+ Py + Q)y =0, (44)
dx

with x = r — ry, y = ¢;;. The vanishing nonsingular so-
lution arises because Eq. (40) has a single and double pole,
respectively, for P(x) and Q(x), as x — 0. This results in
(44) having a scaling symmetry as x — 0 and the solution
goes like x”i near the horizon. The residues at these poles
are such that the resulting indical equation has one solution
with exponent y; > 0. In contrast, in a nonextremal black
hole background, the horizon is still a regular singular
point for the first order perturbation equation, but Q(x)
has only a single pole. It turns out that the resulting non-
singular solution can go to any constant value at the
horizon and does not vanish in general.

3. Second order solution

The first order perturbation of the dilaton sources a
second order correction in the metric. We turn to calculat-
ing this correction next.

Let us write

b = by + €b,,
b2 = b% + 2€2b2b0,

2 _ 2 2
a —a0+6a2,

(45)

where b,y and a( are the zeroth order extremal Reissner-
Nordstrom solution Eq. (29).
Equation (13) gives

a’b®> = (r—ry)* +dir + d,. (46)

The two integration constants d;, d, can be determined by
imposing boundary conditions. We are interested in ex-
tremal black hole solutions with vanishing surface gravity.
These should have a horizon where b is finite and a? has a
“double zero,” i.e., both a? and its derivative (a2?)’ vanish.
By a gauge choice we can always take the horizon to be at
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r = ry. Both d; and d, then vanish. Substituting Eq. (45)
in the Eq. (13) we get to second order in €,

2a2bob, + bia, = 0. A7)

Substituting for ag, by then determines a, in terms of b,,

2b
a = —z<1 - r—*’) 2, (48)

r

From Eq. (14) we find next that

2y r— rpg\2vi
by(r) = — Li r( ) + A r+ Ay
2(7) Ei 22y, — 1) p 1 2Tl

(49)

A, A, are two integration constants. The two terms pro-
portional to these integration constants solve the equations
of motion for b, in the absence of the O(¢€)? source terms
from the dilaton. This shows that the freedom associated
with varying these constants is a gauge degree of freedom.
We will set A; = A, = 0 below. Then, b, is

2 A, _ 2y
_ C1;vi r— ryg\%vi
b,(r) 22(2%_1)r< - ) ) (50)

It is easy to check that this solves the constraint Eq. (15) as
well.

To summarize, the metric components to second order in
€ are given by Eq. (45) with a, b, being the extremal
Reissner-Nordstrom solution and the second order correc-
tions being given in Egs. (48) and (50). Asymptotically, as
r— o0, by — ¢ Xr, and a, = —2 X ¢, so the solution
continues to be asymptotically flat to this order. Since
v; >0 we see from Egs. (48) and (50) that the second
order corrections are well defined at the horizon. In fact
since b, goes to zero at the horizon, a, vanishes at the
horizon even faster than a double zero. Thus the second
order solution continues to be a double-zero horizon black
hole with vanishing surface gravity. Since b, vanishes the
horizon area does not change to second order in perturba-
tion theory and is therefore independent of the asymptotic
value of the dilaton.

The scalars also get a correction to second order in €.
This can be calculated in a way similar to the above
analysis. We will discuss this correction along with higher
order corrections, in one simple example, in the next
subsection.

Before proceeding let us calculate the mass of the black
hole to second order in €. It is convenient to define a new
coordinate,

y = b(r). (51)

Expressing a? in terms of y one can read off the mass from
the coefficient of the 1/y term as y — 0, as is discussed in
more detail in Appendix A. This gives

PHYSICAL REVIEW D 72, 124021 (2005)
2
rHCHYi
M=ry + ey 27 52
H Zl: 7 (52)

where ry is the horizon radius given by (30). Since v; is
positive, Eq. (43), we see that as € increases, with fixed
charge, the mass of the black hole increases. The minimum
mass black hole is the extremal RN black hole solution,
Eq. (29), obtained by setting the asymptotic values of the
scalars equal to their critical values.

4. An ansatz to all orders

Going to higher orders in perturbation theory is in
principle straightforward. For concreteness we discuss
the simple example, Eq. (31), below. We show in this
example that the form of the metric and dilaton can be
obtained to all orders in perturbation theory analytically.
We have not analyzed the coefficients and resulting con-
vergence of the perturbation theory in great detail. In a
subsequent section we will numerically analyze this ex-
ample and find that even the leading order in perturbation
theory approximates the exact answer quite well for a wide
range of charges. This discussion can be generalized to
other more complicated cases in a straightforward way,
although we will not do so here.

Let us begin by noting that Eq. (13) can be solved in
general to give

a’b* = (r—ry)? +d,r + d,. (53)

As in the discussion after Eq. (46) we set d; = d, = 0,
since we are interested in extremal black holes. This gives

a’b®> = (r — ry)?, (54)

where ry; is the horizon radius given by Eq. (30). This can
be used to determine a in terms of b.
Next we expand b, ¢ and a” in a power series in €,

b=b,+ Z €"b,, (55)
n=1

b=dot D ¢, (56)
n=1

a = a% + Z €a,, 57
n=1

where by, a, are given by Eq. (29) and ¢, is given by
Eq. (33).

The ansatz which works to all orders is that the nth order
terms in the above two equations take the form,

@)= e,(=)", (58)

b(r) = d, r(r - r”)”, (59)
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and

—_ ny+2
an=e(r ”ﬁy , (60)

r

where 7y is given by Eq. (43) and in this case takes the
value,

y = YT = Zara; — 1), (61)

The discussion in the previous two subsections is in agree-
ment with this ansatz. We found b; = 0, and from Eq. (50)
we see that b, is of the form Eq. (59). Also, we found
a; = 0 and from Eq. (48) a, is of the form Eq. (60). And
from Eq. (42) we see that ¢, is of the form Eq. (58). We
will now verify that this ansatz consistently solves the
equations of motion to all orders in €. The important point
is that with the ansatz Egs. (58) and (59) each term in the
equations of motion of order €” has a functional depen-
dence ((r — ry)/r)*¥". This allows the equations to be
solved consistently and the coefficients ¢,, d, to be
determined.

Let us illustrate this by calculating c¢,. From Egs. (14)
and (54) we see that the equation of motion for ¢ can be
written in the form,

2b(r)?0,((r — ry)*0,¢) = e“*Qia;. (62)
To O(€?) this gives

r—rg\2v
(") @eatenogiat — ary(1 + 2y)
+ e“f‘/’OQ%a?C%) =0. (63)

Notice that the term ((r — ry)/r)*¥ has factored out.
Solving Eq. (63) for ¢, we now get

(y+1)

Gyen Y

cp, = %c%(al + ay)

More generally, as discussed in Appendix A, working to
the required order in € we can recursively find ¢,,, d,,, e,,.

One more comment is worth making here. We see from
Eq. (50) that b, blows up when y = 1/2. Similarly we can
see from Eq. (A17) that b,, blows up when y = L for b,. So
for the values, y = .-, where n is an integer, our perturba-
tive solution does not work.

