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String pair production in a time-dependent gravitational field
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We study the pair creation of point particles and strings in a time-dependent, weak gravitational field.
We find that, for massive string states, there are surprising and significant differences between the string
and point-particle results. Central to our approach is the fact that a weakly curved spacetime can be
represented by a coherent state of gravitons, and therefore we employ standard techniques in string
perturbation theory. String and point-particle pairs are created through tree-level interactions between the
background gravitons. In particular, we focus on the production of excited string states and perform
explicit calculations of the production of a set of string states of arbitrary excitation level. The differences
between the string and point-particle results may contain important lessons for the pair production of
strings in the strong gravitational fields of interest in cosmology and black hole physics.
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I. INTRODUCTION

The aim of this paper is a calculation of the pair pro-
duction of strings in a time-dependent background. This
phenomenon is of paramount importance in cosmology,
particularly during (p)reheating after inflation, and near
cosmological singularities. Usually one studies pair pro-
duction using an effective field theory approach. Here we
study a spacetime with weak gravitational fields and com-
pute the pair production of excited string states using world
sheet methods. This ‘‘stringy’’ calculation gives signifi-
cantly different results from those found in the effective
field theory approximation. Our results suggest specific
signatures of the string pair creation phenomenon that
may survive into the regime of strong gravitational fields.

Recently [1–3] the pair creation of strings in a cosmo-
logical setting was estimated using effective field theory
methods. In this work the excited states of the string are
treated as massive particles for which the usual field theory
calculation applies. While the production rate of a single
massive state is small, the exponential Hagedorn growth of
the number of string states can give rise to a significant
cumulative effect. Here we test this effective field theory
approximation in a weak-field limit, where string pair
creation may be computed exactly. Although our real
interest is strong gravitational fields, such as those that
arise in cosmology, the formalism does not yet exist to
calculate pair production of strings here (see [4] for an
interesting approach to this and [5] for a calculation in a
more specific background). Nevertheless interesting sur-
prises can be seen already for weak fields. Among them,
we find that the enhancement of the production of excited
string states due to the growing density of states is greatly
suppressed due to the very mild hard scattering behavior of
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the string, which in turn arises from the fact that the string
is an extended object.

To carry out our calculation of string pair production, we
use the familiar idea that a curved geometry can be repre-
sented as a coherent state of gravitons [6,7]. For weak
gravitational fields this gives a prescription relating
S-matrix amplitudes on a weakly curved spacetime to a
sum of those on Minkowski spacetime with multiple gravi-
ton vertex operators inserted. To lowest order in the closed
string coupling, the pair production of strings is thus the
four-point process gg! AB, with two gravitons g inter-
acting to produce two strings in states A and B. This
approach has the advantage of leading to a controlled
calculation using standard string perturbation theory, but
there are many other conceptual and technical obstacles to
an understanding of strings in general time-dependent
backgrounds. There are subtleties involved in interpreting
the S-matrix for strings on curved backgrounds (see, for
example, [8,9]). More generally, in any quantum theory
including gravity, the inevitable formation of singularities
as predicted by the singularity theorems [10,11] implies the
absence of asymptotically trivial ‘‘in’’ and ‘‘out’’ regions
required to define an S-matrix. We construct a specific
geometry describing the collision of two small amplitude
plane waves which we embed in an exact nonlinear solu-
tion of Einstein’s equations. An analysis of the full solution
shows the formation of a spacelike singularity in the future
of the collision of the plane waves, and also how by making
the amplitude of both waves sufficiently small we may
push the singularity arbitrarily far into the future of the
initial collision region. Consequently, perturbation theory
is valid for an arbitrarily long period, and we believe the
S-matrix formalism can be used to understand the physics
in this region. This is as it should be, for the possible
formation of a big crunch in our future should not prevent
us from understanding physics today.

In this work we primarily focus on the pair production of
long-wavelength string states. Since the theory of pair
-1 © 2005 The American Physical Society
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creation in field theory is well developed [12,13], and since
string theory should have an effective field theory descrip-
tion valid for ��

�����
�0
p

, one might ask why we expect there
to be differences between string and point-particle pair
creation in this regime. When viewed as the four-point
process gg! AB, then certainly for massless states A
and B, with wavelengths ��

�����
�0
p

, all momentum scales
in the scattering process are well below the string scale. On
the other hand, to produce excited string states, with
masses m� 1=

�����
�0
p

, then the typical graviton momenta
and momentum exchange will in fact be greater than
1=

�����
�0
p

. This is beyond the validity of effective field theory,
and indeed previous investigations have revealed uniquely
stringy behavior in this regime [14–16]. Thus, it is reason-
able to expect the pair production of massive strings might
be fundamentally different from the pair production of
massive particles.

Our calculation reveals two specific differences between
the string and point-particle results. As we have mentioned
above, and will discuss in more detail in Sec. IV, the pair
production of strings is suppressed due to the mild hard
scattering behavior of string amplitudes. Another intrigu-
ing difference relates to the production of identical string
states. At tree level in field theory only identical particle
pairs are produced. A surprising feature of the string case is
that production of pairs of strings at the same excitation
level are suppressed, going to zero as �! 1. Instead,
most created pairs are of different mass levels. Both of
these features can be explained in the context of certain
simple features of the string spectrum and scattering am-
plitudes, as we discuss in more detail below.

This paper is organized as follows: In Sec. II we discuss
the perturbative approach to calculating pair production,
using field theory as a guide to the string calculation. In
Sec. III we discuss a specific example of a background,
describing the collision of two plane waves, for which the
perturbative calculation may be applied.

In Sec. IV we perform the explicit string calculation and
discuss its properties. Finally, we present our conclusions
in Sec. V. We also include two appendices with additional
details on some elements of our work. The four-point
amplitude describing pair production is discussed in
Appendix A, and a more detailed account of perturbatively
computing Bogoliubov coefficients is given in
Appendix B.

