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Primordial magnetic seed field amplification by gravitational waves
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Using second-order gauge-invariant perturbation theory, a self-consistent framework describing the
nonlinear coupling between gravitational waves and a large-scale homogeneous magnetic field is
presented. It is shown how this coupling may be used to amplify seed magnetic fields to strengths needed
to support the galactic dynamo. In situations where the gravitational wave background is described by an
‘‘almost‘‘ Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) cosmology we find that the magnitude of the
original magnetic field is amplified by an amount proportional to the magnitude of the gravitational wave
induced shear anisotropy and the square of the field’s initial comoving scale. We apply this mechanism to
the case where the seed field and gravitational wave background are produced during inflation and find
that the magnitude of the gravitational boost depends significantly on the manner in which the estimate of
the shear anisotropy at the end of inflation is calculated. Assuming a seed field of 10�34 G spanning a
comoving scale of about 10 kpc today, the shear anisotropy at the end of inflation must be at least as large
as 10�40 in order to obtain a generated magnetic field of the same order of magnitude as the original seed.
Moreover, contrasting the weak-field approximation to our gauge-invariant approach, we find that while
both methods agree in the limit of high conductivity, their corresponding solutions are otherwise only
compatible in the limit of infinitely long-wavelength gravitational waves.
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I. INTRODUCTION

The origin of cosmological magnetic fields that are
prevalent throughout galaxies clusters, disk and spiral gal-
axies and high-redshift condensations has generated much
debate in recent years, with the majority of this work being
focused on providing mechanisms that generate these ga-
lactic fields on large scales (see [1,2] and references
therein). The candidate mechanisms are diverse, often
depending on the required seed field strengths. It has
been suggested that the fields observed today could be a
result of the amplification of a relatively large seed field
through protogalactic collapse at the onset of structure
formation [3]. As the gas collapses to current measured
densities, the flux lines of the frozen-in cosmological
magnetic field get compressed, inducing adiabatic ampli-
fication. Another popular mechanism, which requires a
relatively weaker pre-existing seed field, is amplification
via the galactic dynamo by means of parametric resonance
[4]. The combined effect of differential rotation across the
disk and the cyclonic turbulent motions of the ionized gas
is believed to lead to the exponential amplification of a
smaller primordial field until the back-reaction of the
plasma opposes further growth. Although the dynamo
mechanism is strongly supported by the close correlation
between the observed structure of the galactic fields and
the spiral pattern of galaxies, there is some argument over
its efficiency and hence the amount of amplification that
can occur through this process. The major problem with all
address: geroldb@maths.uct.ac.za
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of these mechanisms is that they assume the presence of a
pre-existing seed field whose origin is still to be estab-
lished. A further idea relies on turbulence (disrupted flow)
and shocks, which occur during the stages of structure
formation, inducing weaker magnetic fields via battery-
type mechanisms, which operate as a result of large-scale
misalignments of gradients in electron number density and
pressure (or temperature) [5].

There have been numerous attempts to generate early,
pre-recombination, magnetic fields with strengths suitable
to support and maintain the dynamo by exploiting the
different out-of-equilibrium epochs that are believed to
have taken place between the end of the inflationary era
and decoupling [6]. These fields are facilitated by currents
that arise from local charge separation generated by
vortical velocity fields prevalent in the early plasma (cf.
also [7]).

One problem with the above mechanisms is that they are
casual in nature so the scales over which the fields are
coherent cannot exceed the particle horizon during that
epoch. Given that such phase transitions took place at very
early times, where the comoving horizon size was small,
tight constraints must be placed on the coherence length of
these magnetic fields. However, pre big bang models based
on string theory [8], in which vacuum fluctuations of the
magnetic field are amplified by the dilaton field, predict
superhorizon fields.

Inflation has long been suggested as a solution to the
causality problem, since it naturally achieves correlations
on superhorizon scales, however adjustments to the stan-
dard inflationary models need to be made since magnetic
-1 © 2005 The American Physical Society
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fields surviving this epoch are small on account of the
inability of vector fields to couple gravitationally to the
conformally flat metric resulting from the exponentially
fast expansion. A way around this obstacle is by breaking
the conformal invariance of electromagnetism since this
alters the way the underlying gauge fields couple to gravity.
There are many ways of doing this which explains the
variety of the proposed mechanisms in the literature [9].
Such inflationary scenarios have not been without critique,
though [10].

It has also been proposed that inflation is followed by a
period of preheating in which the parametric resonance of
the causal oscillations of the inflaton field and the accom-
panying perturbations can lead to amplification on super-
horizon scales [11]. Other authors have advocated the
breakdown of Lorentz invariance either in the context of
string theory and noncommutative varying speed of light
theories, or due to the dynamics of large extra dimensions
[12]. The success of these proposals, however, is usually
achieved at the expense of simplicity.

In order for these proposed mechanisms to be viable,
they must, in addition, produce seed fields that satisfy the
criteria for the subsequent amplification processes to work.
To be a candidate seed field for the galactic dynamo, the
induced field must exceed a minimum coherence scale in
order to prevent the destabilization of the dynamo action.
The time scale over which the amplification takes place
also dictates a minimum field strength, for example, in the
case of a dark-energy dominated Universe we obtain B�
10�34 G on a coherence scale of 10 kpc. Davis et al. [13]
proposed an inflationary mechanism that exploits the natu-
ral coupling between the Z-boson and the gravitational
background. Unfortunately, the fields produced only just
fall within dynamo limits in the case of a dark energy
dominated Universe. Recently, the production of a mag-
netic seed field due to the rotational velocity of ions and
electrons, caused by the nonlinear evolution of primordial
density perturbations in the cosmic plasma during
pre-recombination radiation and matter eras, was investi-
gated in [14] and a rms amplitude B � 10�23��=Mpc��2 G
at recombination on comoving scales � * 1 Mpc was
reported.

In this paper, we offer an alternative mechanism that
looks at the interaction of a pre-existing field, such as the
one proposed by Davis et al., with a gravitational wave
(GW) spectrum which accompanies most inflationary sce-
narios. This builds on earlier work by Tsagas et al. [15] in
which this idea was first introduced within the weak-field
approximation. Our aim is to investigate whether this
interaction can produce a sufficiently large amplification
of a seed field present at the end of inflation to meet the
above mentioned requirements for the dynamo to work.

