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Renormalized stress tensor for trans-Planckian cosmology
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Finite expressions for the mean value of the stress tensor corresponding to a scalar field with a
generalized dispersion relation in a Friedmann-Robertson-Walker universe are obtained using adiabatic
renormalization. Formally divergent integrals are evaluated by means of dimensional regularization. The
renormalization procedure is shown to be equivalent to a redefinition of the cosmological constant and the
Newton constant in the semiclassical Einstein equations.
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INTRODUCTION

One of the most important goals of inflationary scenarios
[1] is that they provide a causal explanation for the large
scale structure of the Universe and for the anisotropy in the
cosmic microwave background (CMB). The mechanism is
based in the stretching that the exponential (or quasiexpo-
nential) expansion produces in the physical wavelengths.
Therefore, a density fluctuation of cosmological scale to-
day originated on scales much smaller than the Hubble
radius during inflation.

If the inflationary period lasts sufficiently long to solve
the causality and other related problems, the scales of
interest today are not only within the horizon but are also
sub-Planckian at the beginning of inflation [2]. This fact,
known as the trans-Planckian problem, is a potentially
interesting window to observe consequences of the
Planck-scale physics. The inflationary models may turn
the Universe into a Planck-scale ’’microscope.’’ For this
reason, since the formulation of this problem, many au-
thors [3] have studied the possibility of observing signa-
tures of Planckian physics in the power spectrum of the
CMB and in the evolution of the Universe. In the absence
of a full quantum theory of gravity, the analysis is neces-
sarily phenomenological. For instance, modified disper-
sion relations for the modes of quantum fields might
arise in loop quantum gravity [4] or due to the interaction
with gravitons [5]. It is then important to test the robustness
of inflationary predictions under such modifications.
Another possibility is to consider an effective field theory
approach in which the trans-Planckian physics is encoded
in the state of the quantum fields when they leave sub-
Planckian scales [6,7]. One could also consider space-
space or space-time noncommutativities [8].

In this paper we will consider the first approach, i.e. we
will analyze quantum fields with nonstandard dispersion
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relations in Friedmann-Robertson-Walker (FRW) back-
grounds. Within this framework, in simple models with a
single quantum scalar field �, the information on the
power spectrum of the CMB is contained in the vacuum
expectation value h�2i. Moreover, the backreaction of the
scalar field is contained in the expectation value hT��i.
Note that both h�2i and hT��i are in general divergent
quantities.

There is a debate in the literature about whether the
backreaction of trans-Planckian modes affects significantly
the background space-time metric or not [6,9–11]. If sub-
Hubble but super-Planck modes are excited during infla-
tion, its energy density may be of the same order of
magnitude that the background energy density, and prevent
inflation. This fact would put a bound on the occupation
numbers of the excited modes, and therefore on the effect
that trans-Planckian physics may have on the power spec-
trum of the CMB. This argument has been disputed in
Ref. [12], where the authors point out some subtleties
regarding the choice of the ultraviolet cutoff and the equa-
tion of state of the trans-Planckian modes.

A consistent solution of this controversy should be based
on a careful evaluation of the expectation value of the
pressure and the energy density, and in the analysis of
the solutions of the semiclassical Einstein equations
(SEE), in which hT��i acts as a source. Any physically
meaningful prediction requires the obtention of finite quan-
tities starting from the formal divergent expression for
hT��i. In previous works [12,13], a particular renormaliza-
tion prescription has been used, which consists essentially
of subtracting the ground state energy of each Fourier
mode. This prescription may lead to inconsistencies for
quantum fields in curved spaces [14]. The purpose of the
present paper is to carefully study this problem and provide
a correct definition of such finite quantities.

The renormalization procedure for quantum fields sat-
isfying the standard dispersion relations in curved back-
grounds is of course well established [14–16]. For
example, in the point-splitting regularization technique
[17], h�2i and hT��i can be computed in terms of the
-1 © 2005 The American Physical Society
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D. LÓPEZ NACIR, F. D. MAZZITELLI, AND C. SIMEONE PHYSICAL REVIEW D 72, 124013 (2005)
coincidence limit of the two-point function G�1��x; x0� �
hf��x�; ��x0�gi and its derivatives. The renormalized values
are obtained by using the subtracted function G�1�sub�x; x

0� �

G�1��x; x0� �G�1�Had�x; x
0�, where G�1�Had�x; x

0� is a two-point
function with the Hadamard singularity structure [14],
truncated at the fourth adiabatic order [18]. The limit x0 !
x is taken at the end of the calculation. Alternatively, using
dimensional regularization one can work with x0 � x from
the beginning. This renormalization procedure is covariant,
and the divergences of hT��i can be absorbed into redefi-
nitions of the coupling constants of the theory in the SEE.
In order to absorb all divergences it is necessary to include
terms quadratic in the curvature in the classical gravita-
tional action.

