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Tidal coupling of a Schwarzschild black hole and circularly orbiting moon
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We describe the possibility of using the laser interferometer space antenna (LISA) ’s gravitational-wave
observations to study, with high precision, the response of a massive central body (e.g. a black hole or a
soliton star) to the tidal gravitational pull of an orbiting, compact, small-mass object (a white dwarf,
neutron star, or small-mass black hole). Motivated by this LISA application, we use first-order perturba-
tion theory to study tidal coupling for a special, idealized case: a Schwarzschild black hole of mass M,
tidally perturbed by a ‘‘moon’’ with mass �� M in a circular orbit at a radius b� M with orbital
angular velocity �. We investigate the details of how the tidal deformation of the hole gives rise to an
induced quadrupole moment I ij in the hole’s external gravitational field at large radii, including the
vicinity of the moon. In the limit that the moon is static, we find, in Schwarzschild coordinates and Regge-
Wheeler gauge, the surprising result that there is no induced quadrupole moment. We show that this
conclusion is gauge dependent and that the static, induced quadrupole moment for a black hole is
inherently ambiguous, and we contrast this with an earlier result of Suen, which gave, in a very different
gauge, a nonzero static induced quadrupole moment with a sign opposite to what one would get for a fluid
central body. For the orbiting moon and the central Schwarzschild hole, we find (in agreement with a
recent result of Poisson) a time-varying induced quadrupole moment that is proportional to the time
derivative of the moon’s tidal field, I ij � �32=45�M6 _Eij and that therefore is out of phase with the tidal
field by a spatial angle �=4 and by a temporal phase shift �=2. This induced quadrupole moment produces
a gravitational force on the moon that reduces its orbital energy and angular momentum at the same rate as
the moon’s tidal field sends energy and angular momentum into the hole’s horizon. As a partial analog of a
result derived long ago by Hartle for a spinning hole and a static distant companion, we show that the
orbiting moon’s tidal field induces a tidal bulge on the hole’s horizon, and that the rate of change of the
horizon shape (i.e. the horizon shear) leads the perturbing tidal field at the horizon by an angle 4M�. We
prefer to avoid introducing an ingoing null geodesic, as Hartle did in his definition of the phase shift,
because the moon is in the central body’s near zone (b� 1=�) and thus should interact with the horizon
instantaneously, not causally. We discuss the implications of these results for LISA’s future observations
of tidal coupling, including the inappropriateness of using the concepts of tidal polarizability and tidal lag
or lead angle, for the massive central body, when discussing LISA’s observations.
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I. INTRODUCTION AND SUMMARY

A. Motivations

One of the primary scientific requirements for the laser
interferometer space antenna (LISA) is to map, in exquisite
detail, the spacetime geometries of massive black holes
(and, if they exist, other massive, compact bodies) by using
the gravitational waves emitted by inspiraling white
dwarfs, neutron stars, and small-mass black holes. This
emission process has come to be called ‘‘extreme mass
ratio inspiral’’ (EMRI, pronounced emm-ree). The possi-
bility of making such maps from EMRI waves was dis-
cussed by Thorne in the early 1990s (e.g., in Refs. [1,2]). In
1995 Ryan [3] laid the first detailed foundation for such
mapping: he showed that, when the massive, central body
is general relativistic, axisymmetric, and reflection-
symmetric, and the orbiting object is in a near-equatorial,
near-circular orbit in the vacuum region surrounding the
body, the full details of the central body’s metric are
encoded in (i) the phase evolution of the waves and also
in (ii) the evolution of the frequencies (or phases) of wave
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modulation produced by orbital precession. Phinney [4]
has given the name ‘‘bothrodesy’’ to the mapping of a
black hole’s metric via EMRI waves, and bothrodesy has
been identified, by the LISA International Science Team
(LIST), as one of the prime goals for LISA [5]. The initial
phase of scoping out LISA’s data analysis challenges for
EMRI waves is now underway [6,7].

Ryan’s proof that the EMRI waves carry a map of the
central body’s metric ignored completely the influence of
tidal coupling between the central body and the orbiting
object. Finn and Thorne [8] have shown that, for values of
the body and object masses in the range relevant to LISA,
the tidal coupling can have an influence as large as a few
percent on the evolution of the waves’ inspiral phase—a
phase that should be measurable to a fraction of a cycle out
of tens or hundreds of thousands of cycles. Thus, the
influence of the tidal coupling may be measurable with
rather high precision. Because, in Ryan’s analysis, the map
is encoded redundantly in the EMRI waves’ inspiral phase
and in their modulations, it is reasonable to hope that the
tidal coupling will break that redundancy in such a manner
-1 © 2005 The American Physical Society
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as to permit extraction of both the map and details of the
central body’s response to the tidal gravitational pull of the
orbiting object [9].

Thorne [10] has argued that if we are to keep an open
mind about the physical nature of the central body from the
outset [e.g., if we are to allow for the possibility that it is a
boson star (e.g. [11,12]) or a soliton star (e.g. [13]) rather
than a black hole], then we must describe the tidal coupling
in a manner that can encompass all possible types of
central bodies—a body-independent manner.

In the case of the earth and moon, the tidal coupling is
normally described in terms of the rise and fall of the
earth’s surface or ocean’s surface, and in terms of energy
dissipation in the earth’s oceans. Noticeably different from
this, the tidal coupling in the case of a black hole has
always, until now, been described in terms of the influence
of the orbiting object’s gravitational field on the hole’s
horizon—the perturbation of the horizon’s 2-metric (e.g.
[14,15]), or the conversion of the tidal field into gravita-
tional radiation at the horizon by gravitational blue-shifting
and the energy and angular momentum carried inward by
those waves (e.g., [16]).

One tidal feature in common between a black hole, the
earth, a boson or soliton star, and all other conceivable
central bodies, is the body’s tidally-induced multipole mo-
ments and multipolar gravitational fields. It is these in-
duced fields, acting back on the orbiting object, that change
the object’s orbital energy and angular momentum, secu-
larly change its orbit, and thereby alter the emitted gravi-
tational waves. For this reason, Thorne [10] has proposed
that we adopt these induced multipole fields or moments as
our body-independent description of tidal coupling when
analyzing LISA data.

As a first step in exploring Thorne’s proposal, we com-
pute, in this paper, the tidally-induced quadrupole moment
and its back reaction on the orbiting object, in the special
case where the central body is a Schwarzschild black hole,
and the object is a distant, circularly orbiting moon.

B. Framework and results

Consider a moon of mass � orbiting around a massive
central body at a large distance. When the central body is a
planet [17] (see Sec. III of Ref. [15] for a review), the
external tidal field produced by the moon, denoted by Eext

ij ,
raises a tide on the central body and induces a quadrupole
moment I ind

ij that is proportional to Eext
ij . The proportion-

ality constant is the body’s polarizability. Because of vis-
cous dissipation, the induced quadrupole moment I ind

ij will
be slightly out of phase with Eext

ij ; it will have a small phase
lag with respect to the applied field. This phase lag is
generally referred to as the tidal lag angle, and can be
defined equivalently as the ratio of the tangential and radial
component of the tidally-induced force acting back on the
moon. One objective of this paper is to explore whether this
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type of characterization via polarizability and lag angle is
also reasonable when the central body is a black hole.

To explore this, we study a model problem where the
moon is orbiting circularly around a massive
Schwarzschild black hole of mass M (� �) at large
distance b (� M). We assume the separation b is large
enough that there exists an intermediate region between the
hole and moon where (i) gravity is weak so space is nearly
flat; (ii) the moon’s tidal field does not vary appreciably.
This region is referred to as the black hole’s local asymp-
totic rest frame (LARF) [18]. Because the spacetime is
nearly flat, one can write down the full tidal field in the
LARF (in Cartesian coordinates) to linear order in each
multipole moment as [19]

E ij � R0i0j

� �
X1
‘�0

��1�‘

‘!
IA‘

�
1

r

�
;ijA‘

�
X1
‘�2

�2‘� 1�!!

�‘� 2�!
QijA‘�2

XA‘�2
: (1)

Here IA‘ and QA‘ are the ‘’th internal and external mo-
ments; they are symmetric and trace-free (STF) in their
tensor indices A‘ � a1 . . . a‘ [20]. The ‘‘internal mo-
ments’’ IA‘ characterize the central body, while the ‘‘ex-
ternal moments’’ QA‘ characterize the gravitational fields
of distant sources that perturb the central body. In our
problem, the tidal field Eext

ij is physically the same as the
external quadrupole moment Qij; they differ only by a
constant scaling factor, Eext

ij � �3Qij. The internal quad-
rupole moment is induced by the applied tidal field and
characterizes the tidal deformation of the central body.

Equation (1) is the gravitational analogy to the multipole
expansion of an electromagnetic field. It will be suffi-
ciently accurate for our purpose, since we shall compute
the nonspherical parts of the Riemann curvature tensor by
solving the linearized Einstein field equations. It will be
shown in Sec. II that only multipole moments with ‘ � 0; 2
are relevant to our problem. Dropping all other terms in
Eq. (1) and contracting with the unit spatial vector yields

E ijn
inj � �

2M

r3 � Eext
ij n

inj �
18I ind

ij n
inj

r5
; (2)

where we have identified I in Eq. (1) as the total mass of
the black hole and substituted the external tidal field Eext

ij

for Qij. In the last term, I ind
ij represents the quadrupole

moment induced on the black hole by the external tidal
field.

