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Almost-stationary motions and gauge conditions in general relativity
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An almost-stationary gauge condition is proposed with a view to numerical relativity applications. The
time lines are defined as the integral curves of the timelike solutions of the harmonic almost-Killing
equation. This vector equation is derived from a variational principle, by minimizing the deviations from
isometry. The corresponding almost-stationary gauge condition allows us to put the field equations in
hyperbolic form, both in the free-evolution ADM and in the Z4 formalisms.
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I. INTRODUCTION

It is well known that there is no preferred set of coor-
dinate frames in Einstein’s theory of gravitation, which is
known as general relativity precisely because of this fact.
In practical applications, however, one is forced to consider
specific values of the gravitational field components
(spacetime metric, curvature tensor) and this can be done
only after choosing a specific coordinate system. One just
expects that this gauge choice will not hide the physics of
the problem behind a mask of nontrivial coordinate effects.

Harmonic coordinate systems have deserved much in-
terest since the very beginning of Einstein’s theory [1,2].
The coordinates themselves are defined by a set of four
harmonic spacetime functions f��g , that is

� �� � 0; (1)

where the box stands for the wave operator acting on
functions. In an harmonic coordinate system one takes
x� � ��, so that Einstein’s field equations

G�� � 8�T�� (2)

get a very convenient form, in which the principal part is
simply a scalar wave equation for every metric component
[1,2]. This fact has been used by Yvonne Choquet-Bruhat
for proving the well-posedness of the Cauchy problem in
general relativity [3].

In recent years, this simplification has been used for
building up numerical relativity codes, with interesting
related developments also on the theoretical side [4–7].
On the applications side, the ‘‘gauge sources’’ variant of
the harmonic gauge [8] has been used by Pretorius in a
numerical simulation of the evolution of a binary black-
hole system: a full quasicircular orbit has been achieved
[9,10]. In this simulation, however, a grid velocity has been
introduced in order to get into the corotating frame. This
means that computational nodes are rotating with respect
to the coordinate system. In other words, harmonic coor-
dinates by themselves are not following the overall rotation
pattern of the black-hole binary system.

Binary systems provide a good example of almost-
stationary configurations. Take for instance the well known
05=72(12)=124010(5)$23.00 124010
pulsar 1913� 16: it would be a perfect clock if we could
just neglect the (very small) energy loss due to gravita-
tional radiation, getting then a sort of steady system. One
would like to choose a corotating frame in order to get a
clean view of symmetry deviations. This case is represen-
tative of many other situations in which there is not an
exact symmetry. In these cases, the idea of approximate
symmetry, or that of almost-Killing vectors, would be of
great help in numerical relativity applications.

A precise implementation of the concept of almost-
symmetry has been provided by Matzner [11]. Starting
from a variational principle, it defines a measure of the
symmetry deviation of any given spacetime. This idea has
been applied by Isaacson [12] to the study of high-
frequency gravitational waves, by defining a steady coor-
dinate system in which the radiation effects can be easily
separated from the background metric. More recently [13],
the same measure has been considered as an inhomogene-
ity index of the spacetime, which can be related with some
entropy concept.

We are not interested here, however, in studying the
spacetime properties or in comparing different spacetimes.
We will focus instead in characterizing motions in arbitrary
spacetimes. By a motion we mean a congruence of time
lines, that can then be associated to the world lines of a
system of observers. For instance, geodesic motions (asso-
ciated with freely falling observers) or harmonic motions
(associated with the observers at rest in harmonic coordi-
nate systems). Our goal is then to characterize the motions
that correspond to the physical idea of almost-symmetry
and to study the adapted coordinate systems with a view to
numerical relativity applications.

In this sense, we will see that our approach is more
directly related with the almost-Killing equation. This is
a generalization of the Yano-Bochner equation [14]

r����;� � ��;�� � 0; (3)

which has been considered by York [15] and others in order
to identify physically meaningful tensor components in
asymptotically flat spacetimes (transverse-traceless de-
composition). The same idea has also been applied to the
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identification of asymptotic Killing vectors in Kerr space-
time [16].

These Killing-like equations are briefly reviewed in the
next section, where the almost-Killing equation is derived
from a variational approach. The main new results start
however in the third section, where harmonic almost-
Killing motions are shown to provide a convenient general-
ization of the standard harmonic motions. This general-
ization is implemented through a true vector condition, in
contrast with the standard harmonic case, in which one
deals instead with the set of four scalar conditions (1). This
point is illustrated by considering spherically symmetric
spacetimes, where spherical coordinates are incompatible
with the standard harmonic condition but perfectly allowed
by the proposed generalization.

