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Resonant amplification of magnetic seed fields by gravitational waves in the early universe
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Inflation is known to produce both gravitational waves and seed magnetic fields on scales well beyond
the size of the horizon. The general relativistic study of the interaction between these two sources after the
end of inflation, showed a significant amplification of the initial magnetic seed which brought the latter
within the currently accepted dynamo limits. In the present article we revisit this gravitomagnetic
interaction and argue that the observed strong growth of the field is the result of resonance. More
specifically, we show that the maximum magnetic boost always occurs when the wavelength of the
inducing gravitational radiation and the scale of the original seed field coincide. We also look closer at the
physics of the proposed Maxwell-Weyl coupling, consider the implications of finite electrical conductivity
for the efficiency of the amplification mechanism and clarify further the mathematics of the analysis.
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I. INTRODUCTION

Observations have repeatedly verified the widespread
presence of magnetic fields in the universe [1]. Large-scale
fields have been found in galaxies, galaxy clusters, super-
clusters and also in high-redshift radio galaxies. The typi-
cal magnetic strengths vary between a few and several�G,
while the associated coherence lengths are comparable to
those of the virialized hosts. Despite their ubiquitous pres-
ence, however, the origin of these fields is still a matter of
open debate [2]. Over the years many scenarios of cosmic
magnetogenesis have appeared in the literature. These
range from eddies, density fluctuations and reionization
effects in the post-recombination plasma to cosmological
phase-transitions, inflationary and superstring/M-theory
inspired scenarios [3]. Historically, the study of magnetic
generation has been motivated by the need to explain the
origin of the large-scale galactic fields. The structure of
these fields, particularly those seen in spiral galaxies, sup-
ports the galactic dynamo idea [4]. Although the efficiency
of the mechanism has been criticized, it is generally be-
lieved that galactic dynamos can substantially amplify
preexisting weak magnetic seeds. The origin of the seed
fields, however, is still elusive. When the dynamo amplifi-
cation is efficient, the initial field can be as low as
�10�23 G at the time of completed galaxy formation [5].
This limit is relaxed to �10�30 G in universes dominated
by dark energy [6]. In the absence of dynamo, however,
magnetic seeds of the order of 10�12 G, or even 10�8 G,
are required. The scale of the initial field is also an issue,
since galactic dynamos require a minimum coherence
length of �100 pc to guarantee the stability of the process
[7]. In summary, the lowest current theoretical requirement
for the dynamo to work is a magnetic seed close to 10�30 G
on a collapsed scale of �100 pc. This corresponds to a
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field of approximately 10�34 G with a comoving length of
roughly 10 kpc.

The possible cosmological origin of the initial magnetic
seeds is an appealing suggestion because it can explain
both the fields seen in nearby galaxies and those detected in
galaxy clusters and high-redshift condensations. Causality,
however, means that the coherence length of any field
generated between inflation and (roughly) recombination
is unacceptably small. A mechanism known as ‘‘inverse
cascading’’’ can solve this problem [8], but it requires large
amounts of helicity to operate successfully. Inflation has
long been suggested as a solution to the causality problem
because it naturally achieves correlations on superhorizon
scales. The problem with inflation is that the residual
magnetic field is far too weak to sustain the galactic
dynamo. The reason is the ‘‘adiabatic,’’ a�2 depletion
rate of the field (a is the cosmological scale factor) during
the de Sitter phase. One can get around this obstacle by
slowing down the decay of the primordial seed. The effect
is known as ‘‘superadiabatic amplification’’ and it is usu-
ally achieved by breaking away from classical electromag-
netic theory [9]. There are more than one ways of doing
that, which explains the variety of the proposed mecha-
nisms in the literature [10,11].

It should be noted that when the Friedman-Robertson-
Walker (FRW) model has open spatial curvature, the cou-
pling between the field and the background geometry can
slow down the magnetic decay without violating classical
electromagnetism [12]. This occurs during the poorly con-
ductive phase of de Sitter inflation and affects lengths close
to the curvature scale and beyond. As a result, magnetic
fields spanning those lengths decay as a�1 (or slower)
instead of a�2. Even if the universe is only marginally
open today, this mechanism can produce large-scale fields
with astrophysically interesting strengths. For example,
assuming 1��� 10�2 at present, GUT-scale inflation
and a reheating temperature of �109 GeV, one obtains a
-1 © 2005 The American Physical Society
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1The gradient Da � ha
brb, with hab � gab � uaub, is the

covariant derivative operator orthogonal to the observer 4-
velocity ua. Also, curlBa � "abcD

bBc, where "abc is the spatial
permutation tensor (i.e. "abcua � 0). For more details and an
extensive covariant discussion of cosmological magnetic and
electromagnetic fields the reader is referred to [18,19].

2The most straightforward derivation of Eq. (3) is by linear-
izing the nonlinear magnetic wave equation given in [19] [see
Eq. (40) there]. On the other hand, one can obtain Eq. (4) directly
from expression (3.11) in [20].
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residual field of the order of 10�35 G on a scale�104 Mpc
today [12]. Moreover, the aforementioned final strength
can increase by lowering the reheating temperature.
Therefore, breaking away from Maxwell’s theory is not a
necessary requirement for the superadiabatic amplification
of cosmological magnetic fields in perturbed FRW
universes.

