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We propose a coherent method for detection and reconstruction of gravitational wave signals with a
network of interferometric detectors. The method is derived by using the likelihood ratio functional for
unknown signal waveforms. In the likelihood analysis, the global maximum of the likelihood ratio over
the space of waveforms is used as the detection statistic. We identify a problem with this approach. In the
case of an aligned pair of detectors, the detection statistic depends on the cross correlation between the
detectors as expected, but this dependence disappears even for infinitesimally small misalignments. We
solve the problem by applying constraints on the likelihood functional and obtain a new class of statistics.
The resulting method can be applied to data from a network consisting of any number of detectors with
arbitrary detector orientations. The method allows us reconstruction of the source coordinates and the
waveforms of two polarization components of a gravitational wave. We study the performance of the
method with numerical simulations and find the reconstruction of the source coordinates to be more
accurate than in the standard likelihood method.
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I. INTRODUCTION

Several gravitational wave (GW) detectors are now op-
erating around the world, including both laser interferome-
ters [1–4] and resonant mass detectors [5]. Combining the
data from such a network of detectors can benefit both the
detection of GW signals and estimation of signal parame-
ters. Unlike real GW signals that would occur in coinci-
dence across all detectors in a network, most background
events due to instrumental and terrestrial disturbances are
expected to be local to each detector and, therefore, can be
rejected by analyzing data from a network. Given a net-
work with different orientations and locations of the de-
tectors, GW sources can be localized on the sky and the
waveforms of the two independent GW polarization com-
ponents can be reconstructed.

Methods for the analysis of data from a network of GW
detectors can be divided into two classes: coincidence and
coherent methods. In coincidence methods, first, a search
for GW signals is carried out for individual detectors and a
list of candidate events is generated. Then a subset of
events is selected by requiring temporal coincidence of
events between the detectors. In coherent methods, one,
first, combines the detector responses and then analyzes the
combined data to generate a single list of events.

Networks of detectors are particularly important for
searches of gravitational wave burst signals. These are
defined to be broadband signals that may come either
from unanticipated sources or from sources for which no
reliable theoretical prediction exists for signal waveforms.
Potential astrophysical sources of burst signals are stellar
core collapse in supernovae [6], mergers of binary neutron
star or black hole systems [7], and gamma ray burst pro-
genitors [8].

The first coherent method for burst searches with a net-
work of three misaligned detectors was proposed by Gürsel
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and Tinto [9]. In this method, the detector responses are
combined into a functional, which attains its minimum at
the correct direction to the source. The minimization of the
functional allows one to reconstruct the source coordinates
and two-polarization waveforms of the burst signal.

Flanagan and Hughes [10] considered maximization of
the likelihood functional [11,12] as a means of reconstruct-
ing source direction and polarization waveforms.
Anderson et al. [13] extended this approach to derive a
detection statistic called excess power. It is obtained by
integrating the likelihood functional, weighted by a
Bayesian prior probability density, over the space of all
waveforms. In this paper, we refer to signal detection and
reconstruction based on the global maximum of the un-
weighted likelihood ratio functional as the standard like-
lihood method.

Another coherent method, proposed by Sylvestre [14],
starts with the ad hoc approach of forming a linear combi-
nation of data from a network of detectors. The combina-
tion coefficients are then adjusted to construct a quadratic
detection algorithm that satisfies certain criteria.

Arnaud et al. [15] have numerically explored the issue of
statistical performance of coherent and coincidence meth-
ods and find that the former are more efficient than the
latter for burst signals. In the case of signals with known
waveforms, Finn [16] has shown using simulations that
coherent methods can also be robust when confronted with
non-Gaussian noise.

Coherent methods can also be used for rejecting coinci-
dent background signals. Cadonati [17] has proposed a
cross-correlation test, called r-statistic, for pairs of aligned
detectors as a follow-up consistency check on a coinci-
dence analysis [18]. Rakhmanov and Klimenko [19] have
proposed the mixed correlations method that extends the
cross-correlation test to a network of three or more mis-
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1This quantity is not the total physical energy carried by the
gravitational wave.
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aligned detectors. Wen and Schutz [20] have recently
developed a coherent approach for rejecting background
coincident signals with a network of arbitrary detectors.

In this paper, we propose a method for the coherent
detection and reconstruction of burst signals that is based
on the use of the likelihood ratio [11,12]. Our analysis
differs from [10,13] in an important way. We identify and
solve a problem with the standard likelihood analysis, first
spotted in [21]. The problem, which we call the two-
detector paradox, is that the maximum likelihood ratio
statistic for misaligned detectors does not reduce, contrary
to physical intuition, to the statistic for coaligned detectors
in the limit of small misalignment angles. The latter sta-
tistic depends on the cross correlation of detector outputs
whereas the former does not. We show that the problem
originates in the maximization of the likelihood ratio func-
tional over all signal waveforms including those to which a
detector network may not actually be sensitive. We propose
a solution to this problem that is based on constraints
imposed on the GW signal waveforms.

The constrained maximization of the likelihood func-
tional yields new detection and reconstruction methods
which we call the constraint likelihood methods. Unlike
the Gürsel-Tinto method, the constraint likelihood meth-
ods can be used for arbitrary networks, including networks
consisting of two detectors. The performance of these
methods is studied in comparison with the standard like-
lihood method by using numerical simulations. In the
simulation we use networks of interferometric detectors
consisting of LIGO 4 km detector in Hanford (H1), LIGO
4 km detector in Livingston (L1), GEO-600 detector (G1),
TAMA detector (T1), and VIRGO detector (V1). We find
that the constraints employed in this paper enhance the
detection efficiency of the likelihood method. For detected
sources, the constraints significantly improve accuracy of
the source localization.

