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Biased Metropolis-heat-bath algorithm for fundamental-adjoint SU(2) lattice gauge theory
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For SU(2) lattice gauge theory with the fundamental-adjoint action an efficient heat-bath algorithm
is not known so that one had to rely on Metropolis simulations supplemented by overrelaxation.
Implementing a novel biased Metropolis-heat-bath algorithm for this model, we find improvement
factors in the range 1.45 to 2.06 over conventionally optimized Metropolis simulations. If one optimizes
further with respect to additional overrelaxation sweeps, the improvement factors are found in the range

1.3 to 1.8.
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I. INTRODUCTION

Biased Metropolis algorithms (BMAs) have been intro-
duced quite some time ago [1], but they have not been
applied beyond isolated classes of problems. Instead, the
most frequently used Monte Carlo schemes are the (origi-
nal) Metropolis algorithm (MA) and the heat-bath algo-
rithm (HBA); see [2] for a textbook discussion. Both
algorithms perform local updates of random variables,
which, in lattice gauge theory, are matrices on the links
of a 4D hypercubic lattice.

In its vanilla form, for lattice gauge theories, the MA
proposes matrices with the Haar measure of the gauge
group. This suffers often from low acceptance rates, but
can be improved by restricting the proposal range to a
neighborhood of the matrix already in place. However,
one should keep in mind that too small changes are not
good either. A low acceptance rate as well as too small
changes lead to long autocorrelation times. As a general
rule one should not tune up the acceptance rate to more
than 30% to 50% of the proposed updates (see, e.g., [2]).

A way to improve the acceptance rate without restricting
the proposals to a small range, and paying the price of large
autocorrelation times, is to perform multiple hits on the
same matrix. As each hit, apart from some common over-
head, increases the CPU time needed linearly, an optimum
is normally reached for a fairly small number of hits.

If one neglects CPU time requirements and counts only
the number of link updates, the HBA achieves optimal
performance in this class of local algorithms. By inverting
the relevant cumulative distribution function it delivers the
same results as a multihit Metropolis algorithm in the limit
of an infinite number of hits per link update. This works
very well in some cases, but in others the inversion is
numerically so slow that, including CPU time in the bal-
ance sheet, a Metropolis scheme stays far more efficient
than the HBA (which for many models has not even been
constructed).

In a previous paper [3] two of the present authors have
shown that the MA can be biased so that it becomes an
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excellent approximation of the heat-bath updating, which
was first introduced by Creutz [4] for SU(2) lattice gauge
theory. The biased Metropolis-heat-bath algorithm
(BMHA) was illustrated for SU(2) and U(1) lattice gauge
theories and the performance was found competitive with
the best implementations of the heat-bath algorithm [5—8]
for these models. In the present paper we work out an
example for which an efficient implementation of the
conventional heat-bath algorithm does not exist: SU(2)
lattice gauge theory with the fundamental-adjoint action.

II. THE MODEL

The SU(2) fundamental-adjoint action is

SqUY) = %ZReTr(UD) + %Z(ReTr(UD))Z. (D)
O O

Here U = U, ;,U;,;,U;,;,U},i,» where the sum is over all
plaquettes of a 4D simple hypercubic N,N? lattice, and
i1, j1, I, jo label the sites circulating around the plaquette
and Uj; is the SU(2) matrix associated with the link (ij).
The reversed link is associated with the inverse matrix.

This model has a bulk phase transition [9] along lines in
the (B, B,) plane; see [10] and references given therein
for more detailed investigations of this transition. Figure 1,
extracted from Refs. [9,10], shows the location of the bulk
transition together with the N, = 4 deconfining phase tran-
sition line. While our aim is exclusively to improve the MC
algorithm, we target the phase transition lines, interesting
from the physics point of view and hence likely places for
future simulations, when choosing coupling constant val-
ues for our test runs. Our test simulation points are also
indicated in the figure.

Our parametrization for SU(2) matrices is
U=ayl +id-a, aj +a*=1, 2)

where I denotes the 2 X 2 identity matrix and & are the
Pauli matrices. A property of SU(2) group elements is that
any sum of them is proportional to another SU(2) element.
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FIG. 1. Phase diagram of SU(2) lattice gauge theory with the
fundamental-adjoint action. The solid lines are the bulk transi-
tion and the dotted line indicates the N, = 4 deconfining tran-
sition. The five coupling constant values of our test runs are
indicated by + signs.