Let us summarize. We see in the simple example studied
here that a solution to all orders in perturbation theory can
be found. b, ¢ and a® are given by Egs. (59), (58), and (60)
with coefficients that can be determined as discussed in
Appendix A. In the solution, a® vanishes at ry so it is the
horizon of the black hole. Moreover a? has a double zero at
ry, so the solution is an extremal black hole with vanishing
surface gravity. One can also see that b, goes linearly with
r as r— o0 so the solution is asymptotically flat to all
orders. It is also easy to see that the solution is nonsingular
for r = ry. Finally, from Eq. (58) we see that ¢, = 0, for
all n >0, so all corrections to the dilaton vanish at the

PHYSICAL REVIEW D 72, 124021 (2005)

horizon. Thus the attractor mechanism works to all orders
in perturbation theory. Since all corrections to b also vanish
at the horizon we see that the entropy is uncorrected in
perturbation theory. This is in agreement with the general
argument given after Eq. (28). Note that no additional
conditions had to be imposed, beyond Eqgs. (24) and (26),
which already appeared in the lower order discussion, to
ensure the attractor behavior.®

ITII. NUMERICAL RESULTS

There are two purposes behind the numerical work we
describe in this section. First, to check how well perturba-
tion theory works. Second, to see if the attractor behavior
persists, even when €, Eq. (39), is order unity or bigger so
that the deviations at asymptotic infinity from the attractor
values are big. We will confine ourselves here to the simple
example introduced near Eq. (31), which was also dis-
cussed in the higher orders analysis in the previous
subsection.

In the numerical analysis it is important to impose the
boundary conditions carefully. As was discussed above, the
scalar has an unstable mode near the horizon. Generic
boundary conditions imposed at »r — oo will therefore not
be numerically stable and will lead to a divergence. To
avoid this problem we start the numerical integration from
a point r; near the horizon. We see from Eqgs. (58) and (59)
that sufficiently close to the horizon the leading order
perturbative corrections’ become a good approximation.
We use these leading order corrections to impose the
boundary conditions near the horizon and then numerically
integrate the exact equations, Eqgs. (13) and (14), to obtain
the solution for larger values of the radial coordinate.

The numerical integration is done using the Runge-
Kutta method. We characterize the nearness to the horizon
by the parameter
_ri—ry

or = (67)

Ti
where r; is the point at which we start the integration. c
refers to the asymptotic value for the scalar, Eq. (42).
In Figs. 1 and 2 we compare the numerical and 1st order
corrections. The numerical and perturbation results are

8In our discussion of exact solutions in Sec. IV we will be
interested in the case, &; = —a,. From Egs. (64) and (A17) we
see that the expressions for ¢, and d; become

Cy = O, (65)

d; = 0. (66)

It follows that in the perturbation series for ¢ and b only the
Copt+1 (0odd) terms and d,, (even) terms are nonvanishing,
respectively.

We take the O(e) correction in the dilaton, Eq. (42), and the
O(€?) correction in b, a?, Egs. (48) and (49). This consistently
meets the constraint Eq. (15) to O(€?).
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Plot of ¢ comparing numerical and 1% order perturbation result (04 =—0,,=1.7)

o

0.2

04 t+

02 ¢

150 200

-02 t

—04 }

FIG. 1 (color online). Comparison of numerical integration of
¢ with a 1st order perturbation result. The upper graph is a close-
up of the lower one near the horizon. The perturbation result is
denoted by dashed lines. We chose a, —a, = 1.7, O =3,
0, =3, 8r =23 X 107® and ¢, in the range [, 1].

denoted by solid and dashed lines, respectively. We see
good agreement even for large r. As expected, as we
increase the asymptotic value of ¢, which was the small
parameter in our perturbation series, the agreement
decreases.

Note also that the resulting solutions turn out to be
singularity free and asymptotically flat for a wide range
of initial conditions. In this simple example there is only
one critical point, Eq. (33). This however does not guar-
antee that the attractor mechanism works. It could have
been, for example, that as the asymptotic value of the
scalar becomes significantly different from the attractor
value no double-zero horizon black hole is allowed and
instead one obtains a singularity. We have found no evi-
dence for this. Instead, at least for the range of asymptotic
values for the scalars we scanned in the numerical work,
we find that the attractor mechanism works with attractor
value, Eq. (33).

It will be interesting to analyze this more completely,
extending this work to cases where the effective potential is
more complicated and several critical points are allowed.

PHYSICAL REVIEW D 72, 124021 (2005)

Plot of ¢ comparing numerical and 1% order perturbation result (0y=—0y=3.1)

o

03 t+

02 t+

AR

0.

-0.1t

FIG. 2 (color online). Comparison of numerical integration of
¢ with a 1st order perturbation result. The upper graph is a close-
up of the lower one near the horizon. The perturbation result is
denoted by dashed lines. We chose a, —a, =3.1, Q| = 2,
Q, =3, 8r=29x10"% and c, is in the range [—%,% .

This should lead to multiple basins of attraction as has
already been discussed in the supersymmetric context in
e.g., [9,10].

IV. EXACT SOLUTIONS

In certain cases the equation of motion can be solved
exactly [23]. In this section, we shall look at some solvable
cases and confirm that the extremal solutions display at-
tractor behavior. In particular, we shall work in 4 dimen-
sions with one scalar and two gauge fields, taking V¢ to be
given by Eq. (32),

Ver = e“19(01)* + e2%(Q,)*. (63)

We find that at the horizon the scalar field relaxes to the
attractor value (33)

o Q%

o 1Q%

which is the critical point of V.4 and independent of the

asymptotic value, ¢.. Furthermore, the horizon area is

ela— @) = (69)
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also independent of ¢, and, as predicted in Sec. II B, it is
proportional to the effective potential evaluated at the
attractor point. It is given by

Area = 4mb%, = 41V (o) (70)

= 4ary(Q,) @/ (-] )/ (a1 ~ar)] (71)

where

n= <_2>[a1/(a|—a2)] " (_%>[_a2/(a]_a2)] (72)
a ay

is a numerical factor. It is worth noting that when o =
—a,, one just has

TArea = 2|0, 0,l. (73)

Interestingly, the solvable cases we know correspond to
v =1, 2, 3 where v is given by (43). The known solutions
for v = 1, 2 are discussed in [23] and references therein
(although they fixed ¢, = 0). We found a solution for
v = 3 and it appears as though one can find exact solutions
as long as vy is a positive integer. Details of how these
solutions are obtained can be found in the references and
Appendix B.

For the cases we consider, the extremal solutions can be
written in the following form:

o= (NG oo

b2 = n((Q1f1)”©(Qafr) ) (@17 a), (75)

a? = p?/b* (76)

where p = r — ry and the f; are polynomials in p to some
fractional power. In general the f; depend on ¢, but they
have the property

filHorizon =1 (77)

Substituting (77) into (74) and (75), one sees that at the
horizon the scalar field takes on the attractor value (69) and
the horizon area is given by (71).

Notice that when @ = |«;|, (74) and (75) simplify to

|0, /f2\(1/9a?
ap — 1£2 (J2)\EHE 78
¢ |Q1|(f1> 78
b? = 2|0,10,|(f1.f2). (79)

A. Explicit form of the f;

In this section we present the form of the functions f;
mainly to show that, although they depend on ¢, in a
nontrivial way, they all satisfy (77) which ensures that the
attractor mechanism works. It is convenient to define

Q%= e%%=0Q?  (no summation) (80)

PHYSICAL REVIEW D 72, 124021 (2005)

which are the effective U(1) charges as seen by an asymp-
totic observer. For the simplest case, y = 1, we have

fi=1+(0; Nel(4 + a?)"1/2)p. (81)

Taking y = 2 and @; = —a, = 2+/3 one finds

fi=1+(0,0:) %3 _%/3 +0,23)p
+3(0,0:10,) 7 p*)2. (82)
Finally for vy = 3 and &y = 4, @, = —6 we have

fi1 = = 6ayp + 12a3p> — 6ayp®)'?,  (83)

24
fa= (1 -5 @p + 24a,p* — (48a3 — 12a,)p>
1/4
+ (48a% — 24a0a2)p4> (84)

where a, and a, are nontrivial functions of Q;. Further
details are discussed in Sec. IX and Appendix B. The scalar
field solutions for y = 1 and 2 are illustrated in Figs. 3 and
4 respectively.

