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Relativistic analysis of the LISA long range optical links
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The joint ESA/NASA LISA mission consists of three spacecraft on heliocentric orbits, flying in a
triangular formation of 5 Mkm each side, linked by infrared optical beams. The aim of the mission is to
detect gravitational waves in a low frequency band. For properly processing the scientific data, the
propagation delays between spacecraft must be accurately known. We thus analyze the propagation of
light between spacecraft in order to systematically derive the relativistic effects due to the static curvature
of the Schwarzschild space-time in which the spacecraft are orbiting with time-varying light distances. In
particular, our analysis allows us to evaluate rigorously the Sagnac effect, and the gravitational (Einstein)
redshift.
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I. INTRODUCTION

The three spacecraft forming the LISA constellation
have a complex motion (see [1], for instance) allowing
the triangular constellation to remain approximately rigid
during the annual revolution. There is simultaneously a
rotation of the triangle around its center, and the orbital
motion of its center. A number of papers have considered
the effect of the rotation on light propagation. Accurate
knowledge of light propagation delays are very important
for implementing the TDI (Time-Delay Interferometry)
technique (see [2,3]), which is mandatory for eliminating
laser phase and similar noises. In particular, in a simulation
code, it is necessary to generate time delays as realistic as
possible. This is why we have carried out a full general
relativistic treatment of light propagation in the gravita-
tional potential of the sun. The background metric created
by the sun is responsible for both the orbits, and the fine
structure of time delays. Even if the orbit of any spacecraft
is taken as purely Keplerian, the time interval between the
emission of a photon off spacecraft A and its detection in
spacecraft B must be thoroughly investigated. In particular,
the motion of the target B during the interception must be
evaluated with an accuracy level consistent with that of the
null geodesic followed by the photon. We therefore pro-
pose an expansion of both the null geodesic equation from
A to B and the motion of the target B, in powers of the
small dimensionless parameter

� � rS=2r � GM=�rc2� (1)

where rS � 2GM=c2 is the Schwarzschild radius of the sun
(of massM) and r the coordinate distance of the spacecraft
from the sun. We intend to derive the time delay between
spacecraft and the global frequency shift (including clas-
sical Doppler due to relative motion or orbital shift plus
Einstein shift). The first quantity is essential for TDI; the
second seems important for technology, because large
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frequency shifts, variable in time over a year, induce
requirements on the ultrastable oscillators used for com-
pensation of orbital frequency shifts. We propose formulas
for computing the time delays necessary for a realistic
numerical model and we show that in the global frequency
shift, the overall general relativistic contribution (first or-
der terms) is much smaller than a naive estimate would
suggest.

The method we present is based on a matching of
geodesic equations of spacecraft A and B, with the (null)
geodesic equation of the photon emitted by A and received
by B.

II. COMPUTATION OF (COORDINATE-)TIME
TRANSFER IN THE LITERATURE

Different methods have been considered for computing
the flight time of photons and the gravitational frequency
shift between two space-time points x�A � �tA;xA�tA��
(emitter) and x�B � �tB;xB�tB�� (receiver). An alternative
to integrating the geodesic equations of motion is to use the
world function ��x�A; x

�
B� developed by Ruse [4] and Synge

[5], defined as the squared geodesic distance between
two space-time points with ��x�A; x

�� � 0 being the
equation of the light cone at x�A . The time delay corre-
sponds to the future cone equation, and is given by

��tA;xA�tA�;xB�tB�� � tB � tA � RAB=c� �
�PN�

�tA;xA�tA�;
xB�tB��=�cRAB�, the subscript PN meaning post-Newtonian
contributions, RAB � xB�tB� � xA�tA� and RAB � jRABj.