The issue of how to deal with the coupling between
gravitational waves and the seed magnetic field is rather
subtle. A commonly used approximation in the literature is
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to assume that the magnetic field is weak and that its
contribution to the energy-momentum tensor is such that
it does not disturb the isotropy of the Friedmann-Lemaı̂tre-
Robertson-Walker (FLRW) background [16]. This is
done by assuming that the energy density of the magnetic
field ~Ba is much less than the matter energy density: ~B2 �
� and that its anisotropic pressure is negligible:
�ab � � ~Bha ~Bbi � 0.1 The problem with this approxima-
tion is that it is not gauge-invariant in a strict mathematical
sense, so one can therefore not guarantee that, when
calculating the magnetic field which arises through its
coupling with linear perturbations of FLRW (such as
gravitational waves), it leads to physically meaningful
results. In order to solve this problem we develop a self-
consistent framework based on second-order perturbation
theory, employing the methods initiated by recent work of
Clarkson [17] and Clarkson et al. [18]. Here the seed
magnetic field is treated as a on average homogeneous
linear perturbation of the background FLRW model and
couplings to gravitational degrees of freedom that arise
when perturbing the background are taken to be second
order in the perturbation theory. Adopting this approach
allows us to write Maxwell’s equations in a way that makes
them manifestly gauge-invariant to second order with in-
teraction terms that clearly describe the modes induced by
the gravity wave-magnetic field interaction. The restriction
to a homogeneous seed field leads to simplification on the
technical level but still encapsulates the main features of
the gravito-magnetic interaction. The implementation of
an inhomogeneous seed is reserved to a future article.

The results show that, in the presence of gravitational
radiation, the magnitude of the magnetic field is amplified
proportionally to the shear distortion caused by the prop-
agating waves. Once the amplification is saturated, the
magnetic field dissipates adiabatically as usual. The gravi-
tational boost is also proportional to the square of the
field’s original scale, which suggests that the proposed
mechanism could lead to significant amplification in the
case of large-scale magnetic fields. Indeed, when applied
to fields of roughly 10�34 G spanning a comoving scale of
about 10 kpc today (see, for example, the fields produced in
[13]) , the mechanism leads to an amplification of up to 13
orders of magnitude (depending on the calculation of the
shear distortion), bringing these magnetic fields well
within the galactic dynamo requirements, without the
need for extra amplification during reheating. We thus
qualitatively and quantitatively rediscover in a gauge-
invariant fashion the main results reported in [15].

In order to contrast the two different approaches in de-
tail, we compare our solutions with the corresponding
solutions obtained using the weak-field approximation
-2
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[16] and find that while both methods agree in the limit of
high conductivity, their corresponding solutions are other-
wise only compatible in the limit of infinitely long-
wavelength gravitational waves when merely the dominant
contribution is considered.

The units employed in this paper are c � h � 1 and � �
8�G � 1, the exception being section V, where natural
units are used.

II. PERTURBATION SCHEME

If we wish to study the interaction between gravitational
waves and a magnetic field in a cosmological setting, we
immediately face a second-order problem in perturbation
theory because both the magnetic field as well as GW are
absent in the exact FLRW background, and may thus be
individually regarded as first-order perturbations. Using
the 1	 3 covariant approach [19], we therefore develop
a two parameter expansion in two smallness parameters:
�B represents the magnitude of a homogeneous magnetic
field and �g represents the magnitude of the GW. The
magnitude of the interaction GW 
 magnetic field is of
order O��B�g� as is the magnitude of the in such a manner
generated electromagnetic fields. However, at second-
order level, only terms of order O��B�g� are kept
while terms of order O��2

g� and O��2
B� are discarded. In

fact, when dealing with the gravito-magnetic interaction,
these discarded terms would always appear multiplied
by a first-order quantity and are thus irrelevant for our
considerations.

Whence, the perturbation spacetimes are divided up and
denoted in the following way:
(i) B
 � Exact FLRW as background spacetime,
O��0�;
(ii) F
 1 � Exact FLRW perturbed by a homogeneous
magnetic field whose energy density and curvature
are neglected, O��B�;
(iii) F
 2 � Exact FLRW with gravitational perturba-
tions O��g�;
(iv) S
 � F 1 	F 2 allows for inclusion of interactions
terms of order O��B�g�.
We will generally refer to terms of order O��B� and O��g�
appearing in F as ‘first-order’ and to variables of mixed
order O��B�g� appearing in S as ‘second-order’.

It should be noticed that the absence of an electric field
in F 1 does not necessarily imply that there is no electric
field at all but rather that the electric field is perturbatively
smaller than the magnetic field. This is in accordance with
the standard assumption that the very early Universe was a
good conductor (see, for example, [20] for an example of
how this works). The inclusion of an electric field in F 1 is
possible, in principle, but would require to alter the per-
turbation scheme because then interactions between gravi-
tational waves and the electric field needed to be taken into
account as well. However, a more realistic way of describ-
ing the interaction between gravitational waves and elec-
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tromagnetic fields should employ a multifluid description
[7], which allows for modelling the currents, but that is
beyond the scope of the present paper.

Having outlaid the different stages we turn to review the
concomitant equations. We keep them as general as pos-
sible, which will allow us to illuminate the effects of spatial
geometry, cosmological constant � and equation of state
for the matter on the interaction. We limit ourselves to the
irrotational case, that is, we require the vorticity !ab to
vanish throughout.

A. FLRW background

The FLRW models are characterized by a perfect fluid
matter tensor and the condition of everywhere-isotropy.
Thus, relative to the congruence of fundamental observers
with 4-velocity ua �uaua � �1�, the kinematical variables
have to be locally isotropic, which implies the vanishing of
the 4-acceleration _ua � ubrbua, shear �ab � D<aub>
and vorticity !ab � D�aub� �0 � _ua � �ab � !ab�.
Furthermore, the models have to be not only conformally
flat, that is, the electric and magnetic components of the
Weyl tensor vanish �0 � Eab � Hab�, but also spatially
homogeneous implying the vanishing of the spatial gra-
dients of the energy density �, the pressure p and the
expansion � � Daua �0 � Da� � Da� � Dap�. As
usual, the spatial derivative Da � habrb is obtained by
projection of the spacetime covariant derivative ra onto
the 3-space (with metric hab � gab 	 uaub) orthogonal to
the observer’s worldline. As a consequence, the key back-
ground equations are the energy conservation equation

_�	���	 p� � 0; (1)

the Raychaudhuri equation

_� � �1
3�

2 � 1
2��	 3p� 	�; (2)

and the Friedmann equation

�	� �
1

3
�2 	

3K

a2 ; (3)

where the constant K indicates the geometry of the spatial
sections.

