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Perturbations of the quintom models of dark energy and the effects on observations
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We study in this paper the perturbations of the quintom dark energy model and the effects of quintom
perturbations on the current observations. Quintom describes a scenario of dark energy where the equation
of state gets across the cosmological constant boundary w � �1 during evolution. We present a new
method to show that the conventional dark energy models based on a single k-essence field and perfect
fluid cannot act as the quintom due to the singularities and classical instabilities of perturbations around
w � �1. One needs to add extra degrees of freedom for successful quintom model building. There are no
singularities or classical instabilities in perturbations of realistic quintom models and they are potentially
distinguishable from the cosmological constant. Basing on the realistic quintom models in this paper we
provide one way to include the perturbations for dark energy models with parametrized equation of state
across�1. Compared with those assuming no dark energy perturbations, we find that the parameter space
which allows the equation of state to get across �1 will be enlarged, in general, when including the
perturbations.
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I. INTRODUCTION

In 1998 two groups [1,2] independently discovered the
accelerating expansion of our current Universe based on
the analysis of type Ia supernovae (SN) observations of the
redshift-distance relations. In the framework of
Friedmann-Robertson-Walker (FRW) cosmology, the ac-
celeration has been attributed to the mysterious source
dubbed dark energy. The simplest candidate for dark en-
ergy is a small positive cosmological constant, but it suffers
from the difficulties associated with the fine tuning and the
coincidence problem [3,4]. The most popular alternative to
the cosmological constant is the model of rolling scalar
field quintessence [5,6]. In most cases the quintessence
equation of state (EOS) w changes slowly with time and
can be well approximated with a constant w with w � �1
[7,8]. In the early probes of new physics, cosmologists
have assumed a cosmological constant as the new compo-
nent [1,2,9–11] and later fitted directly to the dynamical
quintessence models [4,12], or used a constant w
[7,8,13,14] where w was restricted in the region of w �
�1. In Ref. [15] the author first extended the fitting of dark
energy to include w<�1 and found some mild preferen-
ces. The author constructed a toy model of a rolling scalar
field with a negative kinetic term and called it a phantom
[15]. The model of the phantom has some theoretical
problems [16] and there have been many attempts towards
resolving them [17].

The accumulation of the observational data [18–23] has
opened a robust window for probing the more detailed
behaviors of dark energy. There have been many studies
in reconstructing the evolution of its energy density [24] or
equation of state [25–27] as a function of the redshift.
Various parametrizations of w as well as dark energy
models have also been considered to fit directly to the
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observational data (e.g., [28–37]). Based on the fact that
current observations cannot exclude dark energy models
with the equation of state getting across �1 during evolu-
tion with the redshift, we proposed a model dubbed quin-
tom [35]. The model of quintom is a new scenario in the
sense that the conventional quintessence or phantom mod-
els cannot realize the crossing of the cosmological bound-
ary. Along this line the author in Ref. [38] has
demonstrated that in the framework of general relativity
the model of k-essence [39], where the scalar field of dark
energy has noncanonical kinetic terms, cannot realize such
a crossing behavior. A toy model with two rolling scalar
fields which have opposite kinetic energy terms can easily
realize the transition and it can be regarded as the simplest
quintom model [35,40]. Recently a single field quintom
model was proposed in [41] by adding higher derivative
operators in the Lagrangian. In the simplest case such a
model is equivalent to the two-field case as proposed in
[35]. In addition, the quintom model of dark energy is
different from the quintessence or the phantom in the
determination of the evolution and the fate of the
Universe. Because of its distinctive properties, the quintom
model with an oscillating equation of state across �1 can
lead to the oscillations of the Hubble constant and a new
scenario of the recurrent Universe [42], which to some
extent unifies the early inflation [43] and the current ac-
celeration of the Universe. Recently there has been a lot of
interest in the phenomenological studies relevant to quin-
tom models in the literature [44–54].

Current supernovae data alone, which make the only
direct detection of dark energy, seem to favor a quintom-
like model at around the 2� level [31,32,35]. The quintom
model is also mildly favored in the combined analysis with
the cosmic microwave background (CMB), large scale
structure (LSS), and supernovae data [33,34]. However,
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when some other observational data sets [such as the new
observational data based on Chandra measurements of the
x-ray gas mass fraction in 26 x-ray luminous galaxy clus-
ters [23] or the recent new constraints from the bias and
Ly� forest of the Sloan Digital Sky Survey (SDSS)] have
been taken into account the situation changes and the
preference for quintomlike dark energy models becomes
weak [35,36]. However the previous fittings in the litera-
ture on quintomlike dark energy models have either fully
or partially neglected the perturbations, and in some sense
do not describe the realistic models with EOS across �1
and will lead to some bias in the fittings. The aim of this
paper is to develop a self-consistent way to include the
perturbations of a quintom in light of the observations. We
will present a simple new method to show that conven-
tional single perfect fluid and k-essence dark energy mod-
els cannot act as a quintom, which is due to the
singularities and classical instabilities of perturbations.
Based on the realistic quintom models in this paper we
will provide one way to include the perturbations for dark
energy models with a parametrized equation of state across
�1. Compared with those assuming no dark energy per-
turbations, we find that when including the perturbations
the parameter space which allows the equation of state to
get across �1 will be enlarged in general.

This paper is organized as follows: in Sec. II we discuss
the difficulty of quintom model building and provide a new
proof regarding the impossibility of single perfect fluid and
k-essence models as a quintom, then present some viable
quintom models; in Sec. III we study in detail the pertur-
bations of the quintom models; in Sec. IV we investigate
the possible signatures of quintom models of scalar fields
and the effects of quintom perturbations on the observa-
tions; in Sec. V we provide one way to include the pertur-
bations for models of dark energy with a parametrized
equation of state across �1; we conclude in Sec. VI.
II. QUINTOM MODEL BUILDING

A. Difficulties of quintom model building

We start with a brief overview on the arguments against
the possibility of realizing the quintom scenario with a
single fluid or a single scalar field in the conventional
framework.