B. Supersymmetry and the exact solutions

As mentioned above, the first two cases (y = 1, 2) have
been extensively studied in the literature.

The SUSY of the extremal a; = —a, = 2 solution is
discussed in [24]. They show that it is supersymmetric in
the context of N° = 4 supergravity (SUGRA). It saturates
the BPS bound and preserves }‘ of the supersymmetry —i.e.
it has 2N = 1 SUSY. There are BPS black holes in this
context which carry only one U(1) charge and preserve % of
the supersymmetry. The nonextremal black holes are of
course
non-BPS.

On the other hand, the extremal a; = —a, = 2.3
black hole is non-BPS [25]. It arises in the context of
dimensionally reduced 5D Kaluza-Klein gravity [26] and
is embeddable in N = 2 SUGRA. There however are BPS
black holes in this context which carry only one U(1)
charge and once again preserve % of the supersymmetry
[27].

We have not investigated the supersymmetry of the
v = 3 solution; we expect that it is not a BPS solution in
a supersymmetric theory.

V. GENERAL HIGHER DIMENSIONAL ANALYSIS
A. The setup

It is straightforward to generalize our results above to
higher dimensions. We start with an action of the form,

S= % fddxﬁ(R —2(06:)* = fap(P)FFP). (85)
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Here the field strengths F, are (d — 2) forms which are
magnetic dual to 2-form fields.

We will be interested in a solution which preserves a
SO(d — 2) rotation symmetry. Assuming all quantities to
be a function of r, and taking the charges to be purely
magnetic, the ansatz for the metric and gauge fields is'’

ds* = —a(ry’d* + a(n)2dr* + b(r?dQG ,,  (86)

F¢=Q%in?30sin? *¢p---dOAdpA---, (87)
Fe=Q%in?3@sin? *¢p---dOAdp A---. (88)
The equation of motion for the scalars is
_ (d—2)19,;V,
9,(a*b1729,¢;) = Tsz. (89)
Here V., the effective potential for the scalars, is given by
Veff = fab((:bi)Qa Qb- (90)

From the [R,, —(G,,/G,)R,] component of the
Einstein equation we get

_ (@ —=2)b"(r)

nZ = 1
Z(cﬁ,) 50 1
The R,, component gives the constraint,
—(d — 2){(d — 3) — ab'(2a’b + (d — 3)ab’)}
(d—2)!
=2¢7a’h* - erff((bi)- 92)

In the analysis below we will use Eq. (89) to solve for the
scalars and then Eq. (91) to solve for b. The constraint
Eq. (92) will be used in solving for a along with one extra
relation, R, = (d — 3)(a®>/b*)Rypy, as is explained in
Appendix C. These equations (aside from the constraint)
can be derived from a one-dimensional action

5 = % / dr((d — 3)(d — b1+ a2bP)
T (d = b3 — 2a%92(0, )

d—2)!
- (bd—z) veff). (93)

As the analysis below shows if the potential has a critical
point at ¢; = ¢,y and all the eigenvalues of the second
derivative matrix 9;;V(¢;y) are positive then the attractor
mechanism works in higher dimensions as well.

19Black holes which carry both electric and magnetic charges
do not have an SO(d — 2) symmetry for general d and we only
consider the magnetically charged case here. The analog of the
two-form in 4 dimensions is the d/2 form in d dimensions. In
this case one can turn on both electric and magnetic charges
consistent with SO(d/2) symmetry. We leave a discussion of this
case and the more general case of p forms in d dimensions for
the future.

PHYSICAL REVIEW D 72, 124021 (2005)

B. Zeroth and first order analysis

Our starting point is the case where the scalars take
asymptotic values equal to their critical value, ¢; = ¢ .
In this case it is consistent to set the scalars to be a constant,
independent of r. The extremal Reissner-Nordstrom black
hole in d dimensions is then a solution of the resulting
equations. This takes the form,

I"d_3

ao(r)=< —m) b =1 (94

r

where ry is the horizon radius. From Eq. (92) evaluated at
ry we obtain the relation,

™ = (d = )W) ©5)

Thus the area of the horizon and the entropy of the black
hole are determined by the value of V (¢;g), as in the
four-dimensional case.

Now, let us set up the first order perturbation in the scalar
fields,

b= i+ €d;y. (96)

The first order correction satisfies

2
0,(a3bd20,¢;) = bTizd’il o7

where (7 is the eigenvalue of the second derivative matrix
[(d —2)!/4]0;;Ves(hyo) corresponding to the mode ¢b;.
This equation has two solutions. If 82 >0 one of these
solutions blows up while the other is well defined and goes
to zero at the horizon. This second solution is the one we
will be interested in. It is given by

by = cu(l — rd 3 /ri=3)i (98)

where vy is given by

yi =3-1+ \/ L+4B1r572/(d = 3)%). (99

1. Second order calculations (effects of backreaction)

The first order perturbation in the scalars gives rise to a
second order correction for the metric components, a, b.
We write

b(r) = by(r) + €2b,(r), (100)
a(r)? = ay(r)> + €2a,(r), (101)
b(r)*> = by(r)* + 2€>by(r)by(r) (102)

where a, by are given in Eq. (94).

From (91) one can solve for the second order perturba-
tion b,(r). For simplicity we consider the case of a single
scalar field, ¢. The solution is given by the double-
integration form,
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FIG. 3 (color online).

Attractor behavior for the case y = 1;
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B
—10g((Q2/01) 7
¢ 2(Q:/00 %) (r) for various values of ¢.. (extremal bh, 0=2v3)
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FIG. 4 (color online). Attractor behavior for the case y = 2;

ay, —ay =2. ap, T =2V3.
2 173 — pdr3\2y-2
02b,(r) = _mr(3r¢1)2 = —cj ru—s( rd—3H >

!/
= by(r) = dyr + dy — ar

+ 2y - 1)(?)‘1_31?[61_4 1

where ¢} = 2(d — 3)2c3y*r$,/(d — 2), a positive definite
constant, and F is Gauss’s hypergeometric function. More
generally, for several scalar fields, b, is obtained by sum-
ming over the contributions from each scalar field. The
integration constants d;, d, in Eq. (103) can be fixed by
coordinate transformations and requiring a double-zero
horizon solution. We will choose a coordinate so that the
horizon is at r = rg, then as we will see shortly the
extremality condition requires both d, d, to vanish. As
r — ry we have from Eq. (103) that

d=3 _ ,d=3\2,
) (104)

bﬂﬂ“‘<i—pjr_

Since y > 0, we see that b, vanishes at the horizon and
thus the area and the entropy are uncorrected to second
order. At large r, by(r) = O(r) + O(1) + O(r’~??) so
asymptotic behavior is consistent with asymptotic flatness
of the solution.

The analysis for a, is discussed in more detail in
Appendix C. In the vicinity of the horizon one finds that
there is one nonsingular solution which goes like a,(r) —
C(r — ry)®*? . This solution smoothly extends to r — oo
and asymptotically, as r — 00, goes to a constant which is
consistent with asymptotic flatness.

Thus we see that the backreaction of the metric is finite
and well behaved. A double-zero horizon black hole con-
tinues to exist to second order in perturbation theory. It is
asymptotically flat. The scalars in this solution at the

2(d = 3)(d — 4)y(2y — Dr¥

2d_7 I‘H d=3
Y —3;C*> }>
r

d—3 " V4

1 d—4 (ry\d
—(d—HF| —— 12y, (T
(~a-ar[ =g ()

(103)

{
horizon take their attractor values irrespective of their
values at infinity.

