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Stability of modified gravity models
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Conditions for the existence and stability of de Sitter space in modified gravity are derived by
considering inhomogeneous perturbations in a gauge-invariant formalism. The stability condition co-
incides with the corresponding condition for stability with respect to homogeneous perturbations, while
this is not the case in scalar-tensor gravity. The stability criterion is applied to various modified gravity
models of the early and the present universe.
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I. INTRODUCTION

The 1998 discovery that the expansion of the Universe is
accelerated, obtained with the study of type Ia supernovae
[1], has prompted many theoretical models to explain this
phenomenon. Most of these models can be classified in
three classes: dark energy models, modified gravity mod-
els, and brane-world models. In the first class it is assumed
that a form of dark energy or quintessence of unknown
nature has come to dominate the dynamics of the Universe
at recent times (redshifts z � 1). These models are usually
explored in the context of Einstein’s theory of general
relativity [2], or possibly in its scalar-tensor generaliza-
tions (extended quintessence) [3]. Dark energy must nec-
essarily have exotic properties in order to generate
acceleration. In the spatially flat Friedmann-Lemaitre-
Robertson-Walker (FLRW) line element describing our
Universe according to the recent cosmic microwave back-
ground experiments [4], and given by

ds2 � �dt2 � a2�t��dx2 � dy2 � dz2� (1.1)

in comoving coordinates �t; x; y; z�, the acceleration equa-
tion [5]

�a
a
�
�
6
��� 3P� (1.2)

holds, where � � 8�G and � and P are the total energy
density and pressure of the cosmic fluid, respectively. An
overdot denotes differentiation with respect to the comov-
ing time t. If dark energy were the only form of energy of
the Universe, acceleration �a > 0 would require an exotic
negative pressure P<��=3; and if ordinary matter and
dark matter contributing to the dynamics are taken into
account, the pressure of dark energy must be even more
negative to compensate. As a matter of fact, dark energy is
even more exotic: the best fit to the supernovae data favors
an extreme form of dark energy called phantom energy or
superquintessence with P<��—or with an effective
equation of state parameter w � P=� <�1.
Furthermore, the effective equation of state should evolve
with time [6]. If confirmed, this fact would definitely rule
out the cosmological constant � as an explanation of the
cosmic acceleration because w� � �1 is strictly constant
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(the cosmological constant model is anyway disfavored
because of the cosmological constant problem [7] and of
the cosmic coincidence problem [8] that accompany it).
Most models of dynamical dark energy are based on a
scalar field � rolling in a potential V���, a way to imple-
ment cosmic acceleration that is well known from infla-
tionary theory in the early universe [9]. However, a
canonical scalar field minimally coupled to the Ricci cur-
vature R in Einstein gravity cannot explain an equation of
state parameter w<�1, which is equivalent to superac-
celeration _H > 0, whereH � _a=a is the Hubble parameter
[10]. (This name distinguishes a regime in which the
Hubble parameter increases from an ‘‘ordinary’’ accelera-
tion regime in which �a � a� _H �H2�> 0 and _H � 0.) In
fact, the energy density and pressure of such a scalar field
are

�� �
_�2

2
� V���; P� �

_�2

2
� V���; (1.3)

and the Einstein-Friedmann equation of general relativity

_H � �
�
6
�P� �� � �

�
2

_�2 (1.4)

yields _H � 0 for a universe dominated by such a scalar (the
upper bound H � const is attained by de Sitter space). In
order to model an equation of state parameter w<�1
corresponding to _H > 0, which is the situation favored
by the observational data, a phantom field with negative
kinetic energy [11] or a scalar field coupled nonminimally
to gravity [12] have been used. Both of these theories can
be seen as special cases of scalar-tensor gravity, described
by the action

S �
Z
d4x

�������
�g
p

�
 ���R�

!���
2

gabra�rb�� V���
�
;

(1.5)

where  ��� and !��� are arbitrary coupling functions.
The exotic properties of dark energy or of its extreme form,
phantom energy, have led some authors to a different
approach and to the second class of models mentioned
above. Instead of postulating an exotic form of dark energy
of mysterious nature, these authors [13,14] consider the
-1 © 2005 The American Physical Society
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possibility that gravity deviates from Einstein gravity at
large scales and assume that the Einstein-Hilbert
Lagrangian is modified by corrections that become impor-
tant only at late times in the history of the Universe, i.e.,
when the curvature becomes small. This class of theories,
called modified gravity, is described by the gravitational
action

Sg �
Z
d4x

�������
�g
p

f�R�; (1.6)

where f�R� is a nonlinear function of R. The first model
proposed had the form f�R� � R��4=R, in which the
correction in R�1 becomes important only at low curva-
tures R! 0. The general form (1.6) of the action also
includes quantum gravity corrections to Einstein’s theory
originally introduced to improve renormalizability [15,16]
and used in inflationary models of the early universe [17].
In addition to the desired phenomenological properties of
modified gravity in cosmology, there is some motivation
for these models from M theory [18].