The rest of the paper is organized as follows. Section II
lays out much of the basic notation and conventions used in
the paper. In Sec. III, we provide an overview of the
standard likelihood approach and its application to burst
signals. Section IV describes the two-detector paradox that
appears in the standard likelihood approach. The origin of
this problem is discussed in Sec. V. In Sec. VI we derive the
constraint likelihood methods. The results from numerical
studies of the performance of these methods are described
in Sec. VII.

II. DETECTOR RESPONSE TO GRAVITATIONAL
WAVES

A. Gravitational wave signal

Gravitational waves are described by a symmetric tensor
of second rank hij�t�, which is usually defined in the
transverse-traceless gauge [22]. It takes a particularly sim-
ple form in the coordinate frame associated with the wave.
In this coordinate frame (the wave frame), a gravitational
122002
wave propagates in the direction of the z axis and it can be
described with the waveforms h��t� and h��t� representing
two independent polarization components of the wave.

In addition to the waveforms h��t� and h��t�, we will
use complex waveforms defined as

u�t� � h��t� � ih��t�; (1)

~u�t� � h��t� � ih��t�: (2)

In what follows, tilde will always denote complex conju-
gation. The GW waveforms u�t� and ~u�t� are eigenstates of
the rotations around the z axis in the wave frame. We
denote this particular rotation by Rz� �, where  is the
rotation angle. The rotation Rz� � generates equivalent
waveforms which are different representations of the
same gravitational wave.

We define the sum-square energy1 carried by the gravi-
tational wave as

E �
Z 1
�1
�h2
��t� � h

2
��t��dt �

Z 1
�1

u�t�~u�t�dt: (3)

Note that the sum-square energy is invariant under the
rotation Rz.

B. Detector response

The response of the interferometer to an arbitrary gravi-
tational wave hij�t� is given by

��t� � 1
2Tijhij�t�; (4)

where Tij is the detector tensor [23]. In the wave frame the
detector response is a linear superposition of two GW
polarizations,

��t� � F�h��t� � F�h��t�; (5)

where the coefficients F� and F� are known as antenna
patterns.

To calculate the antenna patterns, we introduce the
Earth-centered frame described in [24]. In this frame the
detector location is defined by a radius-vector r pointing to
the detector and its orientation is described by two unit
vectors a and b along the detector arms. The vectors a and
b define the detector tensor

T0ij � aiaj � bibj; i; j � 1; 2; 3; (6)

where the indices correspond to spatial coordinates x, y,
and z, respectively. The direction to the GW source is
defined in the Earth-centered frame by two spherical an-
gles � (longitude) and � (latitude). The rotational trans-
formation which connects the Earth-centered frame with
the wave frame is given by
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R ��; �� � Ry���Rz���: (7)

It defines the detector tensor in the wave frame

T ��; �� � R��; ��T0R��; ��T: (8)

Omitting the explicit dependence on the angles, the an-
tenna patterns corresponding to the h��t� and h��t� polar-
izations are calculated as follows:

F� �
1
2�T11 � T22�; (9)

F� �
1
2�T12 � T21�: (10)

The detector response can be conveniently expressed in
terms of the complex waveform u:

� � ~Au� A~u; (11)

where A and ~A are the complex antenna patterns:

A � 1
2�F� � iF��; (12)

~A � 1
2�F� � iF��: (13)

A rotation Rz� � in the wave frame induces the trans-
formation of the detector antenna patterns and the GW
waveforms,

A0 � e2i A; (14)

u0 � e2i u; (15)

but the detector response is invariant under the rotation.
III. LIKELIHOOD ANALYSIS OF GRAVITATIONAL
WAVE DATA

In this section, we present a brief overview of the
standard likelihood approach to the detection and recon-
struction of gravitational wave burst signals using a net-
work of detectors. Though the scientific content of this
section is essentially the same as the results in [10,13], our
derivation and the notation we use are rather different.
These will aid in a clearer exposition of our main results
in subsequent sections. The reader is referred to [11] for a
textbook level discussion of the statistical theory of signal
detection used in this paper.

A. Overview

Consider an observable that is a finite data segment x �
fx�1�; x�2�; . . . ; x�N�g from a noisy time series. The sim-
plest detection problem is to define a decision rule for
selecting one of two mutually exclusive hypotheses, H0

(null hypothesis) or H1 (alternative hypothesis), about the
data x. Under the H0 and H1, x is a realization of a
stochastic process described by the joint probability den-
sity p�xjH0� and p�xjH1�, respectively.
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Any decision rule will incur two types of errors: false
alarm—H1 is selected when H0 is true; and false dis-
missal—H0 is selected when H1 is true. Each error will
have a probability associated with it, namely, the false
alarm and the false dismissal probabilities Q0 and Q1,
respectively. In order to select the best decision rule,
several criteria have been proposed out of which the
Neyman-Pearson criterion is the most suitable for detec-
tion of gravitational waves. According to this criterion, the
optimal decision rule has the leastQ1 for fixedQ0. The rule
accepts H1 (rejects H0) when the likelihood ratio, ��x�,
defined as

��x� �
p�xjH1�

p�xjH0�
(16)

is greater than a threshold value that is fixed by the speci-
fied Q0.

