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Vacuum gravitational collapse in nine dimensions
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We consider the vacuum gravitational collapse for cohomogeneity-two solutions of the nine dimen-
sional Einstein equations. Using combined numerical and analytical methods we give evidence that within
this model the Schwarzschild-Tangherlini black hole is asymptotically stable. In addition, we briefly
discuss the critical behavior at the threshold of black-hole formation.
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I. INTRODUCTION AND SETUP

Over the past few years there has been a surge of interest
in higher dimensional gravity, motivated by several rea-
sons. The main reason comes from the new brane-world
scenario in string theory according to which we live on a
three dimensional surface (called a brane) in a higher
dimensional spacetime [1]. In order to understand the
phenomenology of this scenario and its experimental pre-
dictions, like production of black holes in the next genera-
tion of colliders, it becomes important to study solutions of
Einstein’s equations in more than four dimensions.
Another reason, closer to our own motivation, has nothing
to do with string theory and comes from general relativity
itself. Viewing the dimension of a spacetime as a parameter
of the theory is helpful in understanding which features of
general relativity depend crucially on our world being four
dimensional and which ones hold in general. Last, but not
least, extra dimensions are fun.

In a recent paper [2] some of us showed that in five
spacetime dimensions one can perform a consistent
cohomogeneity-two symmetry reduction of the vacuum
Einstein equations which—in contrast to the spherically
symmetric reduction—admits time dependent asymptoti-
cally flat solutions. The key idea was to modify the stan-
dard spherically symmetric ansatz by replacing the round
metric on the three-sphere with the homogeneously
squashed metric, thereby breaking the SO�4� isometry to
SO�3� �U�1�. In this way the squashing parameter be-
comes a dynamical degree of freedom and the Birkhoff
theorem is evaded. This model provides a simple theoreti-
cal setting for studying the dynamics of gravitational col-
lapse in vacuum, both numerically [2] and analytically [3].

As mentioned in [2], similar models can be formulated
in higherD � n� 2 dimensions as long as the correspond-
ing sphere Sn admits a nonround homogeneous metric, i.e.
there exists a proper subgroup of the orthogonal group
SO�n� 1� which acts transitively on Sn. According to
the classification given by Besse [4], such transitive actions
exist on all odd dimensional spheres. For example, the
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group SU�n� 1� acts transitively on S2n�1 and the group
Sp�n� 1� acts transitively on S4n�3. It is natural to ask
whether the properties of gravitational collapse found in
[2] are typical for this class of models or whether new
phenomena appear in higher dimensions. A systematic
analysis of this question appears hopeless in view of the
fact that the number of degrees of freedom (squashing
parameters) grows quickly with dimension, thus it seems
useful to look at specific examples to get better under-
standing. In this note we consider a model with 1 degree of
freedom which describes the squashing of the seven
sphere. More concretely, we regard S7 as the coset mani-
fold Sp�2�=Sp�1� ’ SO�5�=SO�3�, or equivalently, as the
S3 bundle over the S4 base space with SO�5� � SO�3�
invariant metric. In the past, such the squashed seven
sphere has attracted a great deal of attention in the context
of eleven dimensional supergravity [5].

We parametrize the metric in the following way

ds2 � �Ae�2�dt2 � A�1dr2 � r2d�2
7; (1)

where d�2
7 is the metric on the unit squashed S7 [6]

d�2
7 �

1

4
e3B�d�2 � e2

i � �
1

4
e�4BE2

i ; (2)

B, A, and � are functions of t and r,

ei �
1

2
sin���i � ~�i�; Ei � cos2 �

2
�i � sin2 �

2
~�i;

(3)

and �i and ~�i are two sets of left-invariant one-forms on
SU�2�

�1 � cos d�� sin sin�d�;

�2 � � sin d�� cos sin�d�;

�3 � d � cos�d�;

(4)

with ~�i given by identical expressions in terms of � ~ ; ~�; ~��.
In this ansatz the SO�8� isometry of the round S7 is broken
to SO�5� � SU�2�. This is a special case of a more general
-1 © 2005 The American Physical Society
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ansatz for which the S3 fibers are allowed to be squashed
themselves [7].