Consider first a single perfect fluid; the energy-
momentum tensor has the conventional form,

T�� � �Pg�� � ��� P�u�u�; (1)

where � and P are proper energy density and pressure, and
u� is 4-velocity with u�u� � 1. The energy density and
the pressure of the fluid can be parametrized as [55]

� � f�n�; P � nf0�n� � f�n�; (2)

where f�n� is a positive function of n. The introduced
variable n can be identified with the number density and
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the prime represents the derivative with n. The equations of
motion are just the covariant conservation equations of the
momentum tensor, r�T�� � 0. In spatially flat FRW
spacetime

ds2 � a2����d�2 � dxidxi�; (3)

there is only one equation,

_�� 3H ��� P� � 0; (4)

where the dot is the derivative with the conformal time �
and H � _a=a. Combining Eq. (4) with Eq. (2), we get

f0�n�� _n� 3Hn� � 0: (5)

Since f0�n� does not vanish everywhere (otherwise it cor-
responds to the cosmological constant), one has the con-
servation equation of the number density _n� 3Hn � 0.
In the expanding Universe, n will decrease monotonically
with time.

In the following we will demonstrate that the system
suffers from the problem of singularity and classical in-
stability when the equation of state of the perfect fluid
crosses the boundary of�1. Let us assume that the system
crosses �1 at the point of n � n0 � 0. At this point
��n0� � P�n0� � 0, f0�n0� � 0, and f0�n� will change the
sign after the crossing. So, in the neighborhood of n0, we
can expand f0�n� in terms of �n� n0�. The adiabatic sound
speed square in this neighborhood is

c2
s �

dP
d�
�
nf00�n�
f0�n�

’
n

n� n0
: (6)

We can see that c2
s is singular at the crossing point.

Moreover, c2
s is negative in the region of n < n0. And

when n approaches n0 from this side, it will approach
�1. A negative c2

s will induce a serious classical insta-
bility to the system, the perturbations on small scales will
increase quickly with time and the late time history of the
structure formations will get significantly modified. This
will inevitably lead to the fact that such models can never
be compatible with the observations relevant to structure
formations, such as CMB and LSS.

As shown above it is impossible to realize the quintom
scenario with a single perfect fluid; now we turn to the
model of the scalar field. The general model of dark energy
with a single scalar field and an arbitrary function of its first
derivative in the Lagrangian was proposed in Ref. [39] and
named k-essence. Its Lagrangian usually has a noncanon-
ical form

L � P��;X�; (7)

with

X � 1
2r��r

��: (8)

The energy-momentum tensor of this system has the same
form as that of the single perfect fluid Eq. (1), where
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� � 2XP;X�P; u� �
r��������

2X
p : (9)

Let us see under what conditions the system will be able to
cross the barrier of w � �1. In order to do that, one
requires �� P to vanish at a point of ��0; X0� and change
the sign after the crossing. This can only be achieved by
requiring P;X ��0; X0� � 0, and P;X has different signs
before and after the crossing since X cannot be negative.
The covariant conservation law of the energy-momentum
tensor gives the equation of motion,

�P;X g
�� � P;XX r

��r���r�r��� �;�� 0: (10)

From this equation, we obtain the equation for the back-
ground field,

�;X � ��� �3c2
sk � 1�H _�	 � a2�;�� 0; (11)

and the perturbation to the first order (neglecting the metric
perturbations for the time being):

�u� ��c2
skr

2 � �z=z� 3c2
sk�

_H �H 2�	u � 0; (12)

where

u � az
��

_�
; z �

�����������������
_�2j�;X j

q
; (13)

and the effective sound speed is given by

c2
sk �

P;X
�;X

: (14)

This sound speed c2
sk is often used in describing the per-

turbations of the scalar fields instead of the isentropic
sound speed, which behave differently due to the intrinsic
properties of the scalar fields [56]. For a conventional
quintessence or phantom field, c2

sk � 1. The dispersion
relation from Eq. (12) is

!2 � c2
skk

2 � �z=z� 3c2
sk�

_H �H 2�: (15)

One of the conditions for the stability of k-essence pertur-
bations is that c2

sk must be positive [39]. This requires that
�;X has the same behavior as that of P;X , i.e., it must
vanish at the crossing point and change the sign after the
crossing.

Similar to the analysis in the case of single fluid, we can
see that �z=z diverges at the point ��0; X0�. This singularity
is unavoidable in the perturbation equation and the physi-
cal quantities describing the fluctuations are not well de-
fined. Generally, �z does not vanish at the crossing point,
hence there exists a region in which !2 < 0 and the per-
turbation is unstable. Furthermore, the canonical momen-
tum defined by the Lagrangian (7) is

� �
@P

@ _�
� P;X

_�

a2 : (16)

Its derivative with respect to _�,

@�

@ _�
�
�;X
a2 ; (17)
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vanishes at the point of crossing. This shows that _� is not a
single valued function of the momentum � and we cannot
get a canonical Hamiltonian transformed from the
Lagrangian unambiguously [57]. The theory cannot be
quantized in a canonical way. Hence we have shown that
the conventional k-essence model cannot give rise to w
across �1. A different proof is given in Ref. [38].

We should stress again that in realistic quintom model
building one must consider the aspects of perturbations,
where there are often dangerous instabilities in the con-
ventional case. The concordance cosmology is based on
the precise observations where many of them are tightly
connected to the growth of perturbations and we must
ensure the stability of perturbations. If we start with pa-
rametrizations of the scale factor [58] or EOS to construct
quintom models, it can be realized arbitrarily if we do not
consider the stability of perturbations. On the other hand,
when we start from scalar fields and use some phenome-
nological parametrizations it is in some sense very easy to
resemble fluid behavior in the background evolutions.
However the stability of perturbations must be considered.