In Secs. III and IVA of this paper we compute the
induced quadrupole moment in Regge-Wheeler gauge,
obtaining

I ind
ij �

32

45
M6 _Eext

ij : (3)
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The same result was recently derived by Poisson from
calculating the averaged rate of change of mass and angu-
lar momentum of the perturbed black hole [21]. Note that
I ind
ij is proportional to the time derivative of Eext

ij (a time
derivative caused by the moon’s motion) and is therefore
completely out of phase with the external tidal field (by 90
degrees in time and 45 degrees in space). As we will show
in Sec. V, this out-of-phase induced moment is gauge
invariant and is responsible for the torque that changes
the orbital energy and angular momentum. Thus it is also
responsible for the tidally-induced portion of the orbital
evolution and the phase evolution of the gravitational
waves.

The piece of the induced quadrupole moment that is
proportional to and in-phase with the applied tidal field is
ambiguous (in a sense that we shall discuss in Sec. IV B);
in Schwarzschild coordinates and Regge-Wheeler gauge, it
vanishes. If there had been an unambiguous piece of I ind

ij in
phase with Eext

ij , then this in-phase piece would have de-
fined a polarizability, and the ratio of out-of-phase piece to
the in-phase piece would have been, in a certain well-
defined sense, the small tidal lag angle. Thus, our result
can be regarded as saying that both the polarizability and
the lag angle of a black hole are ambiguous (in the sense
discussed in Sec. IV B).

Although we find that the tidal lag angle in the LARF, in
the case of a Schwarzschild black hole, is ambiguous, we
can still define and calculate an angular tidal shift on the
horizon (as opposed to in the LARF or out at the moon).
We study this horizon phase shift in Sec. V. Hartle [15] has
calculated1 the tidal lag angle for the problem of a bulge
raised on slowly rotating hole’s horizon by a stationary
moon, and he has shown it to be negative: the horizon’s
tidal bulge leads the applied tidal field due to the horizon’s
teleological definition (i.e., a definition in terms of the
future fate of null rays). As in Hartle’s case, we can
compare the phase of the shape of our nonrotating horizon
to our moving moon’s position by mapping the moon to the
horizon with an ingoing, zero-angular momentum, null
geodesic. In Sec. V, we find that this prescription leads to
a lead angle between the moon and the horizon

�null map �
8

3
M���b	; (4)

where � is the orbital angular frequency of the moon and
b	 is the moon’s tortoise coordinate b	 � b�
2M log�b=2M� 1�.

For comparison, Hartle’s result [15] for the tidal lead
angle in the case of the rotating hole and distant, stationary
moon in the equatorial plane, is (after correcting a sign
error, as discussed in footnote 6)
1We review the principal results of Hartle’s investigation in
Sec. V B 1.
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�H
null map �

2a
3M
�
a
b
�

8

3
M�H � 4

M2�H

b
; (5)

Here a is the hole’s specific angular momentum, and �H is
the horizon angular velocity. The radius of the moon’s
position b is sufficiently large that the moon is essentially
stationary. Throughout this paper, we use the superscript
‘‘H’’ to indicate results corresponding to Hartle’s system,
i.e., to a system with a stationary moon and rotating
horizon. Other results (without the subscript ‘‘H’’) corre-
spond to our system of a distant moon, orbiting at fre-
quency �, which perturbs a Schwarzschild black hole).

Our result (4) differs from Hartle’s (5)—even though we
initially expected that the tidal phase shift should depend
only on the difference in angular velocities of the applied
tidal field and the horizon generators, so the results would
be the same. The terms that differ arise from the particular
choice to map the moon to the horizon using an ingoing,
zero-angular momentum null ray.

We prefer an alternative definition of the tidal lead angle,
one that is independent of b	; we prefer to define the tidal
phase shift as the angle between the perturbing tidal field at
the horizon and the shear (which is the rate of change of the
shape) of the horizon [22]. This definition avoids introduc-
ing null connections between the moon (which, at radius
b� ��1, is in the near zone) and the horizon. Using this
definition, we find that the shear of the central hole leads
the perturbing tidal field at the horizon by an angle

�Horizon � �H
Horizon � 4M�: (6)

The tidal lead angle is the same whether one considers a
stationary moon perturbing a rotating hole or an orbiting
moon perturbing a nonrotating hole.

The rest of paper is organized as follows. In Sec. II, we
decompose the applied tidal field in the LARF into a time-
dependent part and a static part. In Sec. III we analyze fully
the time-dependent part and deduce the dynamical part of
the induced quadrupole moment [Eq. (24)]. In Sec. IV, we
solve for the static perturbation and discuss the ambiguity
in defining the static part of the induced quadrupole mo-
ment. In Sec. V, we study the phase shift between the
deformation of the horizon and the applied tidal and com-
pare the result with the phase shift as defined by Hartle. A
brief conclusion is made in Sec. VI. Throughout the paper,
we use geometrized units with G � c � 1.
II. PROBLEM SETUP

We study small perturbations of a nonspinning black
hole caused by an orbiting moon. The unperturbed back-
ground metric is the Schwarzschild metric:

ds2 � �

�
1�

2M
r

�
dt2 �

dr2

1� 2M=r

� r2�d�2 � sin2�d�2�; (7)
-3



HUA FANG AND GEOFFREY LOVELACE PHYSICAL REVIEW D 72, 124016 (2005)
where M is the mass of the central hole. At large radii (i.e.,
in the LARF), we will study the perturbations in a notation
that treats the Schwarzschild coordinates �r; �; �� as
though they were flat-space spherical coordinates. These
coordinates are related to the Cartesian coordinates
�x; y; z� � �x1; x2; x3� by

�x1; x2; x3� � r�sin� cos�; sin� sin�; cos��:

We will denote the radial vector with length r by x, the unit
radial vector by n, and their components by xj and nj,
respectively.

Let a moon of mass � move along a circular orbit with
radius b in the equatorial plane (b� M� �). The
moon’s position is specified by

x s � bns � b�cos�t; sin�t; 0�; (8)

where the superscript ‘‘s’’ stands for the ‘‘source’’ of the

perturbation and � �
������������
M=b3

p
is the moon’s orbital angu-

lar frequency, satisfying �b� 1. The moon’s tidal field
Eext
ij is the double gradient of the moon’s Newtonian gravi-

tational potential. Its value in the LARF (at r� b but r�
M) is well approximated by

E ext
ij � �

�
�

jx� xsj

�
;ij
jr�0 �

�

b3 ��ij � 3ns
in

s
j�: (9)

Note that although the applied tidal field is defined in the
LARF, the induced quadrupolar field I ind

ij of greatest inter-
est is not in the LARF, but further out in the vicinity of the
moon’s orbit, where it interacts with the moon.

The tidal field (9) can be decomposed into spherical,
harmonic modes [23]. The result of the decomposition is

E ext
ij �

�

b3

�������
6�
5

s � ���
2

3

s
Y20
ij �Y22

ij e
�i!t �Y2�2

ij ei!t
�

� Eext;20
ij � Eext;22

ij � Eext;2�2
ij (10)

with ! � 2� and Eext;2m
ij (m � 0;
2) equal to the corre-

sponding Y2m
ij term. Here the Y2m

ij are position-
independent, rank-2, symmetric trace-free (STF) tensors
defined in Eqs. (A3) and (A4) and are related to the
familiar ‘ � 2 spherical harmonics Y2m��;�� by
Eq. (A2). (See Eqs. (2.7)–(2.14) of Ref. [23] for the general
mapping between order ‘ spherical harmonics and rank-‘
STF tensors.) The explicit values of the tidal field compo-
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nents are

Eext;20
ij � �

�

2b3

1 0 0

0 1 0

0 0 �2

0BB@
1CCA; (11a)

Eext;2
2
ij � �

3�

4b3

1 
i 0


i �1 0

0 0 0

0BB@
1CCAe�i!t: (11b)

The tidal field Eext
ij [Eq. (10)] is the source of perturba-

tions of the central hole; it is an even-parity ‘ � 2 external
tidal field. We shall therefore perform our calculation in the
even-parity Regge-Wheeler gauge, mode by mode (‘ �
2; m � 0;
2). The tidal field Eext

ij also sets the outer
boundary condition for the problem: the O�r0� terms in
the perturbed tidal field Eij must go to Eext

ij in the LARF
[Eq. (2)].