II. PAIR PRODUCTION IN WEAK
GRAVITATIONAL FIELDS

In this section we discuss how pair production may be
studied perturbatively. Certainly there are examples where
the production rate is nonperturbative; these include
Schwinger’s classic calculation of e�e� production in an
electric field [17] and more recent calculations with open
strings [18–20]. An example with a different behavior is
provided by the pair production of scalars of mass m in a
124009
flat Friedmann-Robertson-Walker spacetime that under-
goes a brief period of expansion [21]. In this example we
have the metric

ds2 � a���2��d�2 � dx2
3�; a2��� � 1� b tanh����;

(1)

and the number of particles produced in each mode k �
�!; ~k� is found to be

N~k �
sinh2���!�1 �!�1�=2�	

sinh��!�1=�� sinh��!�1=��
; (2)

where

!��� � �j ~kj2 � a���2m2	1=2; !
1 � !�
1�: (3)

For b� 1 the number of pairs produced goes like �b2m4

for small b. Thus there are backgrounds in which it is
plausable that pair creation could be studied within a
perturbative framework.

A. Field theory

In the case of field theory, studying pair production can
be realized quite straightforwardly through the addition of
new vertices in the Feynman diagrams of the theory. This
point of view is developed in more detail in Appendix B,
where it is shown that this technique yields precisely the
same results as the more standard Bogoliubov coefficient
calculation. The field theory case is useful for our present
purposes as it provides a prototype for the string calcula-
tion. One expands the metric about Minkowski space

g�� � ��� � h
�1�
�� � h

�2�
�� � � � � ; (4)

where h�1��� is the first-order metric perturbation, and h�2��� �
� � � , the corrections required at successively higher order
so that the full metric g�� satisfies the Einstein equations.
If we consider a massive minimally coupled scalar field
with action

S � � �
1

2

Z
�g��@��@���m2�2�

�������
�g
p

dDx; (5)

then the expansion (4) of the metric gives a corresponding
perturbative expansion of the action,

S � � S�0�� � S�1�� � S�2�� � � � � (6)

as well as a series of terms S�n�� at nth order in the
perturbation.

This allows a perturbative evaluation of the n-point
functions in the background, denoted by h� � �ib, in terms
of the same quantities h� � �i0 in Minkowski space with
additional insertions. For any combination of fields O,
the expansion of the action (6) inserted into the path
integral yields
-2
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hOib � hOi0 �
Z
hTOk�

�1�
�ki0

dDk
�2��D

�
Z
hTOk0�

�2�
�k0 i0


dDk0

�2��D
� � � � ; (7)

where ��1� and ��2� are the new vertices that appear to first
and second order in perturbations. These are determined by
the expansion (6) of the action

��1� � iS�1�� ; (8a)

��2� � iS�2�� �
1
2�S
�1�
� 	

2: (8b)

The statements that we have made for the n-point functions
have analogues for the S-matrix. However, defining an
S-matrix involves a choice of asymptotic ‘‘in’’ and ‘‘out’’
states. Therefore this prescription really only makes sense
when the spacetime in question is asymptotically
Minkowski. In other cases it may be necessary to modify
the definition of asymptotic states.

At this point, it is possible to see how even a weak
gravitational background can lead to pair production. Pair
production is the process with no ‘‘in’’ particles and two
‘‘out’’ particles. While forbidden by momentum conserva-
tion in Minkowski space, in the perturbed spacetime each
term in the S-matrix carries three momenta; the two mo-
menta of the ‘‘out’’ particles and the momentum carried by
the new vertices ��n�. Thus two positive energy particles
can appear in the ‘‘out’’ state if one of the terms ��n�k
supplies the ‘‘missing’’ momentum. So, the amplitude to
pair produce two particles with momenta k1; k2 will be
nonzero provided that we have ��n��k1�k2

� 0. More physi-
cally the missing momentum is coming from the back-
ground gravitons.

B. String theory

Following the same procedure as the field theory calcu-
lation, one may insert the perturbative expansion of the
metric g�� � ��� � h

�1�
�� � h

�2�
�� � � � � into the conformal

gauge string world sheet action

S � �
1

2��0
Z
g���X�@X� �@X�d2z: (9)

Now, the successive metric perturbations h�n��� are chosen to
satisfy the string beta function equations.

As is well known [6,7], the expansion of the metric leads
to the insertion of graviton vertex operators in world sheet
correlation functions. For example, if we wish to study the
S-matrix element involving two string states A and B, then
we must compute the world sheet correlation function
124009
hV A�kA�V B�kB�ib � hV A�kA�V B�kB�i0

�
1

4�gc

Z
h�1����k0�hV A�kA�V B�kB�

V��
g �k0�i0

dDk0

�2��D
� � � � ; (10)

where V A;B�kA;B� are the vertex operators for the created
strings in states A and B, V��

g �k0� is a graviton vertex
operator integrated over the world sheet representing the
metric perturbation, and we have absorbed a factor of gc in
each of the vertex operators. The metric perturbation h�1���
appears as the polarization tensor of the background
graviton.

The first-order contribution to pair creation (10) van-
ishes when A and B are massive, due to momentum con-
servation when the graviton is on-shell (as it must be for a
consistent string amplitude). Nevertheless, (10) is related
to the phenomenon of ‘‘particle transmutation,’’ by which a
string can change its mass and spin as it passes through a
gravitational background [22–25]. We will not investigate
this phenomenon in the current work, but for weakly
curved spacetimes it could in principle be studied within
the S-matrix framework we apply herein.