Finally, the analysis in principle can be extended to
higher orders. Unlike four dimensions though an explicit
solution for the higher order perturbations is not possible
and we will not present such a higher order analysis here.

We end with Fig. 5 which illustrates the attractor behav-
ior in asymptotically flat 4 + 1 dimensional space. This
figure has been obtained for the example, Egs. (31) and
(32). The parameter Or is defined in Eq. (67).

Numerical plot of ¢(r) in 4+1 dimensions

0.8

0.6

0.4

0.2

, - ‘ .,
t 10 s 20
-0.2

1
w=—m=2 Q=7 Q=2 00=0346574 &=7.07107x 107

—04 L

FIG. 5. Numerical plot of ¢(r) with a; = —a, = 2 for the
extremal black hole in 4 + 1 dimensions displaying attractor
behavior.
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VI. ATTRACTOR IN AdS,

Next we turn to the case of anti—de Sitter space in four
dimensions. Our analysis will be completely analogous to
the discussion above for the four- and higher dimensional
case and so we can afford to be somewhat brief below.

The action in 4 dimensions has the form

S = % fd“xm(R —2A = 2(3¢)* = fup(Pp)F'F®

— L Funl )L L) (105)
where A = —3/L? is the cosmological constant. For sim-
plicity we will discuss the case with only one scalar field
here. The generalization to many scalars is immediate and
along the lines of the discussion for the asymptotically flat
four-dimensional case. Also we take the coefficient of the
scalar kinetic energy term to be field independent.

For spherically symmetric solutions the metric takes the
form, Eq. (8). The field strengths are given by Eq. (20).
This gives rise to a one-dimensional action

1
S=— f dr<2 — (@b — 2a2bb" — 2a2b*(9,$)?
K

—p=ty

Ve 302
) (106)

where V. is given by Eq. (21). The equations of motion,
which can be derived either from Eq. (106) or directly from
the action, Eq. (105) are now given by

0,(a2b29,) = %bf;(d’) (107)
%" — (0,0, (108)

which are unchanged from the flat four-dimensional case,
and

(a*(r)b?(r))" = 2(1 — 2Ab?), (109)

212 2

SN L b_zl(vcff(¢)) +a*b*(9,¢) + %,
(110)

where the last equation is the first order constraint.

Zeroth and first order analysis for V

The zeroth order solution is obtained by taking the
asymptotic values of the scalar field to be its critical values,
d)o such that 6,-Veff(d>0) = 0.

The resulting metric is now the extremal Reissner-
Nordstrom black hole in AdS space, [28], given by

PHYSICAL REVIEW D 72, 124021 (2005)

(r —ry)*(L* + 3;%, + 2ryr + 1?)

aO(r)2 = L2r2

, (1)

bo(r) =r. (112)

The horizon radius ry is given by evaluating the con-
straint Eq. (110) at the horizon,
(L2r3, +2r%) _
2

Vet (o). (113)

The first order perturbation for the scalar satisfies the
equation,

BZ
3,(akb3, b)) = ﬁd’l (114)
where
B = 305 Verr (o). (115)

This is difficult to solve explicitly.
In the vicinity of the horizon the two solutions are given
by

b1 = Culr = ry)".

If Vi:(¢y) >0 one of the two solutions vanishes at the
horizon. We are interested in this solution. It corresponds
to the choice,

(116)

¢ =Clr—rp), 17

where

48 _
1+ 57 1

3 )
and & = (L? + 6r%)/L?. As discussed in Appendix D this
solution behaves at r — o0 as ¢, — C; + C,/r>. Also, all
other values of r, besides the horizon and oo, are ordinary
points of the second order equation (114). All this estab-
lishes that there is one well-behaved solution for the first
order scalar perturbation. In the vicinity of the horizon it
takes the form Eq. (116) with Eq. (118), and vanishes at the
horizon. It is nonsingular everywhere between the horizon
and infinity and it goes to a constant asymptotically at
r— 00,

We consider metric corrections next. These arise at
second order. We define the second order perturbations as
in Eq. (45). The equation for b, from the second order
terms in Eq. (108) takes the form,

y= (118)

b = —r($i () (119)
and can be solved to give
b == [ [ r@err o

We fix the integration constants by taking the lower limit of
both integrals to be the horizon. We will see that this choice
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gives rise to a double-zero horizon solution. Since ¢; is
well behaved for all ry = r = oo the integrand above is
well behaved as well. Using Eq. (116) we find that in the
near-horizon region

by~ (r — rg)@. (121)

At r — oo using the fact that ¢, — C; + C,/r* we find

b2~D1r+D2+D3/r6. (122)

This is consistent with an asymptotically AdS solution.

Finally we turn to a,. As we show in Appendix D a
solution can be found for a, with the following properties.
In the vicinity of the horizon it goes like

ay o (r = ry)?7*2, (123)

and vanishes faster than a double zero. As r — o0, a, —
d, r and grows more slowly than a3. And for ry < r < oo it
is well behaved and nonsingular.

This establishes the fact that after including the back-
reaction of the metric we have a nonsingular, double-zero
horizon black hole which is asymptotically AdS. The
scalar takes a fixed value at the horizon of the black hole
and the entropy of the black hole is unchanged as the
asymptotic value of the scalar is varied.

Let us end with two remarks. In the AdS case one can
hope that there is a dual description for the attractor
phenomenon. Since the asymptotic value of the scalar is
changing we are turning on an operator in the dual theory
with a varying value for the coupling constant. The fact
that the entropy, for fixed charge, does not change means
that the number of ground states in the resulting family of
dual theories is the same. This would be worth understand-
ing in the dual description better. Finally, we expect this
analysis to generalize in a straightforward manner to the
AdS space in higher dimensions as well.

Figure 6 illustrates the attractor mechanism in asymp-
totically AdS, space. This figure is for the example,

¢ Numerical plot of ¢(r) in AdS4

0.6

04

0.2

o=—0p=2. Q1=\/]? 0=\2 $)=0346574 &r=0.0150842 A=-291723

-02 L

FIG. 6 (color online). Numerical plot of ¢(r) with a; =
—a, = 2 for the extremal black hole in AdS, displaying attrac-
tor behavior.

. . . R
SN— 5 10 15 20
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Egs. (31) and (32). The cosmological constant is taken to
be, A = —2.91723, in k = 1 units.

VII. ADDITIONAL COMMENTS

The theories we considered in the discussion of asymp-
totically flat space-times and AdS space-times have no
potential for the scalars. We comment on this further here.

Let us consider a theory with JN" = 1 supersymmetry
containing chiral superfields whose lowest component sca-
lars are

S; = ¢; tia; (124)

We take these scalars to be uncharged under the gauge
symmetries. These can be coupled to the superfields W§ by
a coupling

Lgauge kinetic — /dzefab(si)wcavwzbz- (125)
Such a coupling reproduces the gauge kinetic energy terms
in Egs. (105) and (106) (we now include both ¢;, a; in the
set of scalar fields which we denoted by ¢; in the previous
sections).

An additional potential for the scalars would arise due to
F-term contributions from a superpotential. If the super-
potential is absent we get the required feature of no poten-
tial for these scalars. Setting the superpotential to be zero is
at least technically natural due to its nonrenormalizability.

In a theory with no supersymmetry there is no natural
way to suppress a potential for the scalars and it would
arise due to quantum effects even if it is absent at tree level.
In this case we have no good argument for not including a
potential for the scalar and our analysis is more in the
nature of a mathematical investigation.

