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Fermions as sources of accelerated regimes in cosmology
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In this work it is investigated if fermionic sources could be responsible for accelerated periods during
the evolution of a universe where a matter field would answer for the decelerated period. The self-
interaction potential of the fermionic field is considered as a function of the scalar and pseudoscalar
invariants. Irreversible processes of energy transfer between the matter and gravitational fields are also
considered. It is shown that the fermionic field could behave like an inflaton field in the early universe and
as dark energy for an old universe.
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I. INTRODUCTION

The search for constituents responsible for accelerated
periods in the evolution of the universe is a fundamental
topic in cosmology. Usually the formulations include ele-
ments of general relativity, field theory, and thermodynam-
ics, putting under analysis the evolution of space-time
variables like the scale factor, its acceleration, and energy
densities. Several candidates have been tested for describ-
ing both the inflationary period and the present accelerated
era: scalar fields, exotic equations of state, and cosmologi-
cal constants.

Another possibility is to consider fermionic fields as
gravitational sources for an expanding universe.
Fermionic sources have been investigated using several
approaches, with results including exact solutions,
anisotropy-to-isotropy scenarios, and cyclic cosmologies
(see, for example, [1–3]).

In the present work the connection between general
relativity and the Dirac equation is done via the tetrad
formalism, where the components of the tetrad or ‘‘vier-
bein’’ play the role of the gravitational degrees of freedom.
The interactions between the constituents are modeled
through the presence of a nonequilibrium pressure term
in the source’s energy-momentum tensor. Besides, it is
considered a self-interaction term for the fermionic con-
stituent, in the form of a potential that can assume several
forms (including the Nambu-Jona-Lasinio case [4]).

While testing fermionic sources as responsible for ac-
celerated periods, different regimes are possible. In a
young universe scenario, the fermion produces a fast ex-
pansion where matter (included via a barotropic equation
of state) is created until it starts to predominate and the
initial accelerated expansion is followed by a decelerated
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era, dominated by a matter field, which ends when the
fermionic field predominates again leading to an acceler-
ated era. In this case, the fermionic field plays the role of
the inflaton in the early period of the universe and of dark
energy for the old universe, without the need for a cosmo-
logical constant term or a scalar field. In an old universe
scenario an initially matter dominated period gradually
turns into a dark (fermionic) energy period when an accel-
erated regime starts and remains for the rest of the evolu-
tion of the system.

This manuscript is structured as follows. In Sec. II we
make a brief review of the elements of the tetrad formalism
used to include fermionic and matter fields in a dynamical
curved space-time. The field equations for an isotropic,
homogeneous, and spatially flat universe are derived in
Sec. III . In Sec. IV we present the analysis of the different
scenarios in which the fermionic constituent answers for
accelerated eras and the transitions from accelerated to
decelerated periods and vice-versa. Finally, in Sec. V we
display our conclusions. The metric signature used is
��;�;�;�� and units have been chosen so that 8�G �
c � @ � k � 1.
II. DIRAC AND EINSTEIN EQUATIONS

In this section we present briefly the techniques that are
used to include fermionic sources in the Einstein theory of
gravitation, and for a more detailed analysis the reader is
referred to [5–8]. The starting point is that the gauge group
of general relativity does not admit a spinor representation
and the tetrad formalism is invoked to solve the problem.
Following the general covariance principle, a connection
between the tetrad and the metric tensor g�� is established
through the relation

g�� � ea�e
b
��ab; a � 0; 1; 2; 3; (1)

where ea� denotes the tetrad or vierbein and �ab is the
Minkowski metric tensor. Here Latin indices refer to the
-1 © 2005 The American Physical Society
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local inertial frame, whereas Greek indices refer to the
general system.

