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Regularization of the second-order gravitational perturbations produced by a compact object
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The equations for the second-order gravitational perturbations produced by a compact object have
highly singular source terms at the point particle limit. At this limit the standard retarded solutions to these
equations are ill defined. Here we construct well defined and physically meaningful solutions to these
equations. These solutions are important for practical calculations: the planned gravitational-wave
detector LISA requires preparation of waveform templates for the expected gravitational waves.
Construction of templates with desired accuracy for extreme mass-ratio binaries, in which a compact
object inspirals towards a supermassive black hole, requires calculation of the second-order gravitational
perturbations produced by the compact object.
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In an extreme mass-ratio binary, where a compact object
(CO) of mass � (e.g. a neutron star or a small black hole)
orbits a supermassive black hole of massM, the interaction
between the CO and the gravitational perturbations that it
produces exerts a force on the CO. This phenomenon of
gravitational self-force (GSF) is responsible for the CO’s
gradual inspiral towards the supermassive black hole. The
small parameter �=M allows treating the spacetime metric
and the CO’s orbit perturbatively. At the leading order of
this approximation the orbit traces a geodesic in the back-
ground spacetime of the supermassive black hole [1]. At
the next order, the CO’s interaction with the O��� first-
order metric perturbations (FOMP) produces a first-order
GSF that accelerates the CO in the background spacetime
[2,3]. At the next order, the interaction with the O��2�
second-order metric perturbations (SOMP) produces a
second-order GSF, and so on.

Extreme mass-ratio binaries (e.g., M=� � 105) are
valuable sources of gravitational waves (GW) that could
be detected by the planned laser interferometer space
antenna (LISA) [4]. Detection of these sources and deter-
mination of their parameters using matched-filtering data-
analysis techniques requires preparation of gravitational
waveform templates for the expected GW. Here one of
the main challenges is to calculate the GW’s accumulating
phase, e.g. a wave train from one year of inspiral can
contain about 105 GW cycles [5]. Successful determination
of the binary parameters using matched-filtering tech-
niques often requires GW templates in which the phase
error is less than 1 rad over a year [6].

The following simple scaling argument reveals how the
phase scales with �, and allows us to quantify the desired
degree of accuracy for the metric perturbation expansion
(see also [7,8]). For simplicity consider a CO that gradually
inspirals between two otherwise circular geodesic orbits in
a strong field region of a Schwarzschild black hole. We are
interested in estimating the effect of the GSF on the accu-
mulated phase of the emitted GW. Because of the GSF the
orbital frequency slowly changes from its value at an initial
time, and after time t has elapsed this frequency has shifted
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by approximately _!t from its initial value, where _! � d!
dt ,

and t denotes the elapsed time (from initial time) in
Schwarzschild coordinates. We denote �� the part of the
phase shift of the GW (between two fixed times) which is
induced by the shift in the orbital frequency. Recalling that
the GW frequency is proportional to the orbital frequency
we find that after an inspiral time �tins, the phase shift ��
is approximately proportional to �t2ins _!. We shall now find
how the quantities in this expression scale with �. Let us
consider first _!. We write this quantity as _! � d!

dE
_E, where

E denotes the particle’s energy per unit mass. Notice that
d!
dE is independent of � (it is obtained from an analysis of a
circular geodesic world line) while _E is determined from
the four acceleration and therefore depends on�. The first-
order GSF produces the first-order terms in the expansions
of _E and _!; these terms are denoted here _E1 and _!1,
respectively. Since _E1 scales like � we find that _!1 is
O��M�3�. At the leading order the inspiral is driven by
the first-order GSF and therefore the inspiral time �tins is
of the order �E _E�1 � O�M2��1�, where �E is the energy
difference between initial and final orbits. After �tins the
term _!1 will give rise to a phase shift of order �t2ins _!1 �

O�M=��. The second-order GSF produces second-order
terms in the expansions of _E, and _!. These terms are
denoted here _E2 and _!2, respectively. Since _E2 scales
like �2 it gives rise to an _!2 which is O��2M�4�. After
�tins the term _!2 will produce a phase shift of order
�t2ins _!2 � O��M=��0�. Therefore, a calculation of ��
to the desired accuracy of order �M=��0 (needed for
LISA data analysis) requires the calculation of the CO’s
interaction with its own SOMP.