In section four, we consider the related problem of using
harmonic almost-stationary motions as gauge conditions,
with a view to numerical relativity applications. The
adapted coordinate system is used in order to show the
hyperbolicity of the full system: Einstein’s field equations
plus gauge conditions. Of course, any hyperbolicity proof
requires a specific formulation for the field equations. We
have chosen here the Z4 formalism [17] just for simplicity,
although the proposed almost-stationary gauge condition
should also work out with other hyperbolic formalisms.
The specific implementation we provide could be used as a
guide for any other particular choices. In order to illustrate
this point, we also show the hyperbolicity of the standard
ADM free-evolution approach when supplemented with
the proposed almost-stationary gauge condition.
II. ALMOST-KILLING VECTOR FIELDS

A. Killing-like equations

Killing vectors can be defined as the solutions of the
Killing equation:

L ��g��� � r��� �r��� � 0: (4)

Their physical meaning can be better understood by con-
sidering an adapted coordinate system. In the timelike
case, for instance, we can choose the time lines to be the
integral curves of � and the time coordinate to be the
special choice of the affine parameter on these curves
such that

� � @t : (5)

Then, the Killing equation (4) reads simply

@tg�� � 0; (6)

meaning that the metric is stationary, so that spacetime
geometry is preserved along the integral curves of �.

A well known generalization of the Killing Eq. (4) is
given by the affine Killing vectors (AKV), namely, the
solutions of
124010
r��L��g���� � 0: (7)

The physical meaning is again more transparent if we
express it the adapted coordinate system (5). Then,
Eq. (7) amounts to

@t�
�
�� � 0: (8)

This means that the affine structure of the spacetime, given
by the connection coefficients ����, is preserved along the
integral curves of �.

An interesting subset of AKV is that of the homothetic
Killing vectors, defined as the solutions of

L ��g��� � 2g�� (9)

(the factor 2 in the right-hand side can be changed to any
nonzero value by a suitable rescaling of �). The physical
relevance of the homothetic Killing vectors comes from the
invariance of Eq. (9) under a rescaling of the metric. This
translates the idea that there is no preferred length (time)
scale in the spacetime, allowing scale-invariant (self-
similar) processes to develop. These processes have been
seen to arise in connection with critical phenomena in
general relativity [18,19].

B. A variational-principle approach: almost-Killing
vectors

We will consider here a further generalization of (4), the
almost-Killing equation (AKE) given by [16]

r�

�
���;�� �

�
2
�r 	 ��g��

�
� 0; (10)

where the round brackets denote symmetrization. The
solution space includes Killing vectors and AKV for any
value of the constant �. The simplest parameter choice
(� � 0), corresponds to the Yano-Bochner equation [14].
The case � � 1

2 corresponds to the Conformal AKE, which
includes conformal Killing vectors (� � 2

3 for a three-
dimensional manifold, as in Ref. [15] ).

The term ‘‘almost-Killing’’ is justified by the fact that
the AKE equation (10) can be obtained from a standard
variational principle

�S � 0; S �
Z
L

���
g
p
d4x; (11)

where the Lagrangian density L is given by

L � ���;���
��;�� �

�
2
�r 	 ��2; (12)

and the variations of the field � are considered in a fixed
spacetime. The covariant conservation law (10) provides
then a precise meaning to the heuristic concept of approxi-
mate Killing vectors. This was not obvious a priori, be-
cause the Lagrangian (12) is not a positive-definite
quantity: the outcome of the minimization process was
not granted to include the zeros of (12).
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The mathematical structure of the AKE is more trans-
parent if we rewrite it in the equivalent form

��� � R���� � �1� ��r��r 	 �� � 0; (13)

where we have just reversed the order of some covariant
derivatives in (10). This ‘‘wave equation’’ form of the AKE
can be alternatively obtained from the Lagrangian

L0 � ��;��
�;� � R���

��� � �1� ���r 	 ��2; (14)

which is of course equivalent to the original one, modulo a
four-divergence:

L0 � 2L�r���� 	 r��
� � ���r 	 ���: (15)

The principal symbol of the differential operator in
either form of the AKE can be written in Fourier space as

k2��� � �1� ��k�k�; (16)

so that:

(i) T
he characteristic hypersurfaces are the light cones

(k2 � 0).

(ii) T
he symbol (16) is singular for � � 2. For vacuum

spacetimes, this case corresponds to Maxwell’s
equations for the electromagnetic potential [16].
A supplementary condition (such as the ‘‘Lorentz
condition’’ r 	 � � 0) would be then required in
order to get a unique solution.
(iii) O
n noncharacteristic hypersurfaces, the symbol
(16) can be algebraically inverted for � � 2.
The last point is a strong indication of the existence of
solutions for � in any given spacetime, for every set of
noncharacteristic initial data. Of course, this is not a 100%
rigorous proof because the straightforward passage to
Fourier space ignores the coordinate dependence of the
metric (the standard ‘‘frozen coefficients’’ approach). But
this gives us a sound basis for assuming in what follows
that solutions for � may be constructed in any given
spacetime.