The absence of a potential is important also for avoiding
no-hair theorems which often forbid any scalar fields from
being excited in black hole backgrounds [29]. In the pres-
ence of a mass m in asymptotically flat four-dimensional
space the two solutions for first order perturbation at
asymptotic infinity go like

¢~ Cie"/r, ¢~ Cyre ™ /r. (126)

We see that one of the solutions blows up as r — 0. Since
one solution to the equation of motion also blows up in the
vicinity of the horizon, as discussed in Sec. II, there will
generically be no nonsingular solution in first order per-
turbation theory. This argument is a simple-minded way of
understanding the absence of scalar hair for extremal black
holes under discussion here. In the absence of mass terms,
as was discussed in Sec. II, the two solutions at asymptotic
infinity go like ¢ ~ const and ¢ ~ 1/r respectively and
are both acceptable. This is why one can turn on scalar hair.
The possibility of scalar hair for a massless scalar is of
course well known. See [23,30] for some early examples of
solutions with scalar hair, [31-34] for theorems on unique-
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ness in the presence of such hair, and [8] for a discussion of
resulting thermodynamics.

In asymptotic AdS space the analysis is different. Now
the (mass)? for scalars can be negative as long as it is
bigger than the Breitenlohner-Freedman bound. In this
case both solutions at asymptotic infinity decay and are
acceptable. Thus, as for the massless case, it should be
possible to turn on scalar fields even in the presence of
these mass terms and study the resulting black hole solu-
tions. Unfortunately, the resulting equations are quite in-
tractable. For small (mass)> we expect the attractor
mechanism to continue to work.

If the (mass)? is positive one of the solutions in the
asymptotic region blows up and the situation is analogous
to the case of a massive scalar in flat space discussed
above. In this case one could work with AdS space which
is cut off at large r (in the infrared) and study the attractor
phenomenon. Alternatively, after incorporating backreac-
tion, one might get a nonsingular geometry which departs
from AdS in the IR and then analyze black holes in this
resulting geometry. In the dual field theory a positive
(mass)? corresponds to an irrelevant operator. The growing
mode in the bulk is the non-normalizable one and corre-
sponds to turning on an operator in the dual theory which
grows in the UV. Cutting off AdS space means working
with a cutoff effective theory. Incorporating the backreac-
tion means finding a UV completion of the cutoff theory.
And the attractor mechanism means that the number of
ground states at fixed charge is the same regardless of the
value of the coupling constant for this operator.

VIII. ASYMPTOTIC DE SITTER SPACE

In de Sitter space the simplest way to obtain a double-
zero horizon is to take a Schwarzschild black hole and
adjust the mass so that the de Sitter horizon and the
Schwarzschild horizon coincide. The resulting black hole
is the extreme Schwarzschild—de Sitter space-time [35].
We will analyze the attractor behavior of this black hole
below. The analysis simplifies in 5 dimensions and we will
consider that case, a similar analysis can be carried out in
other dimensions as well. Since no charges are needed we
set all the gauge fields to zero and work only with a theory
of gravity and scalars. Of course by turning on gauge
charges one can get other double-zero horizon black holes
in dS, their analysis is left for the future.

We start with the action of the form,

S = % f Ex—=G(R =202 — V(¢).  (127)

Notice that the action now includes a potential for the
scalar, V(¢); it will play the role of V. in our discussion
of asymptotic flat space and AdS space. The required
conditions for an attractor in the dS case will be stated in
terms of V. A concrete example of a potential meeting the
required conditions will be given at the end of the section.
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For simplicity we have taken only one scalar, the analysis
is easily extended for additional scalars.

The first condition on V is that it has a critical point,
V'(¢o) = 0. We will also require that V(¢y) > 0. Now if
the asymptotic value of the scalar is equal to its critical
value, ¢, we can consistently set it to this value for all
times ¢. The resulting equations have an extremal black
hole solution mentioned above. This takes the form

t2 , , (/L—L/2)?*
/L= L)2)" dre + 2 dr
+ 2dQ3.

ds? =

(128)

Notice that it is explicitly time dependent. L is a length
related to V(¢o) by V(¢y) =20/L% And t= *L/2
is the location of the double-zero horizon. A suitable
near-horizon limit of this geometry is called the Nariai
solution, [36].

A. Perturbation theory

Starting from this solution we vary the asymptotic value
of the scalar. We take the boundary at t — — o0 as the initial
data slice and investigate what happens when the scalar
takes a value different from ¢ as t — —oo. Our discussion
will involve part of the space-time, covered by the coor-
dinates in Eq. (128), with —o0 < ¢ < 1, = —(L/~/2). We
carry out the analysis in perturbation theory below.

Define the first order perturbation for the scalar by

¢ = ot €.

This satisfies the equation,

3
(@330, = 2 V(D))

where a, = (f*/L — L/2)/t, by = t. This equation is dif-
ficult to solve in general.

In the vicinity of the horizon t = ty, we have two
solutions which go like

(129)

¢y = Calt — tyy) 1 HYIHE/2 (130)

where
2 = —1yi(gy).

We see that one of the two solutions in Eq. (130) is non-
divergent and in fact vanishes at the horizon if

V() <0.

(131)

(132)

We will henceforth assume that the potential meets this
condition. Notice this condition has a sign opposite to what
was obtained for the asymptotically flat or AdS cases. This
reversal of sign is due to the exchange of space and time in
the dS case.

In the vicinity of t — —oo there are two solutions to
Eq. (129) which go like
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¢y = CaltlP: (133)

where

pe =2(—1%4/1+ k2/4). (134)
If the potential meets the condition, Eq. (132) then «? > 0

and we see that one of the modes blows up at r — —oo.

B. Some speculative remarks

In view of the diverging mode at large |¢| one needs to
work with a cutoff version of dS space'' With such a cutoff
at large negative t we see that there is a one parameter
family of solutions in which the scalar takes a fixed value at
the horizon. The one parameter family is obtained by
starting with the appropriate linear combination of the
two solutions at t — —oo which match to the well-behaved
solution in the vicinity of the horizon. While we will not
discuss the metric perturbations and scalar perturbations at
second order these too have a nonsingular solution which
preserves the double-zero nature of the horizon. The metric
perturbations also grow at the boundary in response to the
growing scalar mode and again the cutoff is necessary to
regulate this growth. This suggests that in the cutoff ver-
sion of dS space one has an attractor phenomenon.
Whether such a cutoff makes physical sense and can be
implemented appropriately are questions we will not ex-
plore further here.

One intriguing possibility is that quantum effects imple-
ment such a cutoff and cure the infrared divergence. The
condition on the potential Eq. (132) means that the scalar
has a negative (mass)? and is tachyonic. In dS space we
know that a tachyonic scalar can have its behavior drasti-
cally altered due to quantum effects if it has a (mass)? <
H? where H is the Hubble scale of dS space. This can
certainly be arranged consistent with the other conditions
on the potential as we will see below. In this case the
tachyon can be prevented from “falling down” at large
|z| due to quantum effects and the infrared divergences can
be arrested by the finite temperature fluctuations of dS
space. It is unclear though if any version of the attractor
phenomenon survives once these quantum effects became
important.

We end by discussing one example of a potential which
meets the various conditions imposed above. Consider a
potential for the scalar,

V=Aem? + Aye2?. (135)
We require that it has a critical point at ¢ = ¢, and that
the value of the potential at the critical point is positive.
The critical point for the potential Eq. (135) is at

""This is related to some comments made in the previous
section in the positive (mass)? case in AdS space.
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A\ 1/(e—ay)
o — (2222 . 136
‘ <a,A,> (130
Requiring that V(¢) > 0 tells us that
V(o) = Aze“2¢0<1 - 2) >0, (137)
a

Finally we need that V"(¢,) <0 and this leads to the
condition,

V(o) = Aye®>Pay(ay — ay) <O0. (138)

These conditions can all be met by taking both a, @, > 0,
a, < aj, A, >0and A; <O0.In addition if a,a; > 1 the
resulting —(mass)? > H?.

