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Generation of density perturbations at the end of inflation
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Recently a mechanism was proposed whereby the primordial density perturbations are generated at the
end of inflation. We continue the analysis of the proposed model of this mechanism and calculate the
maximum extent to which the density perturbations produced via this model can dominate over those of
the standard inflationary paradigm. In addition, we provide a straightforward variation of this model which
allows for greater amplification of the density perturbations. Finally, we show that a variation in the
implementation of the original model results in significant non-Gaussianities in the resulting spectrum of
density perturbations. The level of non-Gaussianities can be made to saturate the current observational

bound.
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I. INTRODUCTION

Measurements of the cosmic microwave background
radiation [1] have revealed a highly uniform background
with relatively scale-free superhorizon perturbations on the
order of a few parts in 10°. A possible source of these
perturbations is found in the quantum fluctuations of one or
more light scalar fields during an early epoch of inflation
[2,3]. This is because in the (quasi-) de Sitter space of
inflationary expansion, a quantum fluctuation in a scalar
field evolves according to classical equations of motion
after its wavelength exceeds the rapidly decreasing Hubble
length [4]. A fluctuating scalar field may then be converted
into an energy density perturbation via a variety of pro-
posed mechanisms.

For example in the standard inflationary paradigm [3],
inflation is driven by the potential energy of a single
slowly-rolling scalar field. In this case the inflaton can be
viewed as a unique clock parameterizing the evolution of
the early universe. Therefore fluctuations in the inflaton
translate into fluctuations in the duration of inflation. Since
the energy density of the Universe redshifts more rapidly
after inflation than during inflation, this results in energy
density fluctuations on surfaces of constant scale factor
after inflation.

More recently, it was proposed that energy density per-
turbations could result from fluctuations in light scalar
fields that do not contribute significantly toward the infla-
tionary dynamics. For example, in the ‘““‘curvaton’ scenario
[5] (see also [6]) a light scalar field dubbed the curvaton
receives fluctuations. After inflation, the curvaton evolves
as a massive fluid and therefore redshifts more slowly than
the radiative products of reheating. If the curvaton even-
tually dominates the energy density of the Universe and
then decays, density perturbations result because the dura-
tion of curvaton domination depends on the fluctuating
curvaton. The inhomogeneous reheating scenario [7] also
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achieves density perturbations by varying the duration that
a massive fluid dominates the energy density of the
Universe. In this case the duration of domination is modu-
lated via a decay width that depends on some fluctuating
light scalar field. Other ways to modulate the duration of
massive fluid’s domination have been proposed in [8].
These ideas recently have been reviewed in [9].

Another major variant on these proposals was offered
recently in [10] (note however that a similar idea was
previously used in [11]). Whereas in the standard picture
the duration of inflation is influenced by the fluctuations in
the inflaton as relevant modes leave the horizon, in this
picture the duration of inflation is influenced by fluctua-
tions in the inflaton when inflation ends. This can occur, for
example, if inflation ends at an inflaton value that depends
upon some other field that receives fluctuations during
inflation. In [10] a specific model was used to demonstrate
that this scenario can lead to significant amplification of
the density perturbations that result from slow-roll
inflation.

Here we continue the analysis of that model and calcu-
late the maximum extent to which the resulting density
perturbations can dominate over those of the standard
inflationary paradigm. We also explore the sensitivity of
this result to the tuning of model parameters. In addition,
we provide a straightforward variation upon this model
which allows for greater amplification of the density per-
turbations. Finally, we show that a slight variation in the
implementation of the original model allows for significant
non-Gaussianities in the spectrum of density perturbations.
The level of non-Gaussianities can be made to saturate the
current observational bound.

This paper is organized as follows: In Sec. II we sum-
marize the mechanism of [10] and establish a convenient
formalism and notation. Section III describes the specific
model introduced in [10], and in Sec. IV we analyze this
model in greater detail. Section V introduces two variations
upon this model and studies their consequences. Dis-
cussion and concluding remarks are provided in Sec. VL.
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II. BACKGROUND

We parameterize metric perturbations using the curva-
ture perturbation on surfaces of constant scale factor, oth-
erwise known as the Bardeen variable ¢ [12]. This
corresponds to writing the interval

ds* = —di* + a*(1)e* " y,;(1, x)dx' dx/, (1)

where a and { are chosen to give 7;; unit determinant. In
this work we ignore tensor perturbations, which allows us
to write ,;(#, X) = &,; since scalar field fluctuations carry
no anisotropic stress (for a review of cosmological pertur-
bation theory see [13]).