Ideally we would be able to continue this expansion to
higher order in the metric perturbation, by analogy to the
field theory case. However, at second-order issues arise in
the string theory that make the situation somewhat more
complex. For one, consistency of the string amplitude (10)
requires that each of the vertex operators be a conformal
tensor of weight �h; �h� � �1; 1�, or in other words satisfy
the physical state conditions. As is well known, this is
equivalent to imposing the linearized Einstein equations
on h�1���. At second order in the expansion of world sheet
amplitudes, a graviton vertex operator with polarization
h�2��� appears. By construction, the second-order perturba-
tion h�2��� satisfies the second-order renormalization-group
equations. These equations are not identical to the physical
state conditions on the vertex operator. Therefore, in gen-
eral h�2��� will not in fact satisfy the physical state condi-
tions. Thus, the string amplitude with the corresponding
vertex operator will not be consistent.

Another issue that arises is the presence of a nonzero
‘‘tadpole’’ for some fields. Taking our prescription literally,
to compute the S-matrix elements on our background to
second order involves inserting two graviton vertex opera-
tors into the relevant correlation functions. For massive
fields A, the tadpole is zero at first order due to momentum
conservation. At second order in the metric perturbation,
the tadpole for some state A in the background is therefore
given by

hV A�kA�ib � hV A�kA�V g�k1�V g�k2�i � � � � ; (11)

with V g�k� �
1

4�gc
h�1���V

��
g �k�. This expression does not
-3
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vanish for the examples we consider. A nonvanishing tad-
pole is an indication that the classical equations of motion
are not exactly obeyed by the background solution. This is
to be expected, as here we will use a background solution
that solves the leading-order equations of motion for mass-
less string excitations, but we have ignored the massive
excitations and higher corrections. The presence of the
tadpole is telling us that the equations of motion for these
massive fields forbid setting them to zero throughout
spacetime. Furthermore, in a curved background the vertex
operators and states should change, which we have not
taken into account. We expect that the failure of the tadpole
to vanish is due to some combination of all of these effects.

Given these new complexities, it appears that problems
are beginning to develop with the technique of inserting
new vertex operators at second order. Nevertheless, by
considering each of these new problems, we will argue in
Sec. II C that useful results can be obtained from the
second-order expansion. Therefore, for the purpose of
studying pair production we will use the prescription

hABjSjvaci �
1

�4�gc�2
Z
h�1����k0�h

�1�
	
�k00�

 hV A�kA�V B�kB�V
��
g �k0�

V 	

g �k

00�i0
dDk0

�2��D
dDk00

�2��D
; (12)

where V A;B�kA;B� are the vertex operators for the pair
created string states A and B. In defining this S-matrix
element, it is understood as usual that the positions of three
of the vertex operators are fixed and the remaining one is
integrated over the world sheet. This prescription does not
involve a term at first order in the metric perturbation, since
the pair production of massive states is forbidden to this
order by momentum conservation. Furthermore correc-
tions to the vertex operators and background solution,
which should be included in a more complete analysis,
only affect this S-matrix element at higher orders in h�1���.

C. Coherent states

The existence of nonzero ‘‘tadpoles,’’ or 3-point func-
tions hV gV gV Ni, where V N denote the vertex operators
for levelN string states, implies that turning on a nontrivial
gravitational background will, at second order, produce a
nontrivial background of excited states. The question we
must address is whether we can still trust the pair produc-
tion results that we will extract at this order. By studying an
analogous situation in field theory, we will argue that the
corrections to the pair production amplitudes appear at
higher order, and thus our second-order results may be
trusted.

The production of excited string states can be modeled
in field theory as the pair production of a massive scalar
field � via interactions with a massless scalar field H,
representing the graviton. This can be realized with the
124009
action

S �
Z
ddx

�
�

1

2
�@H�2 �

1

2
�@��2

�
1

2
m2�2 � �H2��

1

2
�H2�2

�
: (13)

The presence of the � coupling implies that we cannot turn
on a background field for H without also exciting a back-
ground value for �, as a consequence of the equations of
motion

��H � 2�H�� � � � (14)

����m2� � �H2 � � � � : (15)

The � coupling gives rise to pair creation of � quanta in
the presence of a nontrivial ‘‘graviton‘‘ background H.
Before calculating this effect we must first correctly deal
with the background. Assuming � � 0�O�H2�, these
equations may be solved perturbatively to second order
in H as [here

R
d~k �

R
dd�1k=�2!�, ! � jk0j which is

valid for massless and massive particles]

H�x� � H0�x� �
Z
d~k����k�eik�x � ��k�e�ik�x� �O�H3

0�;

(16)

��x� � �
Z
ddyGret�x; y�H2

0�y� �O�H
3
0�; (17)

where Gret�x; y� is the retarded propagator for a scalar of
mass m and we have chosen the following boundary con-
ditions

lim
t!�1

��x� � 0: (18)

It is well known that in field theory a nontrivial background
may be described by a coherent state. The initial state
contains only gravitons and may be described by

jvac; t! �1i � e��1=2�
R
d~kj�j2e

R
d~k�ay j0i; (19)

whereas the final state is a coherent state of both ‘‘grav-
itons‘‘ and � quanta

jvac; t!�1i � e��1=2�
R
d~kj�j2e�

R
d~k�1=2�j�j2

 e
R
d~k�aye

R
d~k�dy j0i: (20)

Here ay=a, dy=d are the conventionally defined creation/
annihilation operators forH and � respectively, and��k� is
the generated background for �:

lim
t!�1

��x� �
Z
d~k����k�eik�x � ��k�e�ik�x�: (21)

We now compute the amplitude to create a pair of �
quanta. Because of the nontrivial background for � as t!
�1, we must redefine the creation/annihilation operators
-4



STRING PAIR PRODUCTION IN A TIME-DEPENDENT . . . PHYSICAL REVIEW D 72, 124009 (2005)
as ~d � d� �. This is the analogue of canceling the tad-
pole in the string theory. The � are also determined by the
condition that the amplitude to create a single particle must
vanish (tadpole cancellation):

hvac; t! �1j
�������
2!
p

~dSjvac; t! �1i � 0: (22)