IX. NONEXTREMAL = UNATTRACTIVE

We end the paper by examining the case of a nonextre-
mal black hole which has a single-zero horizon. As we will
see there is no attractor mechanism in this case. Thus the
existence of a double-zero horizon is crucial for the attrac-
tor mechanism to work.

Our starting point is the four-dimensional theory con-
sidered in Sec. II with action Eq. (17). For simplicity we
consider only one scalar field. We again start by consis-
tently setting this scalar equal to its critical value, ¢, for
all values of r, but now do not consider the extremal
Reissner-Nordstrom black hole. Instead we consider the
nonextremal black hole which also solves the resulting
equations. This is given by a metric of the form, Eq. (8),

with
-1 -5)

where r. are not equal. We take r, > r_ so that r, is the
outer horizon which will be of interest to us.

The first order perturbation of the scalar field satisfies
the equation,

b(ry=r (139)

Veir(do)
4p?

In the vicinity of the horizon r = r this takes the form,
ay(yayqsl) = ad)l (141)

where « is a constant dependent on V" (¢y), ry, r_, and
Y=r—r,.

This equation has one nonsingular solution which goes
like

ar(azbzar(bi) = d)l- (140)

¢1=C0+C1y+"' (142)

where the ellipsis indicates higher terms in the power series
expansion of ¢; around y = 0. The coefficients Cy, C, ...
are all determined in terms of C, which can take any value.
Thus we see that unlike the case of the double-horizon
extremal black hole, here the solution which is well be-
haved in the vicinity of the horizon does not vanish.
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Asymptotically, as » — oo both solutions to Eq. (140)
are well defined and go like 1/, constant, respectively. It is
then straightforward to see that one can choose an appro-
priate linear combination of the two solutions at infinity
and match to the solution, Eq. (142) in the vicinity of the
horizon. The important difference here is that the value of
the constant Cy, in Eq. (142) depends on the asymptotic
values of the scalar at infinity and therefore the value of ¢
does not go to a fixed value at the horizon. The metric
perturbations sourced by the scalar perturbation can also be
analyzed and are nonsingular. In summary, we find a
family of nonsingular black hole solutions for which the
scalar field takes varying values at infinity. The crucial
difference is that here the scalar takes a value at the horizon
which depends on its value at asymptotic infinity. The
entropy and mass for these solutions also depends on the
asymptotic value of the scalar.'”

It is also worth examining this issue in a nonextremal
black hole for an exactly solvable case.

If we consider the case |a;| = 2, Sec. IV, the nonextre-
mal solution takes on a relatively simple form. It can be
written [24]

(r+2)
24) = 2= ,
exp(2) = ¥ L=
2:(”_"4—)(’"_7—)’ (143)
GRS
= -3,
where!?
re=M=r,  ry=M>+32— 03— 0} (144)
and the Hamiltonian constraint becomes
32+ M -0 -0%= ;{(m —r_)2 (145)

The scalar charge, 3, defined by ¢ ~ ¢ + % 1S not an
independent parameter. It is given by

L _G-0

o, (146)

There are horizons at r = r., the curvature singularity
occurs at r = 3 and r, characterizes the deviation from

2 An intuitive argument was given in the Introduction in sup-
port of the attractor mechanism. Namely, that the degeneracy of
states cannot vary continuously. This argument only applies to
the ground states. A nonextremal black hole corresponds to
excited states. Changing the asymptotic values of the scalars
also changes the total mass and hence the entropy in this case.

The radial coordinate r in Eq. (143) is related to our previous
one by a constant shift.
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@(r) for various values of ¢.. (non—extremal, M and Q; kept fixed, lo;l=2)

05 |

~05 b

FIG. 7 (color online).

Plot ¢(r) with a; = —a, = 2 for the
nonextremal black hole with M, Q; held fixed while varying ¢.,.
The dotted line denotes the outer horizon at which we terminate
the plot. It is clearly unattractive.

extremality. We see that the nonextremal solution does not
display attractor behavior.

Figure 7 shows the behavior of the scalar field'* as we
vary ¢ keeping M and Q; fixed. The location of the
horizon as a function of r depends on ¢,, Eq. (144). The
horizon as a function of ¢, is denoted by the dotted line.
The plot is terminated at the horizon.

In contrast, for the extremal black hole,

5116 - A
po 1o 10100
V2 V2
so (143) gives
M+ 3 147 | Oyl
2 = 2o — =T 148)
M-S 0] (
which is indeed the attractor value.
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APPENDIX A: PERTURBATION ANALYSIS
1. Mass

Here, we first calculate the mass of the extremal black
hole discussed in Sec. II B. From Eq. (50), for large r, b, is
given by

b,=cr+d (A1)
where
2
_ 1Y
‘T T2y —0) (A2)
2.2
THC1Y
d=—""""—. (A3)
Qy—-1)

Now, we can easily write down the expression for a, using
Eq. (48). We choose coordinate y as introduced in Eq. (51)
such that at large r,

r* 4+ 2€X(cr? + dr) = y?, (Ad)
1 d
1o —(1 + 52<c + —)) (A5)
r y y
We use the extremality condition (54) to find
alr) = <r - r”). (A6)
y

Using, Egs. (A1) and (A6) one finds that asymptotically,
as r — oo the metric takes the form,
ds2 _ _(1 _ 2(VH + ez(crH + d)))d,i,z
y

1

(1 _ 2y +62(crH+d)))
y

dy? + y?dQ?, (A7)

where 7 is obtained by rescaling ¢ and d{2* denotes the
metric of S?. The mass M of the black hole is then given by
the 1/y term in the 8yy component of the metric. This gives
ructy

M=ry+ € (A8)

2. Perturbation series to all orders

Next we go on to discuss the perturbation series to all
orders. Using (55) for b and (56) for ¢ in Egs. (14) and
(62), we get

k k—i

=Y > bigibi iy

i=0j=0

by = (A9)

Z 2b;by—i—j((r = rp)*¢}) = QFe®0a; Vy, (A10)

i+j=k

where
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nyogny L g N
— 1 2 k
V= P1 Py Pk,

I’ll!nz! . 'nk!

nytny+-tny
i .

(Al1)

{ny,ng-ny}
=k

After substituting our ansatz (58) and (59), the above
equations give

k(ky = Ddy = =y > jlk — i = dicjci—i—;  (A12)
i+j<k
i<k
and
k(ky + Dey + T = (y + Dicg + ) (A13)
where S and T} are given by
ey o] -1 n—1
S, = GG G (2 g g2
{"Jr'lz"'"kfl)nl SR (7
mnm=k
(Al4)
and
T, = Zl(ly + Dd;dy——jc;. (A15)
N5
Then solving for d; and c; gives
Y . .
dy=——"—— k—i—jdee—i—;, (Al6
k k(k’)’_ )H!Zk]( ! ]) i€jCr—i—j ( )
i<k
+ 1Sy — T
¢ = (y )Sk k (A17)

C(k+ Dy + Dk — 1)

Finally, e, can be obtained using Egs. (54) and (5§9). It can
be verified that the ansatz, Eqs. (58)—(60) with the coef-
ficients Eqs. (A16) and (A17) also solves the constraint
Eq. (15).