The proposal of [10] is most easily studied within the so-
called 6N formalism of [14] (see [15] for recent exten-
sions). In this formalism it is noted that on superhorizon
scales the change in { between two surfaces of constant
time is given by the fluctuation in the number of e-folds of
universal expansion between those surfaces. We choose the
initial time ¢, to be some time when ¢ = 0 so that we can
write [14]

(1, x) = 6N(1, x), 2)
where
_ [a)ef®»
N(t,x) = ln[Tto)} 3)

is the number of e-folds of expansion between ¢ and #,.
We limit our attention to the case where inflation is
driven by a single inflaton. Then fluctuations in N come
only from the value of the inflaton when its wavelength
becomes larger than the Hubble length, denoted ¢, and
the value of the inflaton at the end of inflation, denoted ¢..
Thus the number of e-folds of universal expansion is

N(¢k’ ¢e)’ and
N

oN o)
ON = e Oy + 0. 0. 4
That the power spectrum for { is observed to be predomi-
nantly Gaussian allows us to neglect higher order terms
that might appear in the expansion of Eq. (4).

In the standard picture, inflation ends when the slow-roll
conditions are violated. For single field inflation this hap-
pens at a unique value ¢, and therefore the second term in
Eq. (4) is zero. For inflation to end at varying values of ¢,
requires the addition of at least one other field. For ex-
ample, with an additional field o it is possible that ¢.(o)
depends upon o and inflation ends within a range of ¢,
given by

_ 0.
6¢e - do
If the masses of the scalar fields are much less than the
Hubble rate the fields acquire a constant power spectrum of
fluctuations Ps,, = Ps,, = (H,/27)?, where H; is the
Hubble rate at the time the mode k exits the horizon [16].
Thus the power spectrum for ¢ is

do. (5)

PHYSICAL REVIEW D 72, 123516 (2005)

reiela) o)l o

The density perturbations generated at the end of inflation
will dominate over those produced from the standard pic-
ture when

aN o aN
Pe > @)
0. do Iy
Note that IN/d ¢ # IN/9 ¢, since the former probes the
dependence of N on ¢ deep in the inflationary epoch while

the latter probes the dependence of N on ¢ near the end of
inflation.

II1. THE SPECIFIC MODEL

The above ideas were demonstrated in [10] using a
specific model described by the potential

1 1 1
V(g, x, o) = Q(mi —gx?)? + Emi¢2 + §A¢¢2X2
1
+ 5)&,,0'2/\/2 + V(o). (8)

As was noted in [10], this is the original hybrid inflation
model [17] but with interactions involving an additional
light scalar field o added with the last two terms.

Hybrid inflation assumes the initial conditions of chaotic
inflation [17,18]. However, during the early stages of hy-
brid inflation the field y is pushed to zero much faster than
¢ (and likewise faster than o in the above model). Then ¢
becomes a slowly-rolling inflaton with inflation assisted by
the vacuum energy m‘)‘( /4g. As in [10] we assume that the
self interaction of ¢ represented by the term V, does not
contribute significantly toward the inflationary dynamics.

The field y is pinned to the origin until the curvature in
its potential, 3V /d x?, becomes negative. In [10] a sce-
nario is described in which inflation ends abruptly as y
rolls away from the origin. This happens when

2
Z—XZ = A¢¢§ + A, 02 —m
Therefore if o receives fluctuations do, inflation ends at
field values ¢, that vary according to

Ay

8¢ ~ — g~ e

¢ /\q’) d)e

Referring back to Eq. (6), we see the density perturbations

resulting from fluctuations &¢,. dominate over those re-
sulting from &¢; when

2 2 ) 2 2

= s <‘9N/‘9¢°> “AeTe Gy

)‘¢¢e aN/a¢k /\¢¢e €

In the second equation we have used that the first slow-roll

parameter can be written

2
_mp1<1 av>2 1 (8N>2
e=-2(-2) =— (=) (12)
2\Vag) 2mi\ag

2 =0 ©)

oo. (10)
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An important consequence of this mechanism is that the
spectral tilt is given by the tilt in the spectrum of fluctua-
tions o0, as opposed to d¢. This gives a tilt which is
independent of the second slow-roll parameter n [10,16].
Therefore 7 is not directly constrained by observation. In
addition, since € =~ 2He(2e — n) it appears as if € may
decrease significantly during the course of inflation if n >
€. Thus it was suggested in [10] that the condition of
Eq. (11) is easily satisfied.