The method of renormalization described above can be
applied in principle in any space-time metric. However, in
the particular case of FRW metrics, the adiabatic subtrac-
tion is simpler and more adequate for numerical calcula-
tions [15,19,20]. Instead of subtracting the two-point
function, the idea is to subtract the adiabatic expansion
of the modes of the quantum fields. Adiabatic subtraction
must be complemented with a covariant regularization, as
for instance dimensional regularization. It has been shown
that this method is equivalent to the previous one [21].

For a quantum field with generalized dispersion rela-
tions, the covariance is lost unless one introduces an addi-
tional dynamical degree of freedom u� that defines a
preferred rest frame [22]. One usually works within this
preferred frame, in which the space-time metric has the
FRW form and the additional degree of freedom does not
contribute to the energy-momentum tensor. In this particu-
lar frame, because the stress tensor of the quantum field is
the source in the SEE, we must demand that it fulfills the
same conservation equation of the Einstein tensor, i.e.
G��

;� � 0 implies hT��i;� � 0. We stress that the conser-
vation equation for hT��i is not necessarily valid in other
frames, since the complete energy-momentum tensor may
contain an additional part coming from u�.

Therefore, the renormalization should be compatible
with the structure of the SEE in the preferred frame. The
divergent contributions to be subtracted must have the form
of geometric conserved tensors, in order to be absorbed
into redefinitions of the bare constants. To ensure this, we
shall follow the adiabatic renormalization procedure de-
scribed above, that is, we shall evaluate the divergent
contributions of the adiabatic expansion of the stress ten-
sor, and define the renormalized stress tensor as hT��i �
hT��iAd. We shall show that because fourth or higher
adiabatic order contributions are already finite for the
dispersion relations considered, no additional terms must
be included in the SEE, and only a redefinition of the
cosmological constant and the Newton constant is
required.

The paper is organized as follows. In Section II we
generalize the WKB expansion to fields with a nonstandard
124013
dispersion relation in an arbitrary number of dimensions.
In Section III we discuss the adiabatic renormalization of
the energy-momentum tensor for a generic dispersion re-
lation, and then compute the explicit expressions for the
dimensionally regularized counterterms in some particular
cases. We include our conclusions in Section IV. In the
appendix we describe the simpler problem of the renor-
malization of h�2i.

Throughout the paper we set c � 1 and adopt the sign
convention denoted (��� ) by Misner, Thorne, and
Wheeler [23].
II. THE WKB EXPANSION

We begin by computing the WKB expansion for the
modes of a scalar field � with a nonstandard dispersion
relation. The action of the theory is given by [13]:

S �
Z
dnx

�������
�g
p

�L� �Lcor �Lu�; (1)

where n is the space-time dimension, L� is the standard
Lagrangian of a free scalar field

L � � �
1
2�g

��@��@��� �m
2 � �R��2�; (2)

Lcor is the corrective Lagrangian that gives rise to a
generalized dispersion relation

L cor � �
X
s;p�n

bsp�D
2s���D2p��; (3)

with D2� 	?�
� r� ?

�
� r�� ( ?��	 g�� � u�u�,

where r� is the corresponding covariant derivative), and
Lu describes the dynamics of the additional degree of
freedom u� whose explicit expression is not necessary
for our present purposes.

We work with a general spatially flat FRW metric given
by

ds2 � g��dx�dx� 	 ��u�dx��2� ?�� dx�dx�

� C�����d�2 � �ijdxidxj�; (4)

where C1=2��� is the scale factor given as a function of the
conformal time �, and u� 	 C1=2������.

The generalized dispersion relation takes the form

!2
k � k2 � C���

�
m2 � 2

X
s;p

��1�s�pbsp

�
k

C1=2���

�
2�s�p�

�
;

(5)

where bsp are arbitrary coefficients, with p � s.
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The Fourier modes 	k corresponding to the scaled field
	 � C�n�2�=4� satisfy

	00k � ���� �n�RC�!
2
k�	k � 0; (6)

with the usual normalization condition

	k	0
k � 	
0
k	


k � i: (7)

Here primes stand for derivatives with respect to the con-
formal time �, R is the Ricci scalar, and in the conformal
coupling case we have � � �n 	 �n� 2�=�4n� 4�, while
� � 0 corresponds to minimal coupling. The normaliza-
tion condition implies that the field modes 	k can be ex-
pressed in the well-known form

	k �
1���������

2Wk
p exp

�
�i

Z �
Wk�~��d~�

�
: (8)

Substitution of Eq. (8) into Eq. (6) yields

W2
k � �2

k �
1

2

�
W00k
Wk
�

3

2

W02k
W2
k

�
; (9)