B. First-order perturbations

1. The homogeneous magnetic field ~Ba
We assume the magnetic field ~Ba to be spatially homo-

geneous at first order �Da
~Bb � 0� and thus consider the

gradient of ~Ba as well as the magnetic anisotropy �ab �

� ~Bha ~Bbi as being of second order. We presuppose that such
a field was produced by some primordial process, which
left a relic field on average homogeneous over a typical
coherence length. Since there are no electric fields or
charges in the F 1 perturbation spacetime, the magnetic
induction equation takes the form
-3
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�a �
_~Bhai 	

2
3�

~Ba � 0: (4)

As a result, the magnetic field scales as

~B a � ~B0
a

�
a0

a

�
2
; (5)

where a denotes the scale factor, e.g., � � 3 _a=a � 3H,
where H denotes the inverse Hubble length.

2. Gravitational waves

Gravitational waves are covariantly described via trans-
verse parts of the electric �Eab� and magnetic �Hab� Weyl
components, which are PSTF tensors [21]. The pure tensor
modes are transverse, obtained by switching off scalar and
vector modes �0 � Da� � Da� � Dap � !a � _ua�,
which results in the constraints2

0 � Da�ab � DaEab � DaHab � Hab � curl�ab: (6)

The propagation equations for these tensor modes are
simply

_� habi 	
2
3��ab � �Eab; (7)

_E habi 	�Eab � curl�curl�ab� � 1
2��	 p��ab; (8)

together with the background equations for � and�. Since
every FOGI tensor satisfies the linearized identity

curl�curlTab� � �D2Tab 	
3
2DhaDcTbic

	 ��	�� 1
3�

2�Tab; (9)

we see that the gravitational waves are completely deter-
mined by a closed wave equation for the shear, namely

��ab � D2�ab 	
5
3� _�ab 	 �

1
9�

2 	 1
6��

3
2p	

5
3���ab � 0:

(10)
C. The interaction

Maxwell’s equations govern the interaction between
GW and magnetic fields. If we require charge neutrality
and neglect currents as well as the back-reaction of induced
second-order magnetic fields with the shear, we obtain

_E hai 	
2
3�Ea � curlBa; (11)

_B hai 	
2
3�Ba � �ab ~Bb � curlEa; (12)

DaEa � 0; (13)

DaBa � 0: (14)
2We use curlVa � �abcDbVc to denote the curl of a vector and
curlWab � �cdhaDcWbi

d to denote the covariant curl of a second-
rank PSTF tensor, where �abc is the volume element of the 3-
space. Finally, the covariant spatial Laplacian is D2 � DaDa.

123514
Observe that the EM fields have to be divergence-free at all
orders due to neglecting vorticity effects. Moreover, the
system is not gauge-invariant because it contains a mixture
of second-order �Ea; curlEa; curlBa� and first-order terms
��ab�, while Ba now comprises the full magnetic field (the
first-order contribution plus the induced field). The situ-
ation we are interested in is the interaction between the
shear �ab and the first-order magnetic field, neglecting the
back-reaction with the induced magnetic field. How does
one then disentangle the different magnetic field perturba-
tions in a consistent way?

In special relativity, the standard procedure would be to
use a power series expansion of the magnetic field,

Ba � �BB
a
1 	 �g�BB

a
2 	O��2

g; �
2
B�; (15)

where the first-order field Ba1 satisfies the magnetic induc-
tion Eq. (4). Although insertion of this expansion into the
above system yields only second-order terms, the proce-
dure does not work in general relativity since the commu-
tation relations for the various differential operators (cf. the
appendix) can not be consistently satisfied. To illustrate
this important point clearly, we consider the commutation
relation between the (proper) time derivative and the spa-
tial gradient applied to the magnetic field. It is evident that
the case where the commutator relation is introduced after
the expansion of Ba,

�DbBa�_? � �g�B�DbBa�_? � �g�B�Db _Ba2 �
1
3�D

bBa2�;

(16)

does not agree with the case where the linearized identity
for �DaBb�_ is substituted before using the power series
expansion (15):

�DbBa�_? � Db _Ba � 1
3�D

bBa 	Hbd�dacB
c 	 �dcD

cBa

� �g�B�Db _Ba2 �
1
3�D

bBa2� 	 �BH
b
d�

dacB1
c:

(17)

Here, ? denotes projection onto the fundamental observ-
er’s rest space. This inconsistency can only be resolved if
all interaction terms are zero. It is via the commutation
relations that Weyl curvature is brought in through the back
door which couples to the magnetic field and thus affects
the interaction. It is this feature that renders the power
series procedure faulty.

The difficulty arises because the magnetic field Ba is not
gauge-invariant in S as it does not vanish in F 1. We
therefore need to define a new second-order gauge-
invariant (SOGI) variable which satisfactorily describes
the effects that we wish to investigate. However, a look
at Maxwell’s equations above reveals that �a �
_Bhai 	

2
3 �Ba is the sought SOGI variable which has to

be used at second order instead of the magnetic field Ba.
We chose to describe the interaction in terms of the vari-
able Ia � �ab ~Bb. Hence, Maxwell’s equations can be writ-
ten in truly gauge-invariant terms at second-order, namely
-4
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_E hai 	
2
3�Ea � curlBa; (18)

�a 	 curlEa � Ia: (19)

Observe that the standard constraints 0 � DaBa � DaEa,
which hold at all orders, imply

D a�a � DaIa � �abDa ~Bb � 0; (20)

where the last equality is only true as long as spatial
gradients of ~Ba are regarded as second-order. Clearly, if
the idealized assumption of infinite conductivity is made so
that all electric fields vanish, Maxwell’s equations reduce
to �a � Ia. In this specific case, once the solution for Ia is
known, the (not gauge-invariant) generated magnetic field
measured by the fundamental observer can be obtained via
a standard integration of �a. However, it is important to
stress that �a is the fundamental variable, whose deviation
from zero quantifies the evolution of the magnetic field at
second-order in a truly gauge-invariant manner.
III. WAVE EQUATIONS FOR THE MAIN
VARIABLES

Having written the key Maxwell’s equations as a system
of differential equations of purely SOGI variables, we now
turn to the derivation of wave equations for the electric and
magnetic fields. In doing this we make no assumptions
about the spatial geometry or the equation of state and also
keep the cosmological constant; this has the advantage of
allowing us to draw some conclusions about how these
parameters influence the interaction between GW and
magnetic fields. In particular, it will turn out that neglect-
ing the current in Maxwell’s equations and at the same time
requiring a homogeneous magnetic field at first-order level
leads to consistent equations in spatially flat models only.