As it was said above, the main objective of this work is
to describe the behavior of fermions in the presence of a
gravitational field, and the next step is to construct an
action for this system. The Dirac Lagrangian density in
Minkowski space-time is

LD �
{
2
� �a@a � �@a ��a � �m  � V; (2)

where the spinors are treated as classically commuting
fields [6]. Above, m is the fermionic mass,  �  y�0

denotes the adjoint spinor field, and the term V, which is
a function of  and  , describes the potential density of
self-interaction between fermions. The general covariance
principle imposes that the Dirac-Pauli matrices �a must be
replaced by their generalized counterparts �� � e�a �a,
whereas the generalized Dirac-Pauli matrices satisfy the
extended Clifford algebra, i.e., f��;��g � 2g��.

In a second step we need to substitute the ordinary
derivatives by their covariant versions

@� ! D� � @� ��� ;

@� ! D� � @� �  ��;
(3)

where the spin connection �� is given by

�� � �
1
4g����

�
�� � e

�
b�@�e

b
����

���; (4)

with ���� denoting the Christoffel symbols. Hence, the
generally covariant Dirac Lagrangian becomes

LD �
{
2
� ��D� � �D� ��� � �m  � V: (5)

The field equations are obtained from the total action

S�g;  ;  � �
Z �������
�g
p

Ltd4x; (6)

where Lt � Lg � LD � Lm is the total Lagrangian density.
Lg � R=2, with R denoting the curvature scalar, is the
gravitational Einstein Lagrangian density for fermions
which are minimally coupled to the gravitational field.
LD is the Dirac Lagrangian density (5) and Lm is the
Lagrangian density of the matter field.

From the Lagrangian density (5), through Euler-
Lagrange equations, we obtain the Dirac equations for
the spinor field and its adjoint coupled to the gravitational
field,

{��D� �m �
dV

d 
� 0;

{D� �� �m �
dV
d 
� 0:

(7)

The variation of the action (6) with respect to the tetrad
leads to Einstein field equations
123502
R�� �
1
2g��R � �T��; (8)

where T�� is the total energy-momentum tensor which is a
sum of the energy-momentum tensor of the fermionic field
T��f and of the matter field T��m , i.e., T�� � T��m � T

��
f .

Furthermore, the symmetric form of the energy-
momentum tensor of the fermionic field is given by

T��f �
{
4
� ��D� �  ��D� �D� �� �D� �� �

� g��LD: (9)
III. FIELD EQUATIONS

The Robertson-Walker metric incorporates the homoge-
neity and isotropy hypotheses for the universe. Here we
consider a spatially flat universe described by the metric

ds2 � dt2 � a�t�2�dx2 � dy2 � dz2�; (10)

where a�t� refers to the cosmic scale factor.
The total energy-momentum tensor for an isotropic and

homogeneous universe—which is composed of fermionic
and matter fields and where dissipative processes are taken
into account—is written as

�T�� � � diag��;�p�$;�p�$;�p�$�: (11)

Above, the total energy density � and the total pressure p
are given as a sum of the corresponding terms of the
fermionic and matter fields, i.e., � � �f � �m and p �
pf � pm. Moreover, the quantity $ refers to a nonequilib-
rium pressure which is related to dissipative processes
during the evolution of the universe and represents an
irreversible process of energy transfer between the matter
and the gravitational field [9].

Thanks to the Bianchi identities, the covariant differen-
tiation of Einstein field equations (8) leads to the conser-
vation law of the total energy-momentum tensor
T��;� � 0, hence it follows by using the representation
(11) that the evolution equation for the total energy density
is

_�� 3H��� p�$� � 0; (12)

where the dot refers to a differentiation with respect to
time and H � _a�t�=a�t� denotes the Hubble parameter.
Furthermore, from the Einstein field equations (8), the
Friedman and acceleration equations are

H2 �
1

3
�;

�a
a
� �

1

6
��� 3p� 3$�; (13)

respectively. Only two equations from (12) and (13) are
linearly independent.