To be more specific, the initial value problem can be
expressed as follows:
(i) W
e can freely choose the values of � on a given
initial hypersurface (let us say t � 0). The space
derivatives of � can then be computed from these
values.
(ii) T
he time derivative of � can also be freely specified
on the initial hypersurface. In this way, we have the
full set of first covariant derivatives ��;� at t � 0.
(iii) I
n order to propagate these values along the time
lines, we must compute the second time derivative
of � from the second order equation (13). This can
always be done for the space components �i pro-
vided that g00 � 0, meaning that the initial hyper-
surface is not tangent to the local light cone. In the
case of the �0 component, we must require in
addition that � � 2, as it was to be expected from
the results of the preceding paragraph.
124010
In the timelike case, the integral curves of � can be
interpreted as the world lines of a set of observers. As far
as there is one solution for every set of (noncharacteristic)
initial data, we can interpret the set of solutions as provid-
ing a set of motions that minimize the deviation from
isometry along the congruence of time lines. This justifies
the name of ‘‘almost-stationary motions’’ for the timelike
solutions of the AKE.
III. HARMONIC ALMOST-STATIONARY
MOTIONS

We will consider now the particular parameter choice
� � 1, in which the principal part of Eq. (13) is harmonic,
that is

��� � R�� �� � 0; (17)

so that the resulting timelike solutions will be called ‘‘har-
monic almost-Killing motions.’’ The conservation-law ver-
sion (10) can then we written as

r�

�
1���
g
p L��

���
g
p
g���

�
� 0: (18)

Notice that the Lagrangian L0 in this case, namely

L0 � ��;���;� � R������; (19)

gets an interesting ‘‘kinetic minus gravitational’’ form.
Both forms (17) and (18) of the Harmonic AKE equation

(HAKE) suggest a close relationship with harmonic coor-
dinates. This relationship is again more transparent in the
adapted coordinate system, where (18) leads to

g��@t�
�
�� � 0 (20)

[compare with Eq. (8) for AKV], whereas the harmonic
coordinates condition (1) reads just

�� � g������ � 0 (21)

in adapted coordinates. One can then write (20) as

@t�
� � ����@t�g

���; (22)

so that it is clear that the flow associated with harmonic
coordinates will provide a first integral for the HAKE in the
weak field limit (where only linear terms are retained).
This fact can be relevant for the characterization of the
gravitational waves degrees of freedom in asymptotically
flat spacetimes [12].

Note also that the HAKE (18) is a true vector equation,
whereas the standard harmonic condition (1) is rather a set
of four scalar equations. This difference is important,
because the congruence of time lines in a given motion is
defined by its tangent vector field. One can, for instance,
relabel the particular time lines by an arbitrary time-
independent coordinate transformation, namely

xi � fi�yj� i; j � 1; 2; 3; (23)
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while keeping the same expression (5) for the timelike
tangent vector. The transformation (23) allows one to
select the type of space coordinate system (cylindrical,
spherical, or whatsoever) which is more adapted to any
specific problem. In numerical simulations, the transfor-
mation (23) corresponds to the freedom of choosing an
arbitrary space coordinate system on the initial
hypersurface.

This is not the case for the standard harmonic coordi-
nates choice. In order to illustrate this, we will consider for
instance a spherically symmetric line element, namely

ds2 � �	2dt2 � X2dr2 � Y2�d
2 � sin2�
�d’2�; (24)

where all the metric functions (	, X, Y) depend only on (t,
r). In this case, the time and radial components of the
HAKE (20) provide conditions for the corresponding (t,
r) coordinates, whereas the angular components are iden-
tically satisfied in the adapted coordinate system form (20).
In the standard harmonic case, however, one gets

�’ � 0; �
 � �
cot�
�

Y2 � 0; (25)

so that spherical coordinates happen to be incompatible
with the harmonic condition (21).

This lack of versatility of the standard harmonic coor-
dinates can be a serious drawback in numerical relativity
applications, where one could be unable to fully adapt the
coordinate frame to the features of the physical system
under consideration. We hope that the proposed almost-
stationary generalization (20) will contribute to avoid this
complication.

IV. ALMOST-STATIONARY GAUGE CONDITIONS

Standard harmonic motions, as defined by (21), have
been used recently in advanced numerical relativity appli-
cations [4–7,9,10]. Note however that in this context one is
building up the coordinate system and the spacetime itself
at the same time, whereas the spacetime was supposed to
be given in the previous sections. To be more precise,
Einstein’s field equations (2) must be coupled with the
gauge condition. In the harmonic case, this condition is
given by Eq. (21).