In the case of the GW data analysis,H0 is the hypothesis
‘‘a GW signal is absent’’ and H1 is ‘‘the GW signal � is
present.’’ For a stationary, Gaussian white noise with zero
mean the corresponding joint probability densities are

p�xjH0� �
YN
i�1

1�������
2�
p

�
exp

�
�
x2�i�

2�2

�
; (17)

p�xjH1� �
YN
i�1

1�������
2�
p

�
exp

�
�
�x�i� � ��i��2

2�2

�
; (18)

where � is the standard deviation of the noise. The loga-
rithm of the likelihood ratio can be expressed as

L � ln���x�� �
XN
i�1

1

�2

�
x�i���i� �

1

2
�2�i�

�
: (19)

In the rest of the paper, we refer to L as the likelihood
functional.

The situation with two mutually exclusive hypotheses,
outlined above, is the simplest one. In general, as in the
case of GW analysis, the observed data x can be a realiza-
tion of one among several joint probability densities
p�xjHi�, i � 0; 1; 2; . . . , where, as usual, H0 is the null
hypotheses and Hi are the alternative hypotheses.
Correspondingly, the probabilities for false alarm and false
dismissal can be assigned but now the false dismissal
probabilities Qi are hypothesis specific.

One possible generalization of the Neyman-Pearson
criterion is to select a decision rule which minimizes all
probabilities Qi for a fixed false alarm probability Q0. It
turns out that, in general, no such rule is possible [11].
Another approach is to generalize the likelihood ratio test
itself by constructing a functional,

�m�x� � max
i

�
p�xjHi�

p�xjH0�

�
; (20)

and comparing it with a threshold. This test, called the
-3
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maximum likelihood ratio (MLR) test, tends to outperform
any other ad hoc test. However, it is important to note that
the MLR test itself does not have a formal proof of opti-
mality. Therefore, it is possible that modifications of the
MLR test, as presented in this paper, can lead to better
performance.

One of the applications of the MLR test is the detection
of gravitational waves from the inspiral of compact bi-
naries [16,25]. In principle, the waveforms of the GW
signals can be calculated to arbitrary precision given the
parameters of the binary system. The set of alternative
hypotheses now becomes a continuum that is identified
with the space of binary parameters. The likelihood ratio
��xjHi� can, therefore, be expressed as a function over the
binary parameters. The MLR statistic is obtained by max-
imizing the likelihood ratio over these parameters and
reaches its maximum for the best match of the correspond-
ing waveform to the data.

In contrast to binary inspiral signals, where the number
of parameters is small, the parameters characterizing burst
signals are essentially the signal amplitudes themselves at
each instant of time. Thus, for burst signals, the number of
parameters can be very large. Formally, however, the con-
cept of the likelihood ratio can still be used for burst
signals. In this case, the likelihood ratio is ��xj��, where
� is the detector response to the burst signal. The applica-
tion of the MLR test to burst signals involves maximization
over each sample ��i� independently [26].

B. Network likelihood

So far, we have considered a time series x at the output
of a single GW detector. The entire formalism outlined
above can be extended to a network of detectors. Let the
data from the kth detector be xk � fxk�1�; xk�2�; . . .g and
the detector response to the gravitational wave be

�k�i� � u�i� ~Ak � ~u�i�Ak: (21)

We will assume that the noise in different detectors is
independent. Then the likelihood functional becomes

L �
XK
k�1

XN
i�1

1

�2
k

�
xk�i��k�i� �

1

2
�2
k�i�

�
; (22)

where K is the number of detectors in the network. For
detectors illuminated by the same GW source, the detector
responses are not independent. Therefore, the variation of
the likelihood functional is performed over the sampled
amplitudes u�i� and ~u�i�.

To characterize the angular and strain sensitivity of the
network, we introduce the network antenna patterns

gr �
XK
k�1

Ak ~Ak
�2
k

; gc �
XK
k�1

A2
k

�2
k

; (23)

where gr is real and gc is complex. Similarly to the antenna
patterns Ak for a single detector, they describe the network
122002
response to the gravitational wave:

R�u� � gru� gc~u: (24)

We also define the network output time series X which
combines the output time series xk from individual detec-
tors

X �
XK
k�1

xkAk
�2
k

: (25)

To simplify equations, we will replace summations over
any sampled time series s�i� with hsi. With these new
notations the likelihood functional can be written as

L �

�
u ~X� ~uX � gru~u�

~gcu2 � gc~u2

2

�
; (26)

where ~X and ~gc are complex conjugates of X and gc,
respectively.