For the metric (10) the tetrad components read

e�0 � 	�0 ; e�i �
1

a�t�
	�i : (14)
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Also, the Dirac matrices become

�0 � �0; �i �
1

a�t�
�i;

�5 � �{
�������
�g
p

�0�1�2�3 � �5;

(15)

from which the spin connection components are obtained,
yielding

�0 � 0; �i �
1
2 _a�t��i�0: (16)

For an isotropic and homogeneous universe the fermi-
onic field is an exclusive function of time. So the Dirac
equations (7) become

_ �
3

2
H � {m�0 � {�0 dV

d 
� 0; (17)

_ �
3

2
H � {m �0 � {

dV
d 

�0 � 0; (18)

thanks to Eqs. (15) and (16).
The nonvanishing components of the energy-momentum

tensor of the fermionic field follow from (9) together with
(5) and (15)–(18), yielding

�Tf�
0
0 � m�  � � V; (19)

�Tf�
1

1 � �Tf�
2

2 � �Tf�
3

3 � V �
dV
d 

 
2
�
 
2

dV

d 
; (20)

which are only functions of  and  . By identifying the
components of the energy-momentum tensor of the fermi-
onic field as �Tf��� � diag��f;�pf;�pf;�pf�, one can
obtain from (17) and (18) by the use of (19) and (20) the
conservation law for the energy density of the fermionic
field:

_� f � 3H��f � pf� � 0: (21)

Hence, the evolution equation for the energy density of the
fermionic field decouples from the energy density of the
matter field, and we have from (12) and (21)

_�m � 3H��m � pm� � �3H$; (22)

where the term �3H$ could be interpreted as the energy
density production rate of the matter field (see, e.g., [9]).

According to the extended (causal or second-order)
thermodynamic theory, the nonequilibrium pressure $�t�
obeys an evolution equation, whose linearized form reads


 _$�$ � �3�H; (23)

where 
 denotes a characteristic time and � is the so-called
bulk viscosity coefficient.

IV. COSMOLOGICAL SOLUTIONS

In order to analyze cosmological solutions for the field
equations of the previous section, we have to specify the
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potential density of self-interaction between the fermions
V. According to the Pauli-Fierz theorem V is an exclusive
function of the scalar invariant �  �2 and on the pseudo-
scalar invariant �i �5 �2, i.e., V � V��  �2; �{ �5 �2�.
Here we are interested in analyzing self-interaction poten-
tials of the form

V � ���1�  �
2 � �2�{ �

5 �2�n; (24)

where the coupling constant � is a non-negative quantity
and n is a constant exponent. We shall analyze three cases,
namely, (i) �1 � 1 and �2 � 0 where V is a function only
of the scalar invariant; (ii) �1 � 0 and �2 � 1 where V
depends only on the pseudoscalar invariant, and
(iii) �1 � �2 � 1 where V is a combination of the scalar
and pseudoscalar invariants. The Nambu-Jona-Lasinio po-
tential [4] is represented by the last case with n � 1.

The energy density and the pressure of the fermions for
the potential (24) are given by

�f � m�  � � ���1�  �2 � �2�{ �5 �2�n; (25)

pf � �2n� 1����1�  �2 � �2�{ �5 �2�n; (26)

respectively, thanks to (20).
We infer from (26) that the fermions could be classified

according to the value of the exponent n. Indeed, for n �
1=2 the fermions represent a matter field with positive
pressure (n > 1=2) or a pressureless fluid (n � 1=2),
whereas for n < 1=2 the pressure of the fermions is nega-
tive and they could represent either the inflaton or the dark
energy.

For massless fermions, the pressure is connected with
the energy density by a simple barotropic equation of state
pf � �2n� 1��f and it follows from the conservation
equation (21) for the fermions that �f / 1=a6n. We shall
not analyze this case here, since the behavior of the fermi-
onic field does not differ from that of a matter field when
n > 1=2 or from that of a bosonic field when n < 1=2.
Moreover, for the massive case, we shall deal with only the
case where the fermionic field behaves as an inflaton or
dark energy, i.e., the case where n < 1=2.

For the pressure of the matter field we shall adopt a
barotropic equation of state, i.e., pm � wm�m with 0 	
wm 	 1. Furthermore, the coefficient of bulk viscosity �
and the characteristic time 
 are assumed to be related with
the energy density � by � � �� and 
 � �=�, where � is
a constant [9].