Linet et al. [6] provide the world function,
��tA;xA�tA�;xB�tB��, up to order 1=c3 in the full
Nordtvedt-Will parametrized PN (PPN) formalism (10
parameters characterizing alternative theories of gravita-
tion, including the usual PN parameters � and �). Their
results yield an expression for the coordinate time transfer,
��tA;xA�tA�;xB�tB��, at order 1=c4. The authors also pro-
-1 © 2005 The American Physical Society
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vide ��tA;xA�tA�;xB�tA��, which contains explicitly the
motion of the receiver and the corresponding Sagnac ef-
fects of orders 1=c2, 1=c3, 1=c4. They applied the earlier
expression to an isolated, axisymmetric rotating body,
assuming a stationary gravitational field and a constant
velocity of the central gravitational body with respect
to the universe rest frame. Their systematic procedure
to compute multipole moment contributions in
��xA�tA�;xB�tB�� and ��xA�tA�;xB�tB�� was then particu-
larized to obtain the explicit contributions of the mass
monopole, the mass quadrupole moment, and of the intrin-
sic angular momentum of the rotating gravitational body.
Restricting themselves to fully conservative metric theo-
ries of gravitation, without preferred location effects (that
is, all PPN parameters vanish except � and �), they deter-
mined the fractional frequency shift up to order 1=c4. The
authors then performed numerical estimates of the fre-
quency shifts in the gravitational field of the Earth. They
assumed A on board the International Space Station (ISS),
orbiting at an altitude of 400 km, and B in a terrestrial
station; as this is the case of ESA’s Atomic Clock
Ensemble in Space (ACES) mission, planned for 2009–
2010, aiming at an accuracy of 10�16 in fractional fre-
quency. The formula the authors give yields all the gravi-
tational corrections to frequency shifts up to 10�18 in the
vicinity of the Earth.

The above cited paper, in fact, generalizes the work of
Blanchet et al. [7], based on the geodesic approach, who
provided the time transfer and frequency shifts up to order
1=c3 in the setting of general relativity (where � � � � 1
are the only nonvanishing PPN parameters), for a mono-
pole mass, without intrinsic spin. Reference [7] considered
the two-way laser link in addition to the one-way laser link
presented in Ref. [6]. However, for the LISA mission, only
single links are pertinent since laser light is not reflected
from one station to another, LISA consisting of three pairs
of laser links.

Le Poncin-Lafitte et al. [8] present a generic procedure
based on the world function to provide, in an iterative way,
the propagation time of a photon between space-time
events x�A and x�B at the nth post-Minkowskian order (de-
velopment in powers ofG) from the contributions of orders

p � n� 1, n� 2; . . . , 1, 0, i.e. of �
�p�

�tA;xA�tA�;xB�tB��.
The authors then apply their formalism to a static spheri-
cally symmetric space-time within the second post-
Minkowskian approximation, with the usual post-
Newtonian parameters �, �, plus parameter � for the G2

term in gij (normalized so that in general relativity � � 1).
Within those assumptions, they obtain the expressions of
the world function and time transfer in the case of a simple
monopolar and nonrotating body, up to order G2 (contain-
ing order 1=c5). The motion of the stations (and corre-
sponding Sagnac effects) is not explicitly considered there.

We are interested in the time variations of the interspace-
craft propagation delays over a year for spacecraft having
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very special orbits; this is the reason why we develop a
special approach, on principles analogous to the preceding
works, but in a form more suitable to our purpose.
III. POST-NEWTONIAN THEORY

A. Notations

Coordinates �ct; x; y; z� are denoted by x�. We use the
notation r �

��������
xixi
p

, where Latin indices take only the
spatial values 1, 2, and 3. Then, r cannot be understood
as a physical distance in all the steps of the developments.
It should be referred to as a coordinate distance.

Four-velocities are written u� � dx�=d�, where � is the
proper time, given by c2d�2 � �ds2, since the signature
chosen for the metric is ��;�;�;��. We frequently use
the three-velocity vi � dxi=dt. This quantity cannot be
understood as a physical velocity in all the steps of the
developments. When a quantity Q is evaluated up to order
p (integer or half-integer) in �, it will be written

Q
�!p�
� Q
�0�
� Q
�1=2�
� :::� Q

�p�

where Q
�l�

is the contribution of order l.
The notation U represents the three numbers Ui, and

U:V represents the sum UiVi � U1U1 �U2U2 �U3U3.
The notation U2 � U:U will also be used. ��� �
��1;�1;�1;�1� is the Minkowski metric.

In this paper, we derive the (relative) frequency shift of a
photon, linking an emitter spacecraft A to a receiver space-
craft B, up to order 3/2 in �.