Now the amplitude to create a single pair of � quanta with
momenta �k3; k4� is

A�vac! 2	 � hvac; t! �1j
���������
2!3

p
~d�k3�


���������
2!4

p
~d�k4�Sjvac; t! �1i; (23)

where S is the S-matrix. Utilizing the fact that the ampli-
tude to create a single particle must vanish and expanding
A�vac! 2	 to second order, we find after making use of
conservation of energy and momentum

A�vac! 2	 �
Z
d ~k1

Z
d ~k2��k1���k2�h0j

���������
2!3

p
d�k3�


���������
2!4

p
d�k4�Sa

y�k1�a
y�k2�j0i �O�H

3
0�:

(24)

This is a very simple result: to second order in perturba-
tions, the amplitude to create a pair of particles is deter-
mined by the amplitude for two gravitons to convert to two
� quanta. Furthermore, at second order the result is inde-
pendent of the modifications to the creation operators
required to cancel the tadpole. This suggests that our string
results will be reliable, even though we will not carry out
the modifications to the vertex operators required to cancel
the tadpole in the string case.

III. BACKGROUND

In this section we shall construct a specific example of a
perturbative geometry for which our approach may be
applied. In doing so we shall also uncover some of the
inevitable limitations of the perturbative approach. The
issue we must address is whether it makes sense to define
a perturbative S-matrix on a time-dependent spacetime,
due to the inevitable formation of spacelike singularities
or black holes, as predicted by the singularity theorems
[10,11].

A. Colliding plane waves

One of the simplest and best studied time-dependent
geometries is the pp-wave. This is a solution of
Einstein’s vacuum equations with metric given by

ds2 � 2dudv�H�u; X�du2 � dXidXi; (25)

where H�u; X� is a harmonic function r2H�u; X� � 0.
These solutions may easily be extended to include non-
trivial dilaton and Neveu-Schwarz 2-form sources.
However, for simplicity of presentation, we shall concen-
trate on pure vacuum solutions. We will focus on the class
of ‘‘exact’’ plane waves for which H�u; X� � Aij�u�XiXj
124009
with
P
iAii�u� � 0. All pp-wave spacetimes admit a null

Killing vector @
@v and this allows a global definition of null

time. As a consequence, the natural ‘‘in’’ and ‘‘out’’ field
theory vacua are chosen by decomposing modes into posi-
tive and negative frequency with respect to this time, and
since this is a global definition we find that for a free field
j0iin � j0iout implying the absence of particle creation
[26]. (This is true provided we make the conventional
choice of vacua. If the plane wave geometry is not asymp-
totically Minkowski at past and future infinity then the
reasons for this choice are less clear.)

In order to obtain a background with pair creation, we
will consider a spacetime describing the collision of two
plane waves. Treating the amplitude of each wave A���ij as
small, then at the linearized level this will be described by
the metric,

ds2 � 2dudv� A�ij �u�X
iXjdu2 � A�ij �v�X

iXjdv2

� dXidXi �O�A2�: (26)

At the linearized level, the two waves pass through each
other undisturbed. The O�A2� terms will include interac-
tions between the waves. If the amplitude of each wave is
localized around a given null time, for example, if we take

A�ij �u� � A exp��u2=L2�; (27)

then at leading order the interaction region will be local-
ized near �juj< L; jvj< L�. However, at higher orders we
will see that there is a long tail in the future light cone of
the interaction region in which perturbations grow, even-
tually leading to a singularity.

Fortunately all this can be seen explicitly in a concrete
example where A�ij and A�ij are both diagonal. In this case it
is straightforward to lift the linearized metric (26) to an
exact nonlinear solution of Einstein’s equations. To see
this, first perform a linearized gauge transformation to
take the metric to the form

ds2 � 2dudv� �ij � hij�u; v��dX
idXj �O�A2�; (28)

where

hij�u; v� � 2
ZZ

A�ij �u�dudu� 2
ZZ

A�ij �v�dvdv: (29)

This metric is a special case of a more general class of
solutions given by

ds2 � 2e��u;v�dudv� ��u; v�
X
i

e2�i�u;v�dx2
i ; (30)

where
P
i�i � 0. This is the form of an exact set of

solutions to Einstein’s equations known as Einstein-
Rosen waves. They satisfy @u@v� � 0 and @u��@v�i� �
@u��@v�i� � 0. This form is invariant under transforma-
tions u! f� �u�, v! g� �v� and exp��� ! exp� ���=�f; �ug; �v�.
We may use this freedom to set � � � �u� �v�

���
2
p
� t and

z � � �u� �v�
���
2
p

, then the �i satisfy
-5
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1

t
@t�t@t�i� � @2

z�i � 0: (31)

It is straightforward to see that as t! 0 the solutions to this
equation behave as �i ! ci�z� � di�z� lnt. The resulting
solution describes a Kasner metric where the Kasner ex-
ponents are functions of z, consequently the generic colli-
sion of two plane waves will result in an anisotropic
singularity.

The existence of a singularity should cause us no sur-
prise; it arises as a simple consequence of the singularity
theorems. Although the singularity theorems do not strictly
apply here as we have no matter, compactifying the ge-
ometry on one direction gives us a theory with gravity and
a scalar field which does satisfy the singularity criteria. In
the present context it implies that perturbation theory will
inevitably break down in a finite time period. In the tradi-
tional definition of an S-matrix theory, the ‘‘out’’ state is
defined at future infinity, thus it would seem at first sight
impossible to define an S-matrix on a spacetime with a
singularity at future infinity.