The inner boundary condition is set differently, depend-
ing on whether the perturbations are static or time-
dependent. For the static perturbations generated by E20

ij ,
we impose a ‘‘regularity boundary condition’’: the pertur-
bations must be physically finite at r � 2M. For the time-
dependent perturbations generated by Eext;2
2

ij , we impose
the ‘‘ingoing-wave boundary condition’’: the perturbations
have the asymptotic behavior �e�i!r

	
when approaching

the horizon. Here r	 is the tortoise coordinate r	 � r�
2M log�r=2M� 1�.
III. TIME-DEPENDENT PART OF THE
PERTURBATION

A. The perturbed metric

We will specialize to �‘;m� � �2; 2� in solving for the
time-dependent part of the metric perturbation. The
�‘;m� � �2;�2� results can be obtained by complex con-
jugating the (2,2) results. For briefness, a superscript ‘‘22’’
will not be added to quantities calculated in this harmonic
mode in this section, unless a distinction is needed.
Throughout this section, we refer to Appendix B for details
of the perturbation calculation.

In the standard Regge-Wheeler gauge, the �‘;m� �
�2; 2� time-dependent perturbations take the form [24]
h�22�
ab � Y22��;��e�i!t

�����������������������

H
�
1� 2M

r

�
H1 0 0

H1 H
�
1� 2M

r

�
�1

0 0

0 0 r2K 0
0 0 0 r2Ksin2�

�����������������������
: (12)

Here H, H1, and K are functions of r alone. These radial functions are solutions of the perturbed Einstein equations; they
can be constructed from the Zerilli function Z�r� [25], which satisfies a second-order ordinary differential equation
-4
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[Eq. (B4)]. Specifically, H1, K and H are given in terms of
Z�r� by Eqs. (B1)–(B3). Instead of solving for Z�r� di-
rectly, one may obtain the Zerilli function from its odd-
parity correspondent, the Regge-Wheeler function X�r�,
which obeys a simpler differential equation [24,26] that
is easier to solve [Eq. (B5)]:

�
d2

dr	2
�!2 �

�
1�

2M
r

��
‘�‘� 1�

r2 �
6M

r3

��
X�r� � 0;

where d=dr	 � �1� 2M=r�d=dr. The Zerilli function
Z�r� is expressed in terms of X�r� by Eq. (B6). Thus, the
metric perturbation is determined by the single radial
function X�r�, by way of Eq. (B6) to get Z�r� and then
Eqs. (B1)–(B3) to get H1, K, and H.

The analytic solution for X�r� with the ingoing-wave
boundary condition at horizon was derived by Poisson and
Sasaki [27]. Their solution, XH in their notation and for the
limiting case !r� 1, is what we have used in our analy-
sis. With our slow motion assumption �b� 1, XH�!r�
1� will be sufficient to cover the region inside the moon’s
orbit—including the LARF, where we read out the induced
quadrupole moment. Following Poisson and Sasaki’s no-
tation, we define the dimensionless quantity

" � 2M!: (13)

We then combine Eqs. (3.4), (3.11), and (3.12) of Ref. [27]
to obtain

XH�!r� 1� �A

�
r

2M

�
3
ei!�r�2M�


 F
�
c1; c2; c3; 1�

r
2M

�
e�i!r

	
; (14)

where A is an overall scaling factor that did not appear in
Ref. [27] but will be determined by the outer boundary
condition in our problem; F is the hypergeometric function
with parameters [Eq. (3.11) of Ref. [27] with ‘ � 2]

c1 � �i"�O�"2�; c2 � 5� i"�O�"2�;

c3 � 1� 2i":
(15)

Note that expression (14) for XH is only accurate to first
order in ". We then expand Eq. (14) in large r and keep
terms to first order in "

XH �A

��
1�

13

12
i"
�

~r3 �
X1
n�5

i"

n~rn�3 �O�"
2�

�
; (16)

where ~r � r=2M is the dimensionless radius. Next, we use
Eq. (B6) to get Z�r�. Then the perturbed metric compo-
nents can be constructed using Eqs. (B1)–(B3). In the
following all quantities will be calculated up to first order
in " and we will suppress ‘‘O�"2�’’ in our expressions.
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B. Induced quadrupole moment in the LARF

Once the perturbed metric is known, it is straightforward
to calculate the full Riemann tensor and extract from it the
first-order tidal field in the LARF:

E �1�ij � R�1�0i0j � R0i0j � R
�0�
0i0j; (17)

where a superscript of ‘‘(0)’’ or ‘‘(1)’’ indicates the quan-
tity is of zeroth or first order in the perturbation. In our
calculation, we found it convenient to look at the 0r0r
component of the first-order Riemann tensor in the LARF,
since

R�1�0r0r � R�1�0i0jninj � E�1�ij ninj: (18)

From this equation we can read off E�1�ij � R�1�0i0j, the first-
order tidal field in Cartesian coordinates in the LARF, from
the Riemann tensor in Schwarzschild coordinates. By the
procedure outlined in this paragraph we have deduced the
following �‘;m� � �2; 2� part of E�1�ij in the LARF:

E �1�;22
ij � �

3A

4M3

�
1�

4

3
i"�

X1
n�5

i"
n~rn

�
Y22
ij e
�i!t: (19)

The outer boundary condition states that the O�r0� [i.e.
O�~r0�] term of E�1�;22

ij must equal Eext;22
ij [Eq. (11b)]. This

determines the scaling factor to be

A �
4�M3

b3

�������
2�
15

s �
1�

4

3
i"
�
: (20)

Inserting Eq. (20) into Eq. (19), we can write E�1�;22
ij as

E �1�;22
ij � Eext;22

ij �
�

b3

�������
6�
5

s X1
n�5

i"
n~rn

Y22
ij e
�i!t: (21)

Here the O�1=~r5� term, by Eq. (2), contains the induced
quadrupole moment. The O�1=~r6� and higher terms are
proportional to the O�1=~r5� term and contain no new
information; they represent the nonlinear coupling be-
tween the induced quadrupole and the black hole’s mono-
pole moment.

Comparing the O�1=~r5� term in Eq. (2) and the O�1=r5�
term in Eq. (21), we find that

I 22
ij �

32

45
M6 _Eext;22

ij : (22)

Complex conjugating this equation yields the �‘;m� �
�2;�2� part of the induced quadrupole moment:

I 2�2
ij �

32

45
M6 _Eext;2�2

ij : (23)

Thus, the time-dependent part, i.e. the dynamical part
(DP), of the induced quadrupole moment is given by

I ind;DP
ij �

32

45
M6� _Eext;22

ij � _Eext;2�2
ij � �

32

45
M6 _Eext

ij : (24)
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This agrees with the result recently obtained by Poisson
[21] by a very different method. Note that the induced
quadrupole moment is proportional to the time derivative
of the applied tidal field. Hence the induced quadrupole
moment and the applied tidal field are completely out of
phase with each other (�=4 phase shift in space, �=2 in
time). This leads to a dissipative force acting back on the
moon.

From the induced quadrupole moment (24), we define a
corresponding Newtonian potential in the LARF and out to
the moon’s orbit:

� � �
3

2
I ind;DP
ij

ninj

r3 : (25)

Then the force acting back on the moon can be found by
evaluating the gradient of � at the moon’s position:

F � �r�jxs � �
32

5

�
�
b

�
2
�
M
b

�
13=2

e�: (26)

Equation (26) shows that the force is tangential and oppo-
site to the moon’s motion. The energy loss from the moon’s
orbital motion is then

_E � �F � v �
32

5
M4�2�6; (27)

where v � �be�. It is straightforward to show that there is
also an angular momentum loss of magnitude _E=�.
Equation (27) agrees with Poisson and Sasaki’s calculation
of the rate at which the perturbation carries energy into the
black hole’s horizon at the leading post-Newtonian order
[27].

IV. THE STATIC, AXISYMMETRIC PART OF THE
PERTURBATION

A. Static induced quadrupole moment

We now specialize to the even-parity, static part of the
moon’s perturbation: �‘;m� � �2; 0�. The Regge-Wheeler
metric for this type of perturbation has the form [24]

h�20�
ab � Diag

��
1�

2M
r

�
Ĥ2;

Ĥ2

1� 2M=r
; r2K̂2; r

2K̂2sin2�
�


 Y20��;��; (28)

where ‘‘Diag’’ is short for diagonal matrix and Ĥ2 and K̂2

are functions of r only. The general solution to the field
equation governing Ĥ2 can be expressed in terms of the
associated Legendre functions [14]:

Ĥ 2�r� � �2P
2
2

�
r
M
� 1

�
� �2Q

2
2

�
r
M
� 1

�
; (29)

where �2 and �2 are constants to be determined. The
solution to K̂2 can then be obtained from that of Ĥ2

(Appendix C). As r approaches 2M, we have [28]

Q2
‘�r=M� 1� � �r=M��1=2;
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so the Q2
2 term in Eq. (29) becomes divergent at r � 2M

and we must set the coefficient �2 to be zero in order for
the perturbation to be finite there. As r goes to infinity2,

P2
‘�r=M� 1� � �r=M�‘:

Therefore the remaining P2
2 term in Eq. (29) keeps growing

quadratically as r becomes large, corresponding to the
nonasymptotic-flatness due to the presence of the moon.