B. Generalities on the metric

We consider a metric of the generic static form

ds2 � �I���c2dt2 � J����ijdx
idxj (2)

where I and J are two functions depending on the theory
(e.g., general relativity, scalar-tensor theory, etc.). Both are
assumed expansions in integer powers of �. The leading
order in vi=c, is 1/2 (Kepler). A photon world line, de-
scribed by the wave vector k� � dx�=d�, where � is an
(arbitrary) affine parameter, obeys the isotropic condition

k�k
� � 0 (3)

and the null geodesic equation

dk�

d�
� ��	
k	k
 � 0 (4)

or

dk�
d�
�

1

2
k	k
@�g	
: (5)

Since the considered metric is stationary, k0 � �I���k0 is
a constant, according to (5).
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A free falling observer of coordinates x� and four-
velocity u� can be described by the geodesic equation

du�

d�
� ��	
u	u
 � 0: (6)
C. Energy of a photon

Consider a photon of four-wave vector k� propagating in
the background metric (2). The general expression of its
energy measured by an observer of four-velocity u� reads

E � �g��k
�u� � �k0u

0 � J���k:u: (7)

An expansion of E up to order 3/2 requires a knowledge of
u0=c and ui=c at the same level. On the other hand, ui=c

being a term of order 1/2 (i.e. u
�0�i

� 0), we need ki and J up
to order 1 only, to evaluate E. Since the metric components
are integer powers of �, the functions I��� and J��� have to
be known up to order 1 only, in all the developments we
will have to consider.

Let us compute u0 � c:dt=d�. We have

c2d�2 � I���c2dt2 � J���dxidxi �
�
I � J

v2

c2

�
c2dt2:

Let us consider metrics of the form

I��� � 1� 2��O��2�;

J��� � 1� 2���O��2�

where we recognize the isotropic form of the
Schwarzschild metric in the case where the post-
Newtonian parameter � is unity. We thus have at the
same order

d�2 �

�
1� 2��

v2

c2

�
dt2

and consequently

u0

c
� 1� ��

v2

2c2 �O��2�:

We notice that proper and coordinate times differ by terms
in � (Einstein shift) and in v2=c2 (Lorentz time dilation).
Now we compute ui,

ui �
dxi

d�
�
dt
d�

dxi

dt
�
u0

c
vi

�

�
1� ��

v2

2c2

�
vi �O��5=2�

from which we get the energy

E
c
� �k0

�
1� ��

v2

2c2

�
�

�
1� �1� 2����

v2

2c2

�
k:v
c
:

(8)
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D. Light propagation in curved space-time

The metric tensor is of the form

g�� � ��� � 2q����� (9)

where q0 � 1 and qi � �. We have as well

g�� � ��� � 2q�����: (10)

The motion of the photon is described by the geodesic
equation (4), or (5), and by the null condition (3).

1. Order 0

At this order, space-time is flat and the spacecraft are at
rest (no velocities, which are 1/2 order terms, and no
accelerations, which are first order terms), and light prop-
agates according to special relativity. The results of order 0
are obvious, but since the same notation will be used in
higher order terms, we present here the detailed solution.

Solving Eq. (4), we find, the � being first order terms,

k
�0��

� C�

whereC� are four integration constants. From the isotropic
condition (3),

C0C0 � C0C0 � CiCi � CiCi

where C� � ���C�, so that there is a spatial unit vector
ni � Ci=C0 along the direction of the (straight) light ray.
We can parametrize the order 0 photon world line using the
trivial differential equation

d x
�0��

d�
� k
�0��

which gives (assuming � � 0 for the emission time)

x
�0�0

� C0�

and if xiA represents the coordinates of the emitter at
emission time, we have

x
�0�i

� xiA � C
i�:

Let us remark that interpreting x
�0�0

as the Minkowski time
coordinate ct, this could be simply written as

x
�0�
�t� � xA � ct:n:

The spatial coordinate distance r
�0�
���, which corresponds

to the ‘‘physical instantaneous distance’’ at this order, is

r
�0�
���2 � x

�0�i

x
�0�i

� �C0�� n:xA�
2 � K2 (11)

with K2 � r2
A � �n:xA�

2 and r2
A � x2

A.
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2. Order 1

k0 being a constant, we obtain k0 at order 1 by

k
�!1�0

� g00 k
�!1�

0 � g00 k
�0�

0 � g00C0 � �1� 2�
�0�
�C0 (12)

where �
�0�
� 2rS= r

�0�
. Integrating the spatial components of

the geodesic equation (4), or (5), one finds

k
�!1�i

� C0�ni � �1� ���
�0�
Pin:x

�0�
� ��� 1��

�0�
ni� (13)

where Pi is defined as

Pi �
xiA � n

in:xA

K2

and satisfies P:n � 0. Integrating equation

d x
�!1��

d�
� k
�!1��

one finds, in parametric form

x
�!1�0

��� � C0�� 2
GM

c2 ln
n:x
�0�
� r
�0�

n:xA � rA
;

x
�!1�i

��� � xiA � C
i�� ��� 1�

GM

c2 Pi� r
�0�
� rA�

� ��� 1�
GM

c2 ni ln
n:x
�0�
� r
�0�

n:xA � rA
:

Eliminating the affine parameter, one obtains the photon’s
trajectory in the explicit form

x
�!1�i

�t; nj� � xiA � n
ict� ��� 1�

GM

c2 �i�t; nj� (14)

with

�i�t; nj� � Pi� r
�0�
� rA� � ni ln

n:�0�x� �0�r
n:xA � rA

where the dependence in the integrations constants ni is

explicitly written and r
�0�

is given by (11) with C0� replaced
by ct.

3. Energy of the photon

Inserting (13) in (8), one finds

1

C0

E
c
� 1�

n:v
c
�
GM

rc2 �
v2

2c2

�

�
�2� ��

GM

r
�0�
c2
�

v2

2c2

�
n:v
c

� ��� 1�
GM

c2

P:v
c

n:x
�0�

r
�0�

: (15)

The first line of the right-hand side (r.h.s.) in (15) contains
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terms of order 0 (i.e. 1), 1/2 (i.e. �n:v=c), and 1, while
terms of order 3/2 are in the second and third lines.

Equation (15) shows that knowledge of the energy up to
order 3/2 requires
(i) k
-4
nowledge of ni up to order 1;

(ii) k
nowledge of vi=c up to order 3/2;
(iii) k
nowledge of xi up to order 1/2.
4. Evaluating the flight time and the constants ni

At t � 0, a photon is emitted from xiA by spacecraft A
with initial position xiA and velocity viA, and is received at
xiB�t� by spacecraft B with initial position xiB and velocity
viB. We want to compute both the flight time t, and the
constants ni characterizing this photon.

The equation to solve is

xi�t; nj� � xiB�t� (16)

where xi�t; nj� represents the photon’s trajectory (14) and
xiB�t� the receiver spacecraft’s trajectory. Since i � 1; 2; 3,
Eq. (16) represents three equations involving the four
unknown t and ni. The fourth equation is the normalization
condition

n 2 � nini � 1: (17)

The Taylor development reads

xiB�t� � xiB � tv
i
B �

t2

2

�
dviB
dt

�
�t�0�
� 	 	 	 : (18)

Since the operator d=dt � vi@i increases by 1/2 the order
of the quantity on which it is applied, this development
shows that
(i) k
nowledge of xiB�t� up to 1/2 order requires knowl-
edge of t at order 0;
(ii) k
nowledge of viB�t� � dxiB�t�=dt up to order 3/2
requires knowledge of t at order 1/2.
Hence, one has to solve Eq. (16) up to order 1/2 for t and
up to order 1 for ni.

Let us write (16) in the explicit form, using (14) and
(18),

xiA � n
ict� ��� 1�

GM

c2 �i�t; nj�

� xiB � tv
i
B �

t2

2

GMxiB
r3

B

(19)

where the initial acceleration, given by the geodesic equa-
tion (6) reduces to its Newtonian part at order 1. We notice
that, due to properties of the metric considered (static and
diagonal), this is also the expression of the initial accel-
eration up to order 3/2.

