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Graviton mass or cosmological constant?
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To describe a massive graviton in 4D Minkowski space-time one introduces a quadratic term in the
Lagrangian. This term, however, can lead to a readjustment or instability of the background instead of
describing a massive graviton on flat space. We show that for all local 4D Lorentz-invariant mass terms
Minkowski space is unstable. The instability can develop in a time scale that is many orders of magnitude
shorter than the inverse graviton mass. We start with the Pauli-Fierz (PF) term that is the only local mass
term with no ghosts in the linearized approximation. We show that nonlinear completions of the PF
Lagrangian give rise to instability of Minkowski space. We continue with the mass terms that are not of a
PF type. Although these models are known to have ghosts in the linearized approximations, nonlinear
interactions can lead to background change in which the ghosts are eliminated. In the latter case, however,
the graviton perturbations on the new background are not massive. We argue that a consistent theory of a
massive graviton on flat space can be formulated in theories with extra dimensions. They require an
infinite number of fields or nonlocal description from a 4D point of view.
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I. INTRODUCTION

One expects that a massive state mediates the Yukawa
interaction at distances larger than its Compton wave-
length.1 To describe a massive particle one adds a quadratic
in fields term to the Lagrangian. This guarantees that at
least in classical theories with no gravity large distance
interactions are of a Yukawa type. Likewise, to describe a
massive graviton in 4D Minkowski space-time one would
introduce a quadratic mass term. However, this term could
lead to a change of the gravitational background, instead of
describing a massive graviton on flat space. Below we will
discuss local Lorentz-invariant quadratic ‘‘mass terms’’ for
gravity in 4D. We will argue that in all the cases of physical
relevance the mass term leads to the instability of
Minkowski space. The instability can set in within a time
scale that is arbitrarily small compared to the inverse
graviton mass. The resulting theory either has no stable
vacuum at all, or the original Minkowski space is read-
justed to a curved background. Along the way, we draw
attention to an interesting phenomenon: a theory that has a
ghost in the linearized approximation can become ghost
free due to nonlinear interactions that lead to the readjust-
ment of the gravitational background.

We will argue that a natural way to have a massive
graviton on flat background is to invoke certain theories
with infinite-volume extra dimensions. The latter have an
infinite number of states in the spectrum at an arbitrarily
low-energy scale. From the point of view of 4D they are
nonlocal field theories.

The paper is organized as follows: in Sec. II we
start with the Pauli-Fierz (PF) massive gravity. We show
ion is a massive photon in the Maxwell-Chern-
y in �2� 1� dimensions where the potential is
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that the PF term, and any of its nonlinear polynomial
completion, gives rise to instabilities of flat space. We
find new cosmological solutions in empty space that
describe the instability of the Minkowski background
and we discuss the time scale in which the instability can
set in.

In Sec. III we discuss non-PF quadratic terms. These
terms are traditionally discarded since they give rise to
ghosts already in the linearized approximation. We show
that a reparametrization invariant nonlinear completion of
at least one of these models gives rise to a background
change. There are no ghosts on a new background, how-
ever, a graviton does not mediate the Yukawa potential at
large distances.

In light of our findings, in Sec. IV we comment on the
strong coupling problem in massive gravity. The issue
should be addressed on a stable (or long-lived metastable)
background if such a background exists. A conclusion on
whether the strong coupling problem is present or not
depends in general on the properties of the background
itself. For 4D PF gravity, however, we could not find any
convincing arguments in favor that the theory possesses a
stable (or very long-lived) ground state in which the prob-
lem could be studied.

Finally in Sec. V we discuss how a model of massive
gravity on a flat background can be obtained in theories
with infinite-volume extra dimensions. We emphasize cer-
tain distinctive features that enable these models to accom-
modate a flat space massive graviton. A brief summary of
main results is given in Sec. VI.
II. PAULI-FIERZ GRAVITY

In the linearized approximation the PF term is intro-
duced as follows [1]:
-1 © 2005 The American Physical Society
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where mg stands for the graviton mass and h�� denotes
graviton perturbation on a flat background. The first term in
the parentheses on the right-hand side (r.h.s.) of (1) is the
linearized Einstein-Hilbert term.