A common feature among almost all inflationary models
is the production of gravitational radiation over a wide
range of wavelengths. The interaction of these waves
with large-scale magnetic fields soon after the end of
inflation was originally considered in [13]. That study
showed that the gravitationally induced shear can amplify
the initial magnetic seed and the boost was found to be
proportional to the square of the field’s initial scale. The
latter immediately suggested that large-scale primordial
magnetic fields could be substantially amplified by Weyl
curvature distortions alone. Seed fields spanning a current
scale of �10 kpc, such as those produced in [11] for
example, were boosted by up to 14 orders of magnitude.
In the present paper we revisit the aforementioned grav-
itomagnetic interaction and discuss the mathematics and
the physics of the mechanism in further detail. We argue
that the achieved strong magnetic growth results from the
resonant coupling of the two interacting sources. More
specifically, we show that the maximum amplification al-
ways occurs when the original seed field interacts with
gravitational waves of the same scale. The maximum boost
is determined at the onset of the gravitomagnetic interac-
tion, which for our purposes coincides with the end of
inflation. Once the parameters of the adopted inflationary
model are fixed, the resonant growth factor is proportional
to the initial magnetic scale, relative to the horizon size at
the time. Also the whole process is shown to operate in
cosmological environments of low electrical conductivity.
All these make the proposed amplification mechanism a
highly efficient ‘‘geometric dynamo’’ during the early
stages of reheating. In this respect, the Maxwell-Weyl
resonance discussed here resembles the magnetic amplifi-
cation via parametric resonance proposed in [14,15]. Given
that the universe has been a good conductor for most of its
lifetime, we examine the role of finite conductivity and
establish the threshold at which the electrical resistivity of
the medium becomes unimportant. In agreement with the
numerical results of [15], our analytical approach suggests
that the gravitomagnetic resonance is suppressed in highly
conductive cosmological environments.

In Secs. II and III we provide a description of the model,
of the Maxwell-Weyl interaction and of the resulting mag-
netic amplification. We follow the presentation of [13],
where the reader is referred to for details, and provide
additional mathematical clarifications and physical insight.
The gravitomagnetic resonance is shown in Sec. IV and an
expression for the resonant growth factor is given.
Section V applies the proposed amplification mechanism
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to several inflation-produced magnetic seeds, while the
role of finite electrical conductivity is discussed in Sec. VI.

II. GRAVITOMAGNETIC INTERACTION

A. Background equations

Consider a spatially flat FRW universe containing a
barotropic perfect fluid of density � and isotropic pressure
p � p���. Following [13], allow for the presence of a weak
magnetic field Ba with B2 � BaBa � �. At this limit, the
field has negligible contribution to the background dynam-
ics, which is described by

��� 1
3�

2 � 0; (1a)
_�� 1

3�
2 � 1

2���1� 3w� � 0; (1b)

_�� �1� w��� � 0; (2a)

and
_B a �

2
3�Ba � 0: (2b)

In the above � � 8�G, � � 3 _a=a � 3H is the expansion
scalar (H is the Hubble parameter) and w � p=� is the
barotropic index of the fluid [13]. Also, throughout this
paper we use natural units with c � 1 � @ and G�1=2 �
mPl ’ 1019 GeV.

We perturb the aforementioned background by allowing
for the propagation of weak gravitational waves, which are
covariantly monitored via the electric (Eab) and the mag-
netic (Hab) Weyl components [16]. In the magnetic pres-
ence, one isolates the linear pure-tensor perturbations by
imposing the conditions DaB

2 � 0 � "abcB
bcurlBc [17].1

These, together with the standard constraints of the perfect-
fluid models (e.g. see [20]), guarantee that all traceless
second-rank tensors are also transverse.

B. Linear equations

Adopting the aforementioned weakly magnetized FRW
background, we find that the linear magnetic evolution in
the presence of gravity-wave perturbations is governed by
the system.2

�B a �
5
3�

_Ba �
1
3�1� w��

2Ba � D2Ba

� 2� _�ab �
2
3��ab�

~Bb � curlJ a; (3)

��ab �
5
3� _�ab �

1
6�1� 3w��2�ab � D2�ab � 0; (4)
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where J a is the 3-current and �ab is the gravitationally
induced shear [13]. Note that ~Ba is the original magnetic
field, andBa is the one induced by the coupling between ~Ba
and gravity-wave distortions. The induced field vanishes in
the background, which frees our study from potential
gauge-related ambiguities. Hence, to first order, only the
background magnetic field contributes to the right-hand
side of (3).

At this stage we will ignore the current term in Eq. (3).
This confines our analysis to a medium of zero electrical
conductivity or to an electrically neutral one.3 In Sec. VI,
however, we will show that our results also hold in cosmo-
logical environments of finite but relatively low electrical
conductivity. We have also ignored the magnetic backre-
action in (4) because it does not affect the dominant linear
mode of the gravitationally induced shear [17]. Finally, we
note that gravity-wave perturbations are the driving force
behind the magnetic adulation described by Eq. (3). In
particular, one can explicitly show that the Weyl field alone
triggers fluctuations in an otherwise homogeneous mag-
netic field distribution (see [18]).