A. Wave equation for the interaction variable

Let us first derive the wave equation for the interaction
variable Ia � �ab ~Bb. Even though the shear �ab belongs
to F 2 and the magnetic field ~Ba to F 1, the commutator
relations do not lead to ambiguities for Ia since they
manifest themselves only at third-order in this case. In
order to derive an evolution equation for Ia, we need the
auxiliary quantity Ja � Eab ~Bb. Then, using Eqs. (4) and
(7)–(9), we arrive at the system

_I hai 	
4
3�Ia � �Ja; (21)

_J hai 	
5
3�Ja � �D2Ia 	 �

1
2��� p� 	�� 1

3�
2�Ia;

(22)

where we employed that spatial gradients of the magnetic
field are second-order and thus D2Ia � D2��ab ~Bb� �
�D2�ab� ~B

b. Eliminating the auxiliary variable Ja, the gen-
eral closed wave equation for Ia is found to be
123514
�I hai � D2Ia 	 3� _Ihai 	 �
13
9 �2 � 1

6��
5
2p	

7
3��Ia � 0:

(23)

In the case of infinite conductivity, the solution to Eq. (23)
instantly yields the solution of �a, from which the induced
magnetic field measured by the fundamental observer
might be obtained by integration.

B. Wave equation for the electric field

To derive the wave equation for the induced electric
field, we first differentiate Eq. (18) and equate the result
with the second-order identity

�curlBa�_? � ��curlBa 	 curl�a �Hab
~Bb (24)

to obtain

�E hai 	
5
3�

_Ehai 	 �
4
9�

2 � 1
3��	 3p� 	 2

3��Ea

� curl�a �Hab
~Bb: (25)

Secondly, using Eq. (19) to substitute for curl�a above and
the expansion

c url�curlEa� � �D2Ea � �
2
9�

2 � 2
3��	���Ea; (26)

we find a forced wave equation for the induced electric
field, namely

�Ehai �D2Ea	
5
3�

_Ehai 	 �
2
9�

2	 1
3��� 3p�	 4

3��Ea �Ka;

(27)

where the forcing term Ka � curlIa �Hab
~Bb �

�cd�aD�cb�B
b has no divergence. It is possible to show

that the forcing term Ka, as well as curlIa and Hab
~Bb,

respectively, can be found from the wave equation

�Khai �D2Ka	
11
3 � _Khai 	 �

22
9 �2� 1

3��	 9p�	 8
3��Ka� 0:

(28)

For example, the wave equation for curlIa follows by
taking the curl of Eq. (23) and using the expansion (26),
while the case Hab

~Bb is similar to the derivation of the
wave equation for the interaction term Ia.

It will be useful for later purposes to consider the electric
field’s rotation. By taking the curl of Eq. (27), we imme-
diately arrive at

�curlEa��? � D2�curlEa� 	 7
3��curlEa�

_
?

	 �79�
2 	 1

6��� 9p� 	 5
3��curlEa � curlKa: (29)

Because curl�Hab
~Bb� � �D2Ia 	 ��

5
18 �2 	 5

6 


��	���Ia holds, we note the interesting result

c urlKa � � 1
18�

2 � 1
6��	���Ia: (30)

That is, for a cosmological model with flat spatial sections
we have curlKa � 0 and, therefore, the electric field’s
rotation is not induced by the interaction between magnetic
-5
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fields and GWs at second-order—the generated electric
field is curl-free. As a consequence, the interaction be-
tween magnetic field and GW produces the same magnetic
field in a case of a spatially flat Universe as in the limit of
high conductivity.

However, upon closer inspection of the forcing term Ka
in Eq. (27) one discovers that this term is actually identi-
cally zero because of the identity [22]

0 � �abcVb�DdAc
d� � 2Vb�

cd�a�DcA
b�
d�; (31)

which holds for any vector Va and tensor Aab � Ahabi
perpendicular to the congruence ua. Thus, Eq. (30) implies
that our chosen perturbative scheme is only consistent if
the cosmological model is spatially flat (cf. also footnote
IV B below). In essence, we see that the requirement of
having a spatially homogeneous and thus a curl-free mag-
netic field at first-order can only be achieved when the
Universe is spatially flat. Furthermore, the interaction be-
tween GW and a magnetic field generates in this particular
case no electric fields (at least to second order in the
perturbation scheme).

C. The generated magnetic field

We have already pointed out that for spatially flat mod-
els the generated magnetic field follows directly from the
interaction variable since in this case we have �a � Ia. For
closed or open models, however, a wave equation for �a is
needed to determine the induced magnetic field. The
sought after equation may be obtained by applying the
constraint Eq. (19) to Eq. (29) and substituting for
curlKa via Eq. (30). This leads to

�� hai � D2�a 	
7
3�

_�hai 	 �
7
9�

2 	 1
6��� 9p� 	 5

3���a

� �Ihai � D2Ia 	
7
3�

_Ihai 	 �
13
18�

2 	 1
3��

3
2p	

11
6 ��Ia:

(32)

Observe that for models with flat spatial sections the left-
hand side and right-hand side of the above equation be-
come identical—in agreement with the comment follow-
ing Eq. (29). A slight simplification is achieved by
employing Eq. (23) yielding finally a forced wave equation
for �a:

��hai � D2�a 	
7
3�

_�hai 	 �
7
9�

2 	 1
6��� 9p� 	 5

3���a

� �2
3�

_Ihai � �
13
18�

2 � 1
2��	 2p����Ia: (33)

It is evident that the variable Ia and hence the gravitational
waves source fluctuations in the magnetic field variable �a.
Another way to derive Eq. (33) consists of differentiating
Maxwell’s equation (19) twice, using Eq. (18) to get rid off
the curlEa-term and applying the corresponding commu-
tation relations. This clearly demonstrates the consistency
of our approximation scheme.
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IV. SOLUTIONS FOR FLAT UNIVERSES

After having derived the fundamental equations govern-
ing the interaction between GWs and magnetic fields as
well as the generated electromagnetic fields, we turn to the
task of solving them. For the sake of simplicity, we inves-
tigate the solutions only for spatially flat models with zero
cosmological constant �. We assume the matter to obey a
barotropic equation of state, p � w�, with constant baro-
tropic index w.