Substituting the ansatz (1) into the vacuum Einstein
equations, R�� � 0, we get equations of motion for the
functions A�t; r�; ��t; r� and B�t; r� (in the following we use
overdots and primes to denote @t and @r, respectively)

A0 � �
6A
r
�

1

7r
�48e�3B � 12e�10B � 6e4B�

� 3r�e2�A�1 _B2 � AB02� (5)

_A � �6rA _BB0; (6)

�0 � �3r�e2�A�2 _B2 � B02�; (7)

�e�A�1r7 _B�� � �e��Ar7B0�0

�
4

7
e��r5�6e�3B � e4B � 5e�10B� � 0: (8)

It follows immediately from the above equations that if
B � 0 (no squashing), then � � 0 and either A � 1
(Minkowski), or A � 1� r6

h=r
6 (Schwarzschild-

Tangherlini), where rh is the radius of the black-hole
horizon. We showed in [2] that the analogous two solutions
in five dimensions play the role of generic attractors in the
evolution of regular asymptotically flat initial data (small
and large ones, respectively) and the transition between
these two outcomes of evolution exhibits the type II dis-
cretely self-similar critical behavior. The aim of this note is
to show that these properties are also present in nine
dimensions which suggests that they are general features
of vacuum gravitational collapse for this class of models.
II. LINEAR STABILITY AND QUASINORMAL
MODES

Before presenting numerical evidence for the nonlinear
stability of the Schwarzschild-Tangherlini solution, we
want to discuss the results of linear perturbation theory.
Linearizing Eqs. (5)–(8) around the Schwarzschild-
Tangherlini solution we obtain the linear wave equation
for the perturbation �B�t; r�

��B�
1

r7 A0�r7A0�B0�0 �
16A0

r2 �B � 0;

A0 � 1�
1

r6
;

(9)

where we have used the scaling freedom to set the radius of
the horizon rh � 1. Introducing the tortoise coordinate x
defined by dx=dr � A�1

0 , and substituting �B�t; r� �
e�iktr�7=2u�x� into (9) we get the Schrödinger equation
on the real line �1< x<1
121502
�
d2u

dx2 � V�r�x��u � k2u;

V�r� �
1

4

�
1�

1

r6

��
99

r2 �
49

r8

�
:

(10)

This equation is a special case (corresponding to the gravi-
tational tensor perturbation with l � 2) of the master equa-
tion for general perturbations of the higher dimensional
Schwarzschild-Tangherlini solutions derived indepen-
dently by Gibbons and Hartnoll [8] and Ishibashi and
Kodama [9]. Since the potential in (10) is everywhere
positive, there are no bound states, which implies that the
Schwarzschild-Tangherlini black hole is linearly stable.

We computed quasinormal modes, i.e. solutions of
Eq. (10) satisfying the outgoing wave boundary conditions
u� e	ikx for x! 	1, using Leaver’s method of contin-
ued fractions [10,11]. Substituting

u�x�r�� �
�
r� 1

r� 1

�
�ik=6

eikr
X1
n�0

an

�
r� 1

r

�
n
; a0 � 1;

(11)

into (10) we get a 12-term recurrence relation for the
coefficients an. The prefactor in (11) fulfills the outgoing
wave boundary conditions both at the horizon and at
infinity, hence the quasinormal frequencies are given by
the discrete values of k for which the series in (11) con-
verges at r � 1. Using Gaussian elimination [11] we
reduced the 12-term recurrence relation to a 3-term one.
According to Leaver [10], the convergence of the seriesP
1
n�0 an is equivalent to a condition under which the 3-

term recurrence relation has a minimal solution. Such the
condition, formulated in terms of continued fractions,
yields the transcendental eigenvalue equation which has
to be solved numerically. The full details of this computa-
tion will be described elsewhere. Here, in order to interpret
numerical results we need only to know that the funda-
mental quasinormal mode has the frequency k0 �
3:4488� 0:8601i (in units r�1

h ). This mode is expected
to dominate the process of ringdown. The higher modes are
damped much faster (for example, the first overtone has the
frequency k1 � 2:7548� 2:6116i) so in practice they play
no role in the dynamics.
III. NUMERICAL RESULTS

Using the same finite-difference code as in [2] we solved
equations (5)-(8) numerically for several families of regu-
lar initial data. We found that the overall picture of dynam-
ics of gravitational collapse looks qualitatively the same as
in five dimensions, that is, we have dispersion to the
Minkowski spacetime for small data and collapse to the
Schwarzschild-Tangherlini black hole for large data [see
Fig. 1(a)]. In the latter case we looked in more detail at the
asymptotics of this process. We found that at some inter-
mediate times the solution settling down to the
-2
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FIG. 2. (a) For a near-critical evolution we plot the function B
at some late central proper time T0 and superimpose the next
three echoes (at times Tn) shifted by ln�r� ! ln�r� � n�.
Minimization of the discrepancy between the profiles yields � 