Expression (2b) means that ~Ba � ~B0
a�a0=a�2, with _~B0

a �

0. By splitting the zero-order field as ~Ba � ~B�n� ~Q�n�a , we
assign the finite physical scale � ~B � a=n to ~Ba [13,21].
This, however, does not mean that the background field is
treated as a propagating wave of any sort. Then, for �ab �

��k�Q
�k�
ab and Ba � B�‘�Q

�‘�
a , where Q�k�ab and Q�‘�a �

Q�k�ab ~Qb
�n� are tensor and vector harmonics, respectively,

we have [13]

�B �‘� �
5

3
� _B�‘� �

�
1

3
�1� w��2 �

‘2

a2

�
B�‘�

� 2
�

_��k� �
2

3
���k�

�
~B�n�0

�
a0

a

�
2
: (5)
�� �k� �
5

3
� _��k� �

�
1

6
�1� 3w��2 �

k2

a2

�
��k� � 0: (6)

Here, the zero suffix indicates the onset of the gravitomag-
netic interaction. Also, ‘ � �k2 � n2 � 2kn cos’�1=2 is the
comoving wave number of the induced magnetic field and
’ 2 �0; �=2� is the angle between the two interacting
sources. Finally, setting B�‘� � �1=2B�‘�=�, ��k� �
��k�=�, using conformal time (�, with _� � a�1) and
primes to indicate differentiation with respect to �, the
above recast as [13]
3Mathematically speaking, the gravitomagnetic interaction is
independent of the electrical resistivity if curlJ a � 0 [13].
Physically, however, the assumption of a curl-free current field
appears rather arbitrary and we will not pursue it here.
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B00�‘���1�3w�
�
a0

a

�
B0�‘� �

�
3

2
�1�3w�w

�
a0

a

�
2
�‘2

�
B�‘�

�2�1=2a
�

�0
�k��

1

2
�1�3w�

�
a0

a

�
��k�

�
~B�n�0

�
a0

a

�
2
; (7)

and

�00
�k� � �1� 3w�

�
a0

a

�
�0
�k�

�

�
3

2
�1� �2� 3w�w	

�
a0

a

�
2
� k2

�
��k� � 0; (8)

respectively (see also the appendix).

C. Scale of the induced magnetic field

The comoving wave number of the induced magnetic
field depends on the coherence length of the background
field, on the wavelength of the inducing gravitational ra-
diation and on the interaction angle between these two
sources. To be precise,

‘ � n
�

1�
�

k

n

�
2
� 2

�
k

n

�
cos’

�
1=2
; (9)

since n takes finite values only. Assuming that k and there-
fore ‘ are also finite, the wavelengths � ~B � a=n, �GW �
a=k and �B � a=‘ are all well defined and finite. Then,
Eq. (9) provides the following expression:

�B � � ~B

�
1�

�
� ~B

�GW

�
2
� 2

�
� ~B

�GW

�
cos’

�
�1=2

; (10)

for the coherence scale of the induced field. Given that 0 

’< �=2, this means �B 
 � ~B always. In particular, we
find �B � � ~B when � ~B � �GW and � ~B � �GW , whereas
�GW � � ~B implies �B � � ~B.
III. GRAVITOMAGNETIC DYNAMO

A. Magnetic amplification

After inflation the only period of low conductivity is that
of early reheating, when the effective equation of state
corresponds to a pressureless fluid. For p � 0 we have
w � 0, a � H2

0a
3
0�

2=4 and a0=a � 2=�. Then, expres-
sions (7) and (8) simplify to

B 00
�‘� �

2

�
B0
�‘� � ‘

2B�‘� �
8�1

�2

�
�0
�k� �

1

�
��k�

�
(11)

and

�00
�k� �

2

�
�0
�k� �

�
6

�2 � k2

�
��k� � 0; (12)

respectively (with �1 � �1=2 ~B�n�0 =a0H2
0). Superhorizon-

sized gravity waves, with �GW � �H � 1=H, have k��
1 and the dominant mode in the solution of Eq. (12) is
��k� � ��k�0 ��=�0�

2. Substituted into (11) the latter gives
-3
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B 00
�‘� �

2

�
B0
�‘� � ‘

2B�‘� �
6	1

�
; (13)

where �2
0 � 4=a2

0H
2
0 and 	1 � �1=2a0

~B�n�0 ��k�0 . This de-
scribes a forced oscillation with a damping effect due to
the expansion. The force depends on the strength of the
background magnetic field and on the gravitationally in-
duced shear at the beginning of the gravitomagnetic inter-
action. When ‘� 0 we obtain

B �‘� � B�‘���� � B�‘�0 �cos�‘�� � sin�‘��	
�
�0

�

�
�

6	1

‘2�
;

(14)

which on super-Hubble scales [i.e. for ‘�� 1 and
cos�‘�� � sin�‘�� ’ 1� ‘� ’ 1] reduces to

B �‘� � B�‘�0

�
�0

�

�
�

6	1

‘2�
: (15)

Finally, recalling that B�‘� � �1=2B�‘�=� and using the
relations �2 � 4a=H2

0a
3
0 and � � 24=H2

0a
3
0�

3 of the w �
0 era, Eq. (15) gives4

B�‘� � 9��k�0

�
�B
�H

�
2

0

~B�n�0

�
a0

a

�
2
� 9��k�0

�
�B
�H

�
2

0

~B�n�; (16)

where �B is the scale of the induced field. Also, since Ba
vanishes in the background (see Sec. II B) we have set
B�‘�0 � 0. Accordingly, the gravitomagnetic interaction can
lead to a substantial amplification of the B-field when
9��k�0 ��B=�H�

2
0 � 1. For inflation-produced, super-

horizon-sized magnetic fields this is a realistic possibility.
In other words, the Maxwell-Weyl coupling discussed here
can act as an effective large-scale dynamo during the early
stages of reheating.