The challenge of constructing long waveform templates
with O��M=��0� accuracy provides a practical motivation
for the study of SOMP in this article. Furthermore, con-
struction of SOMP will extend the applicability of the
perturbative scheme to binaries with smaller M=� mass
ratios.

Consider the limit where the spatial dimensions of the
CO approach zero; we shall refer to this limit as the point
-1 © 2005 The American Physical Society
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particle limit (Below we shall make more precise defini-
tions of the CO and the limiting process that we use.). In
this limit the SOMP away from the CO satisfy the follow-
ing equation

D�l� � rhrh&hrrh: (1)

Here we used a schematic notation, where the SOMP are
denoted �2l, D denotes a linear partial differential opera-
tor, the retarded FOMP are denoted �h, r denotes a
covariant derivative with respect to the background metric,
and & denotes ‘‘and terms of the form ....’’ In the point
particle limit (certain components of) the FOMP in the
Lorenz gauge diverge as r�1, where r denotes the spatial
distance from the object. Here we encounter a problem,
since the O�r�1� divergent behavior of h implies that the
source term of Eq. (1) diverges as r�4. A naive attempt to
construct the standard retarded solution to Eq. (1) by
imposing Lorenz gauge conditions on l, and then integrat-
ing the resultant wave equation using the retarded Green’s
function, results in an integral that diverges at every point
in spacetime. A similar problem in a scalar toy model has
recently been studied [9]. In this article we develop a
regularization method for the construction of well defined
and physically meaningful solutions to Eq. (1).

We should mention here another regularization problem
coming from infinity. For an infinitely long world line, the
leading asymptotic behavior of the source term in Eq. (1) is
O�r�2�. This behavior at infinity renders the retarded so-
lution l divergent 1. This issue, however, lies outside the
scope of this article. Here we assume that a regularization
at infinity had been carried out.

For simplicity we choose the CO to be a Schwarzschild
black hole, which moves in a vacuum background geome-
try characterized by length scales that are much larger than
�. Designating the length scales associated with the
Riemann curvature tensor of the background geometry
with fRig, and denoting R � minfRig, we express the
above restriction as ��R.

Our analysis is based on the method of matched asymp-
totic expansions (see e.g. [11,12]), in which different ap-
proximate solutions to Einstein’s field equations are
obtained in different, overlapping, regions of spacetime.
These solutions are then matched in their common region
of validity. Consider the following decomposition of
spacetime into an internal zone that lies within a worldtube
which surrounds the black hole and extends out to r �
1Asymptotically h has a form of a gravitational wave.
Therefore the dominant terms in an asymptotic expansion of
rh decay like r�1. This implies that the source term in Eq. (1) is
asymptotically O�r�2�. Notice that this source term has a static
O�r�2� component which does not vanish after averaging over
time. An attempt to construct the retarded solution to Eq. (1)
with this static term present yields a divergent expression (even
if we resolve the difficulty with the singularity in the vicinity of
the world line). Ori has recently suggested a resolution to this
problem [10].
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rI�R� such that rI �R, and an external zone that lies
outside another worldtube at r � rE���, such that�� rE.
The interior of this inner worldtube is denoted S. By virtue
of ��R we choose rE to be much smaller than rI such
that there is an overlap between the above mentioned
regions in rE < r < rI. We refer to this overlap region as
the buffer zone (in the buffer zone r can be of order

���������
�R

p
).