However, one might note that R is proportional to €,
which according to this mechanism is constrained by ob-
servational bounds on the spectral tilt. These give €, <
0.02 [1] in the absence of cancellations [10]. In addition,
we do not expect €, and ¢, to be independent of each other.
Thus it is worthwhile to investigate Eq. (11) in greater
detail in order to determine precisely what limits the extent
to which the density perturbations of this model can domi-
nate over those produced via the standard inflationary
paradigm.

IV. A MORE DETAILED ANALYSIS

‘We now consider the model of Eq. (8) in greater detail in
order to clarify the constraints on R as given by Eq. (11).
Consistent with the analysis of [10] we ignore the contri-
bution of V, toward the vacuum energy. As described
above, the y field rolls away from the origin when ¢ takes
the value

fo = A[TH " Ao _ My (13)

Ag VAs

To explain the second approximation, first note that we
require A, 02 < mi in order to avoid y remaining trapped
at the origin after ¢ reaches zero. Meanwhile, the precise
value of o, is a stochastic variable constrained by con-
ditions independent of A, and m,. Thus to ensure that the
desired dynamics are typical of this model requires we set
m% /A, > o? for typical values of o.

For inflation to last until ¢ = ¢, but end abruptly when
X rolls away from the origin requires that the term m‘)‘( /4g
dominate the energy density at the end of inflation and that
mi be much greater than the Hubble rate at the end of
inflation." These conditions, respectively, give the con-

"The other possibility is to set ¢, = m v/\[Ag to be greater
than the value of ¢ for which inflation ends when the potentlal of
¢ dominates. Since in this case inflation ends when ¢ is of the
order of the Planck mass [18], this requires a Planck scale m,
unless Ay >> 1. Nevertheless, an analysis similar to that which

follows gives
2 A 2\2
R=£§( ";'e), (14)
o; \ my
where ¢, is ¢ evaluated 60 e-folds before the end of inflation. It

will be seen that this is no better than the result obtained in the
scenario analyzed in greater detail in what follows.
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straints

2

28 é 1
2«1, et 15
Ay m3 12¢ my (15)

where my; denotes the reduced Planck mass. The first
constraint of Eqgs. (15) allows us to write

N :L<ﬂ>_l= my ~ VA‘f’mg(_ (16)
. o \0 e 4g(f)em§5m}2)1 4gm%ﬁm§1
Meanwhile
ON 1 my 1
= X+ —m? P71 ). 17
9% ¢km%,,m§1(4g o) D

Plugging these values into Eq. (11) gives

R~:‘g<)‘ Ue) X¢2( i+m¢¢2> oas)

The quantity ¢, is the value of the inflaton when the mode
k exits the particle horizon. For cosmological scales of
current interest this happens about 60 e-folds of inflation
prior to the end of inflation.

In order to find the maximum value for R, we find the
value of ¢, that maximizes R and set the parameters g, m ,
and m such that the mode k exits the horizon 60 e-folds
prior to inflation. This is equivalent to finding the balance
between the vacuum energy m‘)‘( /4g and the potential en-
ergy mg¢* that maximizes R. The result is

2
1 ﬂ, (19)
V28 me
with the constraint that the mode k leaves the horizon at
N = 60, with

1 mt (A, b m%m?
]Vk=4272 —Xhl i +mé¢%— j X
mymy |8 m, b

4 A
(e ) <zo>
8gmigymy, 2g md)

In the last expression we have used the constraints of
Egs. (15) to identify the most significant term. Putting
this all together we find the maximum value of R to be

2
R~ Nk()t o7 ) Dot [m(ﬂ m—iﬂl 1)
m3, 2g mj,

Before proceeding to study Eq. (21) we should check
that producing the correct power spectrum normalization
does not introduce any constraints that conflict with our
present assumptions. Applying Eq. (6) to the scenario
considered above we find that when density perturbations
generated at the end of inflation dominate we have