The system of field equations we shall investigate in
order to find the cosmological solutions are (i) the accel-
eration equation

�a
a
� �

1

6
��f � �m � 3pf � 3pm � 3$�; (27)

(ii) the evolution equation for the energy density of the
matter field,
-3
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_�m � 3H��m � pm �$� � 0; (28)

(iii) the evolution equation for the nonequilibrium pres-
sure,

M. O. RIBAS, F. P. DEVECCHI, AND G. M. KREMER
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 _$�$ � �3�H; (29)

(iv) the Dirac equation (17), which in terms of the spinor
components  � � 1;  2;  3;  4�

T , becomes
_ 1

_ 2

_ 3

_ 4

0BBBBB@
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y
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0
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1
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FIG. 1. Acceleration field �a vs time t.
In Eq. (16) we have introduced the following abbrevia-
tions:

V 0 �
@V

@�  �2
; V? �

@V

@� �5 �2
: (31)

Equations (27)–(30) consist of a system of seven
coupled ordinary differential equations for the fields a�t�,
�m�t�, $�t�,  1�t�,  2�t�,  3�t�, and  4�t�, and in the
following subsections we shall find solutions for this sys-
tem of equations for given initial conditions.

A. Accelerated-decelerated-accelerated regime

Let us first analyze the case that corresponds to the
evolution of the early universe, where, at the beginning,
the fermionic field plays the role of an inflaton and the
matter is created by an irreversible process through the
presence of a nonequilibrium pressure $. The initial con-
ditions we have chosen for t � 0 (by adjusting clocks) are� a�0� � 1;  1�0� � 0:1{;  2�0� � 1;  3�0� � 0:3;

 4�0� � {; �m�0� � 0; $�0� � 0: (32)

The last two initial conditions correspond to a vanishing
energy density of the matter field and a vanishing nonequi-
librium pressure at t � 0. The conditions chosen here
characterize qualitatively an initial proportion between
the constituents in the corresponding era (i.e., in this case
we have a predominating fermionic field over the matter,
indicating the initial inflationary state).

Since Eq. (27) is a second-order differential equation we
need to specify an initial condition for _a�0�. This condition
follows from the Friedmann equation (13), i.e.,

_a�0� � a�0�

������������������������������
�f�0� � �m�0�

3

s
; (33)

with �f�0� determined from Eq. (25). However, we have to
specify some parameters in order to obtain numerical
solutions of the coupled system of differential equations
(27)–(30). These parameters are (i) �,�1,�2, and n, which
define the self-interacting potential (24); (ii) m, which is
related to the mass of the fermionic field; (iii) wm, which
defines the matter field through its barotropic equation of
state pm � wm�m, and (iv) �, which is connected with the
bulk viscosity term � � ��. In order to plot Figs. 1 and 2
we have chosen the following values for these parameters:

�� � 0:1; �1 � �2 � 1; n � 0:3;

m � 0:01; wm � 1=3; � � 1:0; and � � 1:2;

(34)

which correspond to a fermionic field with a negative
pressure, described by a self-interacting potential that de-
pends on the scalar and pseudoscalar invariants and a
matter field of massless particles that could describe a
radiation field.

In Fig. 1 the acceleration field �a is plotted as a function
of time t for two different values of � � 1:0 and 1.2,
-4
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whereas in Fig. 2 the behavior of the energy densities of the
fermionic �f and matter �m fields is shown as a function of
time t. We infer from these figures that there exists an
accelerated period where the fermionic field dominates and
the matter field is created at the expense of an irreversible
process of energy transfer between the matter and the
gravitational field. The accelerated period is followed by
a decelerated era which is dominated by the matter field.
Because of the fact that the self-interaction potential tends
to a constant value for large values of time, the energy
density of the fermionic field overcomes the energy density
of the matter field and the universe goes into another
accelerated period. It is noteworthy that for the bosonic
case where the potentials are exponentials or inverse power
laws, one has to add a constant value—which is similar to
introduce a cosmological constant term—in order to return
to an accelerated era after the accelerated-decelerated pe-
riod (see, for example, [10]). Here the same self-potential
interaction, which plays the role of an inflaton field at the
beginning, plays the role of a cosmological constant for
later times and could be identified as dark energy. We note
from the figures that for large values of the coefficient � it
follows that (i) the energy density of the fermionic field
decays more rapidly causing a larger accelerated period
and (ii) the energy density of the matter field has a more
significant growth and leads to a larger decelerated period.