The action (1) describes a consistent theoretical model
of a free massive spin-2 state with five physical degrees of
freedom. This can easily be seen by making the reparamet-
rization invariance of this action manifest using
Stükelberg’s method. This action could be useful for,
e.g., a spin-2 glueball in QCD with mg � 2 GeV and
MPl ! MQCD � 1 GeV; however, the action (1) cannot
describe observable gravity. This is primarily because of
the van Dam-Veltman-Zakharov (vDVZ) discontinuity
[2,3] (see also [4]), and because (1) does not contain non-
linear gravitational interactions that are being measured in
gravity observables. The nonlinearities could cure the
vDVZ discontinuity problem as well [5]. Therefore, a non-
linear completion of the action (1) is needed. However, this
in general leads to problems [6]. The simplest strategy is to
complete the kinetic term in (1) to a nonlinear Einstein-
Hilbert term:
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(2)

where we define h�� � �g�� � ����. Note that with this
definition of h the mass term in the action (2) is regarded as
an exact term and not as a leading term in a small h
expansion. Furthermore, higher powers in h could be arbi-
trarily added to the mass term since there is no principle,
such as reparametrization invariance, that could fix the
arbitrarity in choosing those terms. For definiteness, we
can assume that the indices in the mass term are raised and
lowered by ���; using g�� instead, would result in differ-
ences that appear only in the cubic and higher orders in h
which are ambiguous anyway.

One may attempt to find a more satisfactory than (2)
completion of the PF term by expressing h�� in terms of
the invariant curvatures in a certain nonlocal way. How-
ever, because of the specifics of the PF term this is not
conceivable. Indeed, consider the equation of motion that
follows from the variation of (1). Let us take a derivative of
both sides of the equation. Since the Einstein tensor is
identically conserved, this gives a new constraint arising
from the mass term. This is an analog of the Proca condi-
tion for massive gauge fields. In the case of the PF term the
Proca condition reads
124007
@�h�� � @�h��: (3)

An important fact is that for any field that satisfies (3) the
Ricci scalar is zero in the linearized approximation. Hence,
the filed h cannot be expressed via the Ricci scalar. Let us
now look at the Ricci tensor. For the fields that satisfy (3)
we find

R�� � P̂��h�� ; P̂�� � @2��� � @�@�: (4)

Hence, the Ricci tensor and h are related by a projector
operator P̂ which is not invertible for general configura-
tions. Therefore, h�� cannot be expressed via the Ricci
tensor either.

We continue with the action (2). Once this completion is
adopted problems emerge. On a flat background the non-
linear theory (2) describes a massive spin-2 state with
5 degrees of freedom plus a ghostlike spin-0 state that
appears only on a nonlinear level [6]. The Hamiltonian
for h is not positive semidefinite [6]. This indicates that
Minkowski space should be unstable.

At first glance one might think that the typical time scale
for the instability should be of the order of the inverse
graviton mass, since this is the only new dimensionful
parameter in the Lagrangian. If this were true, then the
theory with the graviton mass as small as mg �H0 �

10�42 GeV would have been almost stable for all practical
purposes. However, as we will show shortly, this is not so.
Below we derive exact empty-space solutions of PF gravity
that take the background away from Minkowski space and
show that the time scale for setting in this instability can be
arbitrarily short.

To exhibit the instability of Minkowski space it is
enough to focus on the following restricted class of met-
rics:

ds2 � N2dt2 � a2dx2; (5)

where N � N�t� and a � a�t� are some functions of the
time coordinate. The Lagrangian for these configurations
takes the form (below we set MPl � 1):

L � �N�1a _a2 �m2
gF; (6)

where F � F�a; N� denotes a general mass term. From the
above Lagrangian we calculate the Hamiltonian and find
the conserved energy:

E � �N�1a _a2 �m2
gF: (7)

The function N should also satisfy a constraint

N�2a _a2 � m2
g@NF: (8)

It is convenient to make a change of variables Ndt! dt
(note that this is not a coordinate transformation under
-2
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which the massive theory is invariant, this is just a formal
change of variables used for technical simplifications). In
terms of the new time variable the constant energy reads

