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Two sum rules for the thermal n-point functions
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In real-time, thermal field theory there are 2n different n-point functions, but there are two linear
combinations that sum to zero. Simple proofs of the two sum rules are given. Each sum rule has two
forms: one for the one-particle-reducible functions and one for the amputated functions.
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I. INTRODUCTION

At nonzero temperature there are four two-point func-
tions in the real-time formulation [1–3]. All four can be
expressed in terms of the retarded propagator DR�p� and
the advanced propagator DA�p�:

G11�p� � �1� n�DR�p� � nDA�p�

G12�p� � e�p
0
n�DR�p� �DA�p��

G21�p� � e�����p
0
n�DR�p� �DA�p��

G22�p� � nDR�p� � �1� n�DA�p�;

where n � 1=�e�p0 � 1� is the Bose-Einstein function and
� is a real parameter in the range 0 � � � �. Since the
two-point functions are expressed in terms of DR�p� and
DA�p�, there must be two linear relations among the
Gab�p�. These relations can be expressed as two sum rules:

0 � G11�p� � e
��p0

G12�p� � e
�p0
G21�p� �G22�p�;

(1.1)

0 � G11�p� � e�����p
0
G12�p� � e�����p

0
G12�p�

�G22�p�: (1.2)

The first sum rule can be extended to nonequilibrium
systems; the second cannot. It is surprising that these rather
trivial relations generalize to thermal n-point functions.

Field theory computations at nonzero temperature re-
quire thermal averages in which some fields are anti-time-
ordered and others are time-ordered. Instead of one n-point
function there are 2n. There are two different linear combi-
nations of these 2n functions that vanish. These two sum
rules have not been discussed much in the literature. The
first sum rule was proved by Chou, Su, Hao, and Yu [4] for
nonequilibrium systems using the Keldysh basis [5] for the
closed-time-path functional integral. Evans [6] used their
result and a time-reversed version of the closed time path to
obtain the second sum rule. A clear statement of the both
sum rules was given by van Eijck, Kobes, and van Weert
[7], who noted that they could be proved using the circled/
uncircled graph formalism of Kobes and Semenoff [8]. See
also [9–12]. Most of the references deal with either the
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unamputated functions, e.g. [4,6], or with the amputated
functions, e.g. [7].

The purpose of this note is to provide simple and explicit
derivations of the two sum rules. The first sum rule is given
below in Eq. (4.8) for unamputated functions and in
Eq. (4.11) for amputated functions. The second sum rule
is given in Eq. (5.2) for unamputated functions and in
Eq. (5.4) for amputated functions.
II. OPERATOR IDENTITIES

The sum rules will be proven here using an operator
method used many years ago by Nishijima [13] in two
papers discussing composite particles and dispersion rela-
tions. Let ��x� denote a self-adjoint field operator in an
interacting theory. Define the functional

Z�J� � 1�
X1
n�1

��i�n

n!

Z
d4x1 . . . d4xnJ�x1� . . . J�xn�

	 T���x1� . . .��xn��; (2.1)

where T denotes time ordering. The adjoint functional
involves anti-time-ordering ~T:

Zy�J� � 1�
X1
n�1

�i�n

n!

Z
d4x1 . . . d4xnJ�x1� . . . J�xn�

	 ~T���x1� . . .��xn��: (2.2)

These satisfy ZyZ � 1. Differentiating this gives

0 � ��i�n
�n�ZyZ�

�J�x1��J�x2� . . .�J�xn�

�
Xn
‘�0

X
comb

��1�‘ ~T���x1� . . .��x‘��T���x‘�1� . . .��xn��:

(2.3)

The sum over combinations means that, for each value of ‘,
include the n!=‘!�n� ‘�! possible choices of the x’s that
appear in the anti-time-ordered bracket. When summed
over ‘ the identity contains 2n products since each ��xj�
may either be in the anti-time-ordered bracket or in the
time-ordered bracket. For n � 2 the identity is
-1 © 2005 The American Physical Society
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0 � T���x1���x2�� ���x1���x2� ���x2���x1�

� ~T���x1���x2��: (2.4)

It is easy to check that this sum is identically zero. If t1 > t2
then the first term cancels the second and the third term
cancels the fourth. If t1 < t2 then the first term cancels the
third and the second term cancels the fourth.