B. Some viable quintom models

As we demonstrated above in the conventional cases
with a single fluid or a k-essence one cannot realize a
viable model of a quintom, we need to introduce extra
degrees of freedom to realize the transition ofw across�1.
One of the possibilities is a system including two fluids
with one being w>�1 and another w<�1. Specifically,
consider a model which consists of two Chaplygin gases
[59] with P1 � �	1=�1 and P2 � �	2=�2, in which 	1

and 	2 are positive constants. If �2
1 > 	1 and �2

2 < 	2, one
has 0>w1 >�1 and w2 <�1. This system will cross the
boundary of �1 at some time because �2 is always in-
creasing and �1 decreasing. The sound speed squares are
c2
si � �wi > 0 with i � 1; 2, hence the system will be free

of the difficulties associated with the singularity and the
classical instability which exist in the model of a single
fluid. Furthermore, the final state of this system will be
characterized by w � �1; the Universe will approach the
de Sitter space in the far future. In such a scenario there
will be no big rip. In the framework of the field theory, the
simple way to introduce the extra degree of freedom for the
quintom model is the double scalar fields model with one
being quintessencelike and one phantomlike. We should
point out that when adding extra degrees of freedom in the
above way, this does not help solve the cosmological
constant problem nor can it help solve the coincidence
problem, since for the component where w<�1 it cannot
have the property of tracking behavior and has to be fine-
tuned.1 The above way of introducing more components
-3
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provides the simplest possibility of quintom model
building.

There is another possibility of introducing the extra
degrees of freedom for the realization of the transition
from the quintessence phase to the phantom phase. This
is the model proposed in Ref. [41] by introducing higher
derivative operators to the Lagrangian. Specifically in [41]
we considered a model with the Lagrangian

L � �
1

2
r��r

���
c

2M2 ����� V���; (18)

where � � r�r
� is the d’Alembertian operator. The term

related to the d’Alembertian operator is absent in the
quintessence, phantom, and k-essence models, which is
the key to make the model possible for w to cross over
�1. We have proven in [41] that this Lagrangian is equiva-
lent to an effective two-field model

L � �
1

2
r� r� �

1

2
r�
r�
� V� � 
�

�
M2

2c

2; (19)

with the following definition:


 �
c

M2 ��; (20)

 � �� 
: (21)

Note that the redefined fields  and 
 have opposite signs
in their kinetic terms. One might be able to derive the
higher derivative terms in the effective Lagrangian (18)
from fundamental theories. In fact, it has been shown in the
literature that these types of operators do appear as some
quantum corrections or due to the nonlocal physics in the
string theory [60–62]. With the higher derivative terms to
the Einstein gravity, the theory is shown to become renor-
malizable [63], which has attracted much attention. In fact,
the canonical form for the higher derivative theory has
been put forward by Ostrogradski about one and a half
centuries ago [64]. In short, it is interesting and worthwhile
to study further the implications of models with higher
derivatives in cosmology (for a recent study see, e.g., [52]).
III. PERTURBATIONS OF THE QUINTOM MODEL

The quintom scenario, as we have argued above, needs
extra degrees of freedom to the conventional models of a
single scalar field, such as quintessence, the phantom, and
k-essence, and the simple realization of the quintom is a
model with two scalar fields or ‘‘equivalently’’ two scalar
fields for the case with the higher derivative operators. In
the discussions below on the perturbations we will restrict
ourselves to the two-field model of a quintom with the
following Lagrangian:

L � LQ �LP (22)
123515
where

L Q �
1
2@��1@

��1 � V1��1� (23)

describes the quintessence component, and

L P � �
1
2@��2@��2 � V2��2� (24)

for the phantom component. The background equations of
motion for the two scalar fields �i�i � 1; 2� are

��i � 2H _�i 
 a
2 @Vi
@�i
� 0; (25)

where the positive sign is for the quintessence and the
minus sign for the phantom. In general, there will be
couplings between the two scalar fields; here, for simplic-
ity, we neglect them.

For a complete study on the perturbations, the fluctua-
tions of the fields as well as those of the metric need to be
considered. In the conformal Newtonian gauge the per-
turbed metric is given by

ds2 � a2�����1� 2��d�2 � �1� 2��dxidxi	: (26)

Using the notations of [65], the perturbation equations
satisfied by each of the components of the quintom model
(22) are

_� i � ��1� wi���i � 3 _�� � 3H
�
�Pi
��i
� wi

�
�i; (27)

_�i � �H �1� 3wi��i �
_wi

1� wi
�i

� k2

�
�Pi=��i
1� wi

�i � �i ��
�
; (28)

where

�i � �k2= _�i���i; �i � 0; (29)

wi �
Pi
�i
; (30)

and

�Pi � ��i � 2V0i��i � ��i �
�i�i
k2 �3H �1� w

2
i � � _wi	:

(31)

Combining Eqs. (27), (28), and (31), we have

_� i � ��1� wi���i � 3 _�� � 3H �1� wi��i

� 3H
_wi � 3H �1� w2

i �

k2 �i; (32)

_� i � 2H�i �
k2

1� wi
�i � k2�: (33)

Since the quintom model in (22) is essentially a combina-
tion of a quintessence and a phantom field, one obtains the
-4
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perturbation equations of the quintom by combining the
equations above together. The corresponding variables for
the quintom system are

wquintom �

P
i
PiP

i
�i
; (34)

�quintom �

P
i
�i�iP
i
�i

; (35)

and

�quintom �

P
i
��i � pi��iP
i
��i � Pi�

: (36)

Note that for the quintessence component, �1 � w1 � 1,
while for the phantom component, w2 � �1.

With the two fields the quintom model in (22) will be
characterized by the potential Vi in (23) and (24). In this
paper we take Vi��i� �

1
2m

2
i �

2
i . In general, the perturba-

tions of �i today stem from two origins, the adiabatic and
the isocurvature modes. If we use the gauge invariant
variable �i � ���H ��i

_�i
instead of �i, and the relation

� � � in the Universe without anisotropic stress,
Eqs. (32) and (33) can be rewritten as

_� i � �
�i
3
� Ci

�
�i ���

H

k2 �i

�
; (37)

_� i � 2H �i � k
2�3�i � 4��; (38)

where

Ci �
_wi

1� wi
� 3H �1� wi� � @0�ln�a6j�i � pij�	:

(39)

�� is the curvature perturbation on the uniform-density
hypersurfaces for the � component in the Universe [66].
Usually, the isocurvature perturbations of �i are charac-
terized by the differences between the curvature perturba-
tion of the uniform-�i-density hypersurfaces and that of
the uniform-radiation-density hypersurfaces,