E � �Na _a2 �m2
gF; (9)

and the constraint takes the form

a _a2 � m2
g@NF: (10)

Let us now turn to the PF mass term. For the metric (5)
the PF term takes the form F � �N2 � a2 � 2��1� a2�=4.
The corresponding conserved energy is

m2
gE � �

a2 _a4

1� a2 �
m4
g

4
�2� a2��1� a2�: (11)

The latter expression can be rewritten as follows:

a2 _a4 �m2
g�1� a

2��E�m2
g�2� a

2��1� a2�=4� � 0:

(12)

Minkowski space, that is a � 1, N � 1, is certainly a
solution of the above equation. However, perturbations
take the solution far away from Minkowski background,
as we will see below.

To see the instability of Minkowski space manifestly we
need to study perturbations for both a and N near the point
a � 1, N � 1. For this, let us take E � �m2

g�=2, with
small positive 0< �� 1. For small � � 1� a we find

_� 4 � m4
g���� ��: (13)

The above equation describes oscillations of the delta
between 0 and �. On the other hand, one can show that
for � � 0

N2 � ��� ��=�: (14)

When � � �=2, we haveN � 1. That is the solution passes
close to the Minkowski region. However, at the turning
points, N ! 0 or N !1, the system moves away from
Minkowski space.2 Consider the regime when �� �.
The time dependence of the small � takes the form ��
�mgt�

4=3�1=3, and N scales as follows: N2 �

�2=3=�mgt�
4=3 	 1. Thus, a small departure from a � 1
2We would like to point out again that the nonlinear theory
lacks reparametrization invariance, and, hence, different choices
of coordinates could lead to different physical spaces. Our
interval is defined by (5), and what we call Minkowski space
corresponds to the point a � 1, N � 1. Note that geodesic
equations for matter fields are not modified as compared to the
standard GR and, therefore, external sources moving along the
geodesics would not distinguish between the coordinate systems.
However, from the point of view of pure PF gravity, different
coordinates can be physically different.
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leads to a large deviation from the N � 1 point (i.e., from
Minkowski space). Note that a typical time scale for the
system to complete one cycle between the turning points is
T �

���
�
p
=mg. The latter can be arbitrarily small. Therefore,

the instability of Minkowski space could develop almost
instantaneously. The appearance of a new short time scale
is due to the integration constant (i.e., the energy E) which
does not enter as a parameter in the Lagrangian.

There are two comments to be made here: (1) The scale
of the instability—the frequency of the oscillations of the
metric!g �mg=

���
�
p

—could be smaller than the UV cutoff
of the theory �3 � �m

2
gMPl�

1=3 [7]. By tuning the value of �
the energy of the space E can be made arbitrarily close to
zero, while simultaneously the frequency of the oscilla-
tions !g can be kept smaller than the cutoff �3 by tuning
the value of mg. All the above suggests that the oscillatory
instabilities are present in a low-energy effective theory
[7], and as such, are unlikely to be removable by a new UV
physics that can enter at �3. (2) The above instabilities are
not a priori related to other known instabilities, e.g., a
decay of a space by the bubble nucleation etc.; what
we are finding are the oscillations of the metric that for
arbitrarily small values of the energy crate large metric
perturbations.

Actually, one can show that perturbations around
Minkowski space-time with negative energies exist for
arbitrary (nonlinearly completed) polynomial mass terms.
For nonlinear completions of the special form, when the
mass term in the action is a function f�h2

�� � �h
�
��2� this

was shown in [6]. This can be generalized for an arbitrary
mass term, as we have shown in the Appendix.

For the PF mass term there also exists a curious ‘‘cos-
mological’’ solution. Consider a universe with E �
�m2

g=2. For this case Eq. (12) simplifies and we get

_a 4 � m4
g�1� a2��3� a2�=4: (15)

This describes an expanding and then recollapsing uni-
verse. The early time expansion law a � mgt=

���
2
p

corre-
sponds to the equation of state p � ��=3. Note also that
the Minkowski space, a � 1, N � 1, is formally a solution
of the system (10) and (15); however, for small � � 1�
a� 1 the perturbation of N is huge, N � 1=

����
�
p

, and the
corresponding energy is negative. Therefore, small pertur-
bations in a move the system from Minkowski space away
to a collapsing universe.
III. NON-PF TERMS

We showed above that Minkowski space is unstable for
the PF theory. Therefore, there is no reason to prefer the PF
term over any other non-PF quadratic terms, for which it is
known that ghosts appear already in the linearized approxi-
mation [8]. On the other hand, choosing non-PF terms one
might hope to find a nonlinear completion for which the
-3
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ghost will be eliminated by nonlinear interactions. We will
discuss this possibility below.