The same conclusions above could be obtained for a
self-interacting potential, which is only a function of the
scalar invariant (�1 � 1, �2 � 0) or of the scalar pseu-
doinvariant (�1 � 0, �2 � 1). However, all cases are
strongly dependent on the exponent n of the self-
interacting potential and one can obtain different behaviors
in which there exists only an accelerated period for the
universe or the universe begins with a decelerated period.
This last case will be analyzed in the next subsection.

It is worth mentioning that the behavior of the fields
found in our analysis is not restricted to the initial con-
123502
ditions given in (32) or the values for the parameters given
in (34). In fact, these represent typical values that describe
qualitatively the transitions under investigation in this case,
i.e., the accelerated-decelerated case when matter emerges
as the predominating constituent and a second situation
where dark energy, represented by the fermionic field,
overcomes the matter field and leads to a final accelerated
period.

B. Decelerated-accelerated regime

Let us now investigate an old universe dominated by
nonrelativistic matter or dust (wm � 0 so that pm � 0)
where a fermionic field is present but with an energy
density smaller than that of the matter field. We shall
consider the same initial conditions (by adjusting clocks)
as those of the previous subsection for a�0� and  1�0�
through  4�0�, but for the energy density of the matter
field we regard it as twice that of the fermionic field, i.e.,
�m�0� � 2�f�0�. With respect to the parameters, we shall
choose the same values as above for �, �1, �2, m, and n,
but different values for �, namely � � 0:1 and 0.05. We
have also considered the case where the irreversible pro-
cesses during the evolution of the universe are absent. For
this last case the evolution equation of the nonequilibrium
pressure (29) was not taken into account. The acceleration
and the energy densities as functions of time are plotted in
Figs. 3 and 4, respectively. We observe from these figures
that there exists a transition from a high deceleration—
where the universe is dominated by the nonrelativistic
matter field—to a small acceleration—where the universe
is dominated by the fermionic field which plays the role of
dark energy. By considering irreversible processes there is
no sensitive change in the energy density of the fermionic
field, but the matter field decays more slowly so that the
accelerated period begins later.

The same conclusions of last subsection regarding the
self-interaction potential are also valid for this case.
-5
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V. FINAL REMARKS AND CONCLUSIONS

One question that could be formulated is about the
importance of the irreversible processes during the evolu-
tion of the universe. To answer this question one should
123502
discuss the relevance of the bulk viscosity coefficient in the
different periods of the universe’s evolution. In the above
calculations a dimensionless coefficient has been used, but
if one goes back to its dimensional expression, it is found
that it has to be multiplied by a factor proportional to the
initial value of the Hubble parameter. Since we know that
the present value of that parameter is very small, this
coefficient would be playing an important role only for
early periods of the universe. On the other hand, for the late
period, although its contribution is very small, the presence
of the viscosity is necessary for describing the thermody-
namic dissipative effects in an expanding universe.

We have investigated the possibility that a fermionic
field—with a self-interacting potential that depends on
the scalar and pseudoscalar invariants—could be the re-
sponsible for accelerated regimes in the evolution of the
universe. We have shown that the fermionic field behaves
like an inflaton field for the early universe and, later on, as a
dark energy field, whereas the matter field was created by
an irreversible process connected with a nonequilibrium
pressure. Moreover, for an old decelerated universe domi-
nated by nonrelativistic matter the fermionic field plays
again the role of dark energy and drives the universe to an
accelerated regime.
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