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Re-evaluation of the Gottfried sum using neural networks
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We provide a determination of the Gottfried sum from all available data, based on a neural network
parametrization of the nonsinglet structure function F2. We find SG � 0:244� 0:045, closer to the quark
model expectation SG �

1
3 than previous results. We show that the uncertainty from the small x region is

somewhat underestimated in previous determinations.
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FIG. 1. Data used to construct the neural network parametri-
zation of FNS

2 of Ref. [8].
The Gottfried sum

SG�Q2� �
Z 1

0

dx
x
�Fp2 �x;Q

2� � Fn2 �x;Q
2�� (1)

provides a determination of the light flavor asymmetry of
the nucleon sea. The discovery by the NMC [1–3] that SG
deviates from the simple quark model expectation SG �

1
3

has provided first evidence for a �u– �d asymmetry in the
nucleon, a finding which has been subsequently confirmed
in different contexts, is routinely included in modern par-
ton fits, and has been widely discussed [4,5]. Because the
scale dependence of the Gottfried sum is known up to next-
to-next-to leading order [6,7] it might become interesting
for tests of QCD and the determination of the strong
coupling, provided it is measurable with sufficient
accuracy.

The experimental determination of a sum rule, and
especially of the associated uncertainty, is nontrivial be-
cause structure function data are only available at discrete
values of x and in general not all given at the same Q2.
Therefore, one needs interpolation and extrapolation in x in
order to cover the full range 0 	 x 	 1 and extrapolation
in Q2 in order to bring all data to the same Q2. Also, it is
not obvious how to combine data from different experi-
ments without losing information on experimental errors
and correlations.

In Refs. [8,9] the NNPDF Collaboration has proposed a
method for the parametrization of structure functions and
parton distributions, and has constructed a parametrization
of the proton, deuteron, and nonsinglet FNS

2 � Fp2 � F
n
2

structure functions based on all available experimental
information, including experimental and theoretical uncer-
tainties and their correlation. This parametrization has
been recently used by various authors [10–12] as an un-
biased interpolation of existing data.

Here, we wish to provide a determination of the
Gottfried sum based on this parametrization, which, in
the nonsinglet case is based on the structure function
data from the NMC [13] as well as those from the
BCDMS Collaboration [14,15], which are rather more
precise and cover a different kinematic region (see Fig. 1).
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The parametrization of Refs. [8,9] provides a
Monte Carlo sample of replicas of the structure function
for all x and Q2, so the Gottfried sum and associated error
can be straightforwardly determined by integrating over x
at fixedQ2 and averaging over the sample. The error blows
up when extrapolating outside the measured region, so that
the region where reliable predictions are obtained can be
inferred from the parametrization itself.

First, we compare to the result of Refs. [2,3], where the
contribution to the Gottfried integral Eq. (1) from the
measured region 0:004< x< 0:8 at Q2 � 4 GeV2 is de-
termined to be SG�0:004< x< 0:8; 4 GeV2� � 0:2281�
0:0065 �stat� � 0:019 �syst� � 0:2281� 0:020. The pre-
vious determination of Ref. [2], based on about half the
statistics, had SG�0:004< x< 0:8; 4 GeV2� � 0:221�
0:008 �stat� � 0:019 �syst� � 0:2281� 0:021. Using the
neural parametrization of Ref. [8] we get

SG�0:004< x< 0:8; 4 GeV2� � 0:2281� 0:0437; (2)

where the error includes statistical and (correlated) system-
atic uncertainties which are combined in the parametriza-
tion of Ref. [8] (NNPDF result, henceforth). Despite the
(accidental) perfect agreement with NMC of the central
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value of the NNPDF result Eq. (2), the uncertainty is more
than twice as large. This is surprising, in view of the fact
the data used in neural parametrization include both NMC
and BCDMS and cover a wider kinematic region.