C. Solution for GW waveforms

The equations for the GW waveforms are obtained by
variation of the likelihood functional:

�L
�u
� 0;

�L
�~u
� 0; (27)

which results in two linear equations for u and ~u:

X � gru� gc~u; (28)

~X � gr~u� ~gcu: (29)

The solution is

us �
grX� gc ~X

g2
r � jgcj2

: (30)

Note, the solution us satisfies the condition X � R�us�,
where R�us� is the network response to the gravitational
wave [see Eq. (24)]. Equations (28) and (29) can also be
written for the waveforms h� and h�:

Re�X�
Im�X�

� �
� MR

h�
h�

� �
; (31)

where the matrix MR is given by

MR �
gr � Re�gc� Im�gc�

Im�gc� gr � Re�gc�

� �
: (32)
D. Maximum likelihood ratio statistic

The maximum likelihood ratio statistic is obtained by
substitution of the solution us in Eq. (26):

Lmax �
2grXr � ~gcXc � gc ~Xc

2�g2
r � jgcj2�

; (33)

where the quantities Xc and Xr are defined by
-4
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Xc �
XK
i�1

XK
j�1

AiAjDij; (34)

Xr �
XK
i�1

XK
j�1

Ai ~AjDij; (35)

and ~Xc is complex conjugate of Xc. The data matrix Dij is
calculated for the detector output xi and xj scaled by the
variances of the detector noise

Dij �
hxi�t�xj�t� �ij�i

�2
i �

2
j

: (36)

The data matrix depends on the gravitational wave time
delays �ij between the detectors. The time delays, in turn,
depend on the coordinates of the source on the sky � and�.
The diagonal elements of the data matrix represent the
power terms and the nondiagonal elements represent the
cross-correlation terms.

There is a simple geometrical interpretation of the MLR
statistics. At any instance of time, the GW waveform u and
the network output X can be viewed as vectors u and X in
the complex plane. Then the MLR statistics, given by
Eq. (33), is the inner product

Lmax �
1
2hus

~X� ~usXi � hus 	Xi; (37)

which is a projection of the solution us onto the data X.
Note that the projection is the estimator of the total signal-
to-noise ratio (SNRtot) of the GW signal detected in the
network

SNR tot �
XK
k�1

h�2
ki

�2
k


 2hus 	Xi: (38)

IV. TWO-DETECTOR PARADOX

So far we have described the standard likelihood ap-
proach for the detection and reconstruction of burst GW
signals wherein the likelihood ratio is maximized indepen-
dently over each signal sample. Though attractive because
both a detection and estimation method are obtained si-
multaneously, there is a problem with this approach when
applied to a network of two detectors. The problem, which
we call the two-detector paradox, is described in this
section.

Let us consider a network of two detectors in two
configurations: (A) aligned detectors and (M) misaligned
detectors. The detectors in the configuration A have the
same antenna patterns. In this case the detector responses
are the same in both detectors and we consider the GW
signal as the scalar wave �. The likelihood ratio functional
is then

L A �
hx1�i

�2
1

�
hx2�i

�2
2

�
h�2i

2

�
1

�2
1

�
1

�2
2

�
; (39)
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where x1, x2 are the detector outputs and �1, �2 are the
standard deviations of the detector noise. The solution of
the likelihood variation problem is

� �
�
x1

�2
1

�
x2

�2
2

��
1

�2
1

�
1

�2
2

�
�1
: (40)

The MLR statistics for two aligned detectors is obtained
from Eq. (39) by substituting � with the solution

LA �
1

2

�
hx2

1i

�4
1

�
hx2

2i

�4
2

� 2
hx1x2i

�2
1�

2
2

��
1

�2
1

�
1

�2
2

�
�1
: (41)

As expected, the MLR statistic for two aligned detectors
includes both the power and the cross-correlation terms.

For two arbitrary misaligned detectors, the likelihood
ratio functional is [see Eq. (22)]

LM �
hx1�1i

�2
1

�
1

2

h�1�1i

�2
1

�
hx2�2i

�2
2

�
1

2

h�2�2i

�2
2

; (42)

where �1 and �2 are the detector responses. Since the
detector responses are the linear combinations of the GW
polarizations h� and h� [see Eq. (5)], in the case of two
detectors we can simply vary the functional LM over �1

and �2, which gives the solutions �1 � x1 and �2 � x2,
respectively. Substitution of the solutions into Eq. (42)
shows that the MLR statistic

LM �
1

2

�
hx2

1i

�2
1

�
hx2

2i

�2
2

�
(43)

includes the power terms only. The same result can be
obtained from Eq. (33) by explicit calculation for the
case of two detectors.

The two-detector paradox is that the statistic LM does
not include cross correlation between the detectors even for
a small misalignment. This is highly counterintuitive since
one expects that the response of detectors to the same GW
source will differ only infinitesimally when the detectors
are infinitesimally misaligned. Hence, as in the case of LA,
one would expect that the cross-correlation term will bene-
fit detection and that its importance will decline only
gradually as the detectors are misaligned. In other words,
the functional LM is expected to approach LA in the limit of
perfect alignment.

The origin of the two-detector paradox is easily seen.
For the aligned case, the standard likelihood ratio approach
has the prior information that both detector responses are
identical. Hence, the cross-correlation term is guaranteed
to have positive mean and, thus, should improve the de-
tectability of GW signals. For the misaligned case, it is
always possible to specify two arbitrary responses and
invert them to obtain some h��t� and h��t� components
of the GW signal. The standard MLR statistic, therefore,
does not benefit from having the cross-correlation term
since now it can contribute pure noise to the statistic.
Hence, this term disappears from the MLR statistic. The
-5
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FIG. 1. Alignment factors for the detector networks listed in
order from top to bottom: H1-L1 (upper plot), H1-L1-G1, H1-
L1-G1-V1, H1-L1-G1-V1-T1 (bottom plot).
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fact that the standard likelihood approach does not exhibit
the expected continuity for the case of two detectors in-
dicates that this approach may not be the best one for a
general network of GW detectors as well.