The principal part of Einstein’s equations can be written
in the DeDonder-Fock form [1,2], namely

�g�� � @��� � @��� � 	 	 	 (26)

so that, by choosing the spacetime coordinates to be the
solutions of (1), one ensures the vanishing of �� and the
field equations can be relaxed to a system whose principal
part consists in a scalar wave equation for every metric
component, namely

�g�� � ::: : (27)

Note that the metric in (21) and (27) is overdetermined,
because one gets in all 14 equations for only 10 metric
124010
components. This can be better understood by introducing
a ‘‘zero vector’’ Z� as an additional dynamical field (Z4
system [17]), so that the field equations read

R�� �r�Z� �r�Z� � 8�
�
T�� �

1

2
Tg��

�
: (28)

The principal part of the Z4 field equations in the
DeDonder-Fock form reads now

�g�� � @���� � 2Z�� � @���� � 2Z�� � 	 	 	 ; (29)

so that the relaxed system (27) is recovered by setting the
values of Z� to be

Z� � �
1

2
��; (30)

which can be considered just an extension of the harmonic
coordinates condition (1), namely

��� � 2Z�: (31)

As far as one recovers in this way exactly the same
relaxed system (27), one gets exactly the same solutions
for the metric. The extra quantities Z� just allow us to
monitor to which extent the harmonic coordinates condi-
tion (30), when considered as a constraint on the computed
metric, is actually verified. In this sense, it is useful to
consider the four-divergence of the Z4 field equations (28),
namely

�Z� � R��Z� � 0; (32)

which can be interpreted as the constraint-propagation law.
It follows that the constraint-violation vector Z� obeys
precisely the HAKE (17).

Note that the Z4 system has been used here just as a
convenient analysis tool in order to discuss the overlap
between the 10 equations of the relaxed system and the 4
equations of the harmonic coordinates condition. The same
overlap will occur when replacing the standard harmonic
coordinates condition (21) by the HAKE (20). This sug-
gests to consider, in the Z4 context, the analogous replace-
ment of (30) by

g��@t��
�
��� � 2@tZ� � 0: (33)

A covariant expression for (33) is given by

r�

�
1���
g
p L��

���
g
p
g���

�
� 2L��Z��: (34)

The principal part of (33) can be written now simply as

@t��
� � 2Z�� � 	 	 	 ; (35)

so that (the principal part of) the full system (29) and (35)
gets a triangular form. The characteristic lines can easily be
identified:
(i) t
-4
he time lines, as it follows from the fact that the
‘‘gamma sector’’ equations (35) are yet in diagonal
form



ALMOST-STATIONARY MOTIONS AND GAUGE . . . PHYSICAL REVIEW D 72, 124010 (2005)
(ii) t
he light rays, as it follows from the fact that the only
nondiagonal terms in the ‘‘metric sector’’ equations
(29) are just coupling terms with the Gamma sector,
which is itself in diagonal form.
We can conclude that the full differential system formed
by the Z4 system (28) and the (extended) HAKE condition
(33) is hyperbolic. The only trouble can arise at the specific
points where the harmonic almost-stationary vector � is
lightlike (�2 � 0), so that the corresponding time line gets
tangent to the light cone. The nondiagonal coupling terms
in (29) would then prevent the full diagonalization of the
characteristic matrix at this specific point. This would be
for instance the case of the apparent horizon in stationary
spacetimes, when the Killing vector is selected as a solu-
tion of the HAKE equation.

Let us note again that we are using here the Z4 formal-
ism just as an analysis tool, which allows us to monitor the
evolution of the constraint violations. The proposed coor-
dinate conditions (20) are actually independent of the
hyperbolic formalism one likes to choose for the field
equations. In order to illustrate this point, let us take for
instance the standard ADM free-evolution approach:
(i) T
he original field equations (26) are considered.
However, only the space components

�gij � @i�j � @j�i � 	 	 	 (36)

are kept, because the four remaining combinations
provide just constraints which are not solved in the
free-evolution approach.
124010
(ii) T
-5
he almost-stationary conditions (20), with princi-
pal part

@t�
0 � 	 	 	 @t�i � 	 	 	 (37)

which provide the missing evolution equations for
the remaining metric components g00, g0i,
respectively.
We can see by inspection that the principal part of the full
system (36) and (37) is also in triangular form. The char-
acteristic lines are again either the time lines (‘‘gamma
sector’’) and the light cones (‘‘metric sector‘‘). The result-
ing ADM system, when supplemented with the almost-
stationary gauge condition, is then hyperbolic, provided
that the time lines do not get tangent to the light cones.

We can conclude that the same qualitative behavior is
obtained both in the Z4 and in the ADM frameworks when
using the almost-stationary gauge condition. We do not
expect then any essential difficulty in adapting this coor-
dinate condition to other hyperbolic formalisms which are
being used in numerical relativity applications.
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