2 1 m2\ m? A, m2N\ -1
P ~ SNR XN TX (22 2 D (22
¢~ (12gm ) [“<2g , 22
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To match observation we require 2, to be very small,
P, =~ (5% 1075 [1]. According to the second of
Eqgs. (15) the first term in parentheses is already con-
strained to be much less than order unity and in fact can
be set as small as necessary to match observation. In
addition we expect my/m2 to be very small. Thus to set
P to match observation does not introduce any constraints
in conflict with those of the above analysis.

We have written R in the form of Eq. (21) in order to
emphasize the maximum extent to which the perturbations
produced at the end of inflation may dominate over those
produced as cosmological scales exit the horizon. The first
term is weakly constrained by the energy scale of inflation
and is here taken to be N, = 60. The first term in paren-
theses is constrained to be significantly less than unity as
explained in the discussion below Eq. (13). Finally, the
argument of the logarithm must be much greater than unity
in order to satisfy the first constraint of Egs. (15). Therefore
the last term is less than unity. Thus for appropriately tuned
parameters we might expect the product of these three
factors to be a couple of orders of magnitude below unity.

However, Eq. (21) also contains a factor my /. In

(quasi-) de Sitter space a scalar field such as o evolves
both according to its classical equation of motion and due
to quantum fluctuations as modes leave the particle hori-
zon. The net effect of this evolution is that the correlation
function (o) migrates toward a fixed value depending
upon V, and the Hubble rate H [19]. For example, if
inflation lasts long enough and if V, =im2o? then
(%) ~ H*/m?2 [19]. Taking a typical value of o, to be

0. ~ J{o?) gives

2

my My My (23)
> HPHE

Oe

The dynamics described above require mg < mj < H?,

so the first term in Eq. (23) must be at least a few orders of
magnitude below unity. However, the second term can be
very large. Current observation gives m2/H* = 10° [20],

which is more than sufficient to compensate for all the
small factors in R if parameters are tuned appropriately.
Reducing the scale of inflation allows for greater values of
R. Of course, our Hubble volume also could be a region of
atypically small o. Finally, we may reduce o, to an
arbitrarily small scale by considering o to be a pseudo-
Nambu-Goldstone boson (see for example [5,21]).2 Thus

%An interesting scenario involves a pseudo-Nambu-Goldstone
boson that ranges over a scale ~m,. Then A, may be a coupling
of order unity and we obtain

m
R =N, kT2 (24)
My
where we have dropped the logarithm and other factors of order
unity. Clearly R is much greater than unity in this case.
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in a number of circumstances we expect the level of density
perturbations generated at the end of inflation to be sig-
nificantly larger than those produced when cosmological
scales exit the horizon.

In Eq. (21) the parameters g, m,, and m,, are tuned such
that scales of cosmological interest leave the horizon when
¢, is given by Eq. (19). To study the result of relaxing this
tuning requires to invert Eq. (20) to obtain ¢,(N,) and
insert the result into Eq. (18) to obtain R(NV;). This allows
for the remaining parameters in R to be freely varied while
R retains its original meaning; that is, that R compares
density perturbations produced at the end of inflation to
those produced when cosmological scales exit the particle
horizon.

Note that the first two terms in the brackets of Eq. (20)
always dominate over the third term and that they are
comparable to each other when ¢, is given by Eq. (19).
Remember that ¢, is defined as the value of ¢ N, = 60 e-
folds before the end of inflation. Decreasing m slows the
evolution of ¢ which therefore decreases ¢,. In this case
the first term in brackets becomes more important and
inverting Eq. (20) gives

2,2
$? ~ B exp<8Nk %) 25)
my
For ¢, less than in Eq. (19) the important functional
dependence of R is R(¢p;) « ¢7. Thus we see that R
decreases exponentially when the ratio gmjms/my is
decreased from its optimal value.