In the external zone we decompose the full spacetime
metric gfull

�� into a background metric g�� (e.g. a spacetime
of a supermassive black hole), and a sequence of perturba-
tions that are produced by the Schwarzschild black hole
(with mass �), reading

gfull
���x� � g���x� 	�h���x� 	�

2l���x� 	O��
3�: (2)

Here the dependence on � is only through the explicit
powers �i. Throughout we use the background metric g��
to raise and lower tensor indices, and to evaluate covariant
derivatives. Substituting expansion (2) into Einstein’s field
equations in vacuum yields linear perturbation equations
for h�� and l��. These equations are valid for x =2 S. Here
we shall be interested in the limit �! 0. Note that this
limit has no effect on the forms of the perturbations equa-
tions. Yet their region of validity is affected since we let
rE��� ! 0 as �! 0. In this limit the perturbation equa-
tions read

D��� �h� � 0; x =2 z���; (3)

D����l� � S��� �h�; x =2 z���: (4)

Here z��� is a timelike world line, where � denotes proper
time with respect to the background metric. An overbar
denotes the trace-reversal operator �h�� � h�� �
�1=2�g��h��; for brevity we have omitted tensorial indices
inside the squared brackets. D�� and S�� are obtained
from an expansion of the full Ricci tensor. By substituting
g�� 	 �g�� into the Ricci tensor we obtain Rfull

�� � R�0��� 	

R�1�����g� 	 R
�2�
����g� 	O��g3�. (For explicit expressions

for the terms in this expansion see e.g. [13]. We adopt
the sign convention of this reference for the Riemann
tensor). To simplify the notation we denote �R�1����h� by
D��� �h�, and denote � �R�2����h� by S��� �h�, where h�� is
expressed in terms of �h��.

By imposing the Lorenz gauge conditions �h��;� � 0,
and matching with the internal-zone solution, D’Eath
showed [1] that h�� is identical to the retarded FOMP
produced by a unit-mass point particle tracing the world
line z���. At this leading order of approximation z��� is a
geodesic of the background spacetime [1], denoted zG���.
Substituting z��� � zG��� in Eq. (3) provides us with suf-
ficient accuracy for the calculation of the FOMP. However,
to calculate the SOMP we must account for the O���
acceleration of z��� due to the first-order GSF corrections.
To account for these corrections we use the gauge depen-
-2
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dence of the first-order GSF [14], and choose a convenient
gauge in which the first-order GSF vanishes. In this gauge,
the geodesic world line zG��� is sufficiently accurate for
the construction of the SOMP.

To spell out the desired gauge conditions we examine
the expression for theO��� acceleration which is produced
by the first-order GSF in the Lorenz gauge [15]

a� � �
�
2
�g�� 	 u�u��u�u��2r�h

R
�� �r�h

R
���: (5)

Here all quantities are evaluated on the world line. We use
the Detweiler-Whiting decomposition h�� � hS�� 	 hR��,
where hR�� and hS�� are certain regular and singular poten-
tials, respectively, (for their definitions and properties see
[15]). Consider now a regular gauge transformation gen-
erated by a vector field 	�. In the new gauge the FOMP,
hF��, are given by hF�� � hS�� 	 h

R�F�
�� , where hR�F��� �

hR�� 	 	�;� 	 	�;� (The gauge invariance of hS�� follows
from the analysis in Ref. [14].).

Many gauge choices can provide us with the desired
requirement a� � 0. For simplicity we impose the follow-
ing gauge conditions on the world line:

�hR�F��� �zG��� � 0; �r�h
R�F�
�� �zG��� � 0: (6)

We shall refer to this gauge as the Fermi gauge. We may
now replace the restrictions x =2 z��� with x =2 zG��� in
Eqs. (3) and (4). Notice that the gauge conditions (6) are
specified only on zG���. To complete the gauge construc-
tion we adopt an arbitrary continuation of 	� to the entire
spacetime (e.g., continuation along future null cones based
on zG��� in a manner that preserves causality2).