Sir � 3��i � �r�; (40)

where the subscript r represents radiation. In this paper, we
assume there is no matter isocurvature perturbations, so
�m � �r. Eliminating �i in Eqs. (37) and (38), we obtain a
second order equation for �i,

�� i � �Ci � 2H � _�i � �CiH � 2 _H � k2��i

� k2�4 _�� Ci��: (41)

This is an inhomogeneous differential equation; the gen-
123515
eral solution to it is the sum of a general solution to its
homogeneous part and a special integration. In the follow-
ing, we will show that the special integration corresponds
to the adiabatic perturbation. Before the era of dark energy
domination, the Universe is dominated by some back-
ground fluids, for instance, the radiation or the matter.
The perturbation equations of the background fluid are

_� f � ��f=3;

_�f � �H �1� 3wf��f � k2�3wf�f � �1� 3wf��	:

(42)

From the Poisson equation

�
k2

H 2
� �

9

2

X
�

���1� w��
�
�� ���

H

k2 ��

�

’
9

2
�1� wf�

�
�f ���

H

k2 �f

�
; (43)

we have approximately on large scales

� ’ ��f �
H

k2 �f: (44)

Combining these equations above with H � 2=��1�
3wf��	, we get [note numerically �f �O�k2��f]

�f � �
5� 3wf

3�1� wf�
� � const:;

�f �
k2�1� 3wf�

3�1� wf�
��:

(45)

So, we can see from Eq. (41) that there is a special solution
to it which is given approximately on large scales by

�ad
i � �f; (46)

and from Eq. (38) we have

�ad
i � �f: (47)

This shows that the special integration to Eq. (41) has the
meaning that it corresponds to the adiabatic perturbation.
Hence, for the sake of isocurvature perturbations of �i, we
can only consider the solution to the homogeneous part of
Eq. (41),

�� i � �Ci � 2H � _�i � �CiH � 2 _H � k2��i � 0: (48)

These solutions are represented by �iso
i and � iso

i . The rela-
tion between them is

� iso
i �

_�iso
i � 2H�iso

i

3k2 : (49)

Since the general solution of �i is

�i � �ad
i � �

iso
i � �r � � iso

i ; (50)

the isocurvature perturbations are simply Sir � 3� iso
i .
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2We assume in the next section when the mass of quintessence
is larger by an order and oscillates during late time evolutions,
the adiabatic condition still satisfies well.
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In order to solve Eq. (48), we need to know the forms of
Ci and H as functions of time �. For this purpose, we
solve the background equations (25). In the radiation-
dominated period, a � A�, H � 1=�, and we have

�1 � ��1=2

�
A1J1=4

�
A
2
m1�2

�
� A2J�1=4

�
A
2
m1�2

��
;

(51)

and

�2 � ��1=2

�
~A1I1=4

�
A
2
m2�

2

�
� ~A2I�1=4

�
A
2
m2�

2

��
;

(52)

respectively, where A, Ai, and ~Ai are constants, J��x� is the
�th order of the Bessel function, and I��x� is the �th order
of modified Bessel function. Usually the masses are small
in comparison with the expansion rate in the early Universe
mi H =a; we can approximate the (modified) Bessel
functions as J��x� � x

��c1 � c2x
2� and I��x� � x

��~c1 �
~c2x

2�. We note that J�1=4 and I�1=4 are divergent when x!
0. Given these arguments one can see that this requires
large initial values of�i and _�i if A2 and ~A2 do not vanish.
If we choose small initial values, which is the natural
choice if the dark energy fields are assumed to survive
after inflation, only A1 and ~A1 modes exist, so _�i will be
proportional to �3 in the leading order. Thus, the parame-
ters Ci in Eq. (39) will be Ci � 10=� (we have used j�i �
pij � _�2

i =a
2). So, we get the solution to Eq. (48),

�iso
i � ��4�Di1 cos�k�� �Di2 sin�k��	: (53)

�iso
i oscillates with an amplitude damping with the expan-

sion of the Universe. The isocurvature perturbations � iso
i

decrease rapidly. If we choose large initial values for �i

and _�i, A2 and ~A2 modes are present, _�i will be propor-
tional to ��2 in the leading order, and Ci � 0. Now the
solution to Eq. (48) is

�iso
i � ��Di1 cos�k�� �Di2 sin�k��	: (54)

�iso
i will oscillate with an increasing amplitude, so � iso

i
remains constant on large scales.

Similarly, in the matter-dominated era, a � B�2, H �
2=�, the solutions for the fields �i are

�1 � ��3

�
B1 sin

�
B
3
m1�

3

�
� B2 cos

�
B
3
m1�

3

��
; (55)

and

�2 � ��3

�
~B1 sinh

�
B
3
m2�

3

�
� ~B2 cosh

�
B
3
m2�

3

��
; (56)

respectively. We get the same conclusions as those reached
by the above analysis for the radiation-dominated era. If we
choose small initial values at the beginning of the matter
domination, we will get the isocurvature perturbations in
�i decreasing with time. On the contrary, for large initial
123515
values, the isocurvature perturbations remain constant on
large scales. This conclusion is expectable. In the case of
large initial velocity, the energy density in the scalar field is
dominated by the kinetic term and it behaves like the fluid
with w � 1. The isocurvature perturbation in such a fluid
remains constant on large scales. In the opposite case,
however, the energy density in the scalar field will be
dominated by the potential energy due to the slow rolling.
It behaves like a cosmological constant, and there is only
tiny isocurvature perturbation in it.