APPENDIX B: EXACT ANALYSIS

Exact solutions can be found by writing the equations of
motion as generalized Toda equations [37], which may, in
certain special cases, be solved exactly [23]—we rederive
this result in slightly different notation below. As noted in
[38], in a marginally different context, the extremal solu-
tions are, in appropriate variables, polynomial solutions of
the Toda equations. The polynomial solutions are much
easier to find and are related to the functions f; mentioned
in Sec. IV. For ease of comparison we occasionally use
notation similar to [38].

1. New variables

To recast the equations of motion into a generalized
Toda equation we define the following new variables:

up = ¢,
z = logab,

u, = loga,

- =9, = a’*b%o,. (B1)
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In terms of r, 7 is given by

dr 1 r—ri
= = 1 B2
T /a2b2 (ry —r.) Og(r - r,> (B2)
where 7. are the integration constants of (13). In general
(13) implies

P =r—r)r—r). (B3)

Notice that
T—0 asr— oo, (B4)
T— —00 asr—ry. (BS)

When we have a double-zero horizon, ry = r., 7 takes the
simple form

= —(r—rpy).

(B6)

Since we are mainly interested in solutions with double-
zero horizons, in what follows it will be convenient to work
with a new radial coordinate, p, defined by

p= —7 L B7)

which has the convenient property that py = 0.

2. Equivalent Toda system

In terms of these new variables the equations of motion
become

i | = %a,162u2+a1u1 Q% + %a262u2+azul Q%, (BS)
iiz — e2u2+a1u,Q% + e2u2+a2u1Q%’ (B9)
7= %, (B10)

’/il 2 + M-22 _ 22 + eZz _ eZu2+a|u1Q% _ eZuerozzu]Q% = (.

(B11)

Equation (B10) decouples from the other equations and is
equivalent to (13). Finally making the coordinate change

X, = ni;luj + mi_j1 log((a; — az)Q?) (B12)
where
nl = <_22 _02‘2) (B13)
and
1
m; =m(4+ a;a; (B14)
we obtain the generalized 2 body Toda equation
X, = emi¥i, (B15)

together with
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1, .
Z(EXiminj - 8"”"”(]’) = (a) — 1))

ij

(B16)

where £ = %(m — r_)2. After solving the above, the origi-
nal fields will be given by

Q2
e(al—a’z)¢ = =2 3(1/2)(011)(1‘*'“2)(2),

== (B17)
07
a? = el/(a—a)lXi+X) /5 (B18)
2 (13) 2
b*=(r—r)r—r_)/a% (B19)
where
S = (al — az)Q%[*az/(al*az)]Qi[al/(O(l*az)]. (B20)
3. Solutions
a.Casel: y =1 qjo, = —4
In this case, mi; is diagonal
m = diag(a,/2, —a,/2), (B21)
so the equations of motion decouple:
X, = ellail/nx; (B22)
Equation (B22) has solutions
2 4¢2
X, =—:1o L . B23
P L () S

The integration constants are fixed by imposing asymptotic
boundary conditions and requiring that the solution is finite

at the horizon. Letting
Fi = Sinh(ci(T - dl)) (B24)

in terms of ¢ and a we get

2
elai—m)d = Q_ge(l/z)(alxl+a2x2) = <_%><%>2,
1 aiJ\Q1Fc;
a = 6[2/(051*02)]()(1 +Xz)/(s

N (Qf}l

2A—ay/(a;—as)] cy Qa/(a—a)]
) (or)

O F
(B25)
As r— r, (i.e. 7 — —o0) the scalar field goes like
elai—a)d _ 2(ei—e)r (B26)
SO we require

ci=cp =0 (B27)

for a finite solution at the horizon. Also at the horizon
b* ~ (r —ry)/a? ~ elre )20 (B28)

which necessitates
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(rp —r_)=2c. (B29)

To find the extremal solutions we take the limit ¢ — 0O
which gives

2
plai—a)d — <_2> (@af) ) (B30)
a1 ) (0:f1)?
b? = n(Q,fr) 20/ (Qypy)> /i) (B31)
a’> = p?/b? (B32)
where
fi=1+dp. (B33)
Requiring ¢ — ¢, and a — 1 as r — oo fixes
d =0, B 71 (B34)
a; — a
where as before
0? = e%%=? (no summation). (B35)

For comparison with the nonextremal solution in this
case see Sec. IX.

b. Case II: vy = 2 and 0y = —ay = 2/3

In this case, m;; becomes

2 — L
= ( BB ) (B36)
NG
It is convenient to use the coordinates
1
i =—X; — 3log\3 B37
q NG g (B37)

so the equations of motion are the two particle Toda
equations

G, = e,

(B38)

G, = eXa, (B39)
These maybe integrated exactly but the explicit form is, in
general, a little complicated. Fortunately we are mainly
interested in extremal solutions which have a simpler form
[38]. As in [38], taking the ansatz that e % is a second
order polynomial one finds

e =qay+aT+ i (B40)

e =al—ay+ar+ir (B41)

Finally, returning to the original variables and imposing the
asymptotic boundary conditions gives the solution

oo e
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b = 20,0112 (B43)
a? = p*/b* (B44)
where
fi=(1+(0,0,)" 230 + 0,2)/2p
+10,0,0,)3p?)1/2 (B45)

as quoted in Sec. IV.

For completeness we note that the general, nonextremal
solution of [26,30], modified for a nonzero asymptotic
value of ¢, is

exp(4¢p//3) = e*¢=/\3 %, (B46)

1
,_r=r)r=r) 47,

\VP1P2
b* = /pip2 (B48)
where

pi=r—rg)r—ri), (B49)

2 5[ &
ri+ (_ai 2 = Q, 22 T alM (BSO)

and scalar charge, %, which is again not an independent
parameter, is given by

1 72 N2

V3 2M(A—1) 2M(A + 1)

NeIYa
(B51)

c. CaseIll: y =3 and oy = 4, o, = —6

In this case, m;; becomes

I -1
m_(—l ’ ) (B52)
Making the coordinate change
q1 = %Xl - 10g2, (B53)
g, = X, — log2. (B54)
The equations of motion are
G, = e*n o, (B55)
G, = 22, (B56)
Now consider the three particle Toda system
g, =ene, (B57)
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G, = e 1%

(B58)

Gy =€ (B59)
which may be integrated exactly. Notice that by identifying
g1 and g3 we obtain (B57)—(B59). Once again the general
solution is slightly complicated but taking the ansatz that
e~ % is a polynomial one finds

e N =qy+ 20%7‘ + a27'2 + %7‘3, (B60)
e = 4a3 — 2apa, + (4a3 — ay)T + 2a37?
+ %(127'3 + 1—127'4. (B61)
Rewriting in terms of the original fields we get
2
el0¢ = <%> exp(2X; — 3X,) (B62)
Qi
6 2 12
ey e
4\0:1) \/1
b = p*10077 0  exp(~1X; — 1Xy)  (B64)
=300 111 (B65)
a® = p? /P, (B66)
where
fi = = 6ayp + 12a3p* — 6ayp*)'/3, (B67)
24 2 3 3
f2 = <1 - ?azp + 24a2p - (48@2 - 12a0)p
4 4 1/4
+ (48a; — 24apay)p ) . (B68)

At the horizon we do indeed have ¢ at the critical point of
Vets:

2
e!0%0 = % % (B69)
1
and b? given by Vg (o):
5 /2\3/5 0,\1/5
PR =z
vi=3() eey)” e

Imposing the asymptotic boundary conditions we get

25/7 211/7

ay = * s (4a) — 2a040) =
70y 0770,"
(B71)
so letting
B 211/7
YT om0 (B72)

1 2
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3 [ 64
A= 3Ja8 +,lad + ?a8y3,

318N, 3234
ao Ay

(B73)

A, = (B74)

we may write a, as

1 1| 2y A, V6
=*r— Ay — B7
ap 2\/6 2 2\31/3A1 232/3 Az ( 5)

Despite the nontrivial form of the solution we see that it
still takes on the attractor value at the horizon.
In terms of the U(1) charges (written implicitly in terms

of ay and a,), the mass and scalar charge are expressed
below

_ 3ag — 28apa; + 3245
40aya3 — 20aja;

s , (B76)
_ (a3 + daga3 — 1645
23/550a(7)/5a2(a0 —2a3)(2a3 — aoaz)l/sQ?/SQg/s
(B77)

This solution is related to a 3 charge p-brane solution
found in [38]—in this case we have identified two of the
degrees of freedom.