V. NETWORK RESPONSE

To resolve the two-detector paradox, we take a closer
look at how the GW signal and the detector noise contrib-
ute to the MLR statistic. In this section we show that the
detection of two GW components can be considered as two
independent measurements equally affected by the detec-
tor noise but conducted with different angular and strain
sensitivities of the detectors. Being an ad hoc method, the
maximum likelihood may not be an optimal approach in
this situation. For example, if the network is sensitive only
to one signal component (as in the case of coaligned
detectors), the measurement of the second component
does not benefit the GW detection, but rather adds noise
to the measurement. In the next section we propose a
solution to the problem and derive the detection statistics,
which continuously bridge the cases of aligned and mis-
aligned detectors.

A. Network response to gravitational waves

As we mentioned in Sec. II B, the detector response is
invariant under rotations Rz in the wave frame.
Consequently, all measurable quantities, including the
likelihood functional, are invariant as well. We have a
freedom to select an arbitrary wave frame by applying
the rotation Rz� �, where  is the rotation angle. The
rotation induces the transformation of the GW waveforms
and the detector antenna patterns [see Eq. (14)], as well as
the transformation of the network parameters: X ! Xei2 

and gc ! gce
i4 . In general, the rotation angle  can be

selected individually for each instance of time and for each
point in the sky. By applying the rotation Rz���=4�, where
� is the phase of gc, we selected a wave frame in which
both network antenna patterns are real and positively de-
fined. We call this particular coordinate frame the domi-
nant polarization frame.

As follows from Eq. (24), for a GW signal defined in the
dominant polarization frame, the network response is

R � �gr � jgcj�h1 � i�gr � jgcj�h2; (44)

where h1 and h2 are the real and imaginary components of
the signal. We will distinguish them from the GW polar-
izations h� and h� defined for an arbitrary wave frame.
Note, the coefficients in front of h1 and h2 are the eigen-
values of the network response matrix MR [Eq. (32)],
which takes a diagonal form in the dominant polarization
frame:

MR � g
1 0
0 	

� �
: (45)

The coefficient
122002
g � gr � jgcj (46)

characterizes the network sensitivity to the h1 wave. The
sensitivity to the second component h2 is 	g, where 	 is the
network alignment factor:

	 �
gr � jgcj
gr � jgcj

: (47)

The alignment factor 	 shows the relative sensitivity of the
network to the GW components h1 and h2. Note that 0 �
	 � 1. The total signal-to-noise ratio of the GW signal
detected in the network is

SNR tot � 2g�hh2
1i � 	hh

2
2i�; (48)

where hh2
1i and hh2

2i are the sum-square energies carried by
each component [see Eq. (3)]. Therefore, to be detected
-6
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with the same signal-to-noise ratio, the h2 wave should
carry 1=	 times more energy than the h1 wave.

Both the network sensitivity and the alignment factor
depend on the angular and the strain sensitivities of the
detectors. The alignment factor reflects also the angular
alignment of the detectors. For coaligned detectors 	 � 0
and the h2 component of the GW signal cannot be detected.
Even for detectors with large angular misalignment, de-
pending on the sky coordinates � and �, the alignment
factor may take small values indicating that the detectors
are effectively aligned. For example, Fig. 1 shows the
alignment factors as a function of the sky coordinates
calculated for several network configurations consisting
of the H1, L1, G1, V1, and T1 detectors. For simplicity,
we assume that the detectors have the same strain sensi-
tivity. The example shows that for the closely aligned H1-
L1 detectors, the alignment factor is close to zero every-
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FIG. 2. Sensitivity of the detector networks listed in order from
top to bottom: H1-L1 (upper plot), H1-L1-G1, H1-L1-G1-V1,
H1-L1-G1-V1-T1 (bottom plot).
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where, except for a few small patches on the sky. The more
detectors are added to the network, the larger is the area on
the sky with large values of 	. But even for the network of
five detectors (H1-L1-G1-V1-T1), the factor 	 remains
small for a considerable fraction of the sky area, where
the network is much less sensitive to the h2 wave than to
the h1 wave. Assuming that both components carry on
average the same energy, the h2 wave is suppressed by
the factor of 	. Therefore, the h2 component adds little to
the total signal-to-noise ratio SNRtot for GW signals orig-
inating from areas on the sky with small values of 	.

The coefficient g defines the overall sensitivity of the
network to the gravitational waves. Figure 2 shows the
network sensitivity calculated as a function of the sky
coordinates for several network configurations. As we ex-
pect, adding more detectors reduces the sky area where the
network is blind to gravitational waves.

B. Two components of the likelihood functional

In the dominant polarization frame the likelihood func-
tional can be written as

L �u� �
�
u ~X� � ~uX� � gru~u�

jgcj
2
�u2 � ~u2�

�
; (49)

where X� � Xe�i�=2. Expressed in terms of h1 and h2, it
can be written as L�h1; h2� � L1�h1� �L2�h2�:

L 1 � 2
�
jXj cos�
�h1 �

g
2
h2

1

�
; (50)

L 2 � 2
�
jXj sin�
�h2 �

	g
2
h2

2

�
; (51)

where jXj is the amplitude and 
 is the phase of the data
vector X�. The solutions for the h1 and h2 are obtained by
the variation of the L1 and L2 functionals:

h1 �
1

g
jXj cos�
�; h2 �

1

	g
jXj sin�
�: (52)

The MLR statistic can be calculated separately for each
component:

L1 �
1

g
hjXj2cos2�
�i �

2Xr � e�i�Xc � e�i� ~Xc
4g

; (53)

L2 �
1

	g
hjXj2sin2�
�i �

2Xr � e
�i�Xc � e

�i� ~Xc
4	g

: (54)

The statistics L1 and L2 are the estimators of the signal-to-
noise ratio of two GW components detected by the
network.
-7
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C. Detector noise

The detector output xk is a sum of the detector noise nk
and the detector response �k. If no GW signal is present
then the network output is

Xn �
XK
k�1

nkAk
�2
k

; (55)

which follows from the definition of the data vector X [see
Eq. (25)]. In this case, as follows from Eq. (30), the like-
lihood variation procedure produces the nonzero solutions
us for the GW waveforms and the MLR statistic is the
biased estimator of SNRtot. The reconstructed sum-square
energy

En � hh2
1ni � hh

2
2ni �

1

g

�
L1n �

L2n

	

�
(56)

is biased as well, where L1n and L1n are the MLR statistics
due to the detector noise. The ensemble average En can be
easily calculated when the detector noise is white and
Gaussian. Indeed, in this case the mean of the data matrix
is

D ij /
�ij
�i�j

; (57)

where �ij is the Kronecker delta. The average MLR sta-
tistics due to the detector noise is then

L 1n � L2n / 1=2: (58)

As one can see, in average the detector noise introduces the
same bias for each signal component. From Eq. (56) it
follows that the reconstructed energy in the second com-
ponent is proportional to 1=	 and it diverges when 	! 0.
Therefore, for small values of 	, the likelihood variation
procedure may result in the unphysical solutions for the
signal component h2.

The statistics L1 and L2 can be considered as two
independent measurements of the GW components h1

and h2. Indeed, the measurements are uncorrelated, and
their fluctuations are characterized by the same variances
of the noise, which follows from the equations

�L1n � L1n��L1n � L1n� � 0; L2
1n � L2

2n: (59)

When the value of the alignment factor is small, the
standard MLR statistic Lmax is not the optimal estimator
of SNRtot, because the second component adds pure noise
into the measurement.

VI. CONSTRAINT LIKELIHOOD

We have seen that for the standard likelihood approach
the problem arises when there is a large asymmetry (	�
1) in the detection of two GW components. In this case we
can find better estimators for the GW waveforms and for
122002
the total signal-to-noise ratio of the GW signal detected in
the network. The construction of such estimators depends
on our assumptions about the GW signals. Mathematically
these assumptions can be implemented as constraints ap-
plied to the likelihood functional. The purpose of the
constraints is to exclude the unphysical solutions arising
from the variation of the likelihood functional. By remov-
ing such solutions from the waveform parameter space, we
expect to lose a small fraction of the real GW signals, while
considerably improve the detection for the rest of the
sources. Below we consider examples of constraints which
can be used in the analysis.

A. Hard constraint

Given a source population, we could expect that on
average both signal components h1 and h2 carry about
the same energy. For example, for binary sources, the
gravitational waves are emitted with the random inclina-
tion angles. For waves in the dominant polarization frame,
which is oriented randomly with respect to the source
frame, the ensemble mean of the sum-square energies of
two components satisfies

hh2
1i � hh

2
2i: (60)

For areas in the sky where the network alignment factor
is small, for most of the sources the detected energy will be
dominated by the first component [see Eq. (48)]. For
example, for a network consisting of three interferometric
detectors H1, L1, and G1 the alignment factor is less than
0.1 for approximately 40% of the sky. Therefore, the noisy
component h2 can be entirely ignored for those sky loca-
tions where 	 is less than some threshold 	0. This require-
ment impose a constraint on the reconstructed GW
waveforms and, therefore, on the MLR statistic. For a
given sky location we define the hard MLR statistic as

Lhard �

�
L1 	 < 	0

Lmax 	  	0:
(61)

When the threshold 	0 � 1, the MLR statistics is defined
by the first signal component only. In the limit of a small
alignment angle between the detectors (	! 0), the hard
constraint statistic converges to the statistic for coaligned
detectors thus resolving the two-detector paradox.

The hard constraint is a good approximation in the case
of closely aligned detectors, such as the network of the H1-
L1 detectors. The simulation results (see Sec. VII) show
that the L1 is a reasonably good statistic even for a network
of the H1-L1-G1 detectors with large angular misalign-
ment between the LIGO and GEO detectors. However, if
the detection statistic L1 is used, the search algorithm is
entirely inefficient to a GW signal when h1 � 0. Although,
such GW signals are quite unlikely (due to random relative
orientations of the source and the dominant polarization
frames), and for small values of 	 they may not be detected
anyway (unless the h2 component is very strong), in the
-8
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FIG. 3. Sky maps of the likelihood statistics Lmax (top), Lhard

(middle), and Lsoft (bottom) for the detector network H1-L1-G1.
The injected signal SNR is 17 (H1), 20 (L1), and 9 (G1). The
source is located at � � 50� and � � 280�.
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next section we introduce a different constraint, which is
free from this problem.