B. Perturbative solution

Our approach to dealing with this fundamental issue is a
pragmatic one, for if there exists a long period of time for
which perturbation theory is valid, then the S-matrix
should describe physics in that period. Let us now con-
struct the perturbative solution to Einstein’s equations.
This will enable us to check that nonlinear corrections
remain small at low orders in the perturbation expansion,
and to explore the breakdown of perturbation theory. To be
consistent with the metric (28), we take �i �O�A�, ��
1�O�A2� and ��O�A2�. The perturbed metric up to and
including third order in perturbations is

� � 1� A2����u� � ���v�� �O�A4�; (32)

�i � A��i��u� � �
i
��v�� �

1
2A

3����u��
i
��v�

� ���v��
i
��u�� �O�A

4�; (33)

� � �
1

4
A2
X
i

�i��u��
i
��v� �O�A4�; (34)

where

�00��u� � �
1

4

X
i

�i2�;u; �00��v� � �
1

4

X
i

�i2�;v: (35)

We are assuming that ���u� and ���v� are localized
functions, for instance with a Gaussian profile �� �
exp��u2=L2� and �� � exp��u2=L2�. From this it is
clear that up to third order in A, �i and � are both bounded
functions localized near the interaction region u � v � 0.
However, as a consequence of (35), � is not bounded. We
choose the solution
124009
���u� � �
1

4

Z u

�1
du1

Z u1

�1

X
i

�i2�;u2
�u2�; (36)

and similarly for ���v�. From this it is clear that as u!
�1, then ���u� ! C� �D�u; where

D� � �
1

4

Z 1
�1

du
X
i

�i2�;u � 0: (37)

Trying to remove this divergence by adding the homoge-
neous solution �D�u causes ���u� to diverge as u!
�1. This is the first indication that perturbation theory
breaks down at late times. On dimensional grounds, D� �
O�1�=L and so this coordinate system breaks down at u �
L=A2, v � L=A2. Evidently by making A sufficiently
small, we can push this region arbitrarily far into the causal
future of the interaction region.

Remarkably, to third order in A, the growth of � is a
coordinate artifact and does not reflect a genuine break-
down of perturbation theory. One may show this by remov-
ing the linear growth in u by means of the following
coordinate transformation:

xi ! xi
�

1�
A2

2
�D�u�D�v�

�
�O�A3�; (38)

u! u�
A2

4
D� ~x

2 �O�A3�; (39)

v! v�
A2

4
D� ~x2 �O�A3�: (40)

Similarly all components of the Riemann tensor are finite
and supported only near u � v � 0. In fact we must go to
fourth order in perturbations to see the first signal that
perturbation theory is breaking down. An explicit calcu-
lation shows that certain components of the Riemann
tensor diverge linearly for large u and v in any orthonormal
frame. However, unsurprisingly this only occurs when u �
L=A2, v � L=A2. So again we may push the inevitable
breakdown of perturbation theory off to arbitrarily far in
the future of the region of interest.

In what follows we shall only compute the string ampli-
tudes to second order in the background perturbations. As
we have seen, at second order the collision of two plane
waves results in a localized interaction region and no
pathologies occur. Thus there will be no problem interpret-
ing the implications of our amplitudes. If we continue the
amplitude calculations to higher order in perturbations, we
may expect to see mildly pathological behavior associated
with the eventual breakdown in perturbation theory.
However, it should always be possible to separate this
from the information which describes the interaction re-
gion. These above observations show the fundamental
limitations of the application of the S-matrix formalism
to a time-dependent geometry, these issues would not arise
in a more Schrodinger-like prescription where we consider
-6
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the state at a given time, rather than the transition ampli-
tude to a state at future infinity. This suggests that string
field theory or a similar formalism may be a more appro-
priate way to consider time-dependent spacetimes.
IV. PAIR PRODUCTION

The first nonvanishing contribution to string pair pro-
duction arises from the four-point amplitude with two
incoming gravitons. In this section we discuss this ampli-
tude for an explicit set of string states, and obtain results in
accord with previous investigations on the high-energy
behavior of string scattering amplitudes [14–16]. This
suggests that the behavior we observe here may hold for
more general excited string states as well. A detailed
calculation of the relevant amplitude may be found in
Appendix A.

We calculate the pair creation of ‘‘representative’’ string
states given in oscillator notation by

j�; ki � �N!��1��1 ��1...�N ��N

�YN
j�1

�
�j

�1 ~�
��j

�1

�
j0; ki; (41)

where we assume that N > 1. This set of states includes a
unique scalar state at each excitation level N, which pro-
vides the most direct comparison with field theory results.

Clearly the polarization � must be symmetric under the
interchange of two holomorphic indices. The physical state
conditions are satisfied provided that

m2 �
4

�0
�N � 1�; (42a)

k�j��1 ��1...�j...�N ��N
� 0; for all j; (42b)

��j�k�...�j...�k... � 0; for all j; k; (42c)

along with similar conditions for the barred indices. These
states will have unit norm provided that

h�; kj�; ki � 1 if ��1 ��1...�j...�N ��N��1 ��1...�j...�N ��N
� 1:

(43)

The vertex operators corresponding to these states are
given by

V N�k� � gc��1 ��1...�N ��N

�
2

�0

�
N

:
�YN
j�1

@X�j �@X ��j

�
eik�X�z; �z� :

(44)

where we have included a factor of the closed string
coupling gc as is conventional.

As we are interested in comparing string results to those
in field theory, we focus on the production of ‘‘long-
wavelength’’ string states, or equivalently those whose
spatial momenta are small in comparison with 1=

�����
�0
p

.
Since we are also considering the production of very
massive states, the relevant process is therefore one in
which the pair of strings are created nearly on threshold.
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In order to fix notation, we take k
 to be the momenta of
the created strings, and �kL;R the momenta of the incom-
ing gravitons, so that the equation for conservation of
momentum is

k� � k� � kL � kR � 0: (45)

We further take the created strings to be scalar representa-
tive states of excitation levels N
. For simplicity of ex-
position we take the incoming gravitons to possess
momentum in the t; x plane only. Working in the center
of mass frame, and focusing on the case where the out-
going strings are created nearly on threshold, it is conve-
nient to parameterize the momenta as

k� � �m�; 0; 0� � �!
�; kx;  ~kT�; (46a)

k� � �m�; 0; 0� � �!
�;�kx;� ~kT�; (46b)

kL � ��!;�!; 0� � ��!L;�k0x; 0�; (46c)

kR � ��!;�!; 0� � ��!R;�k0x; 0�: (46d)

Momentum conservation and the mass-shell conditions
imply that we may choose kx and  ~kT to be the indepen-
dent variables in the problem.