With the metric perturbation h�20�
ab , we compute the

Riemann tensor from the full metric and series expand
the result up to linear order in �2 (i.e., first order in the
perturbation). The 0r0r component of the resulting first-
order Riemann tensor is found to be

R�1�0r0r �
3�2

M2 Y
20��;��: (30)

From this and from Eq. (10), we obtain the first-order tidal
field in the Cartesian basis

E �1�ij �
3�2

M2 Y20
ij : (31)

The static, first-order tidal field thus contains only anO�r0�
term, which should be identified as the static part of the
applied external field Eext;20

ij [Eq. (11a)]. The coefficient �2

is determined from this identification to be �2 ���������������
4�=45

p
�M2=b3. Since there is no O�1=r5� term present

in Eq. (31), we infer that there is no static induced quad-
rupole moment:

I 20
ij � 0: (32)

This is quite a counterintuitive result. It is worth pointing
out, however, that the absence of negative powers of r in
Eq. (31) follows directly from the regularity condition we
imposed at r � 2M. If the radius r � 2M were well inside
the central body itself, which naturally is the case for any
nonrelativistic body with weak self-gravity, then the Q2

2
term in Eq. (29) would survive and give rise to an induced
quadrupole moment. Equation (32) may also be the con-
sequence of the gauge (Regge-Wheeler) we choose to work
in. Is it possible to give a gauge-invariant definition of
static, induced multipole moment in a non-asymptoti-
cally-flat spacetime? This is the question we shall inves-
tigate in the next subsection.

We now summarize and conclude that the total induced
quadrupole moment in our chosen gauge is

I ind
ij � I20

ij � I22
ij � I2�2

ij �
32

45
M6 _Eext

ij ; (33)

which is proportional to the time derivative of the external
tidal field—not the field itself as one would expect for
Newtonian tidal couplings.
-6
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Lastly, we move from the LARF to the perturbed hori-
zon and examine the effect of the static perturbation there.
Hartle has shown [14] that to first order in the perturbation,
the coordinate location of the event horizon of a slowly
rotating black hole perturbed by a stationary distribution of
matter is still at r � 2M. This is also true for a
Schwarzschild black hole under static perturbations.
Evaluating the full metric at r � 2M, we find the horizon
metric is given by

ds2
H � 4M2�1� 2��M2=b3�P2�cos����d�2 � sin2�d�2�;

(34)

where P2 is the Legendre function. From this metric the
scalar curvature of the horizon is obtained as

R �
1

2M2 �1� 4��M2=b3�P2�cos���: (35)

So it is clear that the shape of the horizon does acquire a
small quadrupolar component. But this deformation is not
accompanied by an induced quadrupole moment in the
LARF, at least in our chosen gauge.

B. Ambiguity of the static induced quadrupole moment

In the previous subsection, we found that a
Schwarzschild black hole has a vanishing static induced
quadrupole moment (SIQM) in response to the external
tidal field Eext;20

ij . To see that this vanishing of the SIQM
might possibly be a gauge effect, imagine replacing the
radial coordinate r in the expression ���1=2�Eext;20

ij ninjr2

for the external tidal Newtonian potential by r � �r�1�
�M5=�r5�1=2, where � is some dimensionless number of
order unity. The result is � � �1=2�Eext;20

ij ninj �r2 �

��=2�M5Eext;20
ij ninj=�r3. By comparing this expression

with Eq. (2) we read off a SIQM I ij���=18�M5Eext;20
ij ij.

In Newtonian theory this procedure would obviously be
naive, but in general relativity, where the unperturbed
black hole metric can be expanded in powers of M=r and
the coefficients in that expansion depend on one’s choice of
radial coordinate and that choice is a ‘‘gauge’’ issue, this
type of procedure is not obviously naive at all.

From our point of view, the best way to explore the
gauge dependence of the SIQM is to ask whether it is
physically measurable. If (as we shall find) physical mea-
124016
surements give a result that is ambiguous at some level,
then that ambiguity constitutes a sort of gauge dependence
of the SIQM.

In this section we shall study a thought experiment for
measuring the SIQM, one based on coupling to a small,
static external ‘‘test’’ octupole field Eijk (proportional to
the symmetrized and trace-removed gradient of some fidu-
cial external quadrupolar tidal field). For simplicity we
take Eijk to be axisymmetric around the same z axis as
our static external tidal field Eext;20

ij ; i.e. we take it to be
proportional to a tensor spherical harmonic of order
�‘;m� � �3; 0�:

E ijk �Y30
ijk:

The analysis in Ref. [29] says that, any SIQM I ij
(created in the black hole by Eext;20

ij ) will couple to the
external octupole moment to produce a force that gradually
changes the hole’s momentum3:

_P i � �
1

2
EijkI jk: (36)

(Equation (1.12) of Ref. [18]; Eq. (4b) of Ref. [29]). The
same will be true if the central black hole is replaced by a
neutron star or any other spherical body. The rate of change
of momentum _Pi can also be evaluated by a surface inte-
gral of the Landau-Lifshitz pseudotensor tijLL in the LARF
[18]:

_P i � �
I
��g�tijLLdSj: (37)

Eqs. (36) and (37) for the coupling-induced force on the
hole actually have ambiguities that arise from nonlineari-
ties in the Einstein field equations. The origin of those
ambiguities is discussed with care in Sec. I of Thorne and
Hartle [18]. In this subsection we use Eq. (37) to calculate
the force on the hole, and shall identify the ambiguities as
those terms in which the force depends on the location of
the integration surface. The result of our calculation will
tell us, by comparison with Eq. (36), the SIQM and the
amount by which it is ambiguous.

To compute the pseudotensor for insertion into Eq. (37),
we must solve for the metric perturbation containing both
the quadrupole and octupole terms:
hab � h�20�
ab � h

�30�
ab �

X
‘�2;3

Diag
�
�1� 2M=r�Ĥ‘;

Ĥ‘

1� 2M=r
; r2K̂‘; r2K̂‘sin2�

�
Y‘0��;��: (38)
3The test octupole field may also induce a static octupole
moment I ijk in the central black hole, which will couple to the
external quadrupolar tidal field. This coupling, as we shall show,
contributes to the ambiguities in the definition of the SIQM.
When ‘ � 2, the general solution to Ĥ2 is given in
Eq. (29). For ‘ � 3, we have

Ĥ 3�r� � �3P2
3

�
r
M
� 1

�
� �3Q2

3

�
r
M
� 1

�
: (39)
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In order that both types of perturbation be finite at r � 2M,
�2 and �3 must be set to zero [see Eq. (29)]. In order to
deal with more general cases, however, we keep nonvan-
ishing values for �2 and �3 in Eqs. (29) and (39) so the
following analysis will be valid for stars as well as black
holes. [For central bodies other than black holes,�2 and�2

(and similarly �3 and �3) are not independent of each
other: �2 is proportional to �2 with a proportionality
constant that depends on the body’s internal physical prop-
erties]. Having specified the metric perturbation, we then
insert the full metric into the expression for the pseudo-
tensor (Eq. (20.22) of Ref. [30])

��g�t��LL �
1

16�
fg��;	g	�;� � g�	;	g��;�

� g	�g

�g�	;
g��;� � �g

�	g�
g�
;�g��;	

� g�	g�
g�
;�g��;	� �
1

2
g��g	�g	
;�g��;


�
1

8
�2g�	g�� � g��g	���2g
�g�


� g��g

�g



;	g��;�g; (40)

and evaluate the surface integral at some radius r � R in
the LARF. Because of the axi-symmetry of the perturbed
spacetime, only the z-component of _Pi is nonzero. The
result, up to first-order coupling and with uninteresting
numerical coefficients being suppressed, has the following
form:

_P z � �3�2

�
R4

M4 &
R3

M3 &
R2

M2 &
R
M

&1& . . .
�

� �3�2

�
1&

M
R

& . . .
�
� �3�2

�
M3

R3 &
M4

R4 & . . .
�
;

(41)

where ‘‘&’’ is to be read ‘‘and a term of the order.’’
The constant terms in Eq. (41) [i.e., the ‘‘1’’s] that are

independent of the integration radius R are the ones to be
compared with Zhang’s result (36) so as to deduced the
gauge-invariant SIQM. Other terms that depend on R con-
stitute ambiguities4. Terms with positive power(s) of R=M
appear because the spacetime is not asymptotically flat,
and they prevent us from minimizing the ambiguities by
simply pushing the integration surface to infinity.

Let us step back and write down the most general form
that the SIQM can take. By order of magnitude analysis of
the response of any physical body (black hole, star, planet,
moon,...) to a tidal field, we must have
4The M2=R2 term includes the effect of any octupole moment
induced on the central body by the test octupole field. Note that
_Pi is a dimensionless vector. On dimensional grounds, the

coupling between any induced octupole moment and the external
tidal field must take the form I ijkEjk=R

2 to contribute to _Pi.
(Nonlinear coupling to the monopole moment can lead to similar
terms that scale as higher, but not lower, powers of 1=R).
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I ij � L5�1� ��Eext;20
ij : (42)

Here L is the size of the body (L�M for a black hole) and
� is a dimensionless number describing the SIQM’s de-
pendence on the integration radius R — deviations from
being well defined. From Eq. (31), we know the external
tidal field scales as ��2=M2. Similarly for the external
octupole field, Eijk � �3=M3. Using these relations,
Eq. (36) becomes

_P i � L5�1� ��Eext;20
jk Eijk � �2�3

�
L5

M5
�
�L5

M5

�
: (43)

Here the first term in the square bracket should be identi-
fied as the 1s in Eq. (41) [note again that �2 and �2 are not
independent of each other for stars]; and the second term
should be identified as the sum of all R-dependent terms:

�L5

M5
�
R4

M4 & . . . &
R
M

&
M
R

& . . . : (44)

In the case of a black hole we have L�M and the
smallest the right hand side of Eq. (44) can be is �1 (for
R�M), so � * 1, i.e. the SIQM for a Schwarzschild black
hole is ambiguous by an amount * M5Eext;20

ij , i.e. totally
ambiguous, since the largest we could expect I ij to be is
�M5Eext;20

ij .
For central objects with L� M (e.g., the Earth) we

must choose R> L. The right hand side of Eq. (44) is
then minimized by setting R ’ L, giving ��M=L� 1
(� 10�9 in the case of the Earth) for the fractional ambi-
guities in the SIQM.