It should be noted that the above results also apply to the
post-recombination universe, provided that the plasma ef-
fects are negligible (e.g. when curlJ a � 0). In that case the
radiation era solution of (7) and (8) is almost identical to
Eq. (16) [see Eq. (25) in [13] ].

B. Gravitationally induced shear

A common feature in almost all inflationary models is
the production of gravitational radiation with wavelengths
extending over a wide range of scales. In fact, a relic
gravity-wave spectrum is perhaps the only direct signature
of inflation that may still be observable today. The energy
density of a linearized gravity-wave mode produced during
4In [13] all the solutions were obtained under the assumption
that �GW � � ~B. This ensured that �B � �GW � � ~B [with all three
wavelengths finite—see Eq. (9)] and allowed us to replace �B
with � ~B in the final expressions [e.g. see Eq. (21) in [13] ]. As we
will show in Sec. VI, this special case corresponds to the
maximum (resonant) magnetic amplification. Also, the initial
conditions of [13] assumed B�‘�0 �

~B�n�0 instead of setting B�‘�0 to
zero.
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a period of de Sitter expansion is (e.g. see [22])

��GW �
1

2

Z
���h��

2 � ��h��
2	kdk �

2k2

�

�
H
mPl

�
2
:

(17)

where k is the physical wave number of the mode. Also,
�h�;� � �2=�

1=2��H=mPl� is the mean fluctuation of the
metric perturbation h�;� and mPl is the Planck mass [22].
Clearly, �GW ! 0 as k ! 0.

To proceed further we note that the energy density of
gravitational wave perturbations is related to the magni-
tude of the transverse and trace-free part of the shear tensor
by ��GW � �2 [17]. Then, expression (17) takes the form

� �
�

2

9�

�
1=2
�
�H
�GW

��
H
mPl

�
; (18)

where � � �=� and �GW � 1=k. The above measures
the shear anisotropy due to gravitational radiation of infla-
tionary origin. As expected, the anisotropy depends on the
parameters of the underlying model of inflation (i.e. on the
value ofH=mPl) and it is inversely proportional to the scale
of the wave mode.
IV. GRAVITOMAGNETIC RESONANCE

Hyperhorizon-sized magnetic fields emerge naturally by
the end of inflation, when subhorizon quantum fluctuations
in the Maxwell field are stretched outside the Hubble
radius and then freeze-in as classical electromagnetic
waves. At that time the universe is also permeated by
large-scale gravitational waves; the inevitable prediction
of almost all inflationary scenarios. Following Eq. (17), the
effect of the linear interaction between these two sources
depends on the gravitationally induced shear anisotropy.
For inflation-produced gravitons the latter is inversely
proportional to their wavelength [see (18)]. Thus, combin-
ing relations (16) and (18) we obtain

B�‘� �
�
�B
�H

�
0

�
�B
�GW

�
0

�
H
mPl

�
0

~B�n�: (19)

Note that the zero suffix marks the beginning of the grav-
itomagnetic interaction, which here is the end of inflation.
According to expression (19), we have a substantial am-
plification of the geometrically induced B-field if

A �

�
�B
�H

�
0

�
�B
�GW

�
0

�
H
mPl

�
0
� 1; (20)

where A may be seen as the amplification factor. Given
that the ratio �H=mPl�0 is fixed by the adopted model of
inflation, the effect of the Maxwell-Weyl coupling depends
on the initial relation between �B, �GW and �H. In particu-
lar, since we are confined to superhorizon scales, the
magnitude of the amplification factor depends primarily
on �B and �GW . These are related to each other and also to
the scale of the background field by Eq. (10), which trans-
-4



5At the end of inflation the scale factor corresponds to a
temperature (T) given by the formula H � �8�3=2g1=2

 =
������
90
p
��

�T2=mPl�, where g � g�T� ’ 102 is the number of the relativ-
istic degrees of freedom (e.g. see [11]).
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forms expression (20) into

A�A�
��10�
�
H
mPl

�
0
�
�1�
2�2
cos���1	; (21)

with 
 � �� ~B=�GW�0 by definition. The latter varies be-
tween 0<
<1 and determines the scale ratio of the two
interacting sources. The parameter � determines the co-
herence length of ~B0, relative to the horizon length at the
time, according to �� ~B=�H�0 � 10�. Typically �� 1,
since �� ~B�0 � ��H�0 by the end of inflation. Once � and
�H=mPl�0 are fixed, the point of maximum amplification is
decided by the function within the brackets. It is then
straightforward to show that A�
� takes its maximum
value at 
 � 1, or equivalently for �� ~B�0 � ��GW�0. In
other words, the maximum magnetic boost is achieved
when the two interacting sources are in resonant coupling.
For 
 � 1 the amplification factor becomes A �Amax ’
10��H=mPl�0. When 
� 1 or 
� 1, on the other hand,
expression (21) ensures that A�Amax. Thus, the maxi-
mum magnitude of the gravitationally induced magnetic
field is

B�‘� � �B�‘��max � 10�
�
H
mPl

�
0

~B�n�; (22)

where �� 1. All these mean that the interaction between
inflation-produced magnetic seeds and gravitational waves
in the poorly conductive environment of early reheating,
can lead to the resonant amplification of the former.
Following (21), the maximum magnetic growth occurs at

 � 1 irrespective of the value of ’. The latter determines
only the shape of the amplification curve. In other words,
the gravitomagnetic resonance is independent of the inter-
action angle between the two sources.