We have seen that the isocurvature perturbations in
quintessencelike or phantomlike fields with quadratical
potential decrease or remain constant on large scales de-
pending on the initial velocities. In this sense the isocur-
vature perturbations are stable on large scales. The
amplitude of these perturbations will be proportional to
the value of the Hubble rate evaluated during the period of
inflation Hinf if their quantum origins are from inflation.
For a large Hinf isocurvature dark energy perturbations
may be non-negligible and will contribute to the observed
CMB anisotropy [67,68]. In the cases discussed here,
however, these isocurvature perturbations are negligible.
First, large initial velocities are not possible if these fields
survive after inflation as mentioned above. Second, even
though the initial velocities are large at the beginning of the
radiation domination, these velocities will be reduced to a
small value due to the small masses and the damping effect
of Hubble expansion. In general, the contributions of dark
energy isocurvature perturbations are not very large [69]
and here for simplicity we assumeHinf is small enough that
the isocurvature contributions are negligible.2 Thus we will
concentrate in next sections on the effects of the adiabatic
perturbations of the quintom model with two scalars con-
sidered in this paper.
IV. SIGNATURES OF THE QUINTOM AND THE
EFFECTS OF PERTURBATIONS ON

OBSERVATIONS

Based on the perturbation equations (35) and (36), we
modify the code of CAMB [70] and will study preliminarily
in this section the observational signatures of the quintom.
Throughout this paper we assume a flat universe. In show-
ing the illustrative effects for the quintom we have assumed
the fiducial background parameters to be �b � 0:042,
�c � 0:231, �DE � 0:727, where DE denotes dark energy
and today’s Hubble constant is fixed at H0 �
69:255 km=s Mpc�2. We will calculate the effects of a
perturbed quintom on CMB and LSS.

In the quintom model we focus on, there are two pa-
rameters: one is the quintessence mass and the other is the
phantom mass. When the mass of quintessence is heavier
-6
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than the Hubble parameter the field will start to oscillate
and consequently one will get an oscillating quintom. In
the numerical discussions we will fix the mass of the
phantom field to be mP � 2:0� 10�60mpl. We vary the
quintessence mass with the typical values being mQ �

10�60mpl and 4� 10�60mpl, respectively. We plot in
Fig. 1 the equations of state as a function of the scale factor
for the above two sets of parameters and their correspond-
ing effects on the observations. One can see the obvious
oscillating feature of the quintom as the mass of the
quintessence component gets heavier. After touching the
w � �1 pivot several times, w crosses �1 consequently
where the phantom part dominates dark energy. The quin-
tom field modifies the metric perturbations: �g00 � 2a2�,
�gii � 2a2��ij, and consequently contributes to the late
time integrated Sachs-Wolfe (ISW) effect. The ISW effect
is an integrant of _�� _� over conformal time and wave
number k. The above two quintom models yield quite
different evolving ��� as shown in the right panel of
Fig. 1, where the scale is k� 10�3 Mpc�1. We can see the
late time ISW effects differ significantly when dark energy
perturbations are taken into account (solid lines) or not
(dashed lines).
FIG. 1 (color online). Effects of the two-field oscillating quintom
2:0� 10�60mpl and the masses of the quintessence field are 10�60m
The upper right panel illustrates the evolution of the metric perturb
(dashed lines) dark energy perturbations. The scale is k� 10�3 Mp
right panel delineates the effects on the matter power spectrum with (

123515
ISW effects take an important part in large angular
scales of CMB and in the matter power spectrum of LSS.
For a constant EOS of the phantom, Ref. [71] has shown
that the low multipoles of CMB will get significantly
enhanced when dark energy perturbations are neglected.
On the other hand, for a matterlike scalar field where the
equation of state is around zero, perturbations will also
play an important role on the large scales of CMB, as
shown in Ref. [13]. Our results on CMB and LSS reflect
the two combined effects of the phantom and oscillating
quintessence. Note that in the early studies of quintessence
effects on CMB, one usually considers a constant weff

instead:

weff �

R
da��a�w�a�R
da��a�

; (57)

however this is not enough for the study of effects on SN,
nor for CMB when the EOS of dark energy has a very large
variation with redshift, such as the model of an oscillating
quintom considered in this paper.

To face the oscillating model of a quintom with the
current observations, we make a preliminary fitting to the
first year Wilkinson Microwave Anisotropy Probe
on the observables. The mass of the phantom field is fixed at
pl (thicker line) and 4:0� 10�60mpl (thinner line), respectively.
ations ��� of the two models with (solid lines) and without
c�1. The lower left panel shows the CMB effects and the lower
solid lines) and without (dashed lines) dark energy perturbations.
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(WMAP) temperature-temperature (TT) and the TE
temperature-polarization cross-power spectrum as well as
the recently released 157 ‘‘Gold’’ SN data [22]. Following
Refs. [72,73], in all the fittings below we will fix � � 0:17,
�mh2 � 0:135, and �bh2 � 0:022, we set the spectral
index as nS � 0:95, and the amplitude of the primordial
spectrum will be used as a continuous parameter. In the
fittings of an oscillating quintom we have fixed the mass of
the phantom to be mP � 6:2� 10�61mpl. Figure 2 delin-
eates 3� WMAP and SN constraints on the two-field
quintom model; it also shows the corresponding best fit
values. The labels mQ and mP stand for the mass of
quintessence and the phantom, respectively. The left panel
of Fig. 2 shows the separate WMAP and SN constraints.
The green (shaded) area shows WMAP constraints on
models where dark energy perturbations have been in-
cluded and the blue area (contour with solid lines) is
without dark energy perturbations. The perturbations of
dark energy have no effects on the geometric constraint
of SN. The right panel shows the combined WMAP and SN
constraints on the two-field quintom model with perturba-
tions (green/shaded region) and without perturbations (red
region/contour with solid lines). We find the confidence
regions do show a large difference when the perturbations
of dark energy have been taken into account or not.

So far we have investigated the imprints of an oscillating
quintom on CMB and LSS. Now we consider another
example wherew crosses�1 smoothly without oscillation.
It is interesting to study the effects of this type of quintom
model with its effective equation of state defined in (57)
exactly equal to �1 on CMB and the matter power spec-
trum. This study will help to distinguish the quintom model
from the cosmological constant. We have realized such a
FIG. 2 (color online). 3�WMAP and SN constraints on the two-fie
mP stand for the mass of quintessence and the phantom, respectively.
Left panel: Separate WMAP and SN constraints. The green (shaded
perturbations have been included and the blue area (contour with
Combined WMAP and SN constraints on the two-field quintom
perturbations (red region/contour with solid lines).