Before solving Eq. (4) we study the singular properties
of S�� near zG���. Consider expanding S�� in the vicinity
of zG���, on a family of hypersurfaces � � const. that are
generated by geodesics that are normal to the world line.
We use Fermi normal coordinates based on zG���, thus
obtaining simple expressions. We find that

S���x��


A��r�4 	O�r�2�: (7)

Here �



denotes equality in Fermi normal coordinates. We
have A�� � 4u�u� 	 7��� � 14����, ��� denotes the

Minkowski metric, r �
�����������������
�abx

axb
p

, where xa denote the
spatial Fermi coordinates (a; b take the values f1; 2; 3g);
2To construct this continuation consider the future null cones
�� emanating from the world line zG���. Here we focus on a
local neighborhood of the world line in which these null cones
do not intersect each other. For an arbitrary point zG���� one
may choose an arbitrary continuation of 	� on ��� , such that 	�

decays to zero away from the world line. In this way the
constructed gauge preserve causality in the following sense:
The perturbations on the null cones �� for � � �� will remain
unchanged if one modifies the world line for � > ��. Such a
modification of the world line is possible by introducing addi-
tional GW that interact with the world line for � > ��.
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u��


��0 is a vector field, �a�



xa=r, �0�



0, and

���


g����. The absence of O�r�3� terms in Eq. (7)

follows from the gauge conditions (6) together with the
fact that zG��� is a geodesic world line.

To tackle the r�4 singularity of S�� we decompose �l��
into two tensor potentials, reading

�l �� � � �� 	 ��l��; (8)

where � �� satisfies D��� � ��


A��r�4 	O�r�2�. Notice

that this equation has the same r�4 singular source term
as Eq. (4). Here, however, we do not impose restrictions on
the terms of order O�r�2�. Suppose that we can construct a
solution � ��, then by subtracting D��� � � from both sides
of Eq. (4) we obtain

D�����l� � �S��; x =2 zG���: (9)

Here �S�� � S�� �D��� � �. By construction �S�� di-
verges as r�2, while S�� in Eq. (4) diverges as r�4. In
this sense Eq. (9) is simpler than Eq. (4).

To construct � �� we use a linear combination of terms
that are quadratic in �hF��. Since �hF�� diverges as r�1 we find
that by applying the operator D�� to terms which are
quadratic in �hF�� we obtain terms which diverge as r�4.
First we construct four independent quadratic tensor fields:
’A�� � �hF�� �hF��,’B�� � �hF�� �hF��,’C���� �hF�� �hF���g��,
’D�� � � �h

F�
��

2g��. Combining these terms we may con-
struct the desired � ��, which reads

� �� �
1

64
�2�cA’

A
�� 	 cB’

B
��� � 7�cC’

C
�� 	 cD’

D
����:

(10)

Here the constants cA; cB; cC; cD must satisfy cA 	 cB � 1,
cC 	 cD � 1, but are otherwise arbitrary. Roughly speak-
ing, � �� captures the asymptotic behavior of the
Schwarzschild solution at second order. Because of this
property � �� is an exact solution to Eq. (4) for the case of a
flat background spacetime.

Having constructed � ��, we now face the problem of
solving Eq. (9). For this purpose we invoke a purely
second-order gauge transformation of the form x� ! x� �
�2	�

�2� that allows us to impose the Lorenz gauge condi-
tions ��l��;� � 0. First we seek a particular retarded solu-
tion to Eq. (9). Here it is useful to remove the restriction
x =2 zG���, and continue �S�� to the world line zG���.
Clearly a solution to the continued equation also satisfies
the original equation (i.e. with the world line excluded).
We choose the simplest continuation by demanding that no
additional singularities (e.g. delta functions) are introduced
on the world line i.e., the only singularities on the world
line must be those originating from a local expansion of
S��. Equation (9) now reads
-3
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���l�� 	 2R� �
� ���l�� � �2�S��: (11)

Here � � g�
r�r
. We define ��l�� to be the retarded
solution to Eq. (11). Since �S�� diverges only as r�2 its
retarded solution has a finite contribution originating from
the vicinity of zG���.