Expression (22) provides the spectrum of the gravita-
tionally amplified magnetic field at the end of the resonant-
growth phase. The latter occurs during the early stages of
reheating when the electrical conductivity of the cosmic
fluid is low. Once the conductivity has grown beyond a
certain threshold, however, the plasma effects become
important (see Sec. VI). When this happens the electric
current term in Eq. (3) needs to be accounted for and our
analysis no longer holds. For our purposes, the gravito-
magnetic resonance and the geometric amplification of the
induced B-field cease at that point.

V. AMPLIFICATION OF INFLATIONARY
MAGNETIC SEEDS

Our results so far have shown that the maximum growth
of the gravitationally induced magnetic field depends on
the scale and the magnitude of the initial seed, as measured
at the end of inflation, and on the adopted inflation model.
Given that inflation has stretched these fields well outside
the horizon, their amplification can be very substantial. In
what follows we will consider three alternative scenarios of
magnetogenesis and calculate the strengths of the reso-
nantly amplified seeds in each case. Our aim is to obtain
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a first estimate of the resonant magnetic growth in each
case and to illustrate the potential of the Maxwell-Weyl
coupling as a very efficient early-universe dynamo.

Large-scale magnetic fields of inflationary origin are
generally extremely weak. Typically, the current energy
density of a primordial field that survived a phase of
de Sitter expansion (in spatially flat FRW universes) is
�B � 10�104��4

Mpc��, where �B � B2=8�, �� is the radia-
tion energy density and �Mpc is the field’s physical scale
today [9]. For a magnetic field with a coherence length of
�10 kpc, which is the minimum required for the galactic
dynamo to work, the corresponding strength is roughly
10�53 G. Such seeds are too weak to support the dynamo
and are therefore treated as astrophysically irrelevant.
However, the interaction of the aforementioned field with
gravity waves during the early stages of reheating can lead
to the resonant amplification of the former according to
Eq. (22). Since physical lengths are inversely proportional
to the radiation temperature, a scale of � ~B � 10 kpc today
translates into � ~B=�H � 1021 at the end of inflation. The
latter is obtained by assuming GUT-scale inflation with a
typical value of H0 � 1013 GeV, which corresponds to a
temperature of approximately 1015 GeV at the time.5

These mean � ’ 21 and �H=mPl�0 � 10�6 for the resonant
amplification parameters of Eq. (21). As a result, the
associated maximum-growth factor is of the order of 1015

and the initial magnetic seed is amplified to �10�38 G.
Despite this, the residual field is still some 4 orders of
magnitude below the minimum required strength of
�10�34 G (see [6]). Put another way, for workable results
we need a stronger initial seed.

When dealing with spatially flat FRW backgrounds,
inflationary magnetic seeds stronger than 10�53 G are
usually obtained outside the framework of classical elec-
tromagnetic theory. Such an inflation-based scenario of
large-scale magnetogenesis was recently suggested in
[11]. The proposed mechanism operates within the stan-
dard model, despite breaking the conformal invariance of
the Maxwell field, and produces magnetic seeds of
�10�34 G on scales of approximately 10 kpc. However,
10�34 G is the minimum strength required for the galactic
dynamo to work, and this only in universes dominated by a
dark-energy component. Nevertheless, the interaction of
the above field with gravitational wave perturbations soon
after inflation should boost its amplitude in accordance
with Eq. (22). Given the scale of the original seed and
using the parameters of [11] (i.e.H0 � 1013 GeV and T0 �
1015 GeV), the resonant amplification factor is 1015 (see
also above). The latter brings the residual magnetic field up
to �10�19 G, which lies very comfortably within the ga-
-5
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lactic dynamo requirements for dark-energy dominated
cosmologies [6]. Moreover, comoving seeds of 10�19 G
can sustain the dynamo in conventional universes as well,
especially when the enhancement of the field during the
protogalactic collapse is accounted for.6

In spatially open universes, standard inflation can pro-
duce magnetic seeds stronger than the typical 10�53 G
fields without the need to modify Maxwell’s theory. In
that case the general relativistic coupling between electro-
magnetism and the geometry of the 3-space changes the
adiabatic depletion rate of the magnetic component natu-
rally [12,19]. To be precise, on lengths near the curvature
scale, a field that goes through a period of de Sitter inflation
in a perturbed FRW cosmology with negative spatial cur-
vature decays as a�1 instead of a�2. Then, assuming a
marginally open universe (i.e. setting 1��� 10�2 to-
day), GUT-scale inflation and a reheating temperature of
�109 GeV, one obtains a residual field of approximately
10�35 G on a current scale close to 104 Mpc (see [12] for
details). For a field on this scale we have �� ~B=�H�0 � 1027,
which implies a resonant amplification factor of the order
of 1021 and a residual strength of �10�14 G today. The
latter is easily within the galactic dynamo limits.7