In fact, the data set used by NMC in their determination
of the Fp2 =F

d
2 ratio which is used to compute the Gottfried

sum in Ref. [3] is about 4 times as large as that used by the
same collaboration in their structure function determina-
tion of Ref. [13] which was used to construct the neural
network parametrization [8]—essentially because the de-
termination of a structure function ratio allows more gen-
erous cuts than the absolute determination of the structure
function. However, it is unclear whether this can explain
the higher precision of the determination of Ref. [3], given
that the error is dominated by systematics, and the deter-
mination of SG requires anyway knowledge of at least one
structure function on top of the structure function ratio.

In order to understand this state of affairs, in Table I we
compare the contribution to the Gottfried integral Eq. (1)
from the measured experimental region xmin 	 x 	 0:8 [2]
with that obtained from neural networks. The NNPDF
determination uncertainty includes statistical and corre-
lated systematic errors, while the NMC experimental result
Ref. [2] only determines the overall systematic uncertainty.
Combining the total NMC systematics (which is highly
correlated between bins) with the statistical error of
Table I, the NNPDF and NMC total uncertainties are
seen to be in very good agreement up to the next-to-
smallest x bin. However, when the smallest x bin is in-
cluded the NNPDF uncertainty almost doubles, while the
NMC uncertainty (which is dominated by systematic) is
essentially unchanged.

This suggests that the NMC uncertainty from the small-
est x bin might be underestimated. The reason for this is
understood by inspection of Fig. 2, where the NNPDF and
TABLE I. The contribution to the Gottfried sum at Q2 �
4 GeV2 from the region xmin 	 x 	 0:8 as obtained by NMC
[2] and with neural networks. The error is only statistical for
NMC, while it is the total combined statistical and systematic
uncertainty for NNPDF. The total NMC systematics on
SG�0:004 	 x 	 0:8� is equal to 0.019.

xmin SG�xmin < x< 0:8)

NMC NNPDF

0.004 0:221� 0:008 0:2281� 0:0437
0.010 0:213� 0:005 0:2378� 0:0273
0.020 0:203� 0:004 0:2334� 0:0232
0.040 0:183� 0:004 0:2157� 0:0217
0.060 0:171� 0:003 0:1985� 0:0202
0.100 0:149� 0:003 0:1693� 0:0169
0.150 0:125� 0:003 0:1398� 0:0133
0.200 0:107� 0:003 0:1154� 0:0107
0.300 0:074� 0:003 0:0761� 0:0074
0.400 0:047� 0:002 0:0460� 0:0052
0.500 0:025� 0:002 0:0241� 0:0035
0.600 0:012� 0:002 0:0102� 0:0019
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NMC determinations of the nonsinglet structure function at
Q2 � 4 GeV2 are compared. Note that the NMC error bars
are purely statistical, and that the NNPDF error band has
high point-to-point correlation (so the error on SG is much
smaller than the spread of the integrals of the one-sigma
curves). Note also that the NMC data points [2] are ob-
tained by combining their determination of Fd2 and of the
ratio Fp2 =F

d
2 , and extrapolating the results at fixed x to a

common Q2, while the NNPDF results are obtained [8] by
interpolating and extrapolating the full set of NMC and
BCDMS F2 data; hence the two determinations should
agree within errors, but they are not expected to be on
top of each other.

The two determinations are indeed seen to be in good
agreement. The agreement of the total uncertainty on SG
for x * 0:01 proves that, once systematics is included, the
total uncertainties also agree. At the smallest x values, x &

0:01, the uncertainty on F2 blows up nonlinearly as a
function of x, due to the lack of smaller x data which could
constrain the extrapolation. The NNPDF result, which is
obtained integrating FNS

2 reproduces this blowup. The
NMC, based on summing over bins (i.e. multiplying the
value at the bin center by the bin width) implicitly assumes
that the error is linear across the bin and thus underesti-
mates the error on the last bin.