In both classes of models, depending on the arbitrary
functions and parameters adopted, there are solutions de-
scribing universes that accelerate forever, other solutions in
which the Universe ends its existence in a finite time in the
future in a big rip singularity [19] or encounters another
type of ‘‘sudden future singularity’’ [20]. The fate of the
Universe depends on whether attractor solutions that are
forever accelerating or big rip attractors exist in the phase
space, and on the size of their respective attraction basins.
In many models of both dark energy and modified gravity
there are de Sitter attractors accelerating forever. In this
paper we focus on modified gravity and in Sec. III we use
scalar-tensor gravity for a comparison of properties. We
determine whether de Sitter attractors exist in the phase
space of modified gravity by deriving conditions for the
existence and stability of these solutions. Throughout most
of this paper we consider general nonlinear actions of the
form (1.6) with @2f=@R2 � 0 and, in the final part of this
paper, we apply our general results to specific scenarios
and forms of f�R� proposed in the literature.

While it is straightforward to study the stability of
de Sitter space with respect to homogeneous perturbations,
which only depend on time, it is physically more signifi-
cant to assess stability with respect to more general inho-
mogeneous perturbations, which depend on both space and
time. This goal is more ambitious because of the gauge-
dependence problems associated with this type of cosmo-
logical perturbations [21] and one expects the stability
condition with respect to inhomogeneous perturbations to
be more restrictive than the corresponding condition for
stability with respect to homogeneous perturbations. It
comes therefore as a surprise that these conditions coin-
cide, as shown in Sec. III and briefly reported in a previous
communication [22]—this result cannot be guessed or
justified a priori. A similar analysis shows instead that in
scalar-tensor theories the stability condition with respect to
124005
homogeneous perturbations is indeed more restrictive than
the corresponding one for homogeneous perturbations
[22].

Certain modified gravity models are ruled out on the
basis of instabilities that manifest on short timescales [23–
27]. The stability condition derived here has the advantage
of being applicable to any nonlinear Lagrangian of the
form

�������
�g
p

f�R� and is useful in the study of the phase
space and dynamics of modified gravity scenarios.
Another motivation for our study is that, in order to be
viable, modified gravity models need to have the correct
Newtonian and post-Newtonian limit, and currently there
is disagreement on whether certain models pass or not this
test [28–31]. Because many models do not admit a
Minkowski solution around which to expand the weak-
field metric, an expansion around the de Sitter background
is used instead [25,26,29]. This is meaningful when a
de Sitter solution exists and is stable.

The plan of this paper is the following: In Sec. II we
derive a stability condition for de Sitter space with respect
to inhomogeneous perturbations by using a covariant and
gauge-invariant formalism suitable for generalized gravity
(including scalar-tensor and modified gravity and possibly
mixed models). In Sec. III we derive the much simpler
stability condition with respect to homogeneous perturba-
tions in modified gravity, and we interpret our results. In
Sec. IV the stability condition derived for modified gravity
is applied to various scenarios widely discussed in the
literature, while Sec. V contains a discussion and the
conclusions.
II. STABILITY OF DE SITTER SPACE WITH
RESPECT TO INHOMOGENEOUS

PERTURBATIONS

We can consider at once modified gravity and scalar-
tensor theories, which we will use for a comparison with
modified gravity, by studying the gravitational action

S�
Z
d4x

�������
�g
p

�
1

2
f��;R��

!���
2

gabra�rb��V���
�
:

(2.1)

This action contains also possible combinations of modi-
fied and scalar-tensor gravity if both @f=@� and @2f=@R2

are nonvanishing: such mixed scenarios have received little
attention in the literature so far [32]. Scalar-tensor gravity
is the special case in which f is linear in R, i.e., f��;R� �
 ���R, while modified gravity corresponds to setting � �
1 and @2f=@R2 � 0. In the spatially flat FLRW metric (1.1)
the field equations assume the form

H2 �
1

3F

�
!
2

_�2 �
RF
2
�
f
2
� V � 3H _F

�
; (2.2)

_H � �
1

2F
�! _�2 � �F�H _F�; (2.3)
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��� 3H _��
1

2!

�
d!
d�

_�2 �
@f
@�
� 2

dV
d�

�
� 0; (2.4)

where F � @f=@R. It is natural to use �H;�� as dynamical
variables and the equilibrium points of the dynamical
system (2.2)–(2.4) are de Sitter spaces with constant scalar
field �H0; �0�: they exist subject to the conditions

R0F0 � 2�f0 � V0�; (2.5)

f00 � 2V 00; (2.6)

where R0 � 12H2
0 , f0 � f��0; R0�, F0 � F��0; R0�, V0 �

V��0�, V 00 �
dV
d� j�0

, and a prime denotes differentiation
with respect to �. In modified gravity, there is only the
condition (2.5) for the existence of de Sitter solutions
because there is only one arbitrary function f�R�.