At order 0, Eqs. (17) and (19) read

xiA � n
�0�i

c t
�0�
� xiB;
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n
�0�2

� 1

which give the two (obvious) order 0 solutions

c t
�0�
� 


�����������������������������������������
�xiB � x

i
A��x

i
B � x

i
A�

q
; (20)

n
�0�i

� 

xiB � x

i
A�����������������������������������������

�xjB � x
j
A��x

j
B � x

j
A�

q (21)

where the ‘‘�’’ sign corresponds to a photon emitted by
spacecraft A and received by spacecraft B, while the ‘‘�’’
sign corresponds to a photon emitted by spacecraft B and
received by spacecraft A. This is nothing but the trivial
Euclidean prediction in the case where both emitting and
receiving spacecraft are at rest.

At order 1/2, using the 0 order equations, Eqs. (17) and
(19) read

n
�0�i

t
�1=2�
� t
�0�

n
�1=2�i

� t
�0�viB
c
;

n
�0�
: n
�1=2�
� 0:

The corresponding terms of order 1/2

t
�1=2�
� t
�0� n
�0�
:vB

c
�
viB
c2 �x

i
B � x

i
A�; (22)

n
�1=2�i

�
viB
c
� n
�0�i n
�0�
:vB

c

are the classical motion and aberration corrections.
The same iterative method provides the next order terms.

For the energy problem, one only needs n
�1�i

, but the method

also gives t
�1�

, which will be useful in the time-delay prob-
lem

t
�1�
�

1

2

�
v2

B

c2 �

�
n
�0�
:vB

c

�
2
�
t
�0�

� n
�0�i
�
�1� ��

GM

c3 �i� t
�0�
; n
�0�j

� �
GMxiB
2r3

Bc
t
�0�2
�
;

n
�1�i

� �
1

2c2 n
�0�i

�v2
B � �n

�0�
:vB�

2� �
GM t

�0�

2r3
Bc
�xiB � n

�0�i

n
�0�
:xB�

� ��� 1�
GM

c3 t
�0�
��i � n

�0�i

n
�0�
:��
� t
�0�
; n
�0�k
�
: (23)

The ‘‘ln’’ term in t
�1�

, present in the �i term, is responsible
for the well-known Shapiro time-delay effect.
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IV. TIME DELAYS

The time transfer between two satellites A and B is, at
order 0,

t
�!1�
� t
�0�
� t
�1=2�
� t
�1�

where the contributions t
�k�

have been calculated in the
previous section. The 0 order term is the same for both
links A! B and B! A. The first term to be affected by
the permutation A� B is the 1/2 order term. It is easy to
see that, for this permutation, one has

� t
�0�
; n
�0�i

� � � t
�0�
;� n
�0�i

�

leading to

t
�1=2�
�A! B� � t

�1=2�
�B! A� � t

�0�
n
�0�i viA � v

i
B

c

which is responsible for the so-called Sagnac effect. Let us
note that in the TDI problem, one generally needs the
emission time as a function of the reception time (or,
equivalently, the flight time as a function of the reception
time), rather than the converse. Accordingly, the solution
required in simulations generally involves the order 0
solution (20) and (21) with the minus sign.
V. EINSTEIN FREQUENCY SHIFTS

Three identical clocks, one aboard each LISA space-
craft, beat at a common proper frequency. The quantity
measured on spacecraft B is the (relative) difference be-
tween the frequency received from spacecraft A, and the
proper frequency measured on B. For a photon starting
from A at t � 0, and received at B at time t, this relative
frequency shift is

z�B A��tA � 0� �
EB�t�

EA�t � 0�
� 1 (24)

since the nominal frequency of the oscillator aboard B is
identical to the one of the oscillator aboard A, which is
nothing but the initial energy of the photon emitted from A.

Let us remark that 1� z as defined in (24) corresponds
to the standard definition of a frequency shift (frequency at
reception over frequency at emission) in the case where the
solution (20) and (21) with the� sign is considered. In the
other case (� sign), 1� z as defined in (24) corresponds to
the inverse ratio (frequency at emission over frequency at
reception).