�2
k � !2

k � ��� �n�CR: (10)

The nonlinear differential equation for Wk can be solved
iteratively by assuming that it is a slowly varying function
of �. This is the adiabatic or WKB approximation, and the
number of time derivatives of a given term is called the
adiabatic order. Thus, if we work up to the second adiabatic
order (which is the highest order which will be required;
see below), we can replaceWk by!k on the right-hand side
of Eq. (9). Then, with the use of (5) and (9), we straight-
forwardly obtain the second order solution for a generic
evolution of the scale factor:
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W2
k � !2

k � ��� �n��n� 1�
�
C00

C
�
�n� 6�

4

C02

C2

�

�
1

4

C00

C

�
1�

k2

!2
k

d!2
k

dk2

�
�

1

4

C02

C2

k4

!2
k

d2!2
k

d�k2�2

�
5

16

C02

C2

�
1�

k2

!2
k

d!2
k

dk2

�
2
; (11)

where we have used that !2
k=C is a function of k2=C to

write the temporal derivatives of !k in terms of derivatives
with respect to k2. We see that W2

k � !2
k � 
k, where 
k is

already of second adiabatic order (that is, it includes sec-
ond derivatives or the square of first derivatives of the scale
factor). In the calculations below we shall need the squared
modes j	kj2 � 	k	
k � �2Wk�

�1 and, up to second adia-
batic order, we can simply work with the approximation
�Wk�

�1 � �!k�
�1�1� 
k=�2!2

k��.
In what follows it will be relevant to know the depen-

dence with k of the different adiabatic orders. From
Eq. (11) it is clear that while the zeroth adiabatic order
scales as!2

k, the second adiabatic order scales as!0
k. Using

an inductive argument it can be shown that the 2j-adiabatic
order scales as !2�2j

k .
III. RENORMALIZATION OF THE STRESS
TENSOR

Motivated by the work in Ref. [13], we start from the
following expressions for the vacuum expectation values of
the energy density � and pressure p, which we have
generalized to arbitrary dimension n and coupling � to
the scalar curvature:
h�i �
1����
C
p

Z dn�1k�4�n

�2�
����
C
p
��n�1�

�
C�n�2�=2

2

��������
�

	k
C�n�2�=4

�
0
��������

2
�
!2
k

2
j	kj

2 � �G��j	kj
2

� �
�n� 1�

2

�
C0

C
�	0k	



k � 	k	

0

k � �

C02

C2

�n� 2�

2
j	kj2

��
; (12)

hpi �
1����
C
p

Z dn�1k�4�n

�2�
����
C
p
��n�1�

��
1

2
� 2�

�
C�n�2�=2

��������
�

	k
C�n�2�=4

�
0
��������

2
��G11j	kj2 �

��
k2

n� 1

�
d!2

k

dk2 �
!2
k

2

�
j	kj2

� ��	00k	


k � 	k	

00

k � � �

C0

2C
�	0k	



k � 	k	

0

k � � �

�n� 2�

2

�
C00

C
�
�8� n�

4

C02

C2

�
j	kj

2

�
: (13)

Here � is an arbitrary parameter with mass dimension introduced to ensure that 	 has the correct dimensionality, and G��
and G11 ( � G22 � G33) are the nontrivial components of the Einstein tensor

G�� �
�n� 1�

4

�n� 2�

2

C02

C2 ; (14)

G11 � G22 � G33 �
�n� 2�

2

�
C02

C2

�
�n� 1�

4
�
�n� 4�

2

�
�
C00

C

�
: (15)

After introducing the form of the Fourier modes given in Eq. (8) in the expressions for the vacuum expectation values h�i
and hpi of Eqs. (12) and (13) we find
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h�i �
�n�1

2
����
C
p

Z dk kn�2�4�n

�2�
����
C
p
�n�1

�
��W2

k �
0�2

32W5
k

�
Wk

2
�

!2

2Wk
�
�n� 2�

2

�
C02�n� 2�

16WkC2 �
C0�W2

k �
0

8CW3
k

�
� �

G��

Wk

� �
�n� 1�

2

�
C02

C2

�n� 2�

2Wk
�
C0

C
�W2

k �
0

2W3
k

��
; (16)

hpi �
�n�1

2
����
C
p

Z dk kn�2�4�n

�2�
����
C
p
�n�1

�
��W2

k �
0�2

32W5
k

�
Wk

2
�

!2

2Wk
�
�n� 2�

2

�
C02�n� 2�

16WkC2 �
C0�W2

k �
0

8CW3
k

�
�

k2

�n� 1�Wk

d!2

dk2 � �
G11

Wk

� �
�
�W2

k �
00

2W3
k

�
3

4

��W2
k �
0�2

W5
k

�
�n� 1�

4

C0�W2
k �
0

CW3
k

�
�
�n� 2�

2

�
Wk

�
C00

C
�

3

2

C02

C2

��
; (17)
where we have defined the factor �n�1 	
2��n�1�=2=���n� 1�=2� coming from the angular
integration.