0:78. (b) For supercritical solutions the logarithm of black-hole
mass mBH is plotted versus the logarithmic distance to criticality.
A fit of the power law ln�mBH� � � ln�p� p�� � const. yields
� 
 1:64. The small wiggles around the linear fit are the
imprints of discrete self-similarity; their period is equal to 2.87
in agreement with the theoretical prediction 6�=�.
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FIG. 1. (a) For a black-hole solution we plot a series of late-
time snapshots of the mass function m�t; r�. The initial mass
function (solid line) has the form of a kink asymptoting the total
mass m�1� � 0:575. During the evolution the horizon develops
at rh � 0:606 which corresponds to the black-hole mass mBH �

r6
h � 0:05. Thus, only a small fraction of the total mass gets

trapped inside the horizon while the remaining mass is being
radiated away to spatial infinity, as is clearly seen from the plot.
(b) We plot the time series lnjB�t; r0�j at r0 � 5 for the same
solution as in (a), and superimpose the fundamental quasinormal
mode with frequency k0 � �3:4488� 0:8601i�=rh. On the time
interval 10< t < 16 we get very good agreement between these
two curves which confirms a well-known fact that quasinormal
modes encode an intermediate time behavior of solutions at a
fixed point in space [14].
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Schwarzschild-Tangherlini black hole is well approxi-
mated outside the horizon by the least damped quasinormal
mode. This is shown in Fig. 1(b).

At the threshold for black-hole formation we observe the
type II discretely self-similar critical behavior with the
echoing period � 
 0:78 and the black-hole mass scaling
law with the universal exponent � 
 1:64. This is shown in
Fig. 2. Note that in eight space dimensions, mass has the
dimension of length6, hence � � 6=	, where 	 is the
eigenvalue of the growing mode of the critical solution.
Strangely enough, the product �	 
 2:85 is approxi-
mately the same (up to numerical errors) as in five dimen-
sions [2]. We do not know whether there is any deeper
meaning behind this numerical coincidence.
121502
IV. FINAL REMARKS

In this note we have focused on similarities between the
models in five and nine dimensions, however at the end we
would like to mention two interesting qualitative differ-
ences which in our opinion are worth investigation.

The first difference is the existence of the second static
solution corresponding to the nonround homogeneous
Einstein metric on S7

B �
ln5

7
; A � 9 � 5�10=7

�
1�

r6
h

r6

�
; � � 0: (12)

This solution is asymptotically conical so it does not
participate in the dynamics of asymptotically flat initial
data. It would be interesting to study the evolution of
nonasymptotically flat initial data and determine a dynami-
cal role of the solution (12), as well as other known explicit
solutions, like, for example, the Spin(7) solution [12].
-3
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The second difference is the lack of monotonicity of the
mass function m�t; r�, defined by A � 1�m�t; r�=r6.
From the Hamiltonian constraint (5) we obtain

m0 � 3r7�e2�A�1 _B2 � AB02� �
1

7
r5�42� 48e�3B

� 12e�10B � 6e4B�: (13)

The potential term on the right hand side of this equation
has the local minimum equal to zero at B � 0, the local
maximum at B � ln5=7, and is negative for large positive
values of B. Thus, the mass density may be locally negative
and, indeed, it is easy to construct initial data with large
regions of negative mass density. This suggests a possibil-
ity of violating the weak cosmic censorship (note that
monotonicity of mass is essential in the Dafermos and
Holzegel proof [3]). Although our preliminary numerical
attempts failed to produce a counterexample, i.e. a generic
naked singularity, this problem deserves more systematic
investigation. We should stress that despite locally negative
mass density the total mass m�1� is guaranteed to be
nonnegative by the positive mass theorem in higher dimen-
sions [13]. It would be interesting to prove this fact in our
model in an elementary manner. In particular, for time-
121502
symmetric initial data it follows from Eq. (13) and the
requirement of regularity at the origin, m�0� � 0, that

m�1� � e�
R
1

0
3rB02dr

Z 1
0
e
R
r

0
3
B02d
�3r7B02

�
1

7
r5�42� 48e�3B � 12e�10B � 6e4B��dr: (14)

We challenge the readers to show that this integral is non-
negative for all ‘‘reasonable’’ functions B�r� which vanish
at the origin and have compact support (or fall off faster
than r�3 at infinity). Finally, we remark that there is an
analogous problem for the black-hole boundary condition,
m�rh� � r6

h, where one wants to prove the Penrose inequal-
ity m�1� � m�rh�.
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