For our discussion, we will find it useful to define

a � N� �
�0t
4
; (47a)

b � N� �
�0u
4
; (47b)

where t and u are the conventional Mandelstam variables.
For the problem at hand, when the strings are produced
with zero spatial momenta, these variables are given by

s � m2
� �m

2
� � 2m�m�; (48a)

t � �m�m�; (48b)

u � �m�m�: (48c)

It will be important for our argument below that in the case
where the pair is produced with zero spatial momentum,
these variables are all 4=�0 multiplied by integers.

With this parametrization of the momenta, standard
techniques in string perturbation theory lead to the
leading-order term in the string S-matrix, given by

���1 ��1����N�
��N�
���1 ��1����N� ��N�

�L	 �	�
R

 �
�N�!��1�N�!��1


16�i
�0

g2
c

�
�0

2

�
N��N�


YN�
j�1

k
�j

R k
��j

R

YN�
k�1

k
�j
R k

��j
R �

	
� �	 �

�

��a���b�
��a� b�

�
2


sin��a� sin��b�
sin���a� b�	

: (49)

This amplitude is then multiplied by the metric perturba-
tions and integrated according to Eq. (12). There are two
-7
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key features of this amplitude that differ substantially from
the field theory case.

The first remarkable feature of this amplitude is that the
production of identical string pairs vanishes at zero spatial
momentum. This follows directly from the behavior of the
sine functions appearing in the amplitude (49). When
N� � N� � N, and when the spatial momentum of the
created pair vanishes, then using (47) and (48) and the
string mass-shell condition we find

a � b � 2N � 1; (50)

and therefore the trigonometric factors vanish. For field
theory, examination of the S-matrix element arising from
(7) reveals that the pair production amplitude is indepen-
dent of kx;T in the long-wavelength limit. For strings, by
contrast, it appears that the pair production vanishes as a
power law in the long-wavelength limit. Similar behavior
occurs whenever the condition a; b 2 Z is satisfied, which
occurs for pairs of excitation levels such as

�N�; N�� � �2; 5�; �2; 10�; �2; 17�; �3; 9�; . . . (51)

in addition to the N� � N� cases corresponding to the
creation of identical pairs. When N
 are such that a =2 Z
and b =2 Z, then the production of these string pairs are
independent of spatial momentum in the long-wavelength
limit, similar to the field theory case.

This behavior is a consequence of some fundamental
features of string theory. Recall that the open string
Veneziano amplitude is essentially uniquely determined
by the presence of poles corresponding to excited string
states, as well as world sheet duality. The closed string
amplitudes are in a sense products of open string ampli-
tudes, with additional sine factors to ensure that all of poles
that occur in the product are simple ones. Again, the closed
string amplitudes are essentially uniquely determined by
basic features of the theory. Thus different sine factors are
zero when the s, t or uMandelstam variables correspond to
a physical string state and compensate for some of the
poles arising from the gamma functions in the amplitude.
In our case, when the string pairs are produced with zero
spatial momentum, the sMandelstam variable corresponds
to an on-shell string state, but the t and u variables are the
negative of on-shell values. Thus the sine functions have
zeros, but now the gamma functions have no poles, and so
the amplitude vanishes. Of course, this argument requires
that we establish exactly some additional integers appear-
ing in the arguments to the gamma functions, and this is
done in Appendix A. The vanishing of this amplitude holds
not only for the leading term in the S-matrix, but for terms
of all orders in k appearing in this amplitude.

The second key difference between the string and field
theory pair production amplitudes is an exponential sup-
pression of the string pair production rate. To explore this
feature, we consider the case where excitation level of both
strings is approximately N, in which case a� b� 2N
124009
from (50). Applying Stirling’s approximation to the
gamma function factors in (49) we find

��2N�4

��4N�2
�

2�
N

2�8N
�
1�

1

8N
� � � �

�
N � 1: (52)

Therefore, the string amplitude falls off exponentially
with m2, in contrast to the polynomial dependence of the
field theory result. This behavior is characteristic of hard
scattering string processes. As we have remarked earlier,
typically we expect pair production rates in field theory to
fall off exponentially with mass. However, recall that when
studied with the S-matrix approach employed herein, there
are actually two effects at play. The first is the structure of
the field theory amplitude connecting the incoming grav-
itons to the outgoing particles. The second is the number of
gravitons, or Fourier coefficients of the metric perturba-
tions. In field theory, the former behaves polynomially with
mass, while the second drops off exponentially. For strings
on the same background (that is, with the same Fourier
coefficients for metric perturbations) both factors fall off
exponentially. Thus fewer pairs are produced.

Again, this may be understood using simple string phys-
ics. In studies of string amplitudes, one of the kinematic
regions of interest [14–16] is the so-called ‘‘hard scatter-
ing’’ limit

s! 1; t=s fixed: (53)

This is precisely the limit of interest when we look at
particles of the same mass and look at the limit in which
m! 1. In the hard scattering limit, string amplitudes
behave as

amplitude � e�sf���; (54)

where f���> 0. This is precisely the behavior observed in
our results. It indicates that, just as the scattering of strings
is softer than that of point particles at high energy, so too
the pair production of strings is reduced.
V. CONCLUSIONS

In this work we have studied the pair production of
excited strings in a time-dependent background. The spe-
cific background we consider consists of two colliding
plane gravitational waves. Through studying the singular-
ity structure of this background, as well as the nature of
corrections needed to cancel tadpole diagrams, we have
concluded that reliable results may be obtained through
standard S-matrix methods at second order in the gravita-
tional wave amplitude. Our calculations revealed two es-
sential differences between the field and string theory
results. The pair production of identical string states is
suppressed for certain pairs of excitation numbers of the
outgoing strings; most significantly, the production of
identical string states vanishes in the infinite wavelength
limit. In addition, the overall production of strings is sup-
-8
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pressed relative to point-particle results, which may be
viewed as a consequence of the mild hard scattering be-
havior of string amplitudes.