A. Contribution of the different orders

The development of the expression for the energy up to
order 3/2 is given by (15). This expression requires the
velocity of the spacecraft up to order 3/2,
-5
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v
�3=2�i

B�t� � viB � t
dviB
dt
�
t2

2

d2viB
dt2

� viB � tGM
xiB
r3

B

�
t2

2
GM

�
viB
r3

B

� 3
xiBxB:vB

r5
B

�
:

Substituting the above expression in Eq. (15), one finds,
writing �E � EB�t� � EA�t � 0�,

CHAUVINEAU, REGIMBAU, VINET, AND PIREAUX
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�E � �E
�1=2�

��E
�1�

� �E
�3=2�

(25)

with, writing N � �E=�cC0�,

N
�1=2�
� � n

�0�i viB � v
i
A

c
; (26)
N
�1�
�
viB � v

i
A

c2

�
n
�0�i

n
�0�
:vB �

1

2
�viB � v

i
A�

�
�
GM

c2

�
1

rB
�

1

rA

�
�
GM
c

t
�0� n
�0�
:xB

r3
B

;

N
�3=2�
� � n

�1�i viB � v
i
A

c
� n
�0�i viBv2

B � v
i
Av2

A

2c3 �
GM

c2 t
�0� vB:xB

r3
B

�
GM
2c

n
�0�i

t
�0�2
�
viB
r3

B

� 3
xiBxB:vB

r5
B

�

� �2� ��
GM

c3 n
�0�i
�
viB
rB
�
viA
rA

�
� �1� ��

GM

c3 P
�0�i

n
�0�j
�
xjBv

i
B

rB
�
xjAv

i
A

rA

�
(27)

i i
where P
�0�
� Pi�ni � n

�0�
�. Since (25) has no 0 order term,

one only needs Ea up to order 1 to obtain z up to order 3/2.
Setting D � EA�t � 0�=�cC0� yields

D
�0�
� 1; D

�1=2�
� �

n
�0�
:vA

c
;

D
�1�
� �

viA
c2 �v

i
B � n

�0�i

n
�0�
:vB� �

v2
A

2c2 �
GM

rAc2 :

(28)

Hence, one finds

z
�1=2�
� N
�1=2�

; (29)

z
�1�
� N
�1�
� N
�1=2�

D
�1=2�

;

z
�3=2�
� N
�3=2�
� N
�1�

D
�1=2�
� N
�1=2�

D
�1�
� N
�1=2�
� D
�1=2�
�2:

(30)

It appears that zBase of accent is empty!
�1=2�

is unchanged
under the permutation A� B, as it should be, since the
Doppler effect only depends on relative motion in the
framework of special relativity. Of course, this is not the
case as soon as gravity is acting, i.e. in first and higher
order terms. Indeed, one finds

z
�1�
�B A��tA � 0� � z

�1�
�A B��tB � 0�

�
2GM

c2

�
1

rB
�

1

rA

�
�
GM
c

n
�0�i

t
�0�
�
xiA
r3

A

�
xiB
r3

B

�
:

The first term originates in the Einstein gravitational
Doppler effect, while the second is related to the acceler-
ations of spacecraft in the gravitational field of the sun.

B. Orders of magnitude for the LISA configuration

One is tempted to derive an order of magnitude for the
contributions to the frequency shift. Indeed, one has, from
(1),

�� 10�8

and the difference between the distance of each station to
the sun satisfies

�r
r

L
r

cos
�
3
�

1

60

where L� 5:106 km is the typical interspacecraft distance.
An estimation of the terms of orders 1/2, 1, and 3/2 leads to

z
�1=2�
� ���1=2� � �1=2 �r

r
� 2:10�6;

z
�1�
� ���� � �

�r
r
� 2:10�10;

z
�3=2�
� ���3=2� � �3=2 �r

r
� 2:10�14:

It is interesting to point out that, due to the peculiar
LISA configuration, terms of orders 1/2 and 1 are actually
considerably smaller than the above estimates. Let us
evaluate these terms more carefully.

In the ideal case, where LISA spacecraft form a perfect
equilateral triangle, velocities of spacecraft A and B have

the same projection on vector n
�0�

, such that from (29),

z
�1=2�
� 0:

In fact, the above cancellation is obtained as soon as the
orbits about the center of mass of the satellite constellation
are coplanar and circular, with a velocity proportional to
the center of mass distance. Since this property is not
exactly verified by the real configuration, the value of

z
�1=2�

is reduced by a factor �L=r, i.e. z
�1=2�
� 7:10�8. At
-6
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this order, the frequency shift is due to the arm length
variations (flexing).