B. Soft constraint

As we mentioned in Sec. V B, the unconstrained MLR
statistic Lmax is a sum of the statistics L1 and L2, which can
be written as

Lmax �
1

g
hjXj2�1� ��i; � �

1� 	
	

sin2�
�: (62)

If the detector output is dominated by the GW signal, and
assuming that both GW components carry about the same
energy, the ensemble average for sin2�
� is

sin2�
� 
 	2=�1� 	2�; (63)

which follows from the expression for the network re-
sponse [see Eq. (44)]. It means that on average

� 
 	
1� 	

1� 	2 ; (64)

and the second term in Eq. (62) is much less than 1. On the
contrary, if the detector output is dominated by the detector
noise

sin2�
� 
 	 (65)

and, respectively,

� 
 1� 	: (66)

Therefore, the noisy second term in Eq. (62) can be omit-
ted, resulting in the statistic, which we call the soft MLR
statistic:

Lsoft �
1

g
hjXj2i � L1 � 	L2: (67)

There is a simple statistical explanation of this result.
Since the statistics L1 and L2 are two uncorrelated
Gaussian random variables with the mean �1 and �2,
and the variance �, the joint probability
P�L1; L2; �1; �2; �� belongs to the Rayleigh distribution.
For the assumption above [see Eq. (60)], we expect that
�1 � gE=2 and �2 � 	gE=2, where E is the GW sum-
square energy. Then the best estimator for SNRtot is ob-
tained by maximizing P over E, which gives the statistic
Lsoft.

To obtain the solution for the GW waveforms, one
should impose a constraint on the likelihood functional.
The constraint can be integrated into the variation proce-
dure by the method of the Lagrange multiplier [27]. In this
122002
method, first, we have to obtain the constraint equation.
The soft constraint can be constructed by requiring that

ghh2
1i � 	ghh

2
2i �

1

g
hjXj2i; (68)

which limits the sum-square energies hh2
1i and hh2

2i. Since,
the constraint is applied to the h2 component only, we can
replace h1 with the solution for the first component and
rewrite the constraint as

	ghh2
2i �

1

g
hjXj2sin2�
�i � 0: (69)

The solution for the second GW component h2 is obtained
by the constraint variation of the likelihood functional L2:

h2soft �
1���
	
p
g
jXj sin�
�: (70)
-9
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As one can see, the constrained solution is the standard
solution h2, multiplied by a penalty factor of

���
	
p

, which
reduces both the noise and the signal contribution from the
second component to the MLR statistic at small values of
	. Obviously, it reduces the sensitivity of the Lsoft statistic
to a particular class of GW signals with h1 � 0, described
in Sec. VI A. For these signals, to be detected with the same
false alarm rate, the Lsoft statistic requires more powerful
GW signal, than the standard Lmax statistic. But it happens
only for a small fraction of the GW sources. Therefore, in
comparison with the standard likelihood method, we ex-
pect to improve the detection sensitivity for most of the
sources if the Lsoft statistic is used.

C. Network sky maps

In untriggered burst searches the coordinates of the
source, � and �, are free parameters. In this case, the
detector responses, the likelihood statistics, and the recon-
structed waveforms become functions of � and � or sky-
maps. For example, the skymaps corresponding to different
statistics are shown in Fig. 3.2 (For details see Sec. VII.)

For a given location in the sky, the value of the like-
lihood statistic indicates how consistent the data is with the
hypothesis that a GW signal originates from that location.
The coordinates � and � which yield maximum for the
likelihood statistic correspond to the most probable loca-
tion of the source. The maximum value of the statistic is
then used for detection. By setting a threshold on the
maximum likelihood ratio, one can decide on the presence
or absence of a gravitational wave signal in the data as
described in Sec. III. Given the most probable source
coordinates, the waveforms h��t� and h��t� are recon-
structed as described in Sec. VI.

VII. NUMERICAL SIMULATION

We have outlined a general method for using the MLR
statistic in conjunction with constraints limiting the space
of the GW waveforms. The method is intended for appli-
cation to burst searches with networks of gravitational
wave detectors. The performance of the method and the
effect of the constraints can be analyzed using numerical
simulations with modeled waveforms. The present simu-
lation is similar to the one previously used for estimating
the performance of the mixed correlation method [19].

A. Simulation procedure

The two-polarization waveforms which represent burst
gravitational waves used in the simulation are taken from
the numerical models of the merger phase of coalescing
binary black holes (BH) [29]. These waveforms form a
one-parameter family BH-M, where M is the total mass of
the binary system in units of solar mass. The results below
2Colored figures with sky maps can be found also in [28].
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correspond toM � 100. In the simulations we generate the
detector noise which is Gaussian and white. The variance
of the noise is selected to be the same for all detectors.

A typical simulated data segment has the duration of 1 s
and consists of N � 4096 data samples. For calculation of
the data matrix [see Eq. (36)], we set the integration
window of 85 ms, which is substantially greater than the
duration of the signal. The magnitude of the simulated
signals is controlled by the overall gain G, which is varied
from 0 to 10, whereas the magnitude of the noise is kept
fixed.

Because of different orientation of the detectors with
respect to the incoming gravitational wave, the detector
responses are different [see Eq. (11)]. To characterize the
magnitude of the signal in any given detector we define the
signal-to-noise ratio:

SNR �
Z 1
�1

j��f�j2

S�f�
df !

1

�2

XN�1

i�0

�2�ti�; (71)

where S�f� is the power spectral density of the noise. For
white Gaussian noise S�f� � �2=fs, where fs is the sam-
pling rate.