Our results are especially relevant to questions regarding
the pair production of strings in cosmological spacetimes.
In particular, these results may have implications for one
motivation for the current work, in which the pair produc-
tion of strings is studied using an effective field theory
approximation [1–3]. The suppression of production of
excited string states suggests that, despite the exponentially
growing Hagedorn density of states, effective field theory
provides an overestimate of the production of individual
string states.

Of course, we have established these results using tech-
niques that are reliable only when spacetime is nearly
Minkowski. Nevertheless, our findings suggest phenomena
that may also be present in the strong field regime. It would
be quite interesting to know if these effects persist in more
highly curved, time-dependent backgrounds. If so, it would
be an example of a uniquely stringy signature of relevance
to cosmology, providing further clues to the role of quan-
tum gravity in the early universe.
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APPENDIX A: gg! NM

Standard techniques in string perturbation theory give
the form of the four-point string S-matrix amplitude as

M�
8�i

�0g2
c
h:c�z��~c�z��V

�
k�
�z��: ::c�z��~c�z��

V�
k�
�z�� ::c�zL�~c�zL�V

L
kL
�zL� ::V

R
kL
�zR� :i; (A1)

where the fact that this expression is to be integrated over
the unfixed vertex operator position is understood. We have
also suppressed the momentum conservation factor, so that
the full S-matrix is

S4�k�; k�; kL; kR� � �2��
2626�k� � k� � kL � kR�M:

(A2)

In this work, we take V�
k�
�z�� and V�

k�
�z�� to be repre-

sentative states at level N� and N�, respectively, and
V L

kL
�zL� and V R

kL
�zR� to be the massless graviton states.

We fix the three vertex operator positions z� � 0, z� � 1
and zL � 1. Next, using momentum conservation and the
transverse property of the polarization tensors of each
state, it is possible to put the matrix element in the form
124009
�
:
YN�
j�1

�
@X�j �

i�0

2

�
��j �

k
�j

R

z

��
:

 :
YN�
k�1

�
@X�k �

i�0

2

�
��k �

k�kR
1� z

��
:

 :
�
@X	 �

i�0

2
�z�	 � k	�	

�
:

 :
�
@X
 �

i�0

2

�
�


z
�

k
�
z�1� z�

��
:
�

 z�
0k��kR=2�1� z��

0k��kR=2; (A3)

multiplied by its complex conjugate from the antiholomor-
phic sector, multiplied by an overall factor

8�ig2
c

�0

�
2

�0

�
N�M�2

(A4)

and of course the appropriate polarization tensor for each
state. In this expression we have defined �	 � k	� � k

	
�.

This expression for the amplitude results from evaluating
the ghost path integral and contractions between the @X
and eikX terms, as well as between two eikX terms. The
remaining contractions are those between two @X terms.

Given this pattern of contractions, each possible con-
traction of operators results in an integral of the form
Z

C
za�1�m1 �za�1�n1�1�z�b�1�m2�1� �z�b�1�n2d2z

�2�
��a�m1���b�m2���1�a�b�n1�n2�

��a�b�m1�m2���1�a�n1���1�b�n2�
:

(A5)

For m1; m2; n1; n2 2 Z. We can simplify our discussion by
focusing on the leading terms in this expression. Our
concern in the present work is on the production of long-
wavelength, highly excited string states. Thus, we parame-
trize the momenta in the problem as

k� � �m�; 0; 0� � �!
�; k�x ;  ~k

�
T �; (A6a)

k� � �m�; 0; 0� � �!
�; k�x ;  ~k

�
T �; (A6b)

kL � ��!;�!; 0� � ��!
L;�kLx ;� ~k

L
T�; (A6c)

kR � ��!;�!; 0� � ��!R;�kRx ;� ~k
R
T�; (A6d)

where we assume that k; !� m
. We focus on the case
where

0 �  ~kLT �  ~kRT; (A7a)

kx � k�x � �k�x : (A7b)

Now applying the mass-shell conditions and momentum
conservation, we find ! � m��m�

2 and furthermore,  ~kT �

 ~k�T � � ~k
�
T , and k0x � kLx � �kRx . We can take the

two remaining free variables to be kx and  ~kT . The mass-
shell conditions further imply
-9
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!
 �
�kx�2 � � ~kT�2

2m

�O�k4

x;T�; (A8)

and !L � k0x, !R � k0x. So now we can reexpress all
variables in terms of kx and  ~kT , by noting k0x �
!��!�

2 . Now returning to the expression (A5), we can
see that

a� 1 � ��0=2�k� � kR � N� � 1� �� �R; (A9a)

b� 1 � ��0=2�k� � kR � N� � 1� �� �R; (A9b)

with � � ��N� � 1��N� � 1�	1=2 and

�R �
�0

2

�
m�
2
!� �

�
m� � 2m�

2

�
!� �!kx

�
;

(A10a)

�R �
�0

2

�
m�
2
!� �

�
m� � 2m�

2

�
!� �!kx

�
:

(A10b)

At this point we have all of the information we need to
compute each term in the amplitude. In order to find the
dominant term, it suffices to examine each of the possible
contractions between momentum vectors and polarization
tensors. These are given by �kR � e�; kR � e�� � O�

�����
�0
p

m�
and �� � e�; � � e�; � � eL; k� � eL; � � eR; k� � eR� �
O�

�����
�0
p

k�. Thus it is seen that the term with the greatest
number of kR contracted with polarization tensors will be
dominant. It will be convenient to rewrite the integral (A5)
as

�
��a�m1���b�m2���1� a� b� n1 � n2�

��a� b�m1 �m2���1� a� n1���1� b� n2�

�
sin���a� n1�	 sin���b� n2�	

sin���a� b� n1 � n2�	


��a�m1���b�m2�

��a� b�m1 �m2�

��a� n1���b� n2�

��a� b� n1 � n2�
: (A11)

From our discussion above, the leading term will have the
largest possible number of kR contractions, implying m1 �
n1 � �N� and m2 � n2 � �N�. (This depends some-
what on the pattern of contractions involving the graviton
polarization tensors, but this turns out to be unimportant in
the final result.) Thus we find the value of the integral to be

sin����� �R�	 sin����� �R�	
sin���2�� �R � �R�	



�
���� �R����� �R�

��2�� �R � �R�

�
2
: (A12)

From this it is possible to work backwards and obtain the
full S-matrix expression, although we will not require the
full amplitude.