In order to describe inhomogeneous perturbations of the
de Sitter fixed points �H0; �0� we use the covariant and
gauge-invariant formalism of Bardeen-Ellis-Bruni-
Hwang-Vishniac [21,33] in the version given by Hwang
and Hwang and Noh [34] for generalized gravity. The
metric perturbations A;B;HL; and HT are defined by the
relations

g00 � �a
2�1� 2AY�; (2.7)

g0i � �a
2BYi; (2.8)

gij � a2�hij�1� 2HL� � 2HTYij	; (2.9)

where the scalar harmonics Y are the eigenfunctions of the
eigenvalue problem �ri

�ri Y � �k2Y, and where hij is the
three-dimensional metric of the FLRW background, �ri is
the covariant derivative associated with hij, and k is the
eigenvalue. The vector and tensor harmonics Yi and Yij
satisfy the equations

Yi � �
1

k
�riY; (2.10)

Yij �
1

k2
�ri �rj Y �

1

3
Yhij: (2.11)

We need the Bardeen gauge-invariant potentials [21]

�H � HL �
HT

3
�

_a
k

�
B�

a
k

_HT

�
; (2.12)

�A � A�
_a
k

�
B�

a
k

_HT

�
�
a
k

�
_B�

1

k
�a _HT�_

�
; (2.13)

and the Ellis-Bruni variable [33]

�� � ���
a
k

_�
�
B�

a
k

_HT

�
; (2.14)

while equations similar to Eq. (2.14) define the gauge-
invariant variables �f, �F, and �R. The first order equa-
tions satisfied by the gauge-invariant perturbations are [34]
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� ���
�
3H �

_�
!
d!
d�

�
� _��

�
k2

a2 �
_�2

2

d
d�

�
1

!
d!
d�

�

�
d
d�

�
1

2!
@f
@�
�

1

!
dV
d�

��
��

� _�� _�A � 3 _�H� �
�A

!

�
@f
@�
� 2

dV
d�

�
�

1

2!
@2f
@�@R

�R;

(2.15)

� �F� 3H� _F�
�
k2

a2 �
R
3

�
�F�

F
3

�R�
2

3
! _�� _�

�
1

3

�
_�2 d!
d�
� 2

@f
@�
� 4

dV
d�

�
��

� _F� _�A � 3 _�H� �
2

3
�FR� 2f� 4V��A; (2.16)

�H T �

�
3H�

_F
F

�
_HT �

k2

a2 HT � 0; (2.17)

� _�H �

�
H �

_F
2F

�
�A �

1

2

�
� _F
F
�H

�F
F
�
!
F

_���
�
;

(2.18)

�
k
a

�
2
�H �

1

2

�
!
F

_�2�
3

2

_F2

F2

�
�A

�
1

2

�
3

2

_F� _F

F2 �

�
3 _H�

k2

a2�
3H
2

_F
F
�
�F
F
�
!
F

_�� _�

�
1

2F

�
_�2 d!
d�
�
@f
@�
� 2

dV
d�
� 6! _�

�
H�

_F
2F

��
��

�
;

(2.19)

�A ��H � �
�F
F
; (2.20)

��H�H _�H�

�
H�

_F
2F

�
�2 _�H� _�A�

�
1

2F
�f�2V�RF��A

��
1

2

�
� �F
F
�2H

� _F
F
��P���

�F
2F
�
!
F

_�� _�

�
1

2F

�
_�2d!
d�
�
@f
@�
�2

dV
d�

�
��

�
; (2.21)

and
�R � 6

�
��H � 4H _�H �

2

3

k2

a2 �H �H _�A

�

�
2 _H� 4H2 �

k2

3a2

�
�A

�
: (2.22)

In the de Sitter background �H0; �0�, these equations as-
sume the considerably simpler form
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� ��� 3H0� _��
�
k2

a2 �
1

2!0
�f000 � 2V 000 �

�
�� �

f�R
2!0

�R;

(2.23)

� �F� 3H0� _F�
�
k2

a2 � 4H2
0

�
�F�

F0

3
�R � 0; (2.24)

�H T � 3H0
_HT �

k2

a2 HT � 0; (2.25)

� _�H �H0�A �
1

2

�
� _F
F0
�H0

�F
F0

�
; (2.26)

�H � �
1

2

�F
F0

; (2.27)

�A ��H � �
�F
F0

; (2.28)

�� H � 3H0
_�H �H0

_�A � 3H2
0�A

� �
1

2

� �F
F0
�H0

� _F
F0
�

3H2
0

2

�F
F0

; (2.29)

to first order, whereas

�R � 6
�

��H � 4H0
_�H �

2

3

k2

a2 �H �H0
_�A

�

�
k2

3a2 � 4H2
0

�
�A

�
: (2.30)

To first order and in the absence of ordinary matter [35],
vector perturbations do not have any effect. Expanding
de Sitter spaces with H0 > 0 are always stable, to first
order, with respect to tensor perturbations [36], as can be
seen from Eq. (2.17). On the other hand, contracting
de Sitter spaces with H0 < 0 are always unstable [36]
and will not be considered further. There remain scalar
perturbations, which we set out to examine.