A. A useful time variable

The background equations (1)–(3) subject to the as-
sumptions stated above imply the following evolution
equation for the scale factor:

�a
a
	

1

2
�1	 3w�

�
_a
a

�
2
� 0: (34)

By integrating once and choosing initial conditions such
that �0 � ��t0� � 3H0 for some arbitrary initial time t0
with H � _a=a defining the Hubble radius, we obtain the
following solution for the expansion

1

3
� �

_a
a
�

2

3�1	 w��t� t0� 	 2=H0
: (35)

Integrating once more, we find for the scale factor the
solution

a�t� � a0�
3
2H0�1	 w��t� t0� 	 1�2=3�1	w�: (36)

The introduction of a dimensionless time variable, �, de-
fined for w � �1 as

� � 3
2H0�1	 w��t� t0� 	 1; (37)

will turn out to be extremely useful as it simplifies the
integration of almost all the equations considered later
irrespective of the barotropic index while taking the initial
conditions explicitly into account as well. For example, the
scale factor evolves simply as a � a0�2=�3�1	w�� and the
Hubble radius is given by H � H0=�. Moreover, � � 1
corresponds to the initial time t0. Note however that the �
variable cannot be used in the de Sitter limit w! �1,
where the scale factor becomes a�t� � a0 exp�H0�t� t0��.

B. Generated magnetic field

Since we are only considering Universes with flat spatial
geometry, the induced magnetic field can be found by
integrating over �a. To this end, it suffices to solve for
the interaction variable Ia. A standard harmonic decom-
position [23] is used to take care of the Laplacian operator.
We expand the shear �ab �

P
k�
�k�Q�k�ab in pure tensor

harmonics, where as usual _Q�k�
habi � 0 and D2Q�k�ab �

��k2=a2�Q�k�ab hold. Moreover, each gravitational wave
mode is associated with the physical wave length �GW �
2�a=k. Since the magnetic field in F 1 obeys curl ~Ba � 0,
-6
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it follows that D2 ~Ba � �curl�curl ~Ba� � 0 and therefore
that the expansion of the magnetic field ~Ba �

P
n

~B�n�Q�n�a
in pure vector (solenoidal) harmonics reduces to ~Ba �
~B�0�Q�0�a , where ~B�0� � ~B0�a0=a�

2. This just means that
the magnetic field ~Ba is spatially constant, e.g., in agree-
ment with the assumption of homogeneity.3 Of course, the
solenoidal harmonics also obey the relations _Q�n�

hai � 0 and

D2Q�n�a � ��n2=a2�Q�k�a . Perturbations in S are conven-
iently decomposed with the vector harmonics4 V�‘�a �

Q�k�abQ
b
�n�, which are readily verified to fulfill the standard

requirements _V�‘�<a> � 0 and D2V�‘�a � ��‘2=a2�V�‘�a ,
where the wavenumber ‘ satisfies ‘2 � �ka 	 na�

�ka 	 na�. Because the magnetic field in F 1 has got only
the zero mode in our investigation, the wavenumber ‘
coincides with the wavenumber k of the shear.

Using the unified time variable � and the harmonics
explained above, we transform the wave Eq. (23) for the
interaction variable Ia into an ordinary differential equa-
tion:

9

4
�1	 w�2I00

�‘� 	
27�1	 w�

2�
I0
�‘�

	

��
‘

a0H0

�
2
���4=3�1	w�� 	

25� 15w

2�2

�
I�‘� � 0; (38)

where a prime means differentiation with respect to �.
Initial conditions are chosen as follows:

I�‘��t0� � ��k��t0� ~B0; (39)

I0
�‘��� � 1� � ~B0

�
�0
�k��1� �

4

3�1	 w�
��k��1�

�
; (40)

here, ~B0 is the initial amplitude of the first-order magnetic
field and

_� �k��t0� � 3=2H0�1	 w��
0
�k��1� (41)

was used. For every mode k we have initially ��t0� � �0

and �0�1� � �00.

1. Infinite-wavelength limit

In the infinite-wavelength limit �‘! 0�, the solution of
Eq. (38) is easily found to be

I�0���� � C1���10=3�1	w�� 	 C2���5	3w�=3�1	w�; (42)

where C1 and C2 are constants of integration. If the initial
3In light of the commutator relation (26), which holds for ~Ba in
F 1, Da

~Bb � 0 (which also leads to curl ~Ba � 0 in our approxi-
mation scheme) is only consistent for a spatially flat Universe—
in an open or closed Universe, a current is needed to uphold the
magnetic field’s homogeneity.

4It should be kept in mind that all above introduced harmonics
are exclusively defined on the background FLRW spacetime.
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conditions (39) and (40) are chosen, the corresponding
integration constants are

C1 �
��5	 3w�I�‘��1� � 3�1	 w�I0

�‘��1�

5	 3w
; (43)

C2 �
10I�‘��1� 	 3�1	 w�I0

�‘��1�

5	 3w
: (44)

We remark that this solution is in agreement with the result
obtained by multiplying the first-order magnetic field (5)
with the infinite-wavelength solution of the shear Eq. (10).
Whence, the total magnetic field in the presence of infinite-
wavelength GWs is

B�0���� � ~B0�
��4=3�1	w��

�
1�

C1

~B0H0

2

3�1� w�


 ����1	w�=3�1	w� � 1� 	
C2

~B0H0

1

1	 3w


���2	6w�=3�1	w� � 1�
�
; (45)

where ~B0 is the magnitude of the first-order magnetic field
interacting with the GW at initial time t0 and it is required
for physical reasons that the induced magnetic field van-
ishes initially. We stress that the interaction always leads to
an amplification of the magnetic field for any physically
acceptable choice of equation of state because of the
growing contribution in the second line of Eq. (45).

Let us look at some important special cases. For the sake
of simplicity, we take I0�‘��1� � 0 for granted. In the matter-
dominated era, where the matter is accurately described as
dust, w � 0 and a � a0�2=3, this yields for the magnetic
field mode

B�0�Dust�a� � ~B0

�
a0

a

�
2
�

1	
2

3

�0

H0

��
a0

a

�
3=2
� 1

�

	
2�0

H0

�
a
a0
� 1

��
; (46)

whereas for a radiation-dominated era, wherew � 1=3 and
a � a0�

1=2, the magnetic field mode is

B�0�Rad�a� � ~B0

�
a0

a

�
2
�

1	
2

3

�0

H0

�
a0

a
� 1

�

	
5

6

�0

H0

��
a
a0

�
2
� 1

��
: (47)

It follows that in the infinite-wavelength limit the amplifi-
cation depends mainly on the scale factor and the magni-
tude of the initial GW distortion relative to the Hubble
parameter ��=H�0.
-7



BETSCHART, ZUNCKEL, DUNSBY, AND MARKLUND PHYSICAL REVIEW D 72, 123514 (2005)
2. General case with ‘ � 0

The general solution to the interaction Eq. (38) is:

I�‘���� � ���5	w�=2�1	w�
�
D1J1

�
3w	 5

2�1	 3w�
;
‘

a0H0



2

1	 3w
��1	3w�=3�1	w�

�

	D2J2

�
3w	 5

2�1	 3w�
;
‘

a0H0



2

1	 3w
��1	3w�=3�1	w�

��
; (48)

where D1, D2 are integration constants and J1, J2 denote
Bessel functions of the first and second kind, respectively.
Observe that in the limit of infinite wavelengths, ‘! 0, the
solution (42) is recovered. The generated magnetic field
relative to the observer moving with 4-velocity ua can be
calculated from the solution (48) analytically for every
barotropic parameter w. We will state here only the total
magnetic field solution in the case of dust and radiation,
respectively. For dust, where w � 0 and a � a0�

2=3, the
full magnetic field is

B�‘�Dust�a� � ~B0

�
a0

a

�
2
�

1	
3

4�2

�
�GW

�H

�
2

0

�
�0

H0
	

�00
2H0

�

	O�a�1�

�
; (49)

while for radiation, where w � 1=3 and a � a0�1=2, the
total magnetic field modes obey

B�‘�Rad�a� � ~B0

�
a0

a

�
2
�

1	
3

4�2

�
�GW

�H

�
2

0

�
�0

H0
	

2�00
3H0

�

	O�a�1�

�
: (50)

Here, we introduced the gravitational wavelength �GW �
2�a=k and the Hubble length �H � 1=H. The undisplayed
remainders O�a�1� in the expressions above contain oscil-
lating functions which decay at least as fast as the inverse
scale factor a�1. Note that when the infinite-wavelength
limit of the full solutions above is taken, the findings (46)
and (47) are rediscovered. The results (49) and (50) clearly
show how the generated magnetic field depends on the
initial conditions and that the late time behavior is almost
identical for both dust and radiation. It should be noted that
the interaction can only be effective if the wavelength of
the GW matches the size of the magnetic field region,
�GW � �~B: in the case of �GW  �~B the magnetic field
cannot be physically affected by the GW, while for �GW �
�~B the effect becomes negligible due to its quadratic
dependence on �GW. If we divide the findings (49) and
(50) through the energy density of the background radia-
tion, the dominant contribution can be summarized as
follows,
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B

�1=2
	
’

�
1	

1

10

�
�~B

�H

�
2

0

�
�
H

�
0

�� ~B

�1=2
	

�
0
; (51)

where the wavenumber indices have been suppressed and
�00 � 0 was assumed. At late times, a significant amplifi-
cation of the original magnetic field can be achieved for
superhorizon gravitational waves. Note that a result almost
identical to (51) was obtained in [15], wherein the factor
1=10 is replaced by 10 instead. However, our result holds
for any finite gravitational wavelength, �GW � �~B, while
the result in [15] assumes �H � �GW. Moreover, [15] used
somewhat contrived initial conditions leading to an abrupt
amplification of the field whereas we chose initial condi-
tions such that there is no generated magnetic field present
when the interaction kicks in at the end of inflation.
V. APPLICATION

In order to estimate the amplification of the seed field
due to the interaction with GWs we reproduce the analysis
presented in [15] using the same parameter values. We find
it convenient to adopt natural units in this section.

Given that the evolution of the (spatially flat) Universe is
dominated by a dark-energy component such as a cosmo-
logical constant or quintessence, the minimum seed re-
quired for the dynamo mechanism to work is of the order
of 10�30 G at the time of completed galaxy formation and
coherent on a scale at least as large as the largest turbulent
eddy, roughly �100 pc [24]. Such a collapsed magnetic
field corresponds to a field ~B of �10�34 G with coherence
length �~B � 10 kpc on a comoving scale if the field re-
mains frozen into the cosmic plasma from the epoch of
radiation decoupling to galaxy formation. Its field strength
compared to the energy density of the background radia-
tion, �	, gives rise to the ratio ~B=�1=2

	 � 10�29, which
stays constant as long as the magnetic flux is conserved and
the magnetic field is frozen into the cosmic medium.

During inflation, the Hubble parameter H remains con-
stant and is taken to be H � 1013 GeV [13]. The scale of
the magnetic field therefore implies �~B=�H � 1020 at the
end of inflation. A general prediction of all inflationary
scenarios is the production of large-scale gravitational
waves whose energy density per wavelength is roughly
[15]

�GW ’ m
2
Pl

�
1

�GW

�
2
�
H
mPl

�
2
: (52)

Here, �GW denotes the wavelength of the GW and mPl the
Planck mass (see, for example, [25]). The total energy
density of the gravity waves expressed in terms of the shear
is (see footnote 4 in [26] for a neat discussion)

�GW �
m2

Pl

16�
�ab�ab; (53)

which implies an induced shear anisotropy [15]
-8
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�
�
H

�
0
’

�
�H

�GW

�
0

�
H
mPl

�
; (54)

where the zero suffix indicates the end of the inflationary
epoch. Typical inflationary models predict H=mPl � 10�6,
which lies comfortably within the bound H=mPl & 10�5

stemming from the quadrupole anisotropy of the CMB.
The interaction of such a primordial magnetic field with

GWs produced by inflation leads to a substantial amplifi-
cation of the former. Resorting to our result (51) and
applying (54), we find for the magnetic field [15]

B

�1=2
	
’

�
1	

1

10

�
�~B

�H

�
0

�
H
mPl

��� ~B

�1=2
	

�
0
: (55)

Substituting ��~B=�H�0 � 1020 and H=mPl � 10�6 into the
above expression, we obtain that GWs amplify the original
magnetic field as much as 13 orders of magnitude. This
mechanism thus brings an inflationary seed such as in
[13] up to �10�21 G, which is comfortably within the
requirements of the galactic dynamo mechanism [24]. In
Universes with zero cosmological constant, the minimum
seed for the dynamo has to be raised from �10�30 G to
�10�23 G [27]. However, the use of (52) and (53) to find
the shear anisotropy is problematic in the sense that (52)
holds strictly speaking only on scales up to the horizon; the
energy stored in superhorizon modes cannot be measured
by local observers. Once the initially superhorizon GWs
re-enter the observer’s horizon, they contribute to the
measured energy density. Therefore, the correct procedure
is to use the value of the shear anisotropy at horizon
crossing, ��=H�HC, and scale that value back to the end
of inflation using its evolution equation. During the
radiation-dominated era, the gravitational wave length
varies with the scale factor (i.e. �GW � �

1=2), while the
horizon scales as the inverse of the square of the scale
factor (i.e. �H � H�1 � �). This gives