We comment that our result for a Schwarzschild black
hole differs from what Suen has derived. Suen has given an
unambiguous prescription to read out static multipole mo-
ments in non-asymptotically-flat spacetimes, which is
based on transforming coordinates into a particular set of
de Donder coordinates [31]. He has used his prescription to
calculate the induced quadrupole moment of a
Schwarzschild black hole when it is perturbed by a static,
equatorial matter ring at large distances [19]. According to
his prescription, the SIQM does not vanish. It is propor-
tional to the tidal field produced by the ring:

I ij � �
4

21
M5Ering

ij : (45)

The incompatibility between this result and the vanishing
SIQM that we derived in Sec. IVA in Regge-Wheeler
gauge and Schwarzschild coordinates illustrates the ambi-
guities of the SIQM. Both results, zero and ��4=21�M5Eij
are less than or of order the ambiguity.
V. THE TIDAL PHASE SHIFT

In the LARF, the time-dependent induced quadrupole
moment is �=4 out of phase with the perturbing tidal field
(Sec. III A). This large phase shift is quite different from
-8
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scalar curvature R.
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the small phase lag angle, caused by viscous dissipation,
between a planet’s induced quadrupole moment and the
perturbing tidal field. A closer black-hole analogy to a
planet’s viscous phase lag may be found by considering
the tide raised on the hole’s horizon by an orbiting moon.

In this section, we compute the tidal phase shift on the
horizon for our perturbed Schwarzschild black hole. We
will discuss in what sense it is and is not analogous to the
fluid-planet’s viscous phase lag. To calculate this phase
shift, it is convenient to use the Newman-Penrose formal-
ism [32] (see, e.g., chapter 1 of Ref. [33] for a review of the
Newman-Penrose formalism). Appendix D summarizes
some details of the Newman-Penrose formalism that are
relevant for our purpose.

We consider two approaches to defining the tidal phase
shift. In Sec. VA, we define the phase shift only in terms of
quantities on the horizon (following the method suggested
in Sec. VIIC of Ref. [22]), while in Sec. V B, we define a
phase between the tide raised on the horizon and the
‘‘retarded’’ position of the moon (following the method
used by Hartle in Ref. [15]).

A. Phase of the tidal bulge on the horizon

For Sec. V and Appendix D only, we use ingoing
Eddington-Finkelstein coordinates � ~V; r; �; �� and a �� �
��� signature of the metric. The Schwarzschild metric in
these coordinates is

ds2 �

�
1�

2M
r

�
d ~V2 � 2d ~Vdr� r2�d�2 � sin2�d�2�:

(46)

The ingoing Eddington-Finkelstein null time coordinate ~V
is related to the Schwarzschild time coordinate t and radial
coordinate r by the following equation (Eq. (1b) of Box
32.2 of Ref. [30]):

~V � t� r	 � t� r� 2M lnjr=2M� 1j; (47)

and the Eddington-Finkelstein radial and angular coordi-
nates fr; �; �g are identical to those of Schwarzschild.

Our slowly orbiting moon deforms the Schwarzschild
event horizon. By analogy with Newtonian tides, we would
like to describe the horizon deformation as a perturbation
that corotates (at a slightly different phase) with the tidal
field that drives it. But this viewpoint inherently envisions
the perturbed event horizon as a two-dimensional, evolving
surface, rather than as a three-dimensional, global surface
in spacetime. Therefore, before we can consider the phases
of quantities on the horizon, we must first specify what we
mean by time on the horizon.

Begin by considering the Schwarzschild event horizon
(which is, of course, the three-surface r � 2M). There is a
preferred way to slice the horizon into a single-parameter
family of two-surfaces; this preferred slicing uses two-
surfaces that are orthogonal to the Schwarzschild Killing
vector @t � @ ~V that is timelike at the moon and null on the
124016
horizon. Following Hartle [15], we call this family of two-
surfaces the ‘‘instantaneous horizon.’’ The instantaneous
horizon can be pictured as an evolving two-surface defined
by r � 2M and ~V � const:, so that ~V plays the role of a
‘‘time’’ coordinate. Throughout this section, we use the
terms ‘‘horizon’’ and ‘‘instantaneous horizon’’ inter-
changeably unless otherwise indicated.

We now consider how the horizon’s perturbation evolves
with time ~V. The moon’s tidal field, characterized in the
LARF by [Eq. (10)]
E ext
ij � Eext;20

ij � Eext;22
ij � Eext;2�2

ij ;
deforms the otherwise spherical, static horizon. Because
Eext;20
ij is static and axisymmetric, it cannot contribute to the

phase shift. For the remaining tidal fields, Eext;2
2
ij , we shall

consider only the (2,2) mode in detail and the result for the
�2;�2� mode follows immediately.

On the horizon, it is the tangential-tangential compo-
nents of the perturbing tidal field that drive the deformation
(see, e.g., Eq. (6.80) of Ref. [22]); knowledge of these
components is physically equivalent to knowledge of the
Teukolsky function �0 [16] (see, e.g., Eq. (A7) of
Ref. [34]). The Teukolsky function is a particular compo-
nent of the Weyl tensor [Eq. (D5a)].

The horizon deformation is governed by the Newman-
Penrose equation (Eq. (2.11) of Ref. [15])
�@ ~V � 2����1� � �2�i�� ����1� � ��1�0 : (48)
This is also the ‘‘tidal force equation’’ (Eq. (6.80) of
Ref. [22]). Here � � ���1� is a Newman-Penrose spin
coefficient [Eq. (D3e)] and ��1� is the shear (i.e., the rate
of change of the shape5) of the instantaneous horizon. Note
that because � and �0 vanish on the unperturbed instan-
taneous horizon, the spin coefficient � takes its
Schwarzschild value, which (in our tetrad) is the surface
gravity of the instantaneous horizon gH � �4M��1.

Knowing ��1�0 , we can evaluate the horizon shear.
Because ��1�0 is first order in the perturbation, it may be
evaluated on the horizon simply by letting r go to 2M.

Beginning with the �‘;m� � �2; 2� metric perturbation
[Eq. (12), except we now choose the metric signature to be
�� ����], we compute the perturbed Riemann tensor
near the horizon and read off the component ��1�0 . The
result is
-9
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��1�0 � �i
����
�
5

r
�M�

b3 2Y
22e�2i� ~V��8=3�M� �O�M2�2�

� j��1�0 j exp
�

2i
�
��� ~V �

4

3
M��

�
4

��
�O�M2�2�: (49)

Here 2Y
22 is the spin-weighted spherical harmonic

2Y
22 �

1

2

����
5

�

s
sin4

�
�
2

�
e2i�:

With ��1�0 in hand, we can calculate ��1� via Eq. (48).
Inserting � � 2gH and ! � 2� into Eq. (48) yields

��1� �
��1�0

i!� 2�
� 4M��1�0 e

�2i�=gH �O�M2�2�

� j��1�j exp
�

2i
�
��� ~V �

4

3
M��

�
4
� �Horizon

��
�O�M2�2�: (50)

where

�Horizon � �=gH � 4M�: (51)

The shear ��1� leads ��1�0 (or equivalently, the perturbing
tidal field at the horizon) by an angle �Horizon. [Note that
the first equality in Eq. (50) appears in Ref. [15] as
Eq. (2.12).]

The shear is the time derivative of the shape. Therefore,
the shape has a phase

R �1� � jR�1�j exp
�

2i
�
��� ~V �

8

3
M�

��
: (52)

In other words, the shear leads the shape by �=4.
The horizon phase shift in Eq. (51) follows directly from

the tidal force Eq. (48). It is gauge-invariant since it only
makes reference to gauge-invariant quantities measured on
the instantaneous horizon. In Ref. [22] [Eq. (7.45), Fig. 57,
and the surrounding discussion], an analogous horizon
phase shift �H

Horizon was deduced from the tidal force equa-
tion for a slowly rotating black hole perturbed by a sta-
tionary, axisymmetric tidal field—physically the same
problem as Hartle studied [15]:

�H
Horizon � �H=gH � 4M�H � �Horzionj�!�H

: (53)

Here �H is the horizon angular velocity.
Although Hartle also used the tidal force equation in his

calculations, he chose to define the tidal phase shift in a
different way and made his result gauge-invariant by mak-
ing a connection between the angular positions on the
horizon and angular positions at infinity through a null
ray—a choice we will consider in detail in Sec. V B 1
and apply to our problem in Sec. V B 2.