We define a SU(2) matrix U, which corresponds to a sum
of the staples in Eq. (1) by

suUy

6 6
= Z Uu,k, S|_| = det(z ULJ,/()' (3)
k=1 k=1

Here, U, k =1, ..., 6, denote the products of the three
link matrices which, together with U, the link to be up-
dated, form one of the six plaquettes containing the link to
be updated. The main step for implementing a BMHA is
the table building process. Here we proceed in two steps.
First, we use only the fundamental part and get the same
table for the update variable a, and the parameter s, as in
[3]. This leads already to an increase of the acceptance rate
(AR) by a factor of nearly ten compared with the full-range
MA. We refer to this approximation, which uses only the
fundamental part of the action for table building, as
BMHA fund. As outlined in Ref. [3] such an updating
table influences the efficiency through the AR, while the
corresponding BMA is as exact as the usual MA. In
Ref. [11] an essentially equivalent algorithm was proposed
and used for the fundamental-adjoint SU(3) theory: do a
Cabibbo-Marinari heat-bath trial with the fundamental part
of the gauge action and then accept or reject with a
Metropolis step using the adjoint part of the action.

In a second step we construct our final BMHA by
including the adjoint part of the action in a crude approxi-
mation, which is technically easy to handle and sufficient
to increase the AR further. The amount of the increase in
AR is dependent on the two couplings (fundamental and
adjoint). At the critical endpoint of the bulk first order
transition line, for example, it is another 20% over that of
the BMHA fund to about 85%.

To trace multiplicative factors clearly, we consider in the
following the action of our theory in d dimensions. At each
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link we have 2(d — 1) terms contributing to the (] sum.
The link variables are SU(2) matrices in the fundamental
representation. A new link variable is proposed according
to

U=UuU;", 4)

where U, is randomly chosen with the appropriate measure
and U\, is a normalized staple matrix.

For constructing our BMHA we replace in the adjoint
part each individual staple U|,; by

_ 1
2(d —1)
This means, for the table we neglect individual staples

fluctuations in the adjoint part. Instead of the adjoint part
of the action we use

UI_I,i - Uu,i Uy (5)

B 2(d—1)
¢ 3 ReTHUs, 0L (©6)

Using (4) and (5) this reduces to

2d—1)

% Z (ReTr( z(dsu 1)>>2 @)

1

Nothing depends on the index of summation now, so the
sum reduces to 2(d — 1). Also, as before ReTr(U,) = 2a,,
and we get for the adjoint contribution

Ba 4aosIJ
3 2(d-1)

The total expression for the probability density which we
tabulate is

4a? u

It has only one variable a, and one parameter s,. As in [3]
we define @ = Bs, for programming convenience. This
substitution leads here to

1
P(ag) ~ /1 — a3 exp(aao 3 g; 7R

)a a0> (10)

®)

III. NUMERICAL RESULTS

To give an idea of how update proposals with a discre-
tization of the probability density (10) work, we collect in
Table I the results of a short simulation on a 44 lattice at
(By, Ba) = (1.5,0.9). The observables are the plaquette
expectation values in the fundamental and adjoint repre-
sentation, (UD> and (U%), respectively, and their integrated

autocorrelation times, Tlm(<UD>) and 1, (U%)). Here (-)
denotes the average over a lattice configuration and ((-)) in
Table I the mean from all lattice configurations.
Autocorrelation times and error bars are calculated as
explained in [2]. While the estimated expectation values
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TABLE 1. Simulation at (B, B,) = (1.5,0.9) on a 4* lattice
relying on a statistics of 1000 sweeps for reaching equilibrium
and 32 X 1000 sweeps with measurements. Autocorrelation
times are in units of MC sweeps.

Metropolis BMHA-fund BMHA
((Ué}) 0.3451 (15) 0.346 36 (52) 0.34694 (62)
«ugn» 0.6368 (15) 0.63798 (47) 0.638 53 (56)
T ((UL)) 1002 (8.6) 19.5 (1.7) 19.8 (2.5)
Tindl (UE)) 95.9 (8.0) 17.1 (1.4) 16.5 (2.2)
AR in % 6.5 (2) 624 (4) 852 (3)
TABLE II. Relative efficiencies for our simulations on 4 X 83

lattices. In columns 3-5 the efficiency of the BMHA over the 5-
hit MA is shown for 0, 1 and 2 overrelaxation sweeps (plain, 1o
and 20). Columns 6 and 7 show how the BMHA is improved (or
not) by additional overrelaxation hits.