�
�GW

�H

�
�

�
�GW

�H

�
0
��1=2; (56)

where � � 1 corresponds to the end of inflation after
reheating. At the point in time where the gravitational
wave crosses back into the horizon, its physical wavelength
equals the Hubble scale �H, that is ��GW=�H�HC � 1.
Substituting for the values from above, we obtain the
crossing time �HC � 1040, which hitherto leads to the
Hubble parameter HHC � 10�27 GeV at horizon crossing.
During the radiation era, the temperature is proportional to
the square of the Hubble parameter [25], T �

��������������������
mPLH=10

p
,

yielding a temperature of THC � 10�5 GeV at horizon
crossing. Since 1 GeV� 1013 K, the actual temperature
is �108 K, confirming that the superhorizon mode under
consideration indeed crosses back into the horizon during
the radiation-dominated epoch. Whence, combining (52)
and (53) gives a shear anisotropy
123514
�HC �

�
�
H

�
HC
�

�
H
mPl

�
0
� 10�6 (57)

at the time of horizon crossing.
Assuming a flat model with no cosmological constant,

the evolution of the shear anisotropy, � � �=H, can be
obtained by solving for the shear modes ��k� from Eq. (10)
and noting that H � ��1. The result is

��k���� � ���1	9w�=6�1	w�
�
AJ1

�
3w	 5

2�1	 3w�
;
k

a0H0



2

1	 3w
��1	3w�=3�1	w�

�

	 BJ2

�
3w	 5

2�1	 3w�
;
k

a0H0



2

1	 3w
��1	3w�=3�1	w�

��
; (58)

where A, B are constants of integrations and J1, J2 denote
Bessel functions of the first and second kind, respectively.
Since we are only interested in the growing mode, we may
set B � 0 eliminating the decaying mode contribution.
Specializing to the case of radiation, w � 1=3, remember-
ing that horizon crossing for the mode under consideration
(for which k=�a0H0� � 2���H=�GW�0 � 2�
 10�20

holds) happens at �HC � 1040 and using the estimate (57)
for the shear anisotropy at horizon crossing, one deter-
mines the remaining constant to be jAj � 10�16�. Hence,
at the end of inflation �� � 1�, one finally obtains for the
sought shear anisotropy

�0 �

�
�
H

�
0
� 10�45; (59)

where the approximation J1�
; x� � x
 for small argu-
ments x� 1 of the Bessel function of the first kind has
been employed. This is remarkably close to the result one
would obtain by simply using the growing mode solution
of (58) in the limit k=�a0H0� � 1, that is ��k� � �0� in the
case of radiation, which gives �0 � 10�46. If the above
value for the shear anisotropy is used in (51), the gravito-
magnetic amplification is completely negligible:

1

10

�
�~B

�H

�
2

0

�
�
H

�
0
� 10�6: (60)

We stress that the efficiency of the mechanism depends
crucially on the ratio between the coherence length �~B of
the initial magnetic field and the initial size of the horizon
�H. This ratio, however, disappears when the infinite-
wavelength limit is taken (see Sec. IV B 1). Even though
the solutions (46) and (47) show a growth proportional
(quadratic) to the scale factor, the factor of proportionality
��=H�0 ��10�26 or �10�45 in our first and second ex-
amples, respectively) is far too small in order to achieve an
effective amplification. It follows that the interaction be-
tween GWs and on average homogeneous magnetic fields
-9
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is completely negligible in the limit of infinitely long-
wavelength gravity waves.
VI. COMPARISON AND DISCUSSION

The interaction between GWs and magnetic fields in the
cosmological setting has recently been investigated in [15],
where the weak-field approximation [16] was used. Here
one allows for a weak magnetic test field ~Ba in the back-
ground, whose energy density, anisotropic stress and spa-
tial dependence have negligible impact on the background
dynamics: ~B2 � � and �ab � � ~Bha ~Bbi ’ 0 ’ Da

~Bb to
zero order. In order to isolate linear tensor perturbations,
it is necessary to impose Da

~B2 � 0 � �abc ~Bbcurl ~Bc in
addition to the standard constraints !a � 0 � Da� �
Dap associated with pure perfect fluid cosmologies. In
the weak-field approximation, the main equations govern-
ing the induced magnetic field arising from the interaction
between a weak background magnetic field ~Ba and GWs
were derived in [15] for the case of a spatially flat Universe
with vanishing cosmological constant � and a barotropic
equation of state p � w�:

�B �‘� 	
5

3
� _B�‘� 	

�
1

3
�1� w��2 	

‘2

a2

�
B�‘�

� 2
�

_��k� 	
2

3
���k�

�
~B�n�0

�
a0

a

�
2
; (61)

where the GWs are determined by the shear wave equation

�� �k� 	
5

3
� _��k� 	

�
1

6
�1� 3w��2 	

k2

a2

�
��k� � 0: (62)

Here, the shear is harmonically decomposed as �ab �

��k�Q
�k�
ab , while for the induced magnetic field B�‘�a �

B�‘�V
�‘�
a with V�‘�a � Q�k�abQ

b
�n� was adopted. The back-

ground magnetic field evolves as ~Ba � ~B0
a�a0=a�

2 and
~B0
a � ~B0

�n�Q
�n�
a is assumed.

We want to compare our results with the corresponding
ones in the weak-field approximation. For simplicity, we
restrict ourselves here to the case of dust. As pointed out
above, the only allowed magnetic wavenumber for the
interacting magnetic field is n � 0, when Da

~Bb � 0,
which leads to ‘ � k. The published solution for the gen-
erated magnetic field in the weak-field approximation, e.g.,
equation (21) in [15], however, is not applicable in the limit
n! 0. This can be traced back to the choice for the initial
conditions for the generated magnetic field made by the
authors of [15] when solving Eqs. (61) and (62), see
equation (19) in [15].