A key feature of this amplitude is its behavior when � 2
Z. The leading term derived above clearly vanishes as
124009

R ! 0 in this case, due to the structure of the zeros of
the sine functions. While we have only displayed the
leading-order term above, this behavior in fact holds for
all of the terms contributing to this amplitude. This can be
seen from the structure of the integral over the complex
plane used to derive (A12). Regardless of the pattern of
contractions corresponding to a given term, the arguments
to all of the gamma functions appearing in (A12) are
positive. Since the gamma function has no zeros, and
only has poles for negative values of the argument, the
amplitude must vanish when � 2 Z and 
R ! 0.
APPENDIX B: PAIR PRODUCTION VIA THE
S-MATRIX

In this appendix we carry out explicit calculations of the
pair production rate using both S-matrix and Bogoliubov
coefficient techniques. This provides a check that, while
the two methods differ, the end result is precisely the same
(for a related analysis, see also [27]). We study a minimally
coupled scalar field in D � 2 spacetime dimensions, with
action

S � � �
1

2

Z
�g��@��@���m

2�2�
�������
�g
p

dDx: (B1)

Our gravitational background is defined by

g�� � a�t�2���; (B2)

where the ‘‘scale factor’’ a�t� is an arbitrary function of
time. In order to better make contact with the examples
considered in this work, we will assume that a�t� is unity,
except for a localized ‘‘bump’’ of small amplitude near t �
0. Thus, there will be well-defined ‘‘in’’ and ‘‘out’’ regions
where the geometry is Minkowski space.

For future convenience we define a field variable  ,
given by

��t; xj� � a�t�1�D=2 �t; xj�: (B3)

We Fourier expand  along the spatial coordinates, so
 �t; xj� �  k�t�eikjx

j
, and define g�t� � a1=n, n � 1

D=2�1 ,
and

��t� � �g�t�2n � 1�m2 �
�g
g
: (B4)

With these replacements, the action for  becomes

S  � �
1

2

Z
�� _ 2

k �!
2
k 

2
k � ��t� 2

k�
dD�1k

�2��D�1 dt;

(B5)

where !2
k � m2 � k2 as usual. The equation of motion for

 k is

� � �!2
k � ��t�	 � 0: (B6)
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1. Bogoliubov coefficient calculation

Now, we will calculate precisely what the � Bogoliubov
coefficient is in the theory described in the previous sec-
tion. Because the perturbation to the action is localized in
time, the canonical Minkowski vacuum is a natural choice
for the ‘‘in’’ and ‘‘out’’ regions, and so

uj�t; x� � �uj�t; x� � e�i!t�ikjx
j
;

u�j �t; x� � �u�j �t; x� � e�i!t�ikjx
j
:

(B7)

We now consider the following (approximate) solution to
the equation of motion for  :

 k�t� �
1�������������

2!�k�
p �e�i!kt � �k;�k0 �t�ei!kt� (B8)

along with the boundary condition that �k;�k�t� ! 0 as
t! �1. This boundary condition ensures that  k�t� is a
pure positive-frequency mode in the ‘‘in’’ region. Using the
definitions above, it is clear that �k;�k�t� at t � �1 is the
Bogoliubov �k;�k coefficient.

Substituting our solution (B8) into the wave equation,
and making the assumption that �� 1, we find

�� k;�k � 2i!k
_�k;�k � ���t�e�2i!kt: (B9)

This equation has the solution

�k;�k�t� � �
Z t

t0��1
e�2i!kt0

Z t0

t00��1
��t00�dt0dt00

!
i

2!k
��2!k�; (B10)

where in the last step we have taken t! �1. Note that our
derivation is self-consistent even in ��t� is large; we have
only assumed that �k�t� � 1 and thus we only need re-
quire that ��!�=! is small.

To compare with the S-matrix calculation, we must
switch to the Lorentz-invariant particle states, defined by

jki �
���������
2!k

p
a�k j0i: (B11)
124009
When this is done, one arrives at the invariant matrix
element describing the particle production process,

M �j0i ! jk;�ki� � ���2!k�: (B12)

We will see in the next section how precisely the same
result is obtained using conventional field theory
techniques.

2. S-matrix calculation

The S-matrix element may be calculated using the rules
of standard flat-space quantum field theory. The calcula-
tion is much simpler than using the Bogoliubov coefficient
method. In quantum field theory, if we have a perturbation
to the action S� 	, then

S �
Z
vol
h0jiS� 	jk1k2i; (B13)

where we ‘‘contract’’ any  appearing in the perturbation
according to the rule,

 �x�jk1i � e�ik1�xj0i: (B14)

In our situation, we have S � ���t� 2=2. Again, after
including the factor of 2 from summing over the two
possible contractions with the final state momenta, we
find that,

S � �i
Z
e�i�k1�k2��x��t�dDx; (B15)

which is precisely the Fourier transform of ��t�. Imposing
momentum conservation, we find the invariant matrix ele-
ment,

M �j0i ! jk;�ki� � ���2!k�; (B16)

which is precisely the one found by other means in the
previous section.
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