The above quoted strengths correspond to resonant am-
plification. In other words, we have implicitly assumed that
a background magnetic field of a given length interacts
with gravitational waves of comparable scale. When the
two sources have very different coherence lengths, how-
ever, the associated amplification factors are considerably
smaller and the resulting fields much weaker than those
given above [see Eq. (22)]. In general, of course, the
background magnetic seed will interact with gravity-
wave modes of various wavelengths [recall that 0<
<
1 in (22)]. On these grounds, we expect the magnitude of
the gravitationally induced field to show a smooth scale-
distribution with peak at the point of gravitomagnetic
resonance (i.e. at 
 � 1).
VI. CONDUCTIVITY EFFECTS

A. Low conductivity

To this point the gravitomagnetic interaction has been
free of current effects, which limits our results to cosmo-
logical environments of very low electrical conductivity.
6In a spherically symmetric protogalactic collapse, a magnetic
field that is frozen-in with the highly conductive plasma grows as
B / �2=3. This rate, which implies an amplification of the B-field
by three or 4 orders of magnitude, can increase in the the more-
realistic case of an anisotropically collapsing protogalaxy due to
shearing effects alone [23]

7Despite their very substantial growth the gravitationally am-
plified magnetic fields always remain very weak compared to the
matter component (i.e. B2 � � at all times). This ensures that
our initial weak-field approximation (see Sec. II) is never in any
doubt and preserves the symmetries of the FRW background to
very high accuracy.
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The early reheating phase of the universe offers such a
poorly conductive stage. As reheating progresses, however,
the copious production of particles continuously increases
the conductivity of the universe and plasma effects become
important.

Consider a medium of finite electrical conductivity �c.
Phenomenologically, the conductivity effects are ac-
counted for by means of the electric currents. Using the
covariant form of Ohm’s law, in particular, one expresses
the 3-current as (e.g. see [19,24])

J a � �cEa; (23)

where Ea is the electric field seen by the observer.
Assuming that the spatial variation of �c is small, which
is a good approximation on large scales, the above means
that curlJ a � �ccurlEa to linear order and introduces the
conductivity into the right-hand side of Eq. (3). Moreover,
in a medium of finite conductivity the magnetic induction
equation reads

_B a �
2
3�Ba � �ab ~Bb � curlEa; (24)

to first order (e.g. see [18,19]). Note that the time derivative
of the above leads to the linearized wave Eq. (3) (see [19]
for details). Employing the auxiliary relations (23) and
(24), Eq. (3) reads

�Ba�
5

3

�
1�

3

5

�c

�

�
� _Ba�

1

3

�
1�w�2

�c

�

�
�2Ba�D2Ba

�2
�

_�ab�
2

3

�
1�

3

4

�c

�

�
��ab

�
~Bb; (25)

with the dimensionless ratio�c=� measuring the electrical
conductivity of the expanding background. Hence, the
linear evolution of the gravitationally induced B field
depends on the value of �c=� in a rather involved way.
Nevertheless, the gravitomagnetic interaction proceeds as
if the conductivity were zero as long as �c=�� 1. This
qualitative result was also obtained in [9].

B. High conductivity

As particle production progresses and the universe heats
up, the conductivity of the cosmic medium increases be-
yond the �c=�� 1 threshold and we can no longer ignore
the current term in the right-hand side of Eq. (3). Moreover,
once the universe enters its standard big-bang evolution,
the electrical resistivity is believed to remain very low [25].
When �c=�� 1 the evolution of the gravitationally in-
duced magnetic field depends largely on the electrical
properties of the fluid [see Eq. (25)]. The precise role of
finite conductivity during reheating lies beyond the scope
of this article, as its study involves highly sophisticated
quantum field theory techniques, it is model dependent and
requires numerical methods to evaluate [26]. In what fol-
lows we will provide an analytical approach that helps to
outline the implications of a highly conductive cosmologi-
-6



RESONANT AMPLIFICATION OF MAGNETIC SEED . . . PHYSICAL REVIEW D 72, 123509 (2005)
cal environment for the proposed gravitomagnetic ampli-
fication. For w � 0 and �c=�� 1, which correspond to
the late stages of reheating, Eq. (25) gives

B 00
�‘� �

�c
�

6

�
B0
�‘� �

�
�c
�

6

�2 � ‘
2

�
B�‘�

�
8�1

�2

�
�0�k� �

�c
�

3

�
��k�

�
; (26)

where �1 � �1=2 ~B�n�0 =a0H2
0 and ��k� is monitored by (12)

[see Secs. IIB and IIIA and also the appendix]. At the
�c=�� 1 limit, the ‘ dependence of the third term in
the left-hand side of the above is only important on suffi-
ciently small wavelengths (i.e. for ‘�� 1). Here, how-
ever, we are looking at superhorizon scales where n�, k�
and ‘�� 1� �c=�. On these wavelengths � / �2 (see
Sec. IIIA) and expression (26) reduces to