123515
model of a quintom in the lower right panel of Fig. 3, which
can be easily given in the two-field model with lighter
quintessence mass. In this example we have set mQ �

2:6� 10�61mpl, mP � 6:2� 10�61mpl. We assume there
is no initial kinetic energy. The initial value of the quin-
tessence component is set as �1i � 0:226mpl and the
phantom part as �2i � 6:64� 10�3mpl. We find the EOS
of the quintom crosses�1 at z� 0:15, which is consistent
with the latest SN results.

The model of the quintom, which is mainly favored by
current SN only, needs to be confronted with other obser-
vations in the framework of concordance cosmology. With
SN making the only direct detection of dark energy, this
model is most promising to be distinguished from the
cosmological constant and other dynamical dark energy
models which do not get across �1 by future SN projects
on the low redshift (for illustration see, e.g., [32]). This is
also the case for the model of the quintom in the full
parameter space: it can be most directly tested in low
redshift type Ia supernova surveys. In the upper left panel
of Fig. 3 we delineate the different ISW effects among the
cosmological constant (red/light solid line), and the quin-
tom model which gives weff � �1 with (blue/dark solid
line) and without (blue dashed line) perturbations. Similar
to the previous oscillating case, the difference is very large
when switching off quintom perturbations and much
smaller when including the perturbations. In the upper
right panel we find that the quintom model cannot be
distinguished from a cosmological constant in light of
WMAP. The two models almost give exactly the same
results in CMB TT and TE power spectra when including
the perturbations. We find that the difference in CMB is
hardly distinguishable even by cosmic variance.
ld quintom model shown together with the best fit values. mQ and
We have fixed mP � 6:2� 10�61mpl and varied the value of mQ.
) area shows WMAP constraints on models where dark energy
solid lines) is without dark energy perturbations. Right panel:
model with perturbations (green/shaded region) and without
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Given the fact above that from CMB observations the
quintom with weff � �1 makes no distinctive signatures,
now we discuss briefly the signatures in some other ob-
servations. To do that we need to consider the physical
observables which can be affected by the evolving w
sensitively. In comparison with the cosmological constant
such a quintom model gives a different evolution of the
expansion history of the Universe, such as altering the
epoch of matter-radiation equality. The Hubble expansion
rate H is

H �
_a

a2 � H0��ma
�3 ��ra

�4 � X	1=2 (58)

where X, the energy density ratio of dark energy between
the early epochs and today, is quite different for the quin-
tom-CDM and �CDM. In the �CDM scenario, X is simply
a constant while, in general, for dark energy models with
varying energy density or EOS,

X � �DEa�3e�3
R
w�a�d lna: (59)

The two models will give different Hubble expansion rates.
This is also the case between the quintom model with
weff � �1 in the left panel of Fig. 3 and a cosmological
FIG. 3 (color online). Effects of the two-field quintom model whe
(WMAP), the metric perturbations ��� (the scale is k� 10�3 M
upper right panel are WMAP TT and TE data [84].

123515
constant. Different H leads directly to different behaviors
of the growth factor. In the linear perturbation theory all
Fourier modes of the matter density perturbations grow at
the same rate. The matter density perturbations are inde-
pendent of k:

�� k �H _�k � 4Ga2�M�k � 0: (60)

The growth factor D1�a� characterizes the growth of the
matter density perturbations: D1�a� � �k�a�=�k�a � 1�
and is normalized to unity today. In the matter-dominated
epoch we have D1�a� � a. Analytically D1�a� is often
approximated by the Meszaros equation [74]:

D1�a� �
5�mH�a�

2H0

Z a

0

da0

�a0H�a0�=H0�
3 ; (61)

where we can easily see the difference between the model
of the quintom and a cosmological constant due to the
different Hubble expansion rates. More strictly, one needs
to solve Eq. (60) numerically. In the lower left panel of
Fig. 3 we show the difference of D1�a� between the quin-
tom with weff � �1 and the cosmological constant. The
difference in the linear growth function is considerably
re weff � �1 compared with the cosmological constant in CMB
pc�1), and the linear growth factor. The binned error bars in the
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large in the late time evolution and possibly distinguishable
in future LSS surveys and in weak gravitational lensing
(WGL) observations. WGL has emerged with a direct
mapping of cosmic structures and it has been recently
shown that the method of cosmic magnification tomogra-
phy can be extremely efficient [75], which leaves a prom-
ising future for breaking the degeneracy between the
quintom and a cosmological constant.
V. PERTURBATIONS OF A PARAMETRIZED
QUINTOM AND THE EFFECTS ON THE

OBSERVATIONS

There have been many studies in the literature in the
fittings of the dark energy with parametrized EOS, such as
the linear parametrization w � w0 � w1z [76] to SN and
other observations such as CMB and LSS. For the latter
observations the perturbations of dark energy need to be
considered. However, at the point of w � �1, as pointed
out in Sec. II, one would be encountered with the singu-
larity of the isentropic sound speed. Moreover, in the
perturbation equation (28) one will get infinite _�. For the
physical quantity ��� P�� in the model of the single field
of quintessence, it is not divergent at w � �1, i.e. �! 1
but ��� P�� � k2 _��� � 0; however, for the model with
parametrized EOS one will generically have an unphysical
divergence when _w � 0 at the cosmological constant
boundary. The detailed explanation is given as follows:
first from Eq. (28) one will get infinite _� and the physical
continuity implies that one will also get �! 1 at w �
�1. Introducing the new physical quantity which is rele-
vant to the CMB observations:

V � �1� w��; (62)

Eqs. (32) and (33) can be rewritten now as

_� � �V � �1� w�3 _�� 3H �1� w��

� 3H
_w=�1� w� � 3H �1� w�

k2 V ; (63)

_V � 2HV � k2��
_w

1� w
V � k2�1� w��: (64)

We can easily see that _V ! 1 when _w � 0 at w � �1.
We should point out that both the scalar fields and fluids

obey the same form of equations on the evolution of
perturbations: Eqs. (27) and (28), and the only difference
comes from the term of �Pi=��i. If one starts from
Eqs. (32) and (33) and studies the effects of dark energy
by parametrizing the EOS, this is equivalent to the descrip-
tion of the effects of the scalar field and is identical to work
starting with dark energy potentials. If in models with the
parametrized EOS we have w always in the range ��1; 1	,
or w � �1 for 0< a<1, there will be no unphysical
divergence and this equivalently describes the single field
of quintessence or a phantom [77]. For example, in the
123515
model with w � w0 � w1 sin�lna�, if we restrict w0 � 0
and jw1j � 1 then Eqs. (63) and (64) will always be
continuous. However, when the parameter space is en-
larged to include _w � 0 at w � �1 Eqs. (63) and (64)
will be unphysical.