The dependence with k of the 2j-adiabatic order has
been described at the end of the previous section. From that
result it is possible to check that, for !2

k  k
r with r � 8,

all contributions of second or higher adiabatic order are
finite. The divergences come only from the zeroth adia-
batic terms contained in h�i and hpi. Instead, in the cases
!2
k  k

6 and !2
k  k

4, though no fourth order divergencies
appear, second adiabatic order terms include, in principle,
divergent contributions. Therefore we only need to work up
to second adiabatic order. Since W2

k � !2
k � 
k, where 
k
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is of adiabatic order two, we can substitute �W2
k �
0 by �!2�0

in equations above. Then, with the help of Eq. (11) and the
explicit form of !2

k (given in Eq. (5)), we obtain the
following expressions for the zeroth and second adiabatic
order contributions:

h�i�0� �
1

2
����
C
p

�n�1�4�n

�2�
����
C
p
�n�1

Z
dk kn�2!k; (18)

hpi�0� �
1

2
����
C
p

�n�1�4�n

�2�
����
C
p
�n�1

Z
dk

kn�2

�n� 1�

k2

!k

d!2
k

dk2 ; (19)
h�i�2���0 �
1

2
����
C
p

�n�1�
4�n

�2�
����
C
p
�n�1

�
C0

C

�
2 Z

dk kn�2

�
1

32!k

�
1�

k2

!2
k

d!2
k

dk2

�
2
�
�n� 2�

32!k

�
n�

2k2

!2
k

d!2
k

dk2

��
; (20)

hpi�2���0 � h�i
�2�
��0 �

1

2
����
C
p

�n�1�4�n

�2�
����
C
p
�n�1

Z
dk kn�2 1

2!k

�
1�

k2

�n� 1�!2
k

d!2
k

dk2

��
�n� 2�

4

�
C00

C
�
�n� 6�

4

C02

C2

�

�
C00

4C

�
1�

k2

!2
k

d!2
k

dk2

�
�
C02

4C2

�
k4

!2
k

d2!2
k

d�k2�2
�

5

4

�
1�

k2

!2
k

d!2
k

dk2

�
2
��
; (21)

h�i�2�� �
�

2
����
C
p

�n�1�
4�n

�2�
����
C
p
�n�1

Z
dk kn�2

�G��

!k
�
C02�n� 1�

4C2!k

�
n� 1�

k2

!2
k

d!2
k

dk2

��
; (22)

hpi�2�� �
�

2
����
C
p

�n�1�4�n

�2�
����
C
p
�n�1

Z
dk kn�2

�
G11

!k
�

1

2!k

�
2C00

C
�
�n� 6�

4

C02

C2

��
1�

k2

!2
k

d!2
k

dk2

�
� 3
�n� 2�

2
�

3

2

�
1�

k2

!2
k

d!2
k

dk2

�
2

�
1

2!k

C02

C2

�
k4

!2
k

d2!2
k

d�k2�2
�
�n� 1�

2

�
1�

k2

!2
k

d!2
k

dk2

���
; (23)
which include divergences coming from different powers
of the wave vector k. Here the superscripts stand for the
adiabatic order, and we have separated the second adia-
batic order which appears in the minimal coupling case
h:i��0 from the one proportional to the coupling constant �.

A. Zeroth adiabatic order

The divergences in the components of the stress tensor
that come from the zeroth order in the adiabatic expansion
can be removed by renormalization of the cosmological
constant in the SEE. This can already be verified as fol-
lows: Up to zeroth order we have that hpi is given by
Eq. (19), which can be recast as

hpi�0� �
1

2
����
C
p

�n�1

�2�
����
C
p
�n�1

Z
dk
kn�1�4�n

�n� 1�

d!k

dk
; (24)

so that one can integrate by parts to obtain
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hpi�0� �
1

2
����
C
p

�n�1�4�n

�2�
����
C
p
�n�1

�Z
dk

d
dk

�
!kkn�1

n� 1

�

�
Z
dkkn�2!k

�
: (25)

Then, since in dimensional regularization the integral of a
total derivative vanishes [24], we find that

hpi�0� � �
1

2
����
C
p

�n�1�4�n

�2�
����
C
p
�n�1

Z
dk kn�2!k � �h�i

�0�:

(26)

To exhibit more clearly the dependence of this adiabatic
order on C, by rescaling the integration variable with a
factor C�1=2, we rewrite it as

h�i�0� � �hpi�0� �
�n�1�4�n

2�2��n�1

Z
dk kn�2 ~!k; (27)

where ~!k � !k=
����
C
p

. Thus, as we are working with the
metric in the conformal form, we see that hT��i�0� �
N0g�� (with N0 a divergent factor) so that we can define
h ~T��i � hT��i � hT��i�0� and the SEE

G�� ��Bg�� � 8�G�hT��i � hT��i�0� � hT��i�0��

(28)

can be recast in the form

G�� ��Rg�� � 8�Gh ~T��i; (29)

where �R � �B � 8�GN0 is the renormalized cosmo-
logical constant.