By definition the retarded solution ��l�� satisfies
Eq. (11). However, we still have to verify that it also
satisfies Eq. (9). This equation will be satisfied if ��l��
satisfies the Lorenz gauge conditions. To investigate this
point one can apply the divergence operator to Eq. (11),
thereby constructing a differential equation for r���l��.
The fact that r���l�� � 0 then follows from the properties
of the source term of this equation, namely �2r��S��.
Using a perturbation expansion of the Bianchi identities
one finds that r��S�� � 0 for x =2 zG���. This property
together with an analysis ofr��S�� as one approaches the
world line reveals that the retarded solution to Eq. (11)
satisfies the Lorenz gauge conditions, and therefore it also
satisfies Eq. (9) as required. (The full analysis will be given
elsewhere [16].)

So far we have constructed a particular solution (8) to
Eq. (4). We now construct the general solution �lG�� to this
equation. Later we shall impose a set of additional require-
ments on �lG��, and thereby obtain a particular solution
which is physically meaningful. Since Eq. (4) is valid for
x =2 zG���, we find that we can construct a new solution by
adding to �l�� a potential that satisfies a semihomogeneous
equation ,i.e., a homogeneous equation for x =2 zG���,
reading

D����l
SH� � 0; x =2 zG���: (12)

The general solution to Eq. (4) is given by �lG�� � �lSH
�� 	

�l��, where �lSH
�� is the general solution to Eq. (12).

The set of additional requirements to be imposed on �lG��
can be expressed as requirements on �lSH

��. Denoting ���� the
semihomogeneous potential that satisfies these require-
ments, we express the desired physical solution �lP�� as

�l P�� � �l�� 	 ���� � � �� 	 ��l�� 	 ����: (13)

We consider the following additional requirements: (i)
gauge conditions, (ii) causality requirements, (iii) global
boundary conditions, and (iv) boundary conditions as x!
zG���. (i) We impose Lorenz gauge conditions on ����.
Equation (12) now takes the form

� ���� 	 2R� �
� � ���� � 0; x =2 zG���: (14)

(ii) We define ���� to be a retarded solution to Eq. (14).
Recall that ��l�� is the retarded solution to Eq. (11), and
� �� is completely determined by �hF��. This construction

implies that if we prescribe initial data for the metric
perturbations on a spacelike hypersurface �0, then the
physical solution �lP���x� at the future of �0 is unaffected
121503
by an arbitrary modification of the initial data outside
J��x� \ �0, and in this sense the second-order solution
�lP���x� is manifestly causal. (iii) We demand that the only
source of ���� is the black hole itself, thus excluding any
incoming waves. (iv) Let us consider once more a small but
finite mass �. Here, Eq. (14) is valid at x =2 S. Following
D’Eath’s analysis of FOMP [1] we express a solution to
Eq. (14) using a Kirchhoff representation. Denoting �E the
boundary of S, we express ���� in terms of the following
surface integral

�����x� � �
1

4�

Z
�E���

�Gret
���0
0 �xjx

0�r
0
���
0
0 �x0�

� ���
0
0 �x0�r

0
Gret
���0
0 �xjx

0��d�0 : (15)

Here Gret
���0
0 �xjx

0� denotes the retarded Green’s function
(for its definition and properties see e.g. [12]), d�0 denotes
an outward directed three-surface element on �E. Consider
substituting an expansion (in powers of r) of a given
potential ���
 into Eq. (15), and then taking the limit �!
0. Recall that in this limit we have rE��� ! 0, and notice
that d� scales as r2

E. Therefore, only the diverging terms
(as r! 0) in the expansion can contribute to �����x� in the
limit. These divergent boundary conditions for Eq. (14) are
obtained from Eq. (13) together with an analysis of the
divergent behavior of � ��, ��l��, and �lP�� in near r � 0.

First we expand � �� near r � 0 and obtain � ���


�

1
4r2 �2u�u� 	 7���� 	O�r0�. Next we consider ��l��.
Solving Eq. (11) approximately in the vicinity of zG���
reveals that ��l�� is bounded as r! 0 [16]. Finally, we
expand �lP�� using the internal-zone solution, which is dis-
cussed next.