We emphasize that the above discussions are valid only
for models with a single field. For models with multifields
we have shown explicitly in the previous sections that the
perturbation equations (32) and (33) are continuous during
the crossing of the cosmological constant boundary. It is
similar for models with two fluids or models with two
components of parametrized EOS: w � ��iwi where
each component wi does not evolve across �1. This im-
plies, however, in the fitting of the models to the observa-
tional data the parameters introduced for the EOS should
be doubled if allowing the EOS w to vary and get across
�1. Certainly this is not practically applicable. It would be
nice to develop a technique to include the perturbations
which approximate well to the quintom, meanwhile not
introducing the extra degrees of freedom to the models
considered widely in the literature with parametrized EOS.
We will make a proposal for it below.

First of all we consider a system of a quintom with two
fields as above, �1 being quintessencelike and �2 being
phantomlike, but restrict the EOS of the system not to cross
over �1. In this case we will show that the background of
this system is equivalent to a model with an effective single
scalar field denoted by 
. By definition the pressure P and
energy density � of the 
 field should be equal to the two-
field case. When the kinetic term of�1 is larger than that of
the phantom part �2, the whole system of dark energy
gives rise to an EOS larger than �1 and the effective 

behaves like a quintessence. On the contrary, when _�1

2 �
_�2

2 � 0, 
 is a phantom field. Hence the kinetic and
potential terms of 
, in terms of �1 and �2, can be ex-
pressed as


 _
2 � _�1
2 � _�2

2 (65)

and

V�
� � V��1� � V��2�; (66)

where the ‘‘�’’ sign in Eq. (65) is for the case where the
total EOS of dark energy is quintessencelike and the ‘‘�’’
sign for phantomlike evolutions. We can directly recon-
struct the potential and time evolutions of 
. For example,
if we set the potentials of the two fields to both be linear,

Vi��i� � V0i � 	i�i; (67)

in the early epochs of radiation and matter domination,
dark energy fields are slow rolling and

�01 ��	1=3H; �02 � 	2=3H; (68)

where a prime denotes the derivative with respect to the
physical time. For the whole system in the quintessence
phase, �1 will have a larger kinetic energy, and in the
-10



FIG. 4 (color online). Reconstructions of the effective adia-
batic single field 
 in the framework of an oscillating quintom.
The background parameters have been chosen as m�1 � 2�
10�60mpl, m�2 � 10�61mpl, initial values are �1i � 0:09mpl,
�2i � 0:45mpl, and _�1i � _�2i � 0 early in the radiation domi-
nation epoch, and for this example we have ��1 � 0:2, ��2 �

0:54, h� 0:68. The red (thick) lines are the total EOS of dark
energy and the blue (thin) lines are the total potential. The
dashed lines show the cosmological constant boundary. The
upper panel delineates the late evolutions of the EOS and
potential of dark energy and the lower panel shows the recon-
structed values of 
 and its potential; 
 is a quintessence/
phantom scalar when w is above/below the dashed line. See
the text for details.
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radiation dominant epoch

H � 1=2t; 
0 � 

2

3
t
�����������������
	2

1 � 	
2
2

q
: (69)

On the other hand, from Eq. (66) we have

V;
�
�

0 � V;�1

��1��
0
1 � V;�2

��2��
0
2: (70)

Combining Eqs. (68)–(70) we can easily get

V;
�
� � �
�����������������
	2

1 � 	
2
2

q
: (71)

Consequently the effective potential of 
 analytically is

V�
� � 

�����������������
	2

1 � 	
2
2

q
�
� 
0�; (72)

where 
0 can be easily set by the initial conditions of �i
and the sign of ‘‘�’’ or ‘‘�’’ is somewhat optional. The
argument above applies for the case when the total EOS of
the system is restricted to be no larger than �1; the
effective scalar will behave like a phantom.

On the evolution of perturbations we can see from
Eqs. (27) and (28) that the phantom and the quintessence
fields obey the same equations. As shown in Sec. III,
although generically the two-field model would have non-
vanishing isocurvature perturbations, we can choose suit-
able initial conditions so that the isocurvature contributions
can be safely negligible. In this sense when the total EOS
does not evolve across minus unity, the whole system can
be equally described by an adiabatic field: both the back-
ground evolution and the adiabatic perturbations, as shown
similarly in Refs. [73,78,79] in the inflationary Universe.

We have demonstrated in the previous paragraphs the
equivalence between the two-field quintom model and the
single scalar field model when the EOS of the system does
not cross over�1. However if the total equation of state for
the double fields does cross over �1, this system will not
be able to be described effectively by a single scalar field.
To study the perturbations of the dark energy models with
EOS across�1, we introduce a small positive constant c to
divide the whole region of the allowed value of the EOS w
into three parts: (1) w>�1� c; (2) �1� c>
w>�1� c; and (3) w<�1� c. For (1) the EOS is
always larger than �1 and for (3) w is always less than
�1. For both cases the system with two fields as shown
above can be described effectively by a single scalar field
with a potential satisfying [80]


a2 d
2V

d
2 � �
3

2
�1� w�

�
�a
a
�H 2

�
7

2
�

3

2
w
��
�

1

1� w

�

�
_w2

4�1� w�
�

�w
2
� _wH �3w� 2�

�
;

(73)

where ‘‘�’’ is for case (1) and ‘‘�’’ for case (3). One can
see that d

2V
d
2 is divergent and there would be a discontinuity

in the derivative V0 at the turning point of w � �1, which
123515
corresponds to c! 0. As an example, in Fig. 4 we give the
reconstructed potential of the effective 
 field for an
oscillating quintom. One can see 
 behaves like quintes-
sence when w>�1 and like a phantom when w<�1.
The reconstructed potential is well defined except in region
(2) when the EOS gets across �1, where there is a sharp
discontinuity on V 0�
�.