Since in the case of a generalized dispersion relation for
which !2

k  k
r with r � 8, the energy-momentum tensor

can be renormalized by subtracting the zeroth adiabatic
order, we can make the identification hT��iRen 	 h ~T��i
(i.e., h�iRen � h�i � h�i

�0� and hpiRen � hpi � hpi
�0�). In

such a case, as these expressions are already finite, in order
to evaluate them in terms of the modes of the scalar field it
is not necessary to work in n dimensions: one can first take
the limit n! 4 and then perform the momentum integra-
tion, that is

h�iRen �
1

C2

Z d3k

�2��3

�
C
2

��������
�
	k����
C
p

�
0
��������

2
�
!2
k

2
j	kj

2

� �G��j	kj
2 �

3

2
�
�
C0

C
�	0k	



k � 	k	

0

k �

�
C02

C2 j	kj
2

�
�

1

2
!k

�
; (30)
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hpiRen �
1

C2

Z d3k

�2��3

��
1

2
� 2�

�
C
��������
�
	k����
C
p

�
0
��������

2
��G11j	kj

2

�

��
k2

3

�
d!2

dk2 �
!2
k

2

�
j	kj2 � ��	00k	



k � 	k	

00

k �

� �
C0

2C
�	0k	



k � 	k	

0

k � � �

�
C00

C
�
C02

C2

�
j	kj2

�
k2

6!k

d!2
k

dk2

�
: (31)
The adiabatic renormalization procedure works only for
the vacuum states of the field that coincide with the adia-
batic vacuum up to the order subtracted [25]. If we assume
that the scalar field is in the vacuum state near the initial
singularity C! 0, this means that the exact solution 	k of
Eq. (6) should coincide with the WKB solution up to that
order for C! 0. This fact ensures that the above integrals
are finite.

B. Second adiabatic order

So far we have shown that the zeroth adiabatic order of
the vacuum expectation values of the energy density and
pressure satisfy Eq. (27) and, hence, that they can be
absorbed by a redefinition of the cosmological constant.
In what follows, we shall see that the WKB expansion of
h�i and hpi, up to second adiabatic order, have the appro-
priate structure required to remove the divergences in the
stress tensor that appear in the cases !2

k  k
6 and !2

k  k
4.

Therefore, all divergences will be absorbed renormalizing
the cosmological and Newton constants in the SEE. More
specifically, with the use of dimensional regularization, we
shall show that the second adiabatic orders of h�i and hpi
are proportional to the components G�� and G11 of the
Einstein tensor, respectively, yielding a renormalization of
the Newton constant.

Using integration by parts and some algebra one can find
expressions for h�i�2� and hpi�2� that involve only the two
integrals

I1 �
Z
dx
x�n�3�=2

~!k
; I2 �

Z
dx
x�n�1�=2

~!3
k

d2 ~!2
k

dx2 ; (32)
where x 	 k2=C and, as above, ~!k � !k=
����
C
p

.
As an example, let us consider the following integral

I 	
Z
dk

kn�2

C�n�2�=2!k

�
1�

k2

!2
k

d!2
k

dk2

�
2
; (33)
which contributes to both h�i�2� and hpi�2�. In order to
rewrite it we can proceed as follows
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I �
1

2

Z
dx
x�n�3�=2

~!k
� 2

Z
dx x�n�1�=2 d ~!�1

k

dx

�
1

3

Z
dxx�n�1�=2 d ~!�3

k

dx
d ~!2

k

dx

�
��n� 3�2 � 1�

6

Z
dx
x�n�3�=2

~!k
�

1

3

Z
dx
x�n�1�=2

~!3
k

d2 ~!2
k

dx2

�
��n� 3�2 � 1�

6
I1 �

1

3
I2; (34)

where the first equality follows after the change of varia-
bles x � k2=C and some rearrangements of the integrand,
while the second one is obtained, with the use of dimen-
sional regularization, after two integrations by parts.