Let vAB � vB � vA. From (26)–(28) and (30), the term
of order 1 is

z
�1�
�

�
n
�0�
:vAB

c

�
2
�

1

2

�
vAB

c

�
2
�
GM

c2

�
1

rB
�

1

rA

�

�
GM
c

t
�0� n
�0�
:xB

r3
B

: (31)

The first term on the r.h.s. is small, �5:10�15, since it is

nothing but z
�1=2�2

.
In the second term, v2

AB turns out to be 3 times the
squared modulus of the relative velocity of a spacecraft
with respect to LISA’s center of mass, i.e. VL=�r

���
3
p
� with

V the orbital velocity of this center. Hence,

1

2

�
vAB

c

�
2
�
V2

c2

L2

2r2 � 6:10�12: (32)

The third term of the r.h.s. of (31) is of order

GM

rc2

�r
r
� 2:10�10

while the fourth is

GM

c2
c t
�0� n
�0�
:xB

r3
B

�
GM

rc2

L
r

cos� 2:10�10

where  spans between �=3 and 2�=3.
The point is that the third and fourth r.h.s. terms of

Eq. (31), of order �GM=c2��L=r2� each, nearly cancel.
Indeed, the Euclidean triangular assumption,

r2
A � r2

B � 2rBL:x̂B � L2

with xA;B � rA;Bx̂A;B and L � c t
�0�

n
�0�

, leads to

1

rA
�

1

rB
�

L:x̂B

r2
B

�

�
�1� 3�n

�0�
:x̂B�

2

�
L2

2r3
B

�O

�
L3

r4

�
:

Since �n
�0�
:x̂B�

2  1=4, the sum of the third and fourth terms
in (31) is about

1

2

GM

rc2

�
L
r

�
2
� 6:10�12: (33)

Furthermore, it turns out that the residual (third+fourth)
term in (31), of order �GM=c2��L2=r3�, nearly cancels with
the second term in (31). Indeed, at first order, each space-
craft obeys Newton’s law

dv
dt
� �GM

x
r3

so that their relative motion is described by
122003
dvAB

dt
� �GM

�
L
r3 � 3

�r:L�r
r5

�
�O

�
L2

r4

�

with vAB � dL=dt. Since d�L:vAB� � L:dvAB � v2
ABdt, it

turns out that the sum of the second, third, and fourth terms
of (31) reduces to

�
1

2c2

d
dt
�Ln
�0�
:vAB� �O

�
L3

r4

�
: (34)

The order of magnitude of the O�L3=r4� terms neglected at
the different steps leading to (34) is

GM

c2

L3

r4 cos� 2:10�13:

But the first term of (34) is even smaller, since

1

2c2

d
dt
�Ln
�0�
:vAB� �

1

2c
L

z
�1=2�

1 yr
� 3:10�14:

Consequently, z
�1�

appears to be of order 2:10�13, i.e. only

an order of magnitude larger than z
�3=2�

.
In the next section, we will confirm the partial canceling

of z
�1=2�

and z
�1�

found analytically, thanks to a numerical
relativistic simulation of LISA’s optical links.
VI. NUMERICAL RESULTS

In order to evaluate the orders of magnitude of the
various terms of the expansions in the time delays and in
the frequency shifts, we have made a toy model in which
the spacecraft orbits are classical (Keplerian). At any date,
the link between spacecraft A and B is assumed starting
from the Keplerian location of A at current time tA and
joining B at a place deduced from the Keplerian position of
B at time tA � t, through a relativistic continuation. It is
known (this has been discussed, for instance, recently in
[1]) that the three spacecraft can be kept at approximately
constant mutual distances, with the constellation’s center
of mass on a circular orbit of 1 a.u. radius, on the condition
that each orbit has a small eccentricity e, a small orbital
inclination 	 on the ecliptic, with the semimajor axes of
spacecraft 2 and spacecraft 3 orbits shifted by 120 and
240 degrees, respectively, from spacecraft 1’s. In fact, if the
three spacecraft are required to be equivalent (i.e., same
orbit eccentricity e and inclination angle 	), at first order
in e, the distances between spacecraft are constant and the
angle of the LISA plane with respect to the ecliptic, 
, is 60
degrees. However, exact numerical investigations show
that second order terms in e give rise to important varia-
tions of the interferometric arm lengths (‘‘breathing’’) and
to a large Doppler effect. The choice of the orbital parame-
ters (e, 
) influences the ‘‘breathing’’ amplitude. A careful
choice of the orbital parameters can reduce the ‘‘breath-
ing’’ amplitude from about 120 000 km (for a naive choice
of 
 � 60 degrees) to less than 50 000 km. Such orbital
-7
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parameters were chosen in existing simulation codes
[9,10], and it has been shown in Ref. [11] that this choice
is the optimal one. We summarize hereafter the results of
[11] in terms of parametrized orbits. The angle 
 is defined
as