For case (2), different from those in (1) and (3), the
perturbations cannot be fully described by a single adia-
batic field. However, as we learn from the above, for the
realistic quintom models the perturbations in region (2)
will be continuous and not divergent, i.e. � and � are
continuous, and the derivatives of � and � are finite. A
good approximation to the perturbation in region (2) is
requiring it to match to regions (1) and (3) at the boundary.
Practically, we take � and � to be constant matching to
regions (1) and (3) at the boundary and set
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_� � 0; _� � 0: (74)

In the numerical calculation the constant c is a very small
number; the approximation above lies in a very close
neighborhood of w � �1. In practice, in our numerical
calculations we have limited the range to be j�w � cj<
10�5. Since region (2) is extremely limited, neglecting the
evolutions of perturbations as shown in (74) is quite safe
and well approximated. Thus we can use Eqs. (32) and (33)
to study the effects of perturbations in models with pa-
rametrized EOS. We have also numerically checked the
validity of Eq. (74) and found that the contributions to the
observed CMB and LSS power spectra are very small. The
procedure of our checking is listed as follows:
(1) S
FIG. 5
�1� w
models
perturb
solid li
tart with the two-field model of a quintom and
record w�a�; compute CMB and LSS spectra with
perturbations.
(2) B
uild a code in CAMB [70] to include dark energy
perturbations with parametrized EOS. Include per-
turbations by setting Eq. (74) and treating �; � as
continuous.
(3) I
nterpolate w�a� in the code with parametrized EOS;
compute CMB and LSS spectra and make compari-
(color online). 3� WMAP and SN constraints on the parametriz
0a cos�w1a�, shown together with the best fit values. In the left pa
where dark energy perturbations have been included and the blue

ations. In the right panels models with perturbations are delineated in
nes) are without perturbations. For illustration we have fixed w1 �

123515-12
sons with the results from step 1.

With this procedure we have considered a model of an
oscillating quintom and found that the difference is no
more than 10�4, which is safely negligible.

As examples now we study the effects of perturbations
for several models with parametrized EOS in light of
WMAP and SN data. The first example is given by
Ref. [42], where w is parametrized by

w�lna� � wa � w0 cos�w1 ln�a=ac�	 (75)

with a being the scale factor. This model has a nice feature
of unifying the early inflation and the current accelerated
expansions. In Ref. [42] the period of oscillation has been
set as long as �200 e-folds. It is interesting to study the
consequences with a shorter period. Here for illustration
we fixwa � �1,w1 � 20, and ac � 1. In the upper panels
of Fig. 5 we show the illustrative fittings with and without
the perturbations. We can see the parameter space has been
enlarged a lot when including the contributions of the
perturbations. For a second example we parametrize w as

w�lna� � wa � w0a cos�w1a� ac	: (76)
ed quintom models w � �1� w0 cos�w1 lna� and w �
nels the green (shaded) areas are WMAP constraints on
areas (contours with solid lines) are without dark energy

green (shaded) regions and the red regions (contour with
20 in the upper panels and w1 � 50 in the lower panels.



FIG. 6 (color online). 3� WMAP and SN constraints on the parametrized quintom model w � w0=�1� lna� shown together with
the best fit values. Left panel: Separate WMAP and SN constraints. The green (shaded) area shows WMAP constraints on models
where dark energy perturbations have been included and the blue area (contour with solid lines) is without dark energy perturbations.
Right panel: Combined WMAP and SN constraints on the parametrized quintom model with perturbations (green/shaded region) and
without perturbations (red region/contour with solid lines).
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In the numerical calculation we have fixedwa � �1,w1 �
50, and ac � 0. In the lower panels of Fig. 5 we can see
that the effects are still very prominent both in the separate
and combined constraints, although not as strong as the
example in (75). For the third example in Fig. 6 we take w
to be nonoscillatory:

w � w0=�1� lna�; (77)

where the original form was first proposed in Ref. [81]. We
find in our case SN constraints are very weak due to the
fixed background parameters; the 1� regions have not been
affected much by the perturbations, but the 2� and 3�
regions have been enlarged significantly when the pertur-
bations are taken into account.

VI. CONCLUSIONS

In this paper we have studied the perturbations of the
dynamical quintom model of dark energy in a self-
consistent way. It is physically significant for the inclusion
of quintom perturbations, both on the theoretical grounds
of model building and on the fittings to the observations.
Because of the singularities and instabilities of perturba-
tions at the cosmological constant boundary, we have
shown a new method regarding the impossibility of
k-essence as a viable quintom model. In the realistic quin-
tom model building one must include the perturbations. In
general, one needs to add extra degrees of freedom to
realize the model of the quintom. In the two-field model
and the model with a d’Alembertian operator the isocurva-
ture contributions may be safely negligible in the simplest
case. We have considered the implications of quintom
perturbations on the observations of CMB and LSS. We
have shown that the parameter space is different when one
includes the perturbations of dark energy or not. In trying
123515
to constrain dark energy in a model independent way we
have also proposed a method to include the perturbations
for models of dark energy with parametrized EOS across
�1. With some specific examples of the parametrized
EOS, we show that the parameter space which character-
izes the properties of the model will get enlarged, in
general, when including the perturbations. This will lead
to important consequences in the phenomenological stud-
ies on the cosmological imprints of dynamical dark energy,
including the model of the quintom. A thorough investiga-
tion of current constraints on the quintom model of dark
energy where dark perturbations are taken into account is
beyond the scope of the current paper and will be presented
elsewhere [82,83].

Overall, a dynamical quintom model is favored by cur-
rent SN data and not ruled out by the combined observa-
tional constraints. There are still some inconsistencies
today among different observations in the precision cos-
mology and the concordance �CDM model has not yet
fitted well to the observations in a high enough confidence
level; in this sense we might not be adopting the Ockham’s
razor with a cosmological constant. When we start from a
�CDM model in the probe of our Universe we cannot
achieve more subtle physics beyond that. This is necessary
to bear in mind for us to understand the nature of dark
energy with the accumulation of the observational data.
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