Let us first start with a general non-PF quadratic term3

M2
Plm

2
g

8

Z
d4x�h2

�� � a�h
�
��2�; (16)

where a � 1. In this case the Proca condition takes the
form

@�h�� � a@�h��: (17)

As a result, the 4D curvature in the linearized theory is not
identically zero, R� �a� 1�@2h�� (unlike the case of the
PF term). However, for a � 1 the term (16) gives rise to a
ghost. The easiest way to see this is to focus on the scalar	
where h�� � @�@�	. For this scalar the integrand in (16)
reads

�1� a��@2	�2: (18)

The energy density that follows from (18)

E / �1� a�
�@2
0	�

2 � �@2
i 	�

2�; (19)

is not positive definite irrespective of the sign of �1� a�. In
terms of a propagator for 	, one finds a pole with a
negative residue—a ghost. Is it possible to overcome this
inconsistency of the theory? This question can be given a
positive answer at least for a certain choice a � 1=2. This
is due to a mechanism that we will describe briefly below (a
similar mechanism was used in a higher-dimensional con-
text to stabilize ghosts in Ref. [9]). To focus on the main
idea in as simple terms as possible consider a scalar field
theory in the absence of gravity:

L � G��; 
�@��@��� V��; 
�; (20)

where G encodes nonlinear interactions of �, its deriva-
tives and/or other fields collectively denoted by 
:

G ��; 
� � �1
2�O��; @�;
; @
�: (21)

The sign of the first term on the r.h.s. of (21) is such that
small perturbations of � around � � 0 are unstable, i.e.,
these perturbations have a negative signature kinetic term
and are ghostlike. However, due to nonlinear interactions
one can change the signature of the kinetic term (21). This
can be done in a few ways:

(i) Consider an example

G ��� � �
1

2
�

�2

v2 : (22)

Furthermore, let the potential V in (21) take the form:

V��� � ���2 � v2�2: (23)
3This form of the mass term does not include the case when the
h2
�� term is absent. However, this should be similar to the other

generic a � 1 cases.
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Then the vacuum solution is � � v and a small perturba-
tion � around the vacuum, � � v� �, acquires a kinetic
term with a positive signature4 (as long as j�j � v):

�
1

2
�

2�
v
�
�2

v2

�
�@��2 � � � � : (24)

(ii) The second example is similar to the first one, but it
is due to higher derivatives. Consider

G �
� � �
1

2
�
@2


v3 : (25)

Suppose that for certain dynamical reasons the 
 field
develops the following condensate:

h@2
i � v3: (26)

This condensate leads to the ‘‘signature change’’ for the
kinetic term of the � field and small perturbations of the �
field about the correct vacuum state will have a positive
sign of energy.

(iii) Finally, nonlinear interactions of a single tensor
field could be a reason for the elimination of the ghost.
Below we will discuss such a mechanism for a graviton.
For this we will restrict ourselves to the case a � 1=2 in
(16). This choice is somewhat special for reasons that will
become clear shortly. We will also comment on the other
a � 1 cases below.

Thus, we consider the linearized action:
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In the quadratic approximation the above action can be
rewritten as
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(28)

where ~h�� � h�� � ���, and we used the relation:

1

4

�
h2
�� �

1

2
�h���2

�
� �1�

~h
2
�

1

4

�
~h2
�� �

1

2
�~h���2

�
:

(29)
4Note that the phases of the above model with � � 0 and � �
v can in general be disconnected from each other (superselection
sectors), however, this is not a matter of our discussions.
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We can imagine that the action (28) is our starting point in
which matter couples to ~h in a conventional way. The
actions (27) and (28) describe a free massive spin-2 state
plus a massive spin-0 ghost. This could be seen by calcu-
lating a one-particle exchange amplitude between two
conserved sources T�� and T0��. The momentum space
amplitude of the linearized theory contains the following
terms:

T��T0�� �
1
3TT

0

m2
g � p

2 � i�
�

1

6

TT0

m2
g � p

2 � i�
; (30)

with p2 being the transfer-momentum square. The first
term corresponds to an exchange of a massive spin-2 state
while the second term gives rise to a repulsive interaction
due to a massive spin-0 ghost. Therefore, the model (27),
[or (28)] as it stands, cannot be a consistent theory of
gravity.