We conclude that the NMC error on the Gottfried sum
from the measured region is smaller than the NNPDF error
Eq. (2) entirely due to the contribution of the smallest x
bin, and that this in turn is likely due to the fact that the sum
over bin by NMC underestimates the nonlinear growth of
the uncertainty at the edge of the data region [16].

Let us now turn to the best determination of SG that can
be obtained from neural networks. To this purpose, we note
that even though in principle the neural parametrization of
FIG. 2. The nonsinglet structure function FNS
2 �x;Q

2� as a func-
tion of x at Q2 � 4 GeV2. The solid line is the central value
obtained from neural network and the dashed lines give the
corresponding one-sigma error band (note errors are highly
correlated between different values of x). The experimental
points are from Ref. [2]; the error bars are statistical only.
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TABLE II. Determination of the Gottfried sum with neural
networks. The scale is given in GeV2. The contribution from x <
xmin is obtained by extrapolation and given 100% uncertainty
(see text).

Q2 xmin SG�xmin < x< 1� SG

1 0.007 0:2566� 0:0773 0:2849� 0:0917
2 0.005 0:2522� 0:0389 0:2548� 0:0494
3 0.007 0:2430� 0:0299 0:2479� 0:0454
4 0.008 0:2380� 0:0302 0:2415� 0:0477
5 0.008 0:2330� 0:0340 0:2329� 0:0507
10 0.01 0:2246� 0:0428 0:2278� 0:0627
30 0.008 0:2395� 0:0632 0:2450� 0:0860
1.5– 4.5 0.006 0:2438� 0:0320 0:2438� 0:0449
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F2 provides a value for all x and Q2, when extrapolating
outside the data region this determination becomes unreli-
able: the uncertainty grows rapidly, but eventually the
uncertainty itself is unreliable. Furthermore, whereas the
neural nets do satisfy the kinematic constraint F2�1; Q2� �
0, they do not satisfy the theoretical constraint F2�0; Q2� �
0, so the error on SG would diverge if the sum rule were
determined by simply integrating from 0 to 1. This is as it
should be, because the x! 0 region corresponds to the
limit of infinite energy, and thus it is even in principle
experimentally unaccesible: the associate error is therefore
infinite unless one makes some theoretical assumption.

Therefore, we determine the Gottfried sum by integrat-
ing in x at fixed Q2 for xmin 	 x 	 1 and adding to this
integral a contribution from the small x region determined
by extrapolation. Note that no extrapolation is necessary in
the large x region, because the coverage of the large x
region from the BCDMS data together with the kinemati-
cal constraint at x � 1 are sufficient to pin down the
structure function with good accuracy at large x [8].

The small x extrapolation requires theoretical assump-
tions. In Ref. [1], it was assumed that F2�x;Q2� 
x!0 Axb,
and the constants A and b were determined by fitting to the
smallest x data. However, the assumption that the small-x
power behavior has already set in in the smallest measured
x bins does not seem justified. Indeed, in the singlet case
the small x behavior observed at HERA is not seen in the
NMC data and cannot be predicted by them [9,17]. Also,
on theoretical grounds one would expect the asymptotic
small x behavior to set in around x � 10�3 [18]. Hence,
fitting the small x exponent to the data might lead to an
underestimate of the uncertainty on the small x extrapola-
tion, if the exponent b comes out too large.

Therefore, we extrapolate by assuming that the structure
function at small x displays the behavior predicted by
Regge theory [19] F2�x;Q2� 
x!0 A

���
x
p

: even if in actual
fact this behavior were to set in at smaller x, we would only
be miscalculating the contribution to the integral from the
matching region. Of course, we cannot exclude non-Regge
behavior at small x, but if the Gottfried integral Eq. (1)
exists at all, its integrand is unlikely to diverge much
stronger than 1��

x
p at small x. Note that the small x behavior

found by fitting to the data in Ref. [2] is in fact somewhat
softer than this, namely, F2�x;Q

2� 
x!0 Ax
0:59.