We now calculate the desired diverging terms in the
expansion of �lP��. For this purpose we use the method of
matched asymptotic expansions. For simplicity we assume
that all the length scales characterizing the background
spacetime fRig are of the same order of magnitude R.
Expanding the full spacetime metric in the internal zone
using the smallness of r=R and �=R yields

gfull
�� � gSch

�� 	R�1g�1��� 	R�2g�2��� 	O�R�3�: (16)

Here gSch
�� is the metric of the Schwarzschild black hole.

Recall that in the buffer-zone both Eq. (16) and Eq. (2) are
valid, and should therefore match with each other. To
match the internal-zone metric with the external-zone met-
ric we further expand Eqs. (2) and (16) in the buffer one.

First we consider the internal-zone expansion. The first
term in Eq. (16) is the Schwarzschild metric gSch

�� . In
isotropic cartesian coordinates this metric takes the form
ds2 � ��2����2�2�	���2dt2 	 �1	��2���1�4�
�dx2 	 dy2 	 dz2�, where �2 � x2 	 y2 	 z2. In the buf-
fer zone �� � and therefore the Schwarzschild metric
can be approximated with an asymptotic expansion in
powers of ���1 giving
-4
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gSch
�� � ��� 	��

�1H1
�� 	�

2��2H2
�� 	O��

3��3�;

(17)

where H1
�� � 2���� 	 2�0

��0
��, H2

�� � 1=2�3��� �

�0
��0

��. The next term in Eq. (16) is R�1g�1���. In a suitable
gauge this term vanishes identically [11].

Next we consider the external-zone expansion (2).
Recall that in the buffer zone r�R. We therefore expand
the terms in Eq. (2) in powers of rR�1. The first term in
Eq. (2) is the background metric g��. Expressing this
metric with Fermi normal coordinates based on the world
line, and expanding it in powers of rR�1 gives

g���


��� 	O�R�2r2�. Expanding the next term in (2)

gives �hF���



2�r�1���� 	 2u�u�� 	O��R�2r1�, and
expanding the third term �2lP�� gives a sum of a schematic
form �2 P1

i�0 R
�iri�2. Recall that here we are only con-

cerned with divergent boundary conditions that are en-
coded in the i � 0; 1 terms.

First let us consider matching the first three terms in the
expansion of the Schwarzschild metric (17), all these terms
scale like R0. From the above expansions we find that both
gSch
�� and g�� have the same leading term—���. The next

term in Eq. (17) is ���1H1
�� this term coincides with the

leading order expansion of�hF��, where we identify �with
r. The next term in Eq. (17) provide us with the desired
i � 0 term in the expansion of �2lP��. We find that this
term is identical to the leading term in the expansion of
 ��.

Next let us consider matching the terms that scale like
R�1. Since R�1g�1��� � 0 all the terms that scale like R�1

vanish. This conforms with the fact that the expansions of
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g�� and �hF�� do not contain terms that scale like R�1.
This also implies that in the expansion of �2lP�� the term
with the schematic form �2R�1r�1 is zero. Combining
the i � 0 and i � 1 terms in the expansion of �2lP�� we

conclude that �lP���


� 1

4r2 �2u�u� 	 7���� 	O�r
0�.

Combining the expansions of � �� and �lP�� near r � 0,
together with the fact that ��l�� is bounded in the vicinity of
the world line, and using Eq. (13) we find that ���� does not
diverge as x! zG���. As was previously discussed only
divergent boundary conditions (as r! 0) can produce
nonvanishing contributions to �����x�. Since we found
that ���� does not diverge in the vicinity of the world line
we conclude that ���� � 0. By virtue of Eq. (13) we finally
conclude that the physical SOMP are given by

�l P�� � � �� 	 ��l��: (18)

Here � �� is given by Eq. (10), and ��l�� is the retarded
solution to Eq. (11). By construction �lP�� satisfies the
previously mentioned requirements. In particular it is man-
ifestly causal, and it matches with the internal-zone solu-
tion. Moreover, Eq. (18) provides a simple covariant
prescription for the construction of the SOMP, without
any reference to a particular (background) coordinate sys-
tem. This allows a considerable amount of flexibility in the
construction of the SOMP.
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