B 00 �
�c
�

6

�
B0 �

�c
�

6

�2 B �
�c
�

6	1

�
; (27)

with 	1 � �1=2a0�0
~B0. Note that we are considering the

resonant scenario, with k � n � ‘, which allows us to drop
the wave number indices in (27). Contrary to the case of
poor electrical conductivity [see Eq. (13)], we have arrived
at a scale independent expression. This is due to the highly
conductive environment, which washes out the
‘ dependence of (26) on sufficiently long wavelengths
(i.e. when ‘2�2 � �c=�). To solve Eq. (27) analytically,
consider a brief period of expansion and assume that in the
interval the ratio �c=� varies very slowly with time (i.e.
set �c=� ’ constant� 1). Then, since B � �1=2B=�,
the solution of (27) approaches the form

B � B0

�
a0

a

�
2
� B0

�
a0

a

�
3�c=�

� 3�0
~B0

�
a0

a

�
; (28)

where B0 can be seen as the gravitationally induced mag-
netic field at the onset of the highly conductive regime. The
first mode of the above corresponds to the adiabatic deple-
tion of the field, while the second carries the plasma effects
and decays very quickly when �c=�� 1. Hence, for low
electrical resistivity and in the absence of the gravitomag-
netic interaction (i.e. for �0 � 0) we recover the familiar
a�2-law. The third mode in (28) describes the effect of the
Maxwell-Weyl coupling on the B field. Compared to the
low conductivity case [e.g. see results (15) or (19)], there is
no scale dependence and the gravitomagnetic resonance
has been completely suppressed. Therefore, as the reheat-
ing of the universe progresses and the electrical resistivity
of the cosmic medium drops, the large-scale effects of the
Maxwell-Weyl resonance should fade away. This suggests
that the proposed gravitomagnetic dynamo is only effective
at the early stages of reheating. Similar results, showing a
analogous damping of electromagnetic modes in highly
conductive environments, have been obtained in the past.
More specifically, numerical calculations of the magnetic
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amplification due to the parametric resonance of the field
with an oscillating complex scalar field during preheating,
showed a very substantial decrease in the magnetic growth
with increasing electrical conductivity [15].

Although the plasma effects may have overwhelmed the
gravitomagnetic resonance, the third mode of Eq. (28) also
shows that the Maxwell-Weyl coupling slows down the
decay rate of the field. Interestingly, the same effect was
also obtained through the relativistic coupling of the
B-field with the spatial curvature of an open FRW cosmol-
ogy [12]. This time, however, the geometrically induced
superadiabatic magnetic amplification is not efficient.
Indeed, ignoring the fast decaying second mode in (28),
the latter reads

B �
�
B0 � 3�0

~B0

�
a
a0

���
a0

a

�
2
: (29)

Amplification is therefore achieved only when
3�0

~B0�a=a0�>B0. Typically, �0 � 10�6 [see
Sec. III B] and ~B0 
 B0, which implies that the above
given condition is satisfied at late times only (i.e. for
a=a0 � 1). As the time interval of the interaction in-
creases, however, the assumption that �c=� ’ constant
becomes more difficult to maintain and this affects the
accuracy of our results. Having said that, the same
superadiabatic-type magnetic amplification is also ob-
served at the infinite conductivity limit (see footnote 3 in
[13]). All these raise the intriguing possibility of a change
in the adiabatic a�2 law due to gravity-wave effects alone
and irrespective of the conductivity of the cosmological
environment.

VII. DISCUSSION

Inflation can naturally achieve superhorizon correlations
from small-scale microphysics. This property has been
exploited by several authors in order to produce primordial
magnetic fields with the desired large coherence lengths.
The drawback of inflation is the dramatic dilution of the
magnetic energy density during the accelerated expansion
phase. For a field that survived inflation and spans a scale
of �10 kpc today, the typical strength is roughly 10�53 G.
On that scale the minimum required strength for the galac-
tic dynamo to work is 10�34 G, assuming that the universe
is dark-energy dominated. Otherwise the magnetic seed
should be at least as strong as �10�23 G. The most com-
mon solution to the strength problem is by slowing down
the adiabatic, a�2 decay rate of the B-field. When dealing
with spatially flat FRW backgrounds, this usually means
breaking the conformal invariance of the Maxwell field and
in the majority of cases it is achieved outside the standard
model.

Inflation also produces a background of large-scale
gravitational radiation. The interaction of these waves
with inflationary produced magnetic seeds soon after the
end of inflation was first considered in [13]. The initial
-7
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results argued for a very significant growth, by many orders
of magnitude, of the primordial field. Here, we have revis-
ited this gravitomagnetic interaction in an attempt to
understand and explain the physics of the amplification
mechanism further. Our analysis has revealed that the very
strong magnetic growth found in [13], reflects the resonant
coupling of the two interacting sources in cosmological
environments of poor electrical conductivity. We have
shown, in particular, that the maximum amplification of
the B field occurs always when the coherence scale of the
latter coincides with the wavelength of the inducing gravi-
tational radiation.