Applying a similar procedure to the other integrals we
get, after a long calculation,

h�i�2���0 �
G��

C
�n�1�

4�n

4�2��n�1

�
�
�n� 2� n�n� 4��

6�n� 1��n� 2�
I1

�
1

6�n� 1��n� 2�
I2

�
; (35)

hpi�2���0 � h�i
�2�
��0

�
1� 2

�n� 4�

�n� 1�
�

4

�n� 1�

C00

C
C2

C02

�

�
G11

G��
h�i�2���0; (36)

h�i�2�� �
�G��

C
�n�1�4�n

4�2��n�1 I1; (37)

hpi�2�� �
�G11

C
�n�1�

4�n

4�2��n�1 I1: (38)

Notice that in the case of the usual dispersion relation, the
integral containing the second derivative of !2

k vanishes
and we recover the known second adiabatic order results
[20]. It is worth mentioning here that, for !2

k  k
6, the

leading terms in the second adiabatic order cancel out for
large k, and thus for minimal coupling � � 0 the second
adiabatic order is finite as n! 4. This can be seen directly
from Eq. (35) or from Eq. (20).
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Equations (35)–(38) above are enough for our purposes,
since it is clear from them that the second adiabatic order
of h�i and hpi are proportional to G�� and G11, respec-
tively. If we write hT��i�n� for the term of adiabatic order n
of the stress tensor, we find that

hT��i
�0� � N0g��; (39)

where N0 is in principle a divergent factor, so that the
corresponding contributions can be removed by introduc-
ing a renormalized cosmological constant �R. On the other
hand, we have

hT��i
�2� � N2G��; (40)

where N2 is another divergent factor, and hence these
contributions can be absorbed in a renormalization of the
Newton gravitational constant. Therefore we can define

hT��iRen � hT��i � hT��i�0� � hT��i�2� (41)

and write the SEE as

G�� ��Rg�� � 8�GRhT��iRen: (42)

Differing from the case of standard dispersion relations
!2
k  k

2, now all contributions of adiabatic orders higher
than the second are finite, so that no additional terms must
be included in the SEE in order to deal with physically
meaningful quantities.

C. Evaluation of the regularized integrals

The explicit expression for the constants N0 and N2 can
be obtained by a direct computation in Eqs. (18)–(23) or
equivalently from Eqs. (27) and (35)–(38).

As a first example, let us consider the case of a massless
field with a dispersion relation of the form !2

k �
k2 � 2b11k4=C� 2jb12jk6=C2 (we will assume that
jb12j> b2

11=2 to avoid zeros of the frequency). In this
case the divergent contributions come from the zeroth
adiabatic order and from the terms proportional to � of
the second one, since (as we already mentioned) the second
adiabatic order is finite for � � 0. Then, after computing
the integrals we obtain [26]
h�i�0� � �hpi�0�

�
�4�n�2jb12j�

�2�n�=4

4��� 1
2��4��

�n�1�=2

�
1�������������

2jb12j
p �

�
n
4

�
�
�
�

1

2
�
n
4

�
2F1

�
�

1

2
�
n
4
;
n
4

;
1

2
;
b2

11

2jb12j

�

�
b11

jb12j
�
�
n
4
�

1

2

�
�
�
�
n
4

�
2F1

�
n
4
�

1

2
;�

n
4

;
3

2
;
b2

11

2jb12j

��
; (43)
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h�i�2���0 � hpi
�2�
��0

G��

G11

�
G��

C
�4�n�2jb12j�

�2�n�=4

24�4���n�1�=2

�
b11�������������
2jb12j

p ��12�
n
4���

n
4�

4��12���
n
2�

1
2�

�
2F1

�
3

2
�
n
4
;
n
4

;
1

2
;
b2

11

2jb12j

�

�
�n� 4��n� 2�

2
F1

�
3

2
�
n
4
;
n
4

;
3

2
;
b2

11

2jb12j

��
�

��2� n
4���

n
4�

1
2�

��12���
n
2�

1
2�

�
2F1

�
1�

n
4
;
n
4
�

1

2
;
1

2
;
b2

11

2jb12j

�

�
b2

11

4jb12j
F1

�
2�

n
4
;
n
4
�

1

2
;
3

2
;
b2

11

2jb12j

���
; (44)

h�i�2�� � hpi
�2�
�

G��

G11

� �
G��

C
�4�n�2jb12j�

�4�n�=4

4��12��4��
�n�1�=2

�
1�������������

2jb12j
p �

�
1�

n
4

�
�
�
�

1

2
�
n
4

�
2F1

�
1�

n
4
;�

1

2
�
n
4

;
1

2
;
b2

11

2jb12j

�

�
b11

jb12j
�
�

3

2
�
n
4

�
�
�
n
4

�
2F1

�
3

2
�
n
4
;
n
4

;
3

2
;
b2

11

2jb12j

��
; (45)

where we have used some properties of the gamma � and hypergeometric 2F1 functions [27].
The behavior of h�i�0� and h�i�2� in the limit n! 4 is