Being motivated by the scalar field example discussed
above we will add new terms to (27) and (28) to eliminate
the ghost. This procedure, as we will see, also eliminates
the longitudinal polarizations of a massive graviton and
leads to a theory of a massless graviton on a curved
background. Thus, we expect that

�h2
�� �

1
2�h

�
��2� � V�h;���� (31)

can describe a theory with no ghosts for certain choices of
V. The key observation is that

������������������
j deth��j

q
� �h2

�� �
1
2�h

�
��2� � V�h�� � ����; (32)

where V is a known polynomial of its argument. The above
relation can be established by using an identity

������������������
j deth��j

q
�

����������������������������������������������������
j det���� � h�� � ����j

q
;

and formally expanding it in powers of h�� � ���:

����������������������������������������������������
j det���� � h�� � ����j

q
� exp

�
1

2
Tr
X1
n�1

��1�n�1

n

 �h�� � ����
n
�
:

It is certainly true that V in (32) contains an infinite number
of constant, linear, quadratic and higher powers of h;
nevertheless, the above procedure is a nonlinear comple-
tion for the action (28) that is written in terms of the
variable ~h��, since the function V contains only cubic
and higher powers in ~h��. The polynomial terms in V�~h�
trigger the background change for the ghost field by a
mechanism similar to the one described above. The fact
that this is the case is easy to understand without a term-by-
term calculation of V. This is because the resulting non-
linear theory can be written in a simple way
124007
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The above functional is nothing but the action of a theory
with nonzero cosmological constant equal to m2

g. It admits
solutions with curved background but does not admit flat
solutions. The spectrum of the theory on the curved back-
ground (either de Sitter (dS) or anti-de Sitter) has no
ghosts. The graviton in (33), unlike a 4D massive spin-2
state, propagates 2 physical degrees of freedom.

The results obtained above could be also understood in
the following way: Let us start with the Einstein-Hilbert
action with a nonzero cosmological constant (33). Let us
expand this action formally around a flat background,
��� � ~h��. Note that we are expanding around a back-
ground that is not a solution of the equations of motion.
Because of this we should anticipate certain inconsisten-
cies to emerge. As we will see, the way the inconsistencies
appear is very instructive, so we continue with our expan-
sion. We truncate this expansion at the quadratic order in ~h
(the covariant derivative in this expansion is just a simple
derivative). The resulting theory is (28) that has the qua-
dratic mass term in ~h, the linear term, and the constant
term. We regard the resulting model as a certain free theory
of ~h. Minkowski space, i.e., ~h � 0, is certainly not a
solution of the above linearized theory (this can also be
understood as an impossibility to obtain a cosmological
term starting from flat background and considering con-
sistent self-coupling requirements for the linearized action
[10]). However, it is remarkable that in the linearized
theory (28), the constant, linear, and quadratic nonderiva-
tive terms can be rearranged as a non-PF term with a �
1=2 by a formal change of variables [see action (27)]. The
latter is a non-PF mass term for h on a flat background. It
has a ghost in spite of the fact that the original nonlinear
theory (33) was ghost free.

Two important comments are in order.
(1) The above derivation applies to the a � 1=2 case

only. The question is whether the same conclusions remain
valid for any other a � 1 case. It is certainly true that the
linearized theory is unstable (has ghosts) for any a � 1.
Therefore, to make sense of such models the signature
change has to take place. If so, the background will also
be changed. Then, we come to similar conclusions—either
these models are inconsistent, or they describe curved
space, but none of these models can describe a massive
graviton on a flat space.