The phase lead �Horizon is, in some ways, analogous to
the phase shift of a tide raised on a nonrotating fluid planet.
In the latter case, viscous dissipation causes the shape of
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the planet’s surface to lag the normal-normal component of
the perturbing tidal field by a small angle �visc; somewhat
analogously, the horizon shear leads the tangential-
tangential component of the perturbing tidal field. Both
phase shifts are small angles associated with dissipation
(which manifests itself as a secular evolution of the energy
and angular momentum of the moon’s orbit). In the ab-
sence of dissipation, there is no phase shift. On the other
hand, the phase shift �Horizon is a lead angle while �visc is a
lag angle. Hartle explains this difference as a consequence
of the teleological nature of the horizon [15]. Also as
Hartle observed, when the angular velocity � is not small
compared with 1=M, the deformation of the horizon cannot
be described in terms of a phase shift [15].

B. Phase shift between the tidal bulge and the moon

As an alternative to the above way of defining the tidal
phase shift, one can define it as the angle between the tidal
bulge on the horizon and the location of the moon in its
orbit. Hartle used this approach when he computed the
tidal lead on a rotating hole perturbed by a stationary moon
[15]. First, we will briefly summarize the aspects of
Hartle’s analysis which are relevant to our purpose. Then,
we will apply his method to a slowly rotating moon around
an otherwise Schwarzschild black hole.

1. Tidal phase shift between a rotating horizon
and stationary moon

In Ref. [15], Hartle considers the problem of a distant,
stationary moon perturbing a slowly rotating black hole.

The Kerr metric can be written as

ds2 �

�
1�

2Mr
�

�
d ~V2 � 2d ~Vdr�

4aMrsin2�
�

d ~Vd ~�

� 2asin2�drd ~�� �d�2

� sin2�
�
a2 � r2 �

2a2Mrsin2�
�

�
d ~�2: (54)

Here � � r2 � a2cos2�. The coordinates ~V and ~� are
related to the usual Boyer-Lindquist coordinates t and� by

dt � d ~V �
r2 � a2

�
dr; d� � d ~��

a
�
dr; (55)

where � � r2 � 2Mr� a2. When a � 0, Eq. (54) reduces
to the Schwarzschild metric in Eddington-Finkelstein co-
ordinates [Eq. (46)].

The event horizon is the surface r � r� � M�������������������
M2 � a2
p

. Just as in the Schwarzschild case considered
above, the event horizon can be sliced into a single-
parameter family of two-dimensional surfaces using the
Killing vector @ ~V which is timelike at infinity and null on
the horizon. This family of surfaces is the instantaneous
horizon.
-10



6Note that there is a sign error in Hartle’s analysis. Hartle
incorrectly states that the ingoing null ray intersects the horizon
at�a=2M�O�a=b�, not�a=2M�O�a=b�. Had we also made
this error, there would be a coefficient of 20=3 instead of 8=3 in
Eq. (61).

7Even if �! 0 resulted in a nonzero perturbation, it is
unclear how to distinguish such a perturbation from a small
change in the coordinates of the background spacetime.
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The distant moon raises a tidal bulge on the central
hole’s instantaneous horizon. In the limit that the moon is
far away, the change in the horizon’s shape (or equiva-
lently, the change in the scalar curvature R of the instan-
taneous horizon), is purely quadrupolar.

The deformation is driven by the transverse-transverse
component of the tidal field at the horizon, which is physi-
cally equivalent to the Teukolsky function, a particular
component of the Riemann tensor �0 [Eq. (D5a)]. This
component vanishes in the unperturbed Kerr spacetime
[Eq. (D12a)], and the first order correction ��1�0 has the
form

��1�0 � S‘m�r�2Y‘m��; ~��; (56)

where 2Y
‘m is a spin-weight-2 spherical harmonic.

Because the perturbation is purely quadrupolar, we need
only consider the case ‘ � 2; m � 2 here, although Hartle
considers the generic case. Hartle uses Teukolsky’s solu-
tion [35] for the stationary radial functions S‘m due to the
‘-pole perturbation caused by a distant, stationary point
particle with mass �. Furthermore, while Hartle treats the
case of a moon at any location ��; ~��, for concreteness we
specify the moon’s position as ��; ~�� � ��=2; 0�. On the
horizon, the Teukolsky function turns out to have the value
(combining Eqs. (4.30), (4.31), (4.15), and (4.18) of
Ref. [15])

��1�;H0 �
i�M�H

2
���
6
p
b3

sin4

�
�
2

�
exp�2i� ~�� 2M�H��

�O
�
M4

b4

�
�O�M2�2

H�: (57)

The tidal field deforms the instantaneous horizon,
changing its shape and thus its two-dimensional scalar
curvature R. Hartle computes the quadrupolar correction
to the scalar curvature, R�1�;‘�2;H, of the instantaneous
horizon [Eq. (D9)]. His result is (Eqs. (4.26)–(4.27) of
Ref. [15])

R �1�;‘�2;H / cos
�

2
�

~��
14

3
M�H

��
�O

�
M4

b4

�
�O�M2�2

H�: (58)

Instead of measuring the angle between the shear � and
the tidal field �0 on the horizon, Hartle defines his phase
lead as the angle between the shape and the moon’s angular
position. To make this definition gauge-invariant, Hartle
chooses ingoing, zero-angular-monentum, null geodesics
to be ‘‘lines of constant angle.’’ He then compares the
angular position of the horizon tidal bulge,

~� H
bulge � �

14

3
M�H: (59)

to the angular position of the moon on the horizon.
Consider stationary moon in the equatorial plane at

(large) radius r � b and at angular position � � 0. An
124016
ingoing null ray, originating from the moon, intersects the
instantaneous horizon at angular position6

~� H
moon � a=b� a=2M: (60)

The tidal bulge therefore leads the moon’s position by an
amount

�H
null map �

~�H
moon � ~�H

bulge �
8

3
M�H � 4

M2�H

b
: (61)

Here we have used the relation (valid for small a=M) that
a � 4M2�H, with �H being the angular velocity of the
hole. For simplicity, one can then take the limit b! 1.

Before continuing, we should remark that Hartle’s pre-
scription for constructing �H

null map can be described without
reference to the moon’s position. Begin by computing the
angular location of the tidal bulge on the horizon. Next,
ingoing, zero-angular-momentum null rays from infinity
define lines of constant angle, so that there is a one-to-one
correspondence between angular positions on the horizon
and angular positions at infinity. The angular position at
infinity of the tidal bulge can thus be computed. Finally,
perform the calculation again, but this time perturb a non-
rotating spacetime; in this case, there will be no tidal
friction. Because the Kerr and Schwarzschild space-
times are asymptotically identical, one can unambigu-
ously compare the angular position of the tidal bulge
in the presence and in the absence of tidal friction:
�H

null map � �H
bulge ��

H
bulge;no friction. This is equivalent to

the previous definition of �H
null map provided that b! 1.

However, this alternative formulation of �H
null map breaks

down when the moon, not the horizon, rotates. The rotation
is then described by �, which is a parameter of the
perturbation, not of the background spacetime. To elimi-
nate tidal friction, one must let �! 0, which eliminates
the perturbation7. Because of this failure, we prefer to
consider Hartle’s phase shift as a comparison of the posi-
tion of the tidal bulge with the position of the moon.

2. Tidal phase shift between a nonrotating horizon and
rotating moon

A similar analysis can be applied to our system, in which
a distant moon in a slow, circular orbit raises a tide on a
nonrotating black hole.

The moon orbits the central black hole along the world
line specified by Eq. (8). In other words, the moon has a
phase given by
-11
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�moon� ~V� � �t � �� ~V � b	�: (62)

This must be compared with the location of the bulge on
the hole’s future horizon. Equation (52) for R�1� [or, alter-
natively, inserting Eq. (49) into Eq. (D9)] shows that the tip
of the tidal bulge has a phase given by

�bulge � � ~V �
8

3
M�: (63)

As time ~V passes, this bulge rotates around and around the
horizon, with the same angular velocity � as the moon that
raises the tide.

Following Hartle, we compare the angular location of
the tidal bulge, �bulge� ~V�, with the angular location of the
moon, �moon� ~V�, using ingoing, zero angular momentum
(ZAM) null rays to provide the connection between � at
the moon’s orbit and � on the horizon. In the ingoing
Eddington-Finkelstein coordinates that we are using, these
ZAM rays have a very simple form:

f ~V; �;�g � const.; r decreases from b to 2M: (64)

Since ~V, �, and � are all constant along these rays, they
give us a one-to-one map of events f ~V; r � b; �; �g at the
moon’s orbital radius to events f ~V; r � 2M;�;�g on the
horizon that have identically the same ~V, �, and �. With
the aid of this map, we conclude that the angle by which the
horizon bulge lags the moon’s position is

�null map � �bulge� ~V� ��moon� ~V� �
8

3
M���b	: (65)

[Eqs. (62) and (63)]. Again, the phase shift is a phase lead,
not a phase lag, due to the teleological nature of the
horizon.