On the other hand, increasing m 4 quickens the evolution
of ¢ and therefore increases ¢,. In this case the second
term in the brackets of Eq. (20) becomes more important.
Inverting Ny in this case gives ¢7 =~ Nym2; which is rela-
tively independent of the model parameters. Therefore the
magnitude of R changes predominantly through its depen-
dence upon m ¢; in the denominator of Eq. (18). Thus we
see that significantly increasing the ratio gmm? /m, from

its optimal value results in a roughly proportional decrease
in the size of R.

V. GENERALIZING THE MODEL

A. Varying the potential for ¢

According to Eq. (7), the generation of density pertur-
bations at the end of inflation is most effective when the
slow-roll parameter near the end of inflation is much less
than when cosmological scales of interest exit the particle
horizon. Thus to enhance the resulting perturbations we
desire a potential for ¢ that decreases more steeply for ¢
deep in the inflationary epoch and decreases more gently
for ¢ near the end of inflation. This can be accomplished
by replacing the 3 m} ¢* term in Eq. (8) with ; A¢*.

We analyze this scenario in exact analogy to the analysis
in Sec. IV. Again we assume that the vacuum energy at the
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end of inflation is dominated by the m‘)‘( /4g term. The

calculations proceed just as in Sec. IV, and in the end we
find

A O2\2 /M2 [ A g mAN\2
R=108N,§( "‘f)( ‘;1>< ¢2PI>. (26)
m

X Te ny

As described in Sec. IV, the term in the first set of paren-
theses is expected to be significantly less than unity.
However the last term is expected to be greater than unity
in order that y becomes pinned to the origin in the early
stages of inflation. In addition, the numerical prefactor
108N; ~ 107 for N; = 60. The discussion about the factor
mf)l /o near the end of Sec. IV applies here. Thus we see

the maximum level of density perturbations produced at
the end of inflation can be greatly amplified by simply
introducing a ¢* potential.

B. Relaxing the constraint on A,

In Sec. III we followed the assumption presented in [10]
that near the end of inflation A,0? < m? so that inflation
ends before ¢ reaches zero. It is interesting to explore the
consequences of lifting this assumption. If we do not
demand that A, 0?2 < mi, then for large enough A, or o
the y field is still pinned to the origin when ¢ reaches zero.
We then expect inflation to continue with the o field rolling
down its potential until the condition of Eq. (9) is met. At
this point y rolls away from the origin and abruptly ini-
tiates the end of inflation.

Nevertheless, if m, < H during inflation, then ¢ will
retain a power spectrum of fluctuations given by Ps, =
(H/2m)*. Thus the fields o and ¢ have essentially
changed places, with o playing the part of the inflaton
and ¢ the fluctuating field. However, in this scenario ¢ has
no homogeneous component and

_Ag 3¢5

So. = .
7eT T, o

(27
The density perturbations produced at the end of inflation
are now entirely non-Gaussian.

It should be noted here that the original model described
in Sec. III also results in non-Gaussianities. As described in
[10], in that model the non-Gaussianities result from higher
order terms in the expansion of 6N in Eq. (4). The situation
we consider here is different in that the non-Gaussianities
arise at leading order in the expansion of oN.

The level of non-Gaussianity can be parameterized with
a term fy defined according to the equation

3
{= fg - ngngzr (28)

where {, symbolizes a variable with a Gaussian spectrum
[22]. In this case {, is the curvature perturbation produced
via the standard inflationary paradigm,
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{ = a—ak o0y. (29)
Here we have assumed for simplicity that scales of cosmo-
logical interest exit the horizon after ¢ has rolled to zero.
Thus we treat the relevant stages of inflation as driven by
the o field, assisted by the vacuum energy m‘)‘( /4g, with ¢
being a heavier field fluctuating about the origin. We
neglect the non-Gaussian component of  produced when
relevant scales exit the horizon as this is in general rela-
tively small [23]. For comparison to observation it does not
matter whether the non-Gaussian fluctuations are sourced
by the same field as the Gaussian fluctuations [24].
Therefore we can combine Eq. (4), Eq. (28), and Eq. (29)

to obtain
5/0N oN -2
=——|—296 —96
T 3<aae "")(aak “")

52 1 8N<6N)2' (30)

"3 A, 0, 90, \00;

If we take V,, = 3mZo?, it is straightforward to calculate

the largest possible fy;, by translating the arguments of
Sec. IV. In particular, we note that o7, = m,, /+/A, and that