(2) So far we have been dealing with the classical effects
only. However, quantum corrections can be important in
discussing the issues of massive gravity. Let us start with
the PF mass term again. This term is set in a classical
theory by adjusting the coefficients of the h2

�� and �h���2

terms to be equal. However, there is no reason for quantum
gravitational loops to preserve this condition after the
appropriate wave-function renormalization is performed.
-5
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These coefficients are different in quantum theory and one
in general is back to the a � 1 case.

A question arises why the infinite number of terms in V
that we add in (31) and (32) are stable with respect to
quantum corrections. The answer is that the reparametri-
zation invariance of the complete theory (33) protects these
terms from being renormalized. Therefore the procedure
described for the a � 1=2 case is stable under loop cor-
rections. These corrections just renormalize the wave func-
tion h, Newton’s constant GN � 1=8M2

Pl, ‘‘graviton
mass’’ m2

g (i.e., the cosmological constant), and give rise
to higher-derivative terms.

How do these arguments change for the other a � 1
models? It is clear that unless the other a � 1 models
also have a reparametrization invariant completion, similar
to that of the a � 1=2 case, any finely adjusted nonlinear
addition to these models will in general be destroyed by
gravitational loop effects.
5More precisely, the solution in Ref. [15] was found in a
different coordinate system in which the off-diagonal terms in
the metric are not zero. The above solution is reducible to the
static-patch dS-Schwarzschild solution by a formal change of
coordinates. However, since the reparametrization invariance is
absent, these two coordinate systems are not physically equiva-
lent. Nevertheless, we will refer to these metrics as dS-
Schwarzschild solutions keeping in mind the above disclaimer.
IV. ON THE STRONG COUPLING PROBLEM IN
MASSIVE GRAVITY

It has been known for some time that perturbative ex-
pansion inGN breaks down in nonlinear diagrams at a scale
that is parametrically lower than the UV cutoff of the
theory [5] (see also [11]). This can be understood as a
consequence of strongly interacting longitudinal modes of
a massive graviton [7]. At the classical level, the calcula-
tions can still be performed by means of resummation of
the tree-level perturbation theory in GN , or by using a
perturbative expansion in a different parameter [5,11].
However, the question whether the same can or cannot be
done in full quantum PF theory remains open. If the
resummation is not possible in the quantum PF theory,
then there will appear higher-derivative operators in the
theory that are suppressed by a phenomenologically unac-
ceptable low scale [7].

The above results are obtained by considering perturba-
tive expansion on a flat background. However, as we dis-
cussed above, the Minkowski background is unstable in PF
gravity. Moreover, the instability of Minkowski space can
set in within a time scale that can be arbitrarily short.
Therefore, to understand whether the problem is truly
present in the PF theory, the issue should be studied on a
stable (or a long-lived metastable) ground state, if such a
state exists. At the moment the existence of such a ground
state is not obvious. If such a state does not exist, then the
nonlinear version of the PF gravity should be discarded as
an inconsistent model. The present work has nothing new
to add in this regard; all we have shown is that the
Minkowski space is certainly not a candidate for such a
background. On the other hand, if some stable curved
ground state exists, then the vDVZ discontinuity and the
strong coupling problems could in principle be cured by
the background curvature effects [7,12,13].
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It is also instructive to mention in this regard different
solutions of PF gravity that exist in the literature. One starts
with an empty space and puts a static and spherically
symmetric source in it. In the linear theory (1) this source
produces a static potential on a flat space that has the
Yukawa behavior at infinity. However, all this changes in
the nonlinear theory (2) where we look for a spherically
symmetric and static solution of nonlinear equations.
Moreover, we require that the solution gives rise to a 1=r
potential for distances r� m�1

g , and the exp��mgr�=r
potential at larger scales. It has been known for some
time [14,15] that the solutions of massive gravity in the
above two asymptotic regimes are hard to match together.
Moreover, recent numerical studies [16] show explicitly
that the matching is possible only at the expense of intro-
ducing a naked singularity at a finite proper distance from a
completely regular source. This is certainly unacceptable.
However, there exist solutions [15] for which the potential
is similar to that of a de Sitter-Schwarzschild metric in the
static coordinate system (in that system g00 � 1� rg=r�
�r2, and grr � 1=g00).5 These solutions also exist in the
absence of the source, i.e., when rg � 0. The de Sitter
curvature � is determined by the graviton mass and a
certain integration constant � � �mgu�

2, where u > 3=4.
The presence of this arbitrary integration constant is remi-
niscent of an arbitrary constant E in the solutions found in
Sec. II. Furthermore, unlike the solutions found in the
previous section, these solutions have a smooth limit as
mg ! 0 [15]. The solution can be interpreted as follows.
The gravitational mass term itself acts as a source for
gravity and produces effects that are somewhat similar to
those of a cosmological constant. An open question re-
mains whether the dS-Schwarzschild solution itself is sta-
ble with respect to small perturbations. If it is stable and its
curvature is bigger than m2

g, than there is neither the vDVZ
nor the strong coupling problems in this case [7,12,13].
However, irrespective of whether the curved background is
stable or not, our main conclusion holds unchanged—the
PF mass term at best leads to a change of the background,
but it in no way describes a flat space massive graviton.
V. HOW DO EXTRA DIMENSIONS HELP?

In conventional compactifications of theories with extra
dimensions one obtains a massless graviton that is inter-
acting with an infinite number of massive spin-2 states. In
the linearized approximation the mass terms for each of
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these massive spin-2 Kaluza-Klein (KK) modes have the
PF form. As we argued in Sec. II, flat space is unstable for
any nonlinear completion of the PF mass term. On the
other hand, the original higher-dimensional theory is a
reparametrization invariant model and can be shown to
have no instabilities of the type obtained in Sec. II. The
resolution of this seeming contradiction is in the fact that
one gets an infinite number of massive spin-2 KK states
upon compactification and truncation of this tower to any
finite order leads to inconsistencies [17,18]. The manifest
reparametrization invariance of a higher-dimensional the-
ory is a convenient bookkeeping tool to utilize to see these
properties. The reparametrization invariance at each KK
level is maintained on the same KK level only in the
linearized approximation. Nonlinear effects mix different
KK levels under the coordinate transformations [17,18].
Hence, the consistency of the theory is achieved by means
of an infinite number of four-dimensional reparametriza-
tion invariances. Any truncation of the theory to a finite
number of massive spin-2 fields leads to an explicit break-
down of all the massive gauge invariances, including the
ones that correspond to the massive fields that are retained
in the low-energy description. As a result, in the truncated
theory the problems of PF gravity will arise. Therefore, a
consistent theory should maintain all the infinite number of
fields.

In conventional compactifications one obtains a mass-
less graviton. In this case, large distance gravity is indis-
tinguishable from 4D general relativity. Our goal, however,
is to present a model of a massive graviton (with no
massless mode).

A generally covariant model that shares many proper-
ties of massive gravity, but retains all the attractive features
of a higher-dimensional reparametrization invariant theory
is the DGP model [19]. In five-dimensional context it
described a metastable graviton with no mass. In higher-
dimensional generalizations of the DGP model [20,21] the
graviton has an effective mass that is much larger that its
width [22,23]. Thus, the model introduces a reparametri-
zation invariant mass term for a graviton. Such models
have string theory realization [24] (see Refs. [25–32] for
interesting cosmological and astrophysical studies).

Gravitational dynamics encoded in the model can be
inferred both from the four-dimensional as well as
�4� N�-dimensional standpoints. From the 4D perspec-
tive, gravity on the brane is mediated by an infinite number
of the Kaluza-Klein modes that have no mass gap. Under
conventional circumstances (i.e., with no brane kinetic
term) this would lead to higher-dimensional interactions.
However, the large Einstein-Hilbert term on the brane
suppresses the wave functions of heavier KK modes, so
that in effect they do not participate in the gravitational
interactions on the brane at observable distances [33]. Only
light KK modes, with masses mKK & mg � 10�42 GeV,
remain essential, and they collectively act as an effective
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4D graviton with a typical mass of the order of mg. At
present, the N � 2 DGP models [20,21] seem to be the
only consistent model of a massive graviton on flat space
(the N � 1 model is not massive). This model has no
ghosts in the linearized theory [21,34] and possesses a
reparametrization invariant nonlinear action. Because of
this, unlike nonlinear PF gravity, the ghosts do not appear
in the nonlinear theory and instabilities of the PF gravity
are not present.