h�i�0� � �
b11�b

2
11 � 2jb12j�

32
���
2
p
�2jb12j

5=2

�
1

n� 4
� ln�jb12j

1=4��
�
�O�n� 4�; (46)

h�i�2� � �
�G��

C�2��2
�������������
2jb12j

p
�

1

n� 4
� ln�jb12j

1=4��
�
� �finite �-independent terms as n! 4�; (47)

where we have redefined � to absorb a constant term.
Let us now consider a dispersion relation of the form !2

k � k2 � Cm2 � 2b11k
4=C, with b11 > 0. The integrals in

Eqs. (27) and (35)–(38) can be computed explicitly. Recalling some properties of the Gamma and hypergeometric
functions [27], in the limit n! 4 we obtain

h�i�0� � �hpi�0�

�
m3=2

21=464b5=4
11 �

5=2

�
�
�
�

3

4

�
�
�

5

4

�
2F1

�
�

3

4
;
5

4
;
3

2
;

1

8b11m2

�
�

���������������
2b11m

2
q

�
�
�

5

4

�
�
�

3

4

�
2F1

�
�

5

4
;
3

4
;
1

2
;

1

8b11m2

��
;

(48)

h�i�2���0 � hpi
�2�
��0

G��

G11

�

����
m
p

23=42304b3=4
11 �

5=2

�
4
���������������
8b11m

2
q

�
�

1

4

�
2
�
�2
�1� 12b11m2�

1� 8b11m2 2F1

�
�

3

4
;
1

4
;
1

2
;

1

8b11m2

�

� 32F1

�
1

4
;
1

4
;
1

2
;

1

8b11m
2

��
� �

�
�

1

4

�
2
�

22F1

�
�

1

4
;
3

4
;
1

2
;

1

8b11m
2

�
� 2F1

�
3

4
;
3

4
;
1

2
;

1

8b11m
2

���
; (49)

h�i�2�� � hpi
�2�
�

G��

G11

�
1

21=432b5=4
11

����
m
p

�5=2

� ���������������
2b11m2

q
�
�
�

1

4

�
�
�

3

4

�
2F1

�
�

1

4
;
3

4
;
1

2
;

1

8b11m2

�
� �

�
1

4

�
�
�

5

4

�
2F1

�
1

4
;
5

4
;
3

2
;

1

8b11m2

��
: (50)
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In the case of a massless field, the results simplify to

h�i�0� � �hpi�0� �
1

32�2b2
11

���5=2�

���1=2�
�

1

120b2
11�

2 ;

(51)

h�i�2� � �
�1� 18��

288�2b11

���1=2�

��1=2�

G��

C
�
�1� 18��

144�2b11

G��

C
;

(52)

hpi�2� � �
�1� 18��

288�2b11

���1=2�

��1=2�

G11

C
�
�1� 18��

144�2b11

G11

C
:

(53)

All the contributions which are in principle divergent give
finite results when evaluated by means of dimensional
regularization (all negative arguments appearing in the
gamma functions are noninteger). This could have been
anticipated, because the dependence !2

k  k
4 of the dis-

persion relation leads to integral expressions which are
formally equivalent (for large k or in the massless limit)
to which would be obtained in 2� 1 dimensions for a
standard dispersion relation, and in this case dimensional
regularization leads to finite results for integrals which are
in principle divergent [28].
IV. CONCLUSIONS

We have given a prescription for obtaining finite, physi-
cally meaningful, expressions for the components of the
stress tensor for a field of arbitrary coupling, with gener-
alized dispersion relations, in a FRW background. We have
followed the usual procedure of subtracting from the exact
components of the energy-momentum tensor the, in prin-
ciple, divergent contributions of the corresponding expres-
sions obtained from the adiabatic expansion, which we
have evaluated by means of dimensional regularization.

We have seen that, differing from the usual case corre-
sponding to standard dispersion relations with!2

k  k
2, the

fourth adiabatic order is convergent. Consequently, addi-
tional terms proportional to the geometric tensors H�1��� and
H�2��� associated with corrections of second order in the
curvature are not necessary in the SEE, and the renormal-
ization does not require more than the redefinition of the
cosmological constant and the Newton constant. At first
sight it may look surprising that for generalized dispersion
relations with !2

k  k
r, r � 4 the divergences are milder

than for the standard case. The reason is that, while the
divergence of the zeroth adiabatic order is stronger, the
higher orders are suppressed by powers of !�2

k . Therefore,
for the cases !2

k  k
6 and !2

k  k
4, the fourth adiabatic

orders are already finite.
In the case of dispersion relations of the form !2

k  k
r

with r � 8 or !2
k  k

6 with � � 0, the second adiabatic
order is finite and the divergences are contained in the
124013
zeroth adiabatic order. Therefore, in such cases, the adia-
batic renormalization is equivalent to the subtraction of the
zero point energy of each field Fourier mode, as done in
Ref. [12].