A second, independent identity results from differentiat-
ing the relation ZyZ � 1:

0 � �i�n
�n�ZyZ�

�J�x1��J�x2� . . .�J�xn�

�
Xn
‘�0

X
comb

��1�‘T���x‘�1� . . .��xn�� ~T���x1� . . .��x‘��:

(2.5)

This second identity is not the adjoint of Eq. (2.3). For n �
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2 it gives the same as Eq. (2.4) but for n 
 3 the relations
are different.

One can also prove the vanishing of the sums in
Eqs. (2.3) and (2.5) by mathematical induction.

III. THERMAL n-POINT FUNCTIONS

Thermal n-point functions are defined [1–3] in the
complex time plane on a contour that consists of two parts:
C1 runs along the real-time axis from �1 to 1; C2 runs
antiparallel to the real-time axis from 1� i� to �1�
i�. The parameter � lies in the range 0 � � � �. A scalar
field ��x� may be defined on contours C1 and C2 by
introducing

���x� �
�
��x� if � � 1
e�H��x�e��H if � � 2:

The thermal Green functions are
G�1�2...�n�x1; x2; . . . xn� � ��i�n�1
X
a

PahajTc���1
�x1� . . . ��n�xn��jai; (3.1)
where Tc denotes contour ordering. The states jai have
energy Ea and thermal probability

Pa � e��Ea=Tr�e��H�:

When all the fields are on contour C1, the result is the
thermal average of the time-ordered product of n fields:

G1...1�x1; . . . xn� � ��i�n�1
X
a

PahajT���x1� . . .��xn��jai:

When all the fields are on C2, the result is thermal average
of the anti-time-ordered product:

G2...2�x1; . . . xn� � ��i�
n�1

X
a

Pahaj ~T���x1� . . .��xn��jai:

In the general case, ‘ fields are on contour C2 and the
remaining n� ‘ are on contour C1. For example, if
x1; x2; . . . x‘ are the coordinates of the fields on C2 and
x‘�1; . . . xn are the coordinates of the fields on C1, the
contour-ordered Green function is
G2 . . . 2|�{z�}
‘

1 . . . 1|�{z�}
n�‘

�x1; . . . xn� � ��i�
n�1

X
a;b

Cabhaj ~T���x1� . . .��x‘��jbihbjT���x‘�1� . . .��xn��jai; (3.2)
where
Cab � e��Ea�Eb�Pa: (3.3)
The subscripts 2 or 1 designate whether the corresponding
field point ��xj� is in the anti-time-ordered or the time-
ordered bracket. Equation (3.2) is invariant under permu-
tations among the first ‘ coordinates and invariant under
permutations among the last n� ‘ coordinates.

The first operator identity, Eq. (2.3), is closely related to
the contour-ordered functions since the anti-time-ordered
products occur to the left of the time-ordered products. The
second operator identity, Eq. (2.5), would be related to
functions defined on a contour in which the direction of
the contour is reversed [6].
IV. FIRST SUM RULE

A. Closed time path: � � 0

In the case �! 0, the contour is called the closed time
path and Cab ! Pa. Multiplying the operator identity
Eq. (2.3) by e��H=Tr�e��H� and taking the trace gives
the sum rule

0 �
Xn
‘�0

X
comb

��1�‘GCTP
2 . . . 2|�{z�}

‘

1 . . . 1|�{z�}
n�‘

�x1; . . . xn�: (4.1)

The sums over ‘ and over combinations is equivalent to
summing over the subscripts 1 and 2:

0 �
X2

�1�1

� � �
X2

�n�1

��1�a1����anGCTP
a1...an�x1; . . . xn�; (4.2)

since a1 � � � � an � n� ‘. [Equation (4.2) holds also for
-2



BRIEF REPORTS PHYSICAL REVIEW D 72, 117901 (2005)
nonequilibrium systems, since a general density operator
could replace e��H=Tr�e��H�.]

With the Fourier transform defined so that all energy
momenta are incoming,

GCTP
a1...an�p1; . . .pn� �

Z Yn
j�1

�d4xjeipj�xj�GCTP
a1...an�x1; . . . xn�;

time-translation invariance of the equilibrium system leads
to energy conservation:

p0
1 � � � �p

0
n � 0: (4.3)

The sum rule in momentum space is

0 �
X2

a1�1

� � �
X2

an�1

��1�a1����anGCTP
a1...an�p1; . . .pn�: (4.4)
117901
This is equivalent to the result of Chou et al. [4], which is
stated in the Keldysh basis.