In modified gravity theories with f � f�R�, � � 1, and
fRR � 0, Eqs. (2.27) and (2.28) yield

�H � �A � �
�F
2F0

; (2.31)

whereas Eqs. (2.30) and (2.31) yield

�R � 6
�

��H � 3H0
_�H �

�
k2

a2 � 4H2
0

�
�H

�
; (2.32)

and a � a0eHot is the scale factor of the unperturbed
de Sitter space, with a0 a constant. In the de Sitter back-
ground the gauge-invariant variables reduce, to first order,
to

�� � ��; �R � �R;

�F � �F; �f � �f:
(2.33)

Since the function F depends only on R one has
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�F
F0
�
fRR
F0

�R; (2.34)

where

fRR �
@2f

@R2

��������R0

; (2.35)

and therefore

�R � �
2F0

fRR
�H: (2.36)

The perturbations �H � �A then evolve according to
Eq. (2.29), which becomes

��H � 3H0
_�H �

�
k2

a2 � 4H2
0 �

F0

3fRR

�
�H � 0; (2.37)

where a � a0eH0t, with a0 a constant. At late times the
term k2=a2 can be neglected and stability is achieved if the
coefficient of �H in the last term of the left-hand side of
Eq. (2.37) is positive or zero: upon use of the value of the
Hubble parameter given by Eq. (2.5) for the unperturbed
de Sitter space, this condition reduces to

F2
0 � 2f0fRR
F0fRR


 0: (2.38)

This inequality was presented in a previous communica-
tion without details of the derivation [22]. We now com-
ment on the physical meaning of the approximation
leading to (2.38). Information on the spatial dependence
of the inhomogeneous scalar perturbations are contained in
the eigenvector k of the spherical harmonics, and the fact
that the only term containing k in Eq. (2.37) becomes
negligible as time progresses in a de Sitter background
implies that the spatial dependence effectively disappears
from the analysis. One may be tempted to conclude that the
stability condition (2.38) with respect to inhomogeneous
perturbations could be obtained in a much quicker way by
considering the simpler homogeneous perturbations: this
would be incorrect as one would not be able to guess a
priori, in a homogeneous perturbation analysis, the struc-
ture of Eq. (2.37) and the fact that the spatial dependence
disappears. Furthermore, in the parallel case of scalar-
tensor gravity, the stability condition with respect to ho-
mogeneous perturbations differs from the corresponding
one for inhomogeneous perturbations, and one would ex-
pect the same to happen for modified gravity. This is the
subject of the next section.
III. HOMOGENEOUS PERTURBATIONS IN
MODIFIED GRAVITY AND IN SCALAR-TENSOR

THEORIES

We now derive the stability condition of de Sitter space
with respect to homogeneous perturbations in modified
gravity, in order to compare it with the result (2.38) of
the previous section. The field equations reduce to
-4
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H2 �
1

3F

�
RF� f

2
� 3H _F

�
; (3.1)

_H � �
1

2F
� �F�H _F�: (3.2)

By assuming that H�t� � H0 � �H�t� and using the first
order expansions

R � R0 � �R; �R � 6�� _H� 4H0�H�;

F � F0 � fRR�R; f � f0 � F0�R;
(3.3)

and Eq. (2.5), one obtains the evolution equation for the
homogeneous perturbation �H

� �H �
�

4H0 �
f0

6H0F0

�
� _H �

1

3

�
F0

fRR
�

2f0

F0

�
�H � 0:

(3.4)

The ansatz �H � �est yields an algebraic equation for s
with roots

s� �
1

2

24� f0

2H0F0
�

����������������������������������������������������������
f0

2H0F0

�
2
�

4

3

�
F0

fRR
�

2f0

F0

�s 35:
(3.5)

Assuming f0 > 0 and H0 > 0, if also F0 > 0, then
�f0=�2H0F0�< 0 and there is stability if and only if

F0

fRR
�

2f0

F0

 0; (3.6)

which is equivalent to the condition (2.38). If (3.6) is not
satisfied, the root s� is real and positive, corresponding to
an unstable mode growing exponentially in time.

The case F0 < 0 does not correspond to a de Sitter
solution when f0 > 0 because Eq. (2.5), which reduces to
R0F0 � 2f0 cannot be satisfied in this case.