There are several issues that would deserve further in-
vestigation. From a formal point of view, it would be
interesting to extend the renormalization of the stress
tensor to interacting theories with nonstandard dispersion
relations. From a ‘‘phenomenological’’ point of view, the
renormalized SEE obtained in this paper should be the
starting point to evaluate whether the backreaction of
trans-Planckian modes prevents inflation or not.
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APPENDIX: RENORMALIZATION OF h�2i

We shall consider the simple problem of the mean
squared field in order to illustrate how one can effectively
make the subtraction leading to a finite quantity starting
from a divergent integral. We will consider the dispersion
relation (5) in the particular case !2

k  k
4 for a de Sitter

evolution C��� � 2=�2. The equation for the associated
field modes 	k reads

@2	k
@�2

�

�
k2 �

~�22

�2 �
2b11k

4�2

2

�
	k � 0; (A1)

where ~�2 � m2 � n�n� 1���� �n�=2. This equation
can be solved exactly in the case ~�2 � 0 or for arbitrary
values of ~�2 in the limit �! �1. Indeed, in both cases,
with the substitution s � �2b11�

1=4�1=2k� and introduc-
ing the constant � � �2b11�

�1=2, the equation to be
solved becomes

@2	k
@s2

� ��� s2�	k � 0: (A2)

The solution is of the parabolic form

	k�s� � D���1�i��=2����1� i�s� (A3)

(see Ref. [26] for the definition of the parabolic function
D).

For our purposes it is enough with the expansion for
large jsj, which corresponds to �! �1; this expansion
has the form

Dp�z� � e�z
2=4zp

�
1�

p�p� 1�

2z2

�
p�p� 1��p� 2��p� 3�

8z4 � � � �

�
; (A4)

where p � ��1� i��=2 and z � ��1� i�s. After impos-
ing the normalization condition (7), by power counting
(and recalling that s �k) it is easy to see that the only
-8
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divergence comes from the leading order term of the
expansion. This term is

	�0�k �
1���
k
p

�
�
2

�
1=4
�
���
2
p
s����1�i��=2� exp

�
�
i
2

�
�
4
� s2

��
;

(A5)

so that

j	�0�k j
2 �



2k2j�j
����������
2b11

p (A6)

and when substituted in the integral for the vacuum expec-
tation value

h�2i �

����
C
p

2

�n�1�4�n

�2�
����
C
p
�n�1

Z
dkkn�2j	kj2 (A7)

gives a linear divergence. The contribution of the other
terms of the expansion Eq. (A4) is finite.

For the WKB solutions we have j	kj2 � 	k	
k �
1=�2Wk�. Because for large values of k we have !2

k  k
4,

then the only divergence appearing in the inner product
comes from the lowest order of the expansion. This con-
tribution is given by

h�2i�0� �

����
C
p

2

�n�1�4�n

�2�
����
C
p
�n�1

Z dk kn�2

2!k
(A8)

which clearly diverges linearly. Once this quantity is cal-
culated, then the renormalized mean squared field can be
defined by subtracting the adiabatic expansion from the
exact result:

h�2iRen � h�2i � h�2i�0�: (A9)

For the sake of illustration, let us evaluate explicitly
124013
Eq. (A8) in n dimensions

h�2i�0� �

����
C
p

4

�n�1�
4�n

�2�
����
C
p
�n�1

Z
dk kn�3

�
C

2b11

�
1=2

�
1

�k2 � C
2b11
�1=2

: (A10)

Note that (up to the factor �C=2b11�
1=2) Eq. (A10) is

formally analogous, in the limit n! 4, to what one would
obtain in the case of a field of nonvanishing ‘‘mass’’ given
by m2 � 1=2b11 in 2� 1 dimensions. Thus we expect a
finite result after applying the usual formulae for dimen-
sional regularization [28]. Indeed, we obtain

h�2i�0� �
1

16b11

���1=2�

��1=2�
� �

1

8b11
; (A11)

which is finite.
To obtain the finite result for h�2iRen one should be able

to compute the integral of the modes in Eq. (A7), which
should also be finite in dimensional regularization. This is
not appealing from a practical point of view, since in
general there will be no analytical expression for this
integral. However, as the difference

h�2iRen �

����
C
p

2

�n�1�4�n

�2�
����
C
p
�n�1

Z
dk kn�2

�
j	kj

2 �
1

2!k

�

(A12)

is convergent , one can take the limit n! 4 inside the
integral and evaluate numerically both 	k and the momen-
tum integral already at n � 4.
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