For any given detector in the network, the magnitude of
the signal varies significantly depending on the source
location in the sky. We therefore choose the location of
the simulated sources at random, with a uniform distribu-
tion over the sky. We also choose the polarization angle  
at random from the interval �0�; 360��. With these choices
the simulation gives us the performance of the detection
algorithms without the bias which can be introduced by a
particular choice for the source location or its polarization
angle.

The simulation consists of series of tests corresponding
to different values of SNR (controlled by G). For each
value of G a total number of 10 000 injections were made.
To characterize the strength of the signal in each detector
for the entire test we introduce the sky-average SNR,
denoted by SNR. The sky-average SNR is proportional to
G and it is the same for each detector in the network
(SNR 
 2:3G).

B. Simulation results

In the simulation we tested the following detection
methods: the standard likelihood method (Lmax), the hard
constraint method (Lhard), and the soft constraint method
(Lsoft). The detection performance of the methods is com-
pared by using the receiver operating characteristic (ROC),
which shows the detection probability as a function of the
false alarm probability. Examples of the ROC curves,
corresponding to G � 3 and G � 4, are shown in Fig. 4.

The accuracy of the source localization depends on the
strength of the GW signal and on the network configura-
tion. With only one detector in the network, the likelihood
statistics is constant across the sky (it has no � or �
-10
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FIG. 4 (color online). Receiver operating characteristics for the network of H1-L1-G1 detectors: SNR � 6:9 (left) and SNR � 9:2
(right).
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dependence) and therefore the source localization is not
possible. However, already with two spatially separated
detectors the network becomes sensitive to the source
location (see Fig. 5). In the case of two closely aligned
detectors H1-L1, the area with the large values of the
likelihood is rather a ring than a point, showing an ambi-
guity in the determination of the source location. But even
in this case the method gives directional information about
the source and allows exclusion of the most of the sky area
as inconsistent with the detected GW signal. For two
misaligned detectors H1-G1, the source localization is
more accurate due to different angular sensitivities of the
detectors. Even more accurate estimation of the source
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FIG. 5. Sky maps of network statistics for 2 detector networks
H1-L1 (top) and H1-G1 (bottom). The source is located at � �
50� and � � 280�.
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coordinates can be obtained with three and more detectors
in the network (see Fig. 3). The greater the number of the
detectors in the network, the better the source localization.

The error in the source localization is given by the angle
 between the true direction to the source and the recon-
structed direction to the source. To describe the efficiency
of the source localization we introduce the following figure
of merit. First, we chose a cone with the opening angle c
which constitutes an acceptable error. Then we calculate
the number of detected sources (N) which satisfy the
condition < c. The ratio of N to the total number of
injections defines the efficiency of the source localization
and depends on the signal-to-noise ratio SNR.

Figure 6 shows the efficiencies of the source localization
for the L1-H1-G1 network corresponding to the different
detection methods. In this example, the values of the
acceptable localization error are chosen to be  � 8�

and  � 16�. Note that the constraint likelihood methods
perform considerably better than the standard likelihood
method. Let us consider, for example, the source localiza-
tion for SNR of 10 (20). The hard constraint method
recovers approximately 48% (66%) of all simulated
sources within the 8-degree angle from their true location.
In comparison, the standard likelihood method yields only
12% (35%) efficiency for the same angle. Within the
16-degree angle, the hard constraint method recovers
66% (86%) of all the simulated sources, whereas the
standard method yields only 22% (50%) efficiency.
Similar comparisons hold for the soft constraint method.
We find that, for both constraint likelihood methods, the
events with poorly reconstructed coordinates come from
the areas in the sky with small values of the network
sensitivity.
VIII. CONCLUSION

We have presented a novel approach to the detection and
reconstruction of gravitational waves with an arbitrary
network of interferometric detectors. Starting with the net-
work likelihood ratio functional for unknown gravitational
-11
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wave burst signals, we identify and solve the two-detector
paradox. The essence of the paradox is that in the case of
two arbitrary misaligned detectors the maximum likeli-
hood ratio statistics depends only on the power in the
detector data streams. It does not agree with the statistic
of two coaligned detectors, which depends also on the
cross correlation between the detectors. We show that the
problem is associated with the different sensitivity of the
detector network to two polarization components of the
GW signal and present not only in the case of two detec-
tors, but for any arbitrary network. To characterize the
difference in the sensitivity to the GW components, we
introduce the network alignment factor. For locations on
the sky where the value of the alignment factor is small, the
network is sensitive to only one GW component and the
variation of the likelihood functional results in the unphys-
ical solutions for the second GW component. To exclude
the unphysical solutions we propose to use model indepen-
dent constraints, which limit the parameter space of the
GW waveforms and result in a new class of the maximum
likelihood ratio statistics. For the networks of two and
more detectors, the constraint likelihood methods allow
reconstruction of the two GW polarization components and
the location of the source on the sky.

In the paper we introduce two examples of the constraint
statistics, and compare their performance with the standard
likelihood statistic. The performance of the method was
122002
estimated with the numerical simulation. We restrict our
simulation to the case of the white Gaussian noise. For
simplicity we assume that all detectors have identical
sensitivities though the method presented in this paper
does not have these restrictions. Our simulation results
indicate that the constraint likelihood method enhances
the detection of the GW signals and performs significantly
better than the standard likelihood method in the recon-
struction of the source coordinates. We believe that, since
all of the methods we have considered are compared on
exactly the same footing, our results regarding relative
performance will not change for the general case.
However, as a work in progress, we plan to expand our
simulations to more realistic detector noise.
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