Why the stability condition with respect to homogene-
ous perturbations coincides with the corresponding stabil-
ity condition with respect to inhomogeneous
perturbations? A naı̈ve answer would be that the spatial
dependence of the inhomogeneous perturbations can be
eliminated safely in the analysis of Eq. (2.37) or, in other
words, inhomogeneities are redshifted away, and the re-
sults must coincide. This would be intuitive: even initial
anisotropies are known to be smoothed out by de Sitter-like
expansion [37] in general relativity and in some scalar-
tensor cosmologies [38], but this is not the correct expla-
nation. In fact, if it were true, it should hold also in the case
of scalar-tensor gravity in which f��;R� �  ���R, but
this is not the case as we are going to show. The stability
condition with respect to inhomogeneous perturbations in
scalar-tensor gravity has been derived in Ref. [36] by
analyzing the equation for the gauge-independent
Bardeen potentials and for the Ellis-Bruni variable ��,
124005
� ��� 3H0� _��

2
64k2

a2 �

f000
2 � V

00
0 �

6f2
�RH

2
0

F0

!0�1�
3f2

�R

2!0F0
�

3
75�� � 0;

(3.7)

where

f�R �
@2f
@�@R

����������0;R0�

; f000 �
@2f

@�2

����������0;R0�

: (3.8)

This equation is obtained from Eqs. (2.23)–(2.30) if 1�

3f2
�R=�2!0F0� � 0. The stability condition that ensues is

[36]

f000
2 � V

00
0 �

6f2
�RH

2
0

F0

!0�1�
3f2

�R

2!0F0
�
� 0: (3.9)

For the sake of comparison, let us derive the corresponding
stability condition with respect to homogeneous perturba-
tions in scalar-tensor gravity. Assuming that f��;R� �
 ���R, the homogeneous perturbations

H�t� � H0 � �H�t�; ��t� � �0 � ���t� (3.10)

satisfy the first order evolutions equations

� _H � �
1

2 0
� 00� ���H0 

0
0� _��; (3.11)

� ��� 3H0� _��
1

2!0
�2V 000 � f

00
0 ��� � 0: (3.12)

By contrast, in general relativity with a minimally coupled
scalar field the perturbations have no effect to first order.
This is due to the noncanonical form of the effective
energy-momentum tensor of the scalar field appearing in
the left-hand side of the field equations of scalar-tensor
gravity when these are written in the form Gab �

8�T�eff�
ab ��	 (see Refs. [39,40] for a discussion). The stabil-

ity condition with respect to homogeneous perturbations
can be read off of Eq. (3.12),

f000
2 � V

00
0

!0

� 0: (3.13)

The stability condition (3.9) with respect to inhomogene-
ous perturbations is more restrictive than (3.13) and, in
spite of having neglected a term k2=a2 � k2e�2H0t=a2

0 in
Eq. (3.9), the final stability condition (3.9) retains a mem-
ory of the spatial dependence of the inhomogeneous per-
turbations, which is instead lost in the homogeneous
perturbation analysis leading to (3.13). A priori, one should
expect a similar situation for modified gravity, and the fact
that the two stability conditions coincide for these theories
appears to be coincidental.

For the particular class of scalar-tensor theories de-
scribed by the action
-5
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S �
Z
d4x

�������
�g
p

�
�R�

!���
�

gabra�rb�� V���
�

(3.14)

and containing a single arbitrary coupling function !���,
the stability conditions (3.9) and (3.13) coincide [41].
However, these two conditions fail to coincide in the
general scalar-tensor theory (1.5) because, in the right-
hand side of Eq. (2.23), curvature perturbations �R act
as sources for the perturbations �� (which, in the de Sitter
background, coincide with ��). On the contrary, such a
term is absent in the homogeneous perturbation analysis of
the Klein-Gordon equation (2.4), and an analogous term
does not appear in Eq. (2.37) for the gauge-independent
Bardeen potential �H in modified gravity because there is
no scalar field in this case and f�R � 0—Eq. (2.23) then
becomes homogeneous.

IV. APPLICATION TO SPECIFIC MODIFIED
GRAVITY SCENARIOS

We now proceed to apply the stability condition (2.38) to
certain specific modified gravity scenarios that have been
proposed in the literature, for which a de Sitter space is
relevant.

A. f�R� � R� �4

R

This theory [13,14,18,23,24,42], with the mass scale
�0 ’ H0 ’ 10�33 eV, was the first candidate proposed to
explain the cosmic acceleration, and it is known to be
subject to an instability that develops on a time scale of
order 10�26 s [24]. For this theory, the stability condition
(2.38) reduces to

1�
6�4

R2
0

�
3�8

R4
0

� 0; (4.1)

and it is clear that by taking�0 � H0 with R0 � 12H2
0 , the

stability condition is impossible to satisfy. More precisely,
the condition for the existence of de Sitter solutions is
R0 �

���
3
p
�2 (see also Ref. [14]) and the stability condition

(2.38) reduces to 8=3 � 0, which obviously cannot be
satisfied. We stress that this instability of de Sitter space
arises in the gravitational sector of the theory, while the
instability discovered in Ref. [24] arises in the matter
sector and would disappear in vacuum. The instability of
de Sitter space can be stabilized by adding a term of the
form �R2 with 0< �<�4 to the Lagrangian density, as
shown in the following.