The proposed Maxwell-Weyl interaction and the result-
ing amplification mechanism are rather simple in concept.
At the end of inflation the universe is permeated by large-
scale gravity waves and by a very weak, large-scale pri-
mordial magnetic field. The general relativistic interaction
of these two sources during early reheating leads to a
gravitationally induced magnetic component. When the
associated scales are comparable this field is resonantly
amplified. In general, of course, the original magnetic seed
will interact with gravitational radiation of various wave-
lengths. This means that the strength of the induced field
will have a smooth scale-dependent spectrum with peak at
the point of resonance. The maximum strength of the
geometrically amplified magnetic component is deter-
mined at the onset of the gravitomagnetic interaction.
Once the parameters of the adopted inflationary model
are fixed, the resonant growth factor is proportional to
the scale of the initial field. This makes the proposed
amplification mechanism particularly effective when oper-
ating on superhorizon-sized magnetic seeds. In particular,
for a field with current physical scale close to 10 kpc,
which is the minimum required for the dynamo to work,
the resonant growth is of the order of 1015. Although very
substantial, such a boost cannot bring the typical inflation-
produced magnetic field of �10�53 G (see [9]) within the
galactic dynamo requirements. Nevertheless, when applied
to seeds of �10�34 G and �10�35 G, like those produced
in [11,12] for example, the gravitomagnetic resonance
leads to residual fields of�10�19 G and�10�14 G respec-
tively. The latter can support the galactic dynamo even in
conventional universes with zero dark-energy contribution.

The resonant amplification of the initial seed field by
many orders of magnitude, makes the proposed gravito-
magnetic coupling a very promising early-universe dy-
namo. Given that, it is worth looking into the specifics of
the mechanism in more detail. A key issue is the role of
electrical conductivity near and beyond the �c=�� 1
threshold. Here we found that at the �c=� ’ constant �
1 limit the Maxwell-Weyl resonance is suppressed, which
is in qualitative agreement with analogous earlier studies
(e.g. see [14,15]). One could improve on this result by
adopting a specific model for the conductivity of the re-
heating era. The nature of adopted inflationary scenario
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and of the associated reheating process is also an issue.
Nonoscillatory models, for example, may provide a longer
period of low electrical conductivity and an enhanced
gravity-wave spectrum. Another key question is the mag-
netic backreaction on the gravity waves themselves and its
potential impact on the amplification mechanism itself.
This issue acquires particular interest in view of the work
of [27]. There large-scale stochastic magnetic fields were
found capable of efficiently converting their energy into
gravitational radiation, as they reenter the cosmological
horizon. It is conceivable that the simultaneous study of the
two processes will point towards a preferred saturation
level for the combined gravitomagnetic interaction.
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APPENDIX: EXPANSION-NORMALIZED
GRAVITOMAGNETIC EQUATIONS

The linear evolution of the magnetic mode B�‘� induced
by gravity-wave perturbations on a weakly magnetized,
spatially flat FRW universe is governed by the system
[see Eqs. (5) and (6) in Sec. IIB]

�B �‘� �
5

3
� _B�‘� �

�
1

3
�1� w��2 �

‘2

a2

�
B�‘�

� 2
�

_��k� �
2

3
���k�

�
~B�n�0

�
a0

a

�
2
; (A1)

�� �k� �
5

3
� _��k� �

�
1

6
�1� 3w��2 �

k2

a2

�
��k� � 0: (A2)

Here ~B�n�0 is the background field, ��k� is the shear anisot-
ropy due to the gravitational waves and the zero suffix
indicates the beginning of the gravitomagnetic interaction.
To zero perturbative order the background expansion is
monitored by the Friedmann and the Raychaudhuri equa-
tions, given by expressions (1a) and (1b), respectively.
When combined these reduce Raychaudhuri’s formula to

_� � �1
2�1� w��

2: (A3)

Consider the expansion-normalized, dimensionless var-
iables B�‘� � �1=2B�‘�=� and ��k� � ��k�=� defined in
Sec. IIB. Using (A3) we obtain the auxiliary relations

�1=2 _B�‘� � � _B�‘� �
1
2�1� w��

2B�‘�; (A4)

�1=2 �B�‘� � � �B�‘� � �1� w��2 _B�‘� �
1
2�1� w�

2�3B�‘�;

(A5)

between the proper-time derivatives of B�‘� and B�‘�.
-8



RESONANT AMPLIFICATION OF MAGNETIC SEED . . . PHYSICAL REVIEW D 72, 123509 (2005)
Similarly, the first and second derivatives of ��k� give

_� �k� � � _��k� �
1
2�1� w��

2��k�; (A6)

�� �k� � � ���k� � �1� w��2 _��k� �
1
2�1� w�

2�3��k�:

(A7)

Results (A4)–(A7) transform expressions (A1) and (A2)
into
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and

���k� �
1

3
�2� 3w�� _��k�

�

�
1

6
�1� �2� 3w�w	�2 �

k2

a2

�
��k� � 0; (A9)

respectively.
The final step is to introduce the conformal-time variable

�, with _� � 1=a by definition. Then � � 3a0=a2, where
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the prime indicates conformal-time derivatives.
Accordingly,
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1

a
B0
�‘� and �B�‘� �

1

a2 B
00
�‘� �

a0

a3 B
0
�‘�; (A10)

with exactly analogous expressions for _��k� and ���k� re-
spectively. These relations recast Eqs. (A8) and (A9) in
terms of conformal-time derivatives as
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and

�00
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respectively [compare to formulas (7) and (8) of Sec. IIB].
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[16] G. F. R. Ellis, in Cargèse Lectures in Physics edited by E.

Schatzman (Gordon and Breach, New York, 1973), Vol. 1,
123509
p. 1; G. F. R. Ellis and H. van Elst, in Theoretical and
Observational Cosmology, edited by M. Lachièze-Rey
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