In what follows below, we solve Eqs. (61) and (62)
again, including the full solution for the shear instead of
merely keeping the dominant part as done in [15]. We
specify the initial conditions by choosing for every mode
k of the shear ��k��a0� � �0, _��k��a0� � 0 and for every
mode ‘ � k of the generated magnetic field B�‘��a0� �
123514
0 � _B�‘��a0�. Note that this choice of initial conditions
differs from that in [15] but agrees with our choice made
in Sec. IV. The solution, including the background field, for
an arbitrary wavenumber k of the shear has the structure

B�‘�Dust�a� � ~B0

�
a0

a

�
2
�

1	
�0

H0
f�

���
a
p

; k� 	O�a�1=2�

�
;

(63)

where the function f�
���
a
p

; k� is built of several oscillatory
terms with amplitude ��GW=�H�

2
0 at most and the undis-

played part falls of at least as fast as a�1=2. If this is
compared with our result (49), one observes that it differs
by having another time behavior. More strikingly, however,
is that now the term f�

���
a
p

; k� not only amplifies the seed
field but also grows like

���
a
p

in the long wavelength limit
(k=a0H0 � 1). This is in clear contrast to the gauge-
invariant result (49), where the seed undergoes amplifica-
tion but then still decays adiabatically like a�2. On the
other hand, in the infinite-wavelength limit ( k! 0), the
exact full solution is now

B�0�Dust�a� � ~B0

�
a0

a

�
2
�

1	
�0

H0

�
20

3
� 14

�
a
a0

�
1=2

	
36

5

�
a
a0

�
	

2

15

�
a0

a

�
3=2
��
: (64)

Again, we obtain a solution whose time behavior differs
from that found in (46). However, the weak-field solutions
agree with our presented solutions in the infinite-
wavelength limit when only the dominant part of the
solutions is considered, at least in the examples considered
above. The reason why the solutions obtained within the
weak-field approximation are in general not equivalent to
the solutions found using the gauge-invariant approach
developed in this paper results from the non-gauge-
invariance of the weak-field approximation, where the
magnetic field ~Ba interacting with the GW is treated as a
weak background field. However, gauge-invariance re-
quires ~Ba to vanish exactly in the FLRW background.
We remind the reader once more that our procedure solves
firstly for the gauge-invariant variable �a � _Bhai 	

2
3 �Ba,

from which the magnetic field Ba measured in the frame of
reference of ua can then subsequently be found.

A further important remark concerns the issue of con-
ductivity. We have seen earlier that, within our assump-
tions and for spatially flat Universes, the gravito-magnetic
interaction leads to an induced magnetic field which is
independent of the conductivity of the cosmic medium.
This is due to the fact that the interaction does not generate
rotational electric field modes which might affect the mag-
netic field. In the weak-field approximation, however, the
situation is completely different. If one assumes that the
conductivity of the cosmic medium that high so that elec-
tric fields are quickly dissipated away, yielding a curl-free
induced magnetic field, then Eq. (61) no longer applies and
-10
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one simply has to use

_B �‘� 	
2

3
�B�‘� � ��k� ~B

�n�
0

�
a0

a

�
2

(65)

instead, while the equation for the shear (62) is unaltered.
This means that the weak-field approximation produces the
same result as our gauge-invariant perturbation approach in
the high conductivity limit, and for that case only. It is
therefore evident that in the weak-field approximation the
conductivity of the cosmic medium has a crucial bearing
on the generated magnetic field, in stark contrast to the
result of our gauge-invariant approach (see also [28]).
VII. CONCLUSION

In this paper we have investigated the properties of
magnetic fields in the presence of cosmological gravita-
tional waves, using a two parameter perturbation scheme.
Using proper second-order gauge-invariant variables
(SOGI), we were able to obtain results in terms of clearly
defined quantities, with no ambiguity concerning the
physical validity of the variables. The full set of equations
determining the evolution of the gravitational waves and
the generated electromagnetic fields was presented, and the
integration shows an amplification of the induced magnetic
field due to the interaction of a ‘‘background‘‘ magnetic
field with gravitational waves. The magnitude of the origi-
nal magnetic field is amplified by an amount proportional
to the magnitude of the gravitational wave induced shear
anisotropy and the square of the field’s initial comoving
scale Once the amplification saturates, the magnetic field
dissipates adiabatically as usual. The results were dis-
cussed in different fluid regimes, in particular, dust and
radiation, and it was established that the dominant contri-
bution to the magnetic field is the same in both fluid
regimes. We find that the magnitude of the gravitational
boost depends significantly on the manner in which the
estimate of the shear anisotropy at the end of inflation is
calculated. For a seed field of 10�34 G spanning a comov-
ing scale of about 10 kpc today, the shear anisotropy at the
end of inflation (during which we assume H � 1013 GeV)
should be larger than 10�40 for any noticeable amplifica-
tion of the seed field to arise at all.

Moreover, we further recalculated the induced magnetic
field employing the weak-field approximation, thereby ex-
tending previous results in [15], and compared the solu-
tions with ours derived in a gauge-invariant manner using
SOGI variables. It was found that there is a significant
difference in the growth behavior of the magnetic field
when SOGI variables are used as compared to the case of
a weak-field approximation scheme. While the two meth-
ods agree in the limit of high conductivity, they seem to be
compatible otherwise only in the limit of infinitely long-
wavelength gravitational waves when the dominant part of
the solution is considered.
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APPENDIX: COMMUTATION RELATIONS

Here we present various commutator relations which
have been used in the text. The relations are given up to
second order in our perturbation scheme. The vanishing of
vorticity, !ab � 0, is assumed throughout in conjunction
with the constraints Da� � Dap � 0 which isolate the
pure tensor modes. All appearing tensors are PSTF, Sab �
Shabi, and all vectors Va;Wa are purely spatial.

Commutators for first-order vectors Va:

�DaVb�
_
? � Da

_Vb �
1
3�DaVb � �a

cDcVb 	Ha
d�dbcV

c

(A1)

�curlVa�_? � curl _Va �
1
3�curlVa � �abc�bdDdVc

�HabV
b (A2)

D �aDb�Vc � �
1
9�

2 � 1
3��	���V�ahb�c 	 �

1
3��c�a

� Ec�a�Vb� 	 hc�a�Eb�d �
1
3��b�d�V

d (A3)

Commutators for first-order tensors Sab:

�DaSbc�
_
? � Da

_Sbc �
1
3�DaSbc � �a

dDdSbc

	 2Ha
d�de�bSc�

e (A4)

�DbSab�_? � Db _Sab �
1
3�DbSab � �bcDcSab

	 �abcH
b
dS

cd (A5)

�curlSab�_? � curl _Sab �
1
3�curlSab � �ec�cd�aDeSb�

d

	 3HchaSbi
c (A6)

c urlcurlSab � �D2Sab 	 ��	�� 1
3�

2�Sab

	 3
2DhaD

cSbic 	 3Scha�Ebi
c � 1

3��bi
c�

(A7)

Commutators for second-order vectors Wa:

�DaWb�
_
? � Da

_Wb �
1
3�DaWb (A8)

D �aDb�Wc � �
1
9�

2 � 1
3��	���W�ahb�c (A9)

curlcurlWa � �D2Wa 	 Da�divW�

	 2
3��	�� 1

3�
2�Wa (A10)
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