B. f�R� � R� �4

R � aR
2

In this theory [43] the condition for the existence of
de Sitter solutions (2.5) becomes [43,44]

R0 �
���
3
p
�2; (4.2)

independent of the parameter of the quadratic correction—
124005
therefore this condition holds true also for a � 0 as seen in
the previous case. For general values of the parameter a,
upon use of Eq. (4.2), the stability condition (2.38) reduces
to

1

3
���
3
p
a�2 � 1


 0; (4.3)

and therefore de Sitter space is stable if a > �3
���
3
p
�2��1

and unstable if a < �3
���
3
p
�2��1 (in particular for a � 0,

which is the previous case). Therefore, adding a quadratic
correction with a < �3

���
3
p
�2��1 (and, in particular, with a

negative a, which reinforces the effect of the term��4=R)
leads to instability. Now, if �
H0 
 10�33 eV, the pa-
rameter a must be larger than 
1065 �eV��2 for stability,
which appears to be huge in natural units—stability is
achieved at the price of fine-tuning the parameters.

C. f�R� � Rn

This modified gravity theory has been pursued in the
literature [13,45], especially for n � �1 and for n � 3=2,
in which case it is conformally equivalent to Liouville field
theory [13]. The model has been used to explain the cosmic
acceleration and it is also interesting because ordinary
inflation with a minimally coupled scalar field and an
exponential potential (power-law inflation) can be rewrit-
ten as a theory f�R� � Rn [43]. For generic values of n �

0; 1=2; 1, the theory yields power-law inflation a / t� with

� �
�2n2 � 3n� 1

n� 2
: (4.4)

This theory does not admit de Sitter solutions if n � 2
[36,46] unless a cosmological constant, corresponding to a
term with n � 0, is added to the action [46]. However,
Minkowski space (the trivial de Sitter space) is a solution
without cosmological constant for any positive value of n
[47]. In fact, the condition (2.5) for the existence of
de Sitter solutions yields nR0 � 2Rn0 , which is only satis-
fied for n � 2 or R0 � 0. The stability condition (2.38)
yields

R0
2� n
n�n� 1�


 0 (4.5)

and is satisfied for 1< n � 2 and for n < 0; it is identically
satisfied for n � 2, without imposing constraints on the
Hubble parameter H0 of de Sitter space. The Minkowski
spaces R0 � 0 are stable for any n > 0.

D. f�R� � R� �R2

Quadratic corrections to the Einstein-Hilbert Lagrangian
density are motivated by renormalizability [15,16] and
higher order corrections are unavoidable near the Planck
scale [48]. This theory was used in one of the earliest
inflationary scenarios [17], not requiring an inflaton field.
The constant has dimensions �
M�2, where M

1012 GeV. The condition for the existence of de Sitter
-6
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solutions allows only the trivial Minkowski space H0 � 0.
However, there are nontrivial de Sitter solutions if a cos-
mological constant is added to f�R� [36]. The stability
condition (2.38) yields

1

��1� 2�R0�

 0; (4.6)

which, for Minkowski space, gives stability if � > 0 and
instability for � < 0. The case � � 0 corresponding to
Einstein’s theory must be studied separately and it is con-
cluded that Minkowski space is stable in this case [36].

E. f�R� � R� �R2 � 2�

By adding a cosmological constant to the previous the-
ory, de Sitter solutions become possible and are given by
R0 � 4�, or H0 �

���������
�=3

p
as in general relativity, because

the condition on H0 does not depend on the parameter �
and coincides with the corresponding condition for � � 0.
The stability condition (2.38) reduces to � > 0: a positive
quadratic correction acts in the same direction as the term
R in the Lagrangian, whereas a negative quadratic correc-
tion with j�j arbitrarily small makes de Sitter space
unstable.

F. f�R� � R� �Rn

This theory [14,49], with �
M2�1�n�, where M is a
mass scale, comprises quantum gravity-motivated correc-
tions to the Einstein-Hilbert Lagrangian for n > 0, as well
as the theory f�R� � R��4=R already discussed, or
similar theories, if n < 0. The condition for the existence
of de Sitter space is either R0 � 0 (Minkowski space) or

Rn�1
0 � �12H2

0�
n�1 �

1

��n� 2�
(4.7)

for n � 2 (the case n � 2 has already been considered). In
the case of a nontrivial de Sitter space H0 � 0 the stability
condition (2.38) yields, using Eq. (4.7),

�n2 � 2n� 2

�n�n� 1�

 0 (4.8)

or �n < 0, and therefore de Sitter space is stable if �n < 0
and unstable otherwise. In particular, it is stable if � > 0
and n < 0 (or if � < 0 and n > 0), which comprises the
case f�R� � R��4=R (as n � 2 is excluded from this
analysis, these results do not contradict the previous state-
ments on the stability of Minkowski space when n � 2).
Therefore, any theory of the form f�R� � R��2�1�n�=Rm

withm> 0 exhibits the same instability in the gravitational
sector as the model f�R� � R��4=R and, likely, the
same instability reported in Ref. [24] for the matter sector.