APPENDIX C: HIGHER DIMENSIONS

Here we give some more details related to our discussion
of the higher dimensional attractor in Sec. V. The Ricci
components calculated from the metric, Eq. (86) are

d — 2)ad'b'
(d=2)aa’d’ | aa">, (Cl)

R, =d*a?* +
113 < b

R, = ~{b(a” + aa") + (d — 2)a(a'b' + ab")}/a?b,
(€2)

Ryg = (d — 3) — 2aba'b’ — a*((d — 3)b™ + bb"). (C3)

The Einstein equations from the action Eq. (85), take the
form,

_(d=3)(d = 3)la(r?

tt b(r)z(dfz) Veff(¢i)r (C4)
d—3)d—3)!
Rrr = 2(ar¢)2 - WV{:H(Q’%): (CS)
d—3)!
Ryyg = (bz(TQ) Veit(:), (Co)

where Vg is given by Eq. (90).
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Taking the combination, 1[R,, — (G,,/G,)R,] gives Eq. (91). Similarly we have

b(r)?

—— Ry + a(r)?b(r)’R,, — (d = 2)Rgg = —(d — 2}{d — 3 — a(nb'(r)(2a'(nb(r) + (d — 3)a(r)b'(r))}

a(r)?

= 2(0,4alrVb(r)? -

(d—2)(d—3)!

p2(d=3) ~Vere(d))- ((6F))]

This gives Eq. (92). Finally the relation R,, = (d — 3)(a*/b*)Ry, yields

(d—=3)2(=14 a(r?b'(r)?) + b(r)*(d'(r)* + a(¥)a" (r)) + a(¥)b(F)(—8 + 3d)a’(r)b'(r) + (d — 3)a(r)b"(r)) = 0.

(C8)

We now discuss solving for a,, the second order perturbation in the metric component a, in some more detail. We restrict
ourselves to the case of one scalar field, ¢. The constraint, Eq. (92), to O(€?) is

(d = 2)ray + (d = 2)(d — 3)a> z<¢a>2rz(1 - (”’)“)2 C2(d—2)d — 3pLE

r

+2(d —2)

This is a first order equation for a, of the form,

fi1as + fray + f3 =0,

where

fi=d=2r,  fr=(d—2)d~3)

f3

(d = 3)(ryrd — rér

+2(d—-2
( ) r?_[rz‘i

The solution to this equation is given by

ay(r) = Ce¥ — effe_fédr (C12)
fi

where F = — [(f,/f1)dr. It is helpful to note that e =

1/ 3 and e=F /f, = ri=*/(d — 2).

Now the first term in Eq. (C12), proportional to C, blows
up at the horizon. We will omit some details but it is easy to
see that the second term in Eq. (C12) goes to zero. Thus for
a nonsingular solution we must set C = 0. One can then
extract the leading behavior near the horizon of a, from
Eq. (C12), however it is slightly more convenient to use
Eq. (C8) for this purpose instead. From the behavior of the
scalar perturbation ¢, and metric perturbation, b,, in the
vicinity of the horizon, as discussed in the section on
attractors in higher dimensions, it is easy to see that

a(r) = Ay(r =3 — r 3y

where A, is an appropriately determined constant. Thus we
see that the nonsingular solution in the vicinity of the
horizon vanishes like (r — r5)?**2 and the double-zero

(C13)

3
) {rdr2by + r3rib}.

v Yy + D

by +2(d —3)* L ——11
,2(d=3) ro2d

2d=3)+1

(d—=3)(r}r! — rZr3)

6 .2d
rgr

{rd,r?by + riribh} = 0. (C9)

(C10)

2(d—3)

Ht+1)¢3?

ry d—3\2 rH
221 () ) 2= 2= 9 e+ 2 = 3 e
H

(C11)

[
nature of the horizon persists after including backreaction
to this order.

Finally, expanding Eq. (C12) near r — oo (with C = 0)
we get that a, — const + O(1/r?3). The value of the
constant term is related to the coefficient in the linear
term for b, at large r in a manner consistent with asymp-
totic flatness.

In summary we have established here that the metric
perturbation a, vanishes fast enough at the horizon so that
the black hole continues to have a double-zero horizon, and
it goes to a constant at infinity so that the black hole
continues to be asymptotically flat.

APPENDIX D: MORE DETAILS ON ASYMPTOTIC
ADS SPACE

We begin by considering the asymptotic behavior at
large r of ¢, Eq. (114). One can show that this is given by

1 /BL 1 BL
() — ¢y ﬁl3/4(7> +oc- m1—3/4<*>~ (D1)

252 272
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Here I3,, stands for a modified Bessel function."”

Asymptotically, I, « r~2”. Thus ¢, has two solutions
which go asymptotically to a constant and as 1/r3
respectively.

Next, we consider values of r, ry < r < 00, These are all
ordinary points of the differential equation (114). Thus the
solution we are interested in is well behaved at these
points. For a differential equation of the form,

2
L) =5+ p0 Y g@w =0 D3
Z dz
all values of z where p(z), ¢(z) are analytic are ordinary
points. About any ordinary point the solutions to the equa-
tion can be expanded in a power series, with a radius of
convergence determined by the nearest singular point [22].

We turn now to discussing the solution for a,. The

constraint Eq. (110) takes the form,

2a3bly + ay + (ad) (rby) + rd)

! 2by 214\ | 6rb,
= ?Bzd’% + adr’(0,¢)* + 7(;’%{ + 7) + -
(D4)

The modified Bessel function 1,(r), K, (r) does satisfy the
following differential equation:

2I0(z) + 2zl (2) — (22 + v2)I(z) = 0. (D2)

PHYSICAL REVIEW D 72, 124021 (2005)

The solution to this equation is given by

c 1
ayr) =2 -2 f frdr (DS)
roor ).,
where
1
f3 = 2a§bh + (ad)'(rby)" + ﬁﬂzqﬁ% — ajr(d,¢,)?
2b2 2r‘}1 6rb2
()T (0O

We have set the lower limit of integration in the second
term at r;. We want a solution that preserves the double-
zero structure of the horizon. This means ¢, must be set to
Zero.

To find an explicit form for a, in the near-horizon region
it is slightly simpler to use the equation, Eq. (109). In the
near-horizon region this can easily be solved and we find
the solution,

a, « (r — ry)®r*2. (D7)

At asymptotic infinity one can use the integral expres-
sion, Eq. (D5) (with ¢, = 0). One finds that f; — r as
r — 0. Thus a, — d,r. This is consistent with the asymp-
totically AdS geometry.

In summary we see that there is an attractor solution to
the metric equations at second order in which the double-
zero nature of the horizon and the asymptotically AdS
nature of the geometry both persist.
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