3
_ VAo My 31)
4g mim?’
T p]

4
8N~1 m,

T o 2,2
do, 4g T Mgy

Likewise, minimizing the factor (AN/do;) 2 gives o =
m3,/+/2gm,, and

aN 1 m

— = (32)
dop 28 mem?,
Finally, putting all this together we find
5 )‘¢m§1
~= ) 33
fNL 6 mi ( )

It must be emphasized this is an upper limit; smaller fyi,
are easily achieved by choosing parameters that do not
minimize (N /d o) 2. Note also that in this implementa-
tion of the model the only constraint on Ay is that

Ay8p? = Ay(H,/\2)* < m}. This constraint assures
that y always rolls away from the origin before o reaches

zero and gives

Ag Loy ) (34)
12g mgl

Referring to the second constraint of Egs. (15), we see the
term in parenthesis is already constrained to be much less
than unity. Therefore this mechanism permits a non-
Gaussian component to the density perturbations all the
way through the observational limit of fy; =< 135 [24].
For the above calculation to be appropriate requires that
the £, of Eq. (29) actually be the dominant contribution to
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the curvature perturbation. For this to be the case its power
spectrum must have a magnitude Py, = (5 X 107°)? in
order to match observation [1]. From Eq. (6) and Eq. (32)
we have

ON\2 H? 1 H?
Pro=[(—) 5= - 35
‘e (60’k> 47?  87’e, mél (35)

where we have used that in this scenario the first slow-roll
parameter as the mode k exits the horizon is
1 (8N>—2 _ gmgmy,

€ = —> i

(36)
2m12)l Y

Jdo k m
We have written the power spectrum in this way in order to
employ the observational constraints on the spectral tilt
and on the level of gravity waves.

Since the primary, Gaussian density perturbations are
now sourced during inflation, the spectral tilt is n — 1 =
2n — 6€;, = 2¢, = 0.04 [1], where we have used that the
second slow-roll parameter in the scenario we are consid-
ering is given by

my 92V dgmom?,

nE——~44

= 4¢,. 37
V do? my €k (37

Meanwhile, it is observed that H / mﬁl =< 1078 [20]. In this
model we can decrease the spectral tilt independently of
H}/m2 by simply decreasing m,,. Therefore we simply
require to set H;/m3 = 107 to match observation. Here

H; 1 my 5 1 m:
— = 4 =_) —f_— X B 38
mgl 6g m31 3 ¢fNL<12g mé) (38)

where we have expressed the result in terms of fy to
clarify which are the remaining free parameters.
According to the second constraint in Eq. (15), the term
in parentheses is already constrained to be much less than
unity. In fact, it can be set as small as necessary to satisfy
observation. Moreover, since the three terms in Eq. (38)
depend upon three independent parameters (A4, g, and
m,), we have considerable freedom in exactly how we
satisfy the observational bound. Thus we conclude that
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this model allows for significant non-Gaussianities for a
range of model parameters.

VI. DISCUSSION AND CONCLUSIONS

In this work we continue the analysis of the model
proposed in [10] to generate density perturbations at the
end of inflation. We confirm that these density perturba-
tions can easily dominate over those produced via the
standard inflationary paradigm, and explore the sensitivity
of this result to the tuning of model parameters. In addition,
we provide a straightforward variation of this model which
allows for even greater amplification of the density
perturbations.

It is worthwhile to consider how general is this analysis.
According to Eq. (7) the production of density perturba-
tions at the end of inflation is most effective when the slow-
roll parameter near the end of inflation is much less than
that when cosmological scales of interest exit the particle
horizon. Since inflation can only end with the slow-roll
parameter rising to unity, this suggests the mechanism is
most effective only when the inflationary potential contains
large derivatives near the point where it dips toward its
minimum. These large derivatives are most naturally ac-
complished by inserting a second field direction for the
vacuum energy to fall to zero and initiate a reheating phase.
This is precisely the scenario implemented in hybrid in-
flation and generalized in the models considered here.

We also study a variation in the implementation of the
model proposed in [10] that results in modified inflationary
dynamics. We show that this case results in a spectrum of
density perturbations with significant non-Gaussianities
for a range of model parameters. In particular it is shown
that these non-Gaussianities are capable of saturating the
current observational bound.
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