G. f�R� � a ln�Rb�

This theory [30,50,51], which does not admit a
Minkowski space or other solutions with vanishing Ricci
124005
curvature, admits a de Sitter solution only if R0 � 12H2
0 �

beb=2, where b is a positive parameter. The stability con-
dition (2.38) reduces to

b
�
b� 2 ln

�
R0

b

��
� 0; (4.9)

which, for b > 0, is equivalent to eb � 0 and obviously is

never satisfied: the de Sitter space H0 �
�������������������
beb=2=12

q
is

unstable.
V. DISCUSSION AND CONCLUSIONS

The general stability condition (2.38) of de Sitter space
in modified gravity derived in Sec. II allows one to quickly
assess the stability of de Sitter space in specific scenarios.
Of course, when the number of terms in the Lagrangian
density grows, so does the volume of parameter space to be
searched and this analysis becomes cumbersome—it
would be greatly helped by an estimate of the range of
values of the parameters involved. In the future we plan to
extend to power-law solutions the study carried out here for
de Sitter spaces.

The comparison of the modified gravity results with the
analogous results in scalar-tensor gravity shows that,
although there exists a dynamical equivalence between
modified gravity and scalar-tensor gravity [52], this should
not be taken too literally. The stability conditions with
respect to homogeneous and inhomogeneous perturbations
coincide in modified gravity but not in scalar-tensor grav-
ity, due to the different detailed structure of the equations
satisfied by the perturbations.

The scope of the stability analysis can perhaps be ex-
tended to more general theories of the form
f�R;R2; RabR

ab; RabcdR
abcd� containing string-motivated

corrections (see, e.g., Refs. [53–55]); there are, however,
doubts on certain choices of the string corrections to the
Einstein-Hilbert action, due to ghosts or light, long-ranged,
gravitational scalars that potentially violate solar system
bounds [25,26].

Finally, it should be stressed that, while we have ana-
lyzed linear stability with respect to inhomogeneous per-
turbations described by gauge-invariant variables, other
definitions of stability can be considered: for example,
stability with respect to black hole nucleation [44] or
quantum fluctuations [56]. Sometimes these different defi-
nitions yield results that are qualitatively similar to our
stability condition (2.38) (e.g., [44]). Another possibility is
to search for a positive-definite energy functional [57],
although one should probably look for energies bounded
from below rather than positive energies [58]; and so on.
The fact that these stability criteria are inequivalent is not
surprising since the physical processes considered are quite
different and, even from the mathematical point of view,
-7
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several inequivalent definitions of stability exist for dy-
namical systems [59].
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[26] A. Núnez and S. Solganik, Phys. Lett. B 608, 189 (2005);

hep-th/0403159.
[27] P. Wang, Phys. Rev. D 72, 024030 (2005).
[28] M. E. Soussa and R. P. Woodard, Gen. Relativ. Gravit. 36,

855 (2004); A. Rajaram, astro-ph/0311160; G. J. Olmo,
gr-qc/0505101 [Phys. Rev. Lett. (to be published)]; Phys.
Rev. D 72, 083505 (2005); A. E. Dominguez and D. E.
Barraco, Phys. Rev. D 70, 043505 (2004); I. Navarro and
K. Van Acoleyen, Phys. Lett. B 622, 1 (2005); G.
Allemandi, M. Francaviglia, M. L. Ruggiero, and A.
Tartaglia, gr-qc/0506123; J. A. R. Cembranos, gr-qc/
0507039.

[29] R. Dick, Gen. Relativ. Gravit. 36, 217 (2004).
[30] S. Capozziello and A. Troisi, Phys. Rev. D 72, 044022

(2005).
[31] T. P. Sotiriou, gr-qc/0507027.
[32] K. Maeda, Phys. Rev. D 37, 858 (1988); K. Maeda, J.

Stein-Schabes, and T. Futamase, Phys. Rev. D 39, 2848
(1989); S. Tsujikawa, K. Maeda, and T. Torii, Phys. Rev.
D 60, 123505 (1999); W. F. Kao, Phys. Rev. D 62, 087301
(2000); Y. A. Shaido and A. Sugamoto, Gen. Relativ.
Gravit. 37, 953 (2005).