Hence, for all x < xmin we take F2�x;Q
2� � Fsx2 �x;Q

2�,
with

Fsx2 �x;Q
2� � A

���
x
p
: (3)

We fix the normalization coefficient A by matching this
behavior to the neural network result at a somewhat larger
value of x. This enables us to match at a value of xwhich is
inside the data region, while only using Fsx2 �x;Q

2� Eq. (3)
at the edge or outside the data region itself. In practice, we
match at x � 1:5xmin; we have checked that results change
very little if we move the matching point from 1:1xmin to
2xmin. Matching to the neural network determination of
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F2�1:5xmin; Q
2� gives us a one-sigma error band A �

Amatch � �A.
The contribution to SG from x < xmin is determined as

the integral of Fsx2 �x;Q
2� computed with A � Amatch. This

is given 100% uncertainty within the one-sigma error band
of A, namely, the extrapolation error is taken to be equal to
the integral of Fsx2 �x;Q

2� computed with A � jAmatchj �
�A. The contribution to SG is then added to the contribu-
tion from the measured region, while the corresponding
errors are added in quadrature.

For each value of Q2 we can thus find the value of xmin

which minimizes the total uncertainty. There is a trade off
in that if xmin is raised, the error on the measured region
decreases rapidly, but there is an increase in size of the
small x extrapolation, which is 100% uncertain. The results
for the Gottfried sum SG Eq. (1), the contribution from the
measured region, and the value of xmin which minimizes
the error are shown in Table II.

In Fig. 3 these values are compared to the NNLO per-
turbative prediction for the scale dependence [6,7,20], [21]
computed with the assumption that as Q2 ! 1 the naı̈ve
quark model value SG �

1
3 is reproduced. This shows that,

even though the uncertainty in our determination is rather
larger, and the central value somewhat closer to the quark
model prediction than the NMC value [3], the quark model
value and hence flavor symmetry of the light quark sea are
somewhat disfavored.

It is apparent from Fig. 3 that the predicted perturbative
dependence of SG is very slight and it is in fact entirely
negligible on the scale of the error on SG (in particular
insufficient to determine the strong coupling). For ex-
ample, the increase in SG from Q2 � 1 GeV2 to Q2 �
10 GeV2 due to perturbative evolution is less than 1%.
Hence, we may exploit the fact that neural networks retain
full information on correlations to combine the determi-
nation of SG at different values of Q2. When correlations
are fully taken into account, this can be done by computing
SG at an increasingly large number of values of Q2

min 	
Q2 	 Q2

max, until the result stops changing as the number
of values of Q2 at which SG is calculated in the given
interval increases: because the correlation of SG�Q2

1� and
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FIG. 3. The value of the Gottfried sum Sg (as given in Table II)
as a function of the scale. The curve shows the scale dependence
computed in perturbative QCD at NNLO [7]: upper curve
assuming the quark model value SG�1� �

1
3 ; lower curve as-

suming our best-fit SG�1:5 	 Q2 	 4:5� � :244.
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SG�Q2
2� tends to one as Q1 ! Q2, adding new points

eventually stops bringing in new information.
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However, because SG is very highly correlated between
different values of Q2, and the uncertainty increases quite
fast when the scale is moved to low Q2 (where data
uncertainties are larger) or high Q2 (where there is little
data coverage at small x), the uncertainty on this averaged
determination is only marginally smaller than any of those
which we obtained at fixed Q2. Optimizing both the Q2

range and the choice of xmin we get our best value
SG�1:5 	 Q2 	 4:5 GeV2� � 0:244� 0:045; (4)
which can be taken to hold for any Q2 in the given range.
The NNLO Q2 dependence of this result (assumed to hold
at Q2 � 3 GeV2) is also displayed in Fig. 3.

A more precise determination of the Gottfried sum will
be possible only once more data becomes available, such as
those which could be obtained injecting deuterons in
HERA [17], from a high-energy upgrade of JLAB [22],
or from future facilities, such as the Electron-Ion collider
[23] or a neutrino factory [24].
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