B. General path: � � 0

When � � 0 the Fourier transform of Eq. (3.2) con-
strains Ea � Eb to satisfy

Ea � Eb � �
X‘
j�1

p0
j �

Xn
j�‘�1

p0
j : (4.5)

Thus the dependence on � is trivial in momentum space:
G2 . . . 2|�{z�}
‘

1 . . . 1|�{z�}
N�‘

�p1; . . .pn� � exp
�
��

X‘
j�1

p0
j

�
GCTP

2 . . . 2|�{z�}
‘

1 . . . 1|�{z�}
n�‘

�p1; . . .pn�:
The same relation with an arbitrary ordering of the 2 and 1
indices becomes

Ga1...an�p1; . . .pn� � e���p
0
1a1����p0

nan�GCTP
a1...an�p1; . . .pn�;

(4.6)

after using energy conservation in the form

X
aj�2 only

p0
j �

Xn
j�1

p0
jaj: (4.7)

The sum rule in Eq. (4.4) can be expressed as

0 �
X2

a1�1

� � �
X2

an�1

��e�p
0
1�a1 . . . ��e�p

0
n�anGa1...an�p1; . . .pn�:

(4.8)

This is the version as given in [6,11].

C. Amputated functions

The one-particle-reducible functionsG are related to the
amputated functions � by

Ga1...an�p1; . . .pn� �
X2

b1�1

� � �
X2

bn�1

Ga1b1
�p1� . . .Ganbn�pn�

	 �b1...bn�p1; . . .pn�:

Substitution into Eq. (4.8) gives

0�
X
a1;b1

� � �
X
an;bn

��e�p
0
1�a1Ga1b1

�p1� . . . ��e
�p0

n�anGanbn�pn�

	�b1...bn�p1; . . .pn�: (4.9)
The propagators Gab�p� satisfy

X2

a�1

��e�p
0
�aGab�p� � �DA�p��e�p

0
�b; (4.10)

where DA�p� is the advanced propagator. Using this and
canceling an overall factor

��1�nDA�p1� . . .DA�pn�;

allows the sum rule to be expressed in terms of the ampu-
tated functions �:

0 �
X2

b1�1

� � �
X2

bn�1

�e�p
0
1�b1 . . . �e�p

0
n�bn�b1...bn�p1; . . .pn�:

(4.11)

Note that the� signs that occur in Eq. (4.8) are not present
in (4.11). This is the version given in [7].

V. SECOND SUM RULE

A. Closed time path: � � 0

The second operator identity, Eq. (2.5), gives an inde-
pendent sum rule for thermal n-point functions. The ther-
mal trace of Eq. (2.5) is

0 �
Xn
‘�0

X
comb

��1�‘
X
a;b

PbhbjT���x‘�1� . . .��xn��jai

	 haj ~T���x1� . . .��x‘��jbi: (5.1)

For a fixed ‘ and a fixed combination of x’s, the necessary
Fourier transform is
-3
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Z Yn
j�1

�d4xje
ipj�xj�

X
a;b

PbhbjT���x‘�1� . . .��xn��jaihaj ~T���x1� . . .��x‘��jbi � exp
�
��

X‘
j�1

p0
j

�
GCTP

2 . . . 2|�{z�}
‘

1 . . . 1|�{z�}
n�‘

�p1; . . .pn�;
where Pb has been rewritten using Eq. (4.5) as

Pb � exp

"
��

X‘
j�1

p0
j

#
Pa:

Therefore Eq. (5.1) becomes a sum rule for closed-time-
path functions:

0�
X2

a1�1

���
X2

an�1

��e��p
0
1�a1 . . .��e��p

0
n�anGCTP

a1...an�p1; . . .pn�:

B. General path: � � 0

When � � 0 the sum rule is

0 �
X2

a1�1

� � �
X2

an�1

��e�����p
0
1�a1 . . . ��e�����p

0
n�an

	Ga1...an�p1; . . .pn�; (5.2)

because of Eq. (4.6). This form is given in [6].
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C. Amputated functions

The one-particle-reducible functions G in Eq. (5.2) can
be expressed in terms of the one-particle-irreducible func-
tions � as before. It is necessary to use a different relation
among propagators:

X2

a�1

��e�����p
0
�aGab�p� � �DR�p��e�����p

0
�b: (5.3)

Equation (5.2) then acquires an overall factor

��1�nDR�p1� . . .DR�pn�:

After cancellation, the second sum rule for amputated
functions � becomes

0 �
X2

b1�1

� � �
X2

bn�1

�e�����p
0
1�b1 . . . �e�����p

0
n�bn

	 �b1...bn�p1; . . .pn�: (5.4)

This is the version give in [7].
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