[33] G. F. R. Ellis and M. Bruni, Phys. Rev. D 40, 1804 (1989);
G. F. R. Ellis, J.-C. Hwang, and M. Bruni, Phys. Rev. D 40,
1819 (1989); G. F. R. Ellis, M. Bruni, and J.-C. Hwang,
Phys. Rev. D 42, 1035 (1990).

[34] J.-C. Hwang, Classical Quantum Gravity 7, 1613 (1990);
14, 1981 (1997); 14, 3327 (1997); 15, 1401 (1998); 15,
1387 (1998); Phys. Rev. D 42, 2601 (1990); 53, 762
(1996); J.-C. Hwang and H. Noh, Phys. Rev. D 54, 1460
(1996).

[35] Here we assume that modified gravity corrections or the
scalar field � have already come to dominate the dynam-
ics of the Universe and that the contribution of ordinary
matter is negligible, as is the case during inflation or in the
late eras of the accelerating universe.

[36] V. Faraoni, Phys. Rev. D 70, 044037 (2004); 69, 123520
(2004).

[37] R. M. Wald, Phys. Rev. D 28, 2118 (1983).
[38] P. Chauvet and J. L. Cervantes-Cota, Phys. Rev. D 52,

3416 (1995); J. L. Cervantes-Cota, Classical Quantum
Gravity 16, 3903 (1999); J. L. Cervantes-Cota and P.
Chauvet, Phys. Rev. D 59, 043501 (1999); J. L.
Cervantes-Cota and M. Nahmad, Gen. Relativ. Gravit.
33, 767 (2001); S. Fay, Classical Quantum Gravity 18,
2887 (2001); Gen. Relativ. Gravit. 37, 1233 (2005); Gen.
Relativ. Gravit. 37, 1233 (2005).

[39] V. Faraoni, Cosmology in Scalar-Tensor Gravity (Kluwer
Academic, Dordrecht, 2004).

[40] S. Bellucci and V. Faraoni, Nucl. Phys. B640, 453 (2002).
[41] M. N. Jensen, B.Sc. thesis, Bishop’s University, 2005.
[42] X.-H. Meng and P. Wang, Classical Quantum Gravity 20,

4949 (2003).
[43] S. Nojiri and S. D. Odintsov, Phys. Rev. D 68, 123512

(2003); S. Nojiri and S. D. Odintsov, Proc. Sci. WC2004,
024 (2004).

[44] G. Cognola, E. Elizalde, S. Nojiri, S. D. Odintsov, and S.
Zerbini, J. Cosmol. Astropart. Phys. 02 (2005) 010; G.
Cognola and S. Zerbini, hep-th/0511233.

[45] S. Carloni, P. K. S. Dunsby, S. Capozziello, and A. Troisi,
-9



VALERIO FARAONI AND SHAHN NADEAU PHYSICAL REVIEW D 72, 124005 (2005)
Classical Quantum Gravity 22, 4839 (2005).
[46] J. D. Barrow and A. C. Ottewill, J. Phys. A 16, 2757

(1983).
[47] Here we do not consider the cases n � 0, which is

physically meaningless, and n � 1 which describes gen-
eral relativity.

[48] G. Vilkovisky, Classical Quantum Gravity 9, 895 (1992).
[49] S. M. Carroll, A. De Felice, D. A. Easson, M. Trodden, and

M. S. Turner, Phys. Rev. D 70, 063513 (2004).
[50] S. Nojiri and S. D. Odintsov, Gen. Relativ. Gravit. 36,

1765 (2004).
[51] X.-H. Meng and P. Wang, Phys. Lett. B 584, 1 (2004).
[52] P. Teyssandier and P. Tourrenc, J. Math. Phys. (N.Y.) 24,

2793 (1983); D. Wands, Classical Quantum Gravity 11,
269 (1994).

[53] A. Dobado and A. L. Maroto, Phys. Rev. D 52, 1895
(1995).
124005
[54] R. Brandenberger, R. Easther, and J. Maia, J. High Energy
Phys. 08 (1998) 007.

[55] M. Sami, A. Toporensky, P. V. Tretjakov, and S.
Tsujikawa, Phys. Lett. B 619, 193 (2005).

[56] A. Dolgov and D. N. Pelliccia, hep-th/0502197.
[57] O. Bertolami, Phys. Lett. B 186, 161 (1987).
[58] V. Faraoni, Phys. Rev. D 70, 081501(R) (2004).
[59] P. Glendinning, Stability, Instability and Chaos: An

Introduction to the Theory of Nonlinear Differential
Equations (Cambridge University Press, Cambridge,
England, 1994).

[60] R. M. Wald, General Relativity (Chicago University Press,
Chicago, 1984).

[61] I. Navarro and K. Van Acoleyen, gr-qc/0511045.
[62] T. Clifton and J. D. Barrow, gr-qc/0511076; gr-qc/

0509085; gr-qc/0509059.
-10