 �
�
3
�

5

8
�

where � � L=2R. L is the nominal interspacecraft dis-
tance (5 106 km) and R the radius of the circular LISA
orbit (1 a.u.), so that �� 1=60 is a small parameter. This
small change of inclination is responsible for a large re-
duction of flexing with respect to the strict 60 degrees often
quoted in the literature [1]. The inclination 	 of the orbital
planes with respect to the ecliptic is

tan	 �
� sin


sin��=3� � � cos

:

Though the center of mass keeps on a circular orbit, the
spacecraft stay on slightly elliptical orbits (numbered b �
1; 2; 3). Their common eccentricity is

e �
�

1�
4� cos
���

3
p �

4�2

3

�
1=2
� 1:

In order to parametrize the orbital motions by the time, we
need the eccentric anomalies �b, that are functions of the
time t, defined via the implicit equations

�b � e sin�b � �t� b

involving a phase shift b � 2�b� 1��=3. Owing to the
smallness of e, the numerical solution is very fast. Then, let
us set

8><
>:
Xb � R�cos�b � e� cos	;

Yb � R
��������������
1� e2
p

sin�b;

Zb � �R�cos�b � e� sin	:

Finally, the positions of the three spacecraft at time t are
deduced from the preceding ones via rotations in the �X; Y�
plane:

8><
>:
xb � Xb cosb � Yb sinb;

yb � Xb sinb � Yb cosb;

zb � Zb:

(35)

At this point, we have three Keplerian orbits, with parame-
ters such that the distances between test masses are con-
stant at first order in �, but actually varying by about 1%
(about 50 000 km) peak to peak during the year. The space-
craft velocities are computed according to

8><
>:

_xb � _Xb cosb � _Yb sinb;

_yb � _Xb sinb � _Yb cosb;

_zb � _Zb;

(36)

with
122003-8
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_Xb
_Yb
_Zb

0
B@

1
CA � �R

1� e cos�b

� cos	 sin�b��������������
1� e2
p

cos�b

sin	 sin�b

0
@

1
A:

Once the positions and velocities are known, it is easy to
implement the time delays up to order 1. Figures 1–3 show
the contributions of orders 0, 1/2, and 1, respectively. We
can also evaluate the Sagnac term as the difference be-
tween the propagation time from spacecraft 2 to 3 and the
time from 3 to 2: see Fig. 4. Note that the maximum
amplitude of this differential time delay is approximately

twice the maximum amplitude of the t
�1=2�

contribution,
122003
because there is a change of sign. Annual variations of
the frequency shift at order 1/2 are represented in Fig. 5.
The contribution of order 1 is shown in Fig. 6.
VII. CONCLUSION

We have given the formulas that allow one to compute
the time delays to be used in a numerical model of LISA,
knowing the Keplerian orbits of the spacecraft. At the
lowest order, we have the well-known ‘‘flexing’’ of the
triangle, of (peak-to-peak) amplitude slightly less than
48 000 km. At the next order, we find an extra correction
of amplitude about 960 km, larger than the allowed error
for phase noise cancellation after TDI. The last computed
order is negligible (less than 30 m). The interest of the
derivation is that it includes naturally all relativistic effects
(for instance, the Sagnac effect) introduced up to now by
‘‘ad hoc’’ considerations.

We have also estimated the global frequency shift due to
the various motions and to propagation in the gravitational
field of the sun. We have found the rather surprising result
that the general relativistic contribution is much smaller
than a priori expectations, only due to the LISA configu-
ration. The global frequency shift, reduced to the residual
relative motions of the spacecraft, is of the order of 8 MHz
(peak to peak).
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