The above models evade the problems of the 4D PF
theory because at any low-energy scale they contain an
infinite number of KK gravitons with no mass gap. In other
words, these models can be thought of as nonlocal models
from the 4D point of view [25].6 Indeed a massive graviton
in 4D can be described by a nonlocal equation �1�
m2
g=r2�G�� � T�� � � � � , where dots stand for some

other terms that are needed to restore the Bianchi identities.
We also note that in (2� 1) dimensions a unitary and

causal theory of a massive graviton is topologically mas-
sive gravity [36].
VI. CONCLUSIONS

Summarizing, the PF term is the only quadratic term that
has no ghosts in the linearized theory. Any polynomial
nonlinear completion of this term, however, gives rise to
instabilities. We found empty-space solutions that mani-
festly show the instability of Minkowski space in PF
gravity. Therefore, there is no reason to restrict ourselves
to the PF term and one might start with a non-PF quadratic
terms. The latter have ghosts already in the linear theory.
Nevertheless, the ghosts can be eliminated by higher-
derivative terms via the background rearrangement. The
resulting nonlinear theory has no classical instabilities,
however, it does not describe graviton mediating Yukawa
interactions on flat 4D space. It is very likely that out of all
candidates for ‘‘massive’’ local 4D theories, only one has a
nonlinear completion that is radiatively stable (the a �
1=2 case). However, in this case the ‘‘mass’’ term is
nothing but the cosmological term. A natural way to ac-
count for a massive graviton on flat space is to invoke
theories with extra dimensions. The latter evade the prob-
lems of the 4D massive gravity because they are nonlocal
theories from the 4D point of view.
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APPENDIX

We will consider nonlinear oscillations of a massive
graviton condensate, meaning that all components of the
metric are functions of t only. It is convenient to use the
Arnowitt-Deser-Misner parametrization of the metric:

ds2 � N2dt2 � �ij�dxi � Nidt��dxj � Njdt�: (A1)

Then the Lagrangian reads

L � 1
2

����
�
p

N�1� _�ij _�ij � � _�jj�
2� �m2

gF; (A2)

where F�N;Ni; �ij� represents a general nonlinearly com-
pleted Pauli-Fierz term. The Nj constraints simply remove
the Nj dependence of F:

F ! F�N; �ij�: (A3)

It remains to remove the N constraint. Diagonalizing the
3-metric, �ij � diag�e2a; e2b; e2c�, and writing N2 � e2d,
we obtain a simple Lagrangian

L � �ea�b�ce�d� _a _b� _a _c� _b _c� �m2
gF�a; b; c; d�:

(A4)

The quadratic part of F is the Pauli-Fierz quadratic form

F � ��ab� ac� bc� � d�a� b� c� �G; (A5)

and G contains cubic and higher order terms. This is easy
to check. In the linearized approximation, the Lagrangian
becomes

L � �� _a _b� _a _c� _b _c� �m2
g��ab� ac� bc�

� d�a� b� c��: (A6)
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The d constraint gives a� b� c � 0, leading to

L � 1
2� _a2 � _b2 � _c2� � 1

2m
2
g�a2 � b2 � c2�; (A7)

which describes constrained positive-energy harmonic os-
cillators of mass mg.

In the generic nonlinear case, the d constraint gives

ea�b�ce�dT �m2
g@dF � 0; (A8)

where

T � _a _b� _a _c� _b _c : (A9)

The energy is

E � �ea�b�ce�dT �m2
gF � m2

g�F� @dF�; (A10)

where d � d�a; b; c; T� from (A8).
To show that the energy can be negative for arbitrary F,

we assume that a, b, c, d, and T are infinitesimals of the
same order. Then we can linearize both the constraint
Eq. (A8) and the energy expression (A10). The constraint
equation is

T � �m2
g�a� b� c�: (A11)

Our assumption that a, b, c, d, and T are infinitesimals of
the same order will be correct only if we choose a, b, c, and
T that satisfy (A11). Then the energy is

E � �T; (A12)

which is not positive semidefinite.
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