In addition to the teleological phase shift of order M�,
�null map contains a much larger term of magnitude �b	;
this term reflects the choice to use an ingoing-null-ray
mapping between the moon and the horizon. A similar
term appears in Hartle’s calculation [Eq. (61)], but in
Hartle’s system the term is much smaller than the teleo-
logical phase shift size (specifically, smaller by a factor of
M=b), whereas �b	 � M�.

One could avoid this problem by defining the phase shift
to include only terms of order M� and M�H. With this
definition, the remaining tidal phase leads are the same:
�8=3�M�, as one would expect, given that a there should
be no tidal shift at all if the moon were to rotate at the
hole’s angular velocity, i.e., if � � �H.

We prefer, however, to define the tidal lead angle in as
the angle �Horizon � 4M� by which the horizon shear
leads the horizon tidal field. This angle, in contrast to
�null map, is defined in terms of an ‘‘instantaneous’’ (space-
like) connection between the moon and the horizon, i.e., by
the near zone mapping of the moon’s position to the
horizon tidal field’s [��1�0 ’s] maximum. [Had the moon
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been in the radiation zone (b� 	=2�), one would have
expected the connection to be lightlike.]

VI. CONCLUSION

For our simple system of a Schwarzschild black hole and
circularly orbiting moon, we have found that the time-
dependent part of the moon’s tidal field induces a quadru-
pole moment that is unambiguous. The static induced
quadrupole moment was found to be zero in the Regge-
Wheeler gauge, but it is ambiguous in general. The ambi-
guity of the static induced quadrupole moment leads to an
ambiguity in the phase of the induced quadrupole moment
in the LARF; however, the tidal bulge on the horizon still
has a well-defined phase shift with respect to the orbiting
moon. Because of the ambiguity of the induced quadrupole
moment and the LARF phase shift, we conclude that the
polarizability and phase shift are not suitable for construct-
ing a body-independent description of tidal coupling in
EMRIs.

However, this conclusion does not eliminate the possi-
bility of developing a body-independent language to de-
scribe tidal coupling, including cases where the central
body is a black hole. It might be possible, for instance, to
define a new set of induced ‘‘dissipative multipole mo-
ments’’ for the central body—i.e. moments that vanish in
the absence of tidal friction. Such dissipative moments
would still be linear in the perturbing tidal field, so one
could still define a polarizability. Also, by ignoring any
nondissipative tidal coupling, the phase shift might no
longer contain additional information. Even if such an
extension does not prove feasible, tidal coupling can still
be described in the more conventional (but still body-
independent) language of energy and angular momentum
transfer between the moon and the central body.

Other future work could include generalizing our analy-
sis to spinning black holes, treating noncircular, nonequa-
torial orbits, and (most importantly) studying how
information about tidal coupling in EMRIs can be ex-
tracted from the gravitational waves detected by LISA.

APPENDIX A: SYMMETRIC TRACE-FREE
TENSOR NOTATION FOR SPHERICAL

HARMONICS

The scalar spherical harmonics Y‘m��;�� can be written
in terms of of rank-‘ symmetric trace-free (STF) tensors
[23]. The spherical harmonics Y2m��;�� that have been
used in this paper are

Y2
2��;�� �
1

4

�������
15

2�

s
sin2�e
2i� (A1a)

Y20��;�� �
1

8

����
5

�

s
�1� 3 cos2��: (A1b)

They can be written in terms of rank-2 STF tensors as
-12
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(Eq. (2.11) of Ref. [23])

Y2m��;�� � Y2m
ij n

inj; (A2)

where ni � xi=r and Y2m
ij are the STF tensors given by

(Eq. (2.12) of Ref. [23]):

Y 20
ij � �

1

4

����
5

�

s 1 0 0
0 1 0
0 0 �2

0
@

1
A; (A3)

Y 2
2
ij �

1

4

�������
15

2�

s 1 
i 0

i �1 0
0 0 0

0@ 1A: (A4)
APPENDIX B: TIME-DEPENDENT
PERTURBATION EQUATIONS

In Regge-Wheeler gauge, the metric perturbation for a
given even-parity �‘;m;!� mode depends on the three
radial functions H, H1, and K. In this appendix, we in-
troduce the Zerilli function Z and the Regge-Wheeler
function X and describe how we obtain the radial functions
from them. The description here will hold for a general
�‘;m;!�, while the results derived in Sec. III rely on the
special case when �‘;m;!� � �2; 2; 2��.

The original Zerilli’s master function is defined implic-
itly through its relation with the two radial functions H1

and K [Eqs. (13) and (14) of Ref. [25] with R�e�LM replaced
by Z]:

H1 � �i!
	r2 � 3	Mr� 3M2

�r� 2M��	r� 3M�
Z� i!r

dZ
dr
; (B1)

K �
	�	� 1�r2 � 3	Mr� 6M2

r2�	r� 3M�
Z�

dZ
dr	

; (B2)

where

	 �
1

2
�‘� 1��‘� 2�:

Using the algebraic relationship (Eq. (10) of Ref. [26])�
3M
r
� 	

�
H �

�
i!r�

i�	� 1�M

!r2

�
H1

�

�
	�

M
r
�
M2=r2 �!2r2

1� 2M=r

�
K

one can obtain H in terms of the Zerilli function

H �
�
!2r2

2M� r
�

s1

r2�3M� 	r�2

�
Z� s2

dZ
dr
; (B3)

in which
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s1 � 9M2�M� 	r� � 	2r2�3M� �	� 1�r�;

s2 �
�3M2 � 3	Mr� 	r2

r�3M� 	r�
:

The Zerilli function obeys the wave equation (Eqs. (18)
and (19) of Ref. [25]):

�
d2

dr	2
�!2 � V�r�

�
Z � 0; (B4)

in which the potential term is given by

V�r� �
2�r� 2M�

r4�	r� 3M�2
�	2�	� 1�r3 � 3	2Mr2

� 9	M2r� 9M3�:

The odd-parity master function, the Regge-Wheeler
function, is defined in Eq. (23) of Ref. [24] (and is called
Q in Regge and Wheeler’s notation). It obeys the differen-
tial equation (Eq. (7) of Ref. [26]):

�
d2

dr	2
�!2 �

�
1�

2M
r

��
‘�‘� 1�

r2 �
6M

r3

��
X � 0:

(B5)

The connection between the Regge-Wheeler and Zerilli
functions was first found by Chandrasekhar and is listed,
e.g., in Eq. (152) of Ch. 4 of Ref. [33]:

�	�	� 1� � 3iM!�Z �
�
	�	� 1� �

9M2�r� 2M�

r2�	r� 3M�

�
X

� 3M
�
1�

2M
r

�
dX
dr
: (B6)

This completes our metric reconstruction scheme from the
Regge-Wheeler function. We are now ready to evaluate the
radial metric perturbation functions H, H1, and K for the
�‘;m� � �2; 2� mode of the perturbations. Expanding XH

[given in Eq. (16) in powers of ~r � r=2M to first order in
" � 2M!, we obtain

XH �A

��
1�

13

12
i"
�

~r3 �
X1
n�5

i"

n~rn�3 �O�"
2�

�
: (B7)

Here A is an overall scaling factor (Eq. (20) in Sec. III A).
While the summation can be rewritten as a closed-form
expression, we prefer to stay in the series notation, since
our interest is in reading various powers of r in the result-
ing first-order tidal field. Equation (B7) is the value of the
Regge-Wheeler function in the LARF; inserting it into
Eq. (B6) yields the expression for Z in the LARF [We
shall suppress ‘‘O�"2�’’ hereafter]:
-13
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Z �A

�
1�

4i"
3

��
~r3 �

3~r2

4
�

9~r
16
�

21

64
�

63

256~r

�

�A

�
�945� 236i"

5120~r2 �
8505� 15436i"

61440~r3

�O
�

1

~r4

��
:

Inserting Z into Eqs. (B1)–(B3) yields H1, K, and H.
Expanded in powers of ~r and to first order in ", these radial
functions are given by

H �
A
M

�
�3� 4i"��~r2� ~r� �

i"

10~r3�
3i"

20~r4

�
�O�~r�5�;

H1 �
iA"
4M
��8~r3� 2~r2� 4~r� 1� ~r�1� ~r�2� ~r�3

� ~r�4� �O�~r�5�;

K �
A
M

�
�3� 4i"�

�
~r2�

1

2

�
�

i"

10~r3�
i"

8~r4�
9i"

70~r5
�
i"

8~r6

�
�O�~r�7� (B8)
APPENDIX C: TIME-INDEPENDENT
PERTURBATION EQUATIONS

As is evident from the time-dependent perturbation the-
ory, as !! 0, H1 goes to zero. In the static case, then,
there are only two radial functions, Ĥ and K̂ (where the
hats signify that they represent the time-independent per-
turbations). Specializing to the axisymmetric case, the
metric perturbation is

h�‘0�
ab � Diag

�
�1� 2M=r�Ĥ;

Ĥ
1� 2M=r

; r2K̂; r2K̂sin2�
�


 Y‘0��;��:

The linearized Einstein equations governing Ĥ and K̂ are
given in Eqs. (9d) and (9e) of Ref. [26] with H1 � 0 and
! � 0 (k � 0 in Edelstein and Vishveshwara’s notation):

dK̂
dr
�
dĤ
dr
�

2M

r2

�
1�

2M
r

�
�1
Ĥ; (C1)

2M

r2

dK̂
dr
�

�
1�

2M
r

�
d2Ĥ

dr2 �
2

r
dĤ
dr
�
‘�‘� 1�

r2 Ĥ: (C2)

Eliminating dK̂=dr from these two equations, we can then
write a single second-order differential equation for H in
terms of the variable z � r=M� 1 (same as Eq. (4.9) of
Ref. [14]):
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�1� z2�
d2Ĥ

dz2 � 2z
dĤ
dz
�

�
‘�‘� 1� �

4

1� z2

�
Ĥ � 0:

This takes a form of the associated Legendre differential
equation. The general solution for Ĥ is therefore

Ĥ � �‘P2
‘�r=M� 1� � �‘Q2

‘�r=M� 1�: (C3)

With the general solution for Ĥ, we can integrate Eq. (C1)
or (C2) to find K̂. For ‘ � 2, we have

K̂ 2�r� � ��2P1
2�r=M� 1� � �2Q1

2�r=M� 1��



2M����������������������

r�r� 2M�
p � Ĥ2�r�: (C4)
APPENDIX D: NEWMAN-PENROSE FORMALISM

In this appendix, we summarize some equations of the
Newman-Penrose formalism for our choice of tetrad. In
this Appendix and in Sec. V only, we use ingoing
Eddington-Finkelstein coordinates � ~V; r; �; �� and a �� �
��� signature of the metric.

1. Newman-Penrose quantities for Schwarzschild

We adopt the Hartle’s null tetrad, which is given by
Eqs. (4.2) of Ref. [15], together with the normalization
conditions ‘�n� � 1 andm� �m� � �1. The tetrad vectors
have components [using the notation e� � �e ~V; er; e�; e��]

‘� �
�
1;

1

2
�
M
r
; 0; 0

�
; (D1a)

n� � �0;�1; 0; 0�; (D1b)

m� �

�
0; 0;

1���
2
p
r
;

i���
2
p
r sin�

�
; (D1c)

�m� �

�
0; 0;

1���
2
p
r
;�

i���
2
p
r sin�

�
: (D1d)

Note that throughout this Appendix, an overbar denotes
complex conjugation.

From these basis vectors, we define the direction deriva-
tives

D � ‘�@�; � � n�@�; � � m�@�;

and �� � �m�@�:
(D2)

Our conventions for the spin coefficients follow
Ref. [15] [specifically, Eqs. (2.2) and (2.3)]. The spin
coefficients are defined by
-14
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� � ‘�;
m
�‘
; (D3a)

� � �n�;
 �m�‘
; (D3b)

� � ‘�;
m� �m
; (D3c)

� � �n�;
 �m�m
; (D3d)

� � ‘�;
m
�m
; (D3e)

	 � �n�;
 �m� �m
; (D3f)

� �
1

2
�‘�;
n�‘
 �m�;
 �m�‘
�; (D3g)

� �
1

2
�‘�;
n

� �m
 �m�;
 �m� �m
�; (D3h)

� �
1

2
�‘�;
n

�m
 �m�;
 �m�m
�: (D3i)

The spin coefficients for the Schwarzschild spacetime
are

� � � � 	 � 
 � 
 � � � � � 0; (D4a)

� �
M

2r2 ; (D4b)

� � �
r� 2M

2r2 ; (D4c)

� � �
1

r
; (D4d)

� � �� � �
1

2
���
2
p
r tan�

: (D4e)

Because we are only interested in vacuum regions of
spacetime, the Riemann and Weyl tensors are interchange-
able. The Weyl components are defined in vacuum by

�0 � �R����‘
�m�‘�m�; (D5a)

�1 � �R����‘�n�‘�m�; (D5b)

�2 � �
1

2
R�����‘�n�‘�n� � ‘�n�m� �m��; (D5c)

�3 � �R����‘�n� �m�n�; (D5d)

�4 � �R����n� �m�n� �m�: (D5e)

Their values for the Schwarzschild spacetime are

�0 � �1 � �3 � �4 � 0; (D6a)

�2 � �
M

r3 : (D6b)
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The Ricci identities are

�r�r
 �r
r��e� � R���
e
�: (D7)

Inserting the null tetrad vectors for e� and projecting along
the tetrad yields the Ricci identities in Newman-Penrose
notation. One of these equations is, in our tetrad and
evaluated on the horizon,

D��1� � 2���1� � @ ~V�
�1� � 2���1� � ��1�0 : (D8)

(Note that we have used the fact that � and �0 vanish for
Schwarzschild.) This is the tidal force equation; it relates
��1�0 , which is physically equivalent to the tangential-
tangentail component of the perturbing tidal field on the
horizon, to�, which is physically equivalent to the shear of
the instantaneous horizon.

The shape of the perturbed instantaneous horizon is
determined by its two-dimensional scalar curvature R�
R�1� where R is the curvature of the unperturbed horizon.
According to the tidal force Eq. (D8), ��1�0 drives the shear,
which is the ‘‘rate of change of the shape’’ of the horizon as
measured by fiducial observers on the horizon [22]. Thus,
it is not surprising that R�1� can be computed directly from
��1�0 . Hartle [15] has derived the explicit formula, a con-
sequence of Gauss’ relation [36], in the Newman-Penrose
formalism with the present choice of coordinates and
tetrad:

R �1� ��4Im
�
� ���2��2��� �����4���2�	

!�i!�2��

�
��1�0 ;

(D9)

where ! is the frequency of the perturbation. When a
Schwarzschild black hole is perturbed by a distant moon
in a slow, circular, orbit with angular velocity �, then ! �
2�.

2. Newman-Penrose quantities for Kerr

Finally, to facilitate our comparison to Hartle’s results,
we here list the relevant Newman-Penrose quantities for
the Kerr spacetime [Eq. (54)] using Hartle’s choice [15] of
coordinates and tetrad. In the limit a � 0, Hartle’s tetrad
and spin coefficients reduce to those listed in the previous
subsection.

The null tetrad vectors [using the notation e� �
�e ~V; er; e�; e ~��] are
‘��
�
1;
r2�2Mr�a2

2�r2�a2�
;0;

a

r2�a2

�
; (D10a)

n��
�
0;�

2�a2�r2�

2r2�a2�a2 cos2�
;0;0

�
�

�a2�a2 cos2�

2�a2�2r2�a2 cos2��
‘��

�asin����
2
p
�ir�acos��

m��
�asin����

2
p
��ir�acos��

�m�; (D10b)

m��

�
0;�

asin��r2�2Mr�a2�

2
���
2
p
�r2�a2���ir�acos��

;
1���

2
p
�r� iacos��

;
�ir�acos��csc����

2
p
�r2�a2�

�
; (D10c)

�m��

�
0;�

asin��r2�2Mr�a2�

2
���
2
p
�r2�a2��ir�acos��

;
1���

2
p
�r� iacos��

;
��ir�acos��csc����

2
p
�r2�a2�

�
: (D10d)
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Then, one can compute the spin coefficients for this tetrad
from Eqs. (D3a)–(D3i):

� � � � 0; (D11a)

	 � O�a2�; (D11b)


 � O�a2�; (D11c)


 �
�i�2M� r� sin�a

2
���
2
p
r3

�O�a2�; (D11d)

� �
i�4M� r� sin�a

2
���
2
p
r3

�O�a2�; (D11e)

� �
�i cos�a

2r2 �O�a2�; (D11f)

� �
M
2

r2 � a2

�r2 � a2�2
�

M

2r2 �O�a
2�; (D11g)

� � �
r� 2M

2r2 �
i�r� 2M� cos�a

2r3 �O�a2�; (D11h)

� � �
1

r
�O�a2�; (D11i)

� �
� cot�

2
���
2
p
r
�
i��3M� �3M� 2r� cos2��a

4
���
2
p
r3 sin�

�O�a2�;(D11j)

� �
cot�

2
���
2
p
r
�
i�M� r� �r�M� cos2��a

4
���
2
p
r3 sin�

�O�a2�:(D11k)

The directional derivatives are then given by Eq. (D2).
Using the Kerr metric [Eq. (54)] and Hartle’s choice for

the tetrad [Eqs. (D10a)–(D10d)], one can compute the
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curvature for Kerr and read off the curvature scalars via
Eqs. (D5a)–(D5e):

�0 � �1 � 0; (D12a)

�2 � �
M

�r� ia cos��3
; (D12b)

�3 � �
3iaM sin����

2
p
�r� ia cos��4

; (D12c)

�4 �
3ia2Msin2�

�ir� a cos��5
: (D12d)

The tidal force Eq. (D8) relates ��1�0 to ��1�. The correc-
tion to the scalar curvature of the horizon, R�1�, is given by
Eq. (D9).

For a stationary moon perturbing a slowly rotating Kerr
black hole, the frequency of the perturbation is ! �
�2�H.
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