By Ba) AR plain 1o 20 lobmha 2obmha
(1.5, 09) 084 206 153 142 123 1.10
(1.83, 0.5) 090 1.76 145 1.38 1.41 1.37
(1.2146,1.25) 079 1.80 1.74 1.15 093 0.69
(1.2, 1.25) 070 146 127 123 093 0.74
(1.23, 1.25) 0.83 150 131 1.28 1.02 0.84

agree within statistical fluctuations, we find a dramatic
increase of the AR from 6.5% for the plain (full-range)
MA to 62.4% for the BMHA fund and 85.2% for the
BMHA. This is accompanied by a decrease of the 7,
values, which is obvious for the first improvement step
and within the limited statistics hardly visible for the
second step (although certainly true due to the higher
acceptance rate).

Our main goal is to evaluate the BMHA against a MC
algorithm, which was previously tuned by one of the
authors for optimal performance [12]. This is a n-hit
Metropolis algorithm, with update proposals by multiply-
ing the old link matrix with a SU(2) matrix centered around
the unit element with a spread dynamically adjusted to give
an acceptance rate of about 50% per Metropolis hit. Doing
5 hits was found most cost effective. For simulations on
4 X 83 lattices we compare the 5-hit MA with our BMHA
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implementation for several (8, 8,) parameter values in
the proximity of the bulk as well as the deconfining tran-
sition as shown in Fig. 1 and compiled in Table II. The AR
of the BMHA is listed in column 2 of Table II. Depending
on the coupling constant values it varies in the range from
70% to 90%. At all coupling constant values we have
checked that the averages of our measured operators do,
up to statistical fluctuation, not depend on the updating
method.

Including so-called overrelaxation sweeps [13-16] is
known to reduce autocorrelation times, when the correla-
tion length becomes large, for example, close to a second
order phase transition. For the fundamental-adjoint action,
an exact overrelaxation step is not known to us. Instead we
make a trial overrelaxation update with the fundamental
part of the action and accept or reject the update according
to the change in the adjoint part of the action. The accep-
tance rate for these overrelaxation sweeps decreases as the
adjoint coupling becomes larger compared to the funda-
mental coupling. For the couplings considered here the
acceptance rate for the overrelaxation sweeps varied be-
tween 69% and 91%.

In the subsequent tables, algorithms are encoded in the
following way: 5h corresponds to the 5-hit Metropolis
algorithm with the AR tuned to 50% per hit, bm to the
BMHA, io, with i = 1, 2, to doing 1 or 2 overrelaxation
sweeps after each MA or BMHA update.

For (B, B,) = (1.2146, 1.25) some of our data are com-
piled in Table III. This coupling constant point is pretty
much on top of the bulk first order transition line, which
leads to a double peak structure of the probability density
of many observables, as illustrated in Fig. 2 for the pla-
quette expectation value in the fundamental representation.
Autocorrelation times of Polyakov loops (L) and tunneling
times are also compiled in Table III. Here the ‘“‘tunneling
time” is defined as the average number of sweeps the
Markov process needs to propagate from one of the two
maxima to the other and back. For all observables pre-
sented in Table III we see that switching from the 5-hit MA
to the BMA reduces not only the integrated autocorrelation
and tunneling times, but also the CPU times.

The efficiency of an algorithmic approach 1 with respect
to an algorithmic approach 2 is given by

TABLE III.  Simulation at (8, B,) = (1.2146, 1.25) on a 4 X 8’ lattice relying on a statistics
of 2! = 16 384 sweeps for equilibration and 32 X 20480 sweeps with measurements. The CPU
times are given in seconds. All other quantities are given in units of sweeps.

T ((ULY) Tin((UE)) Tin (L)) tunneling Icpu
5h 2294 (253) 2262 (253) 3430 (337) 114 (1.2) 103 18390
1o5h 1718 (137) 1692 (136) 2487 (238) 5900 (420) 25522
205h 1209 (117) 1193 (119) 2131 (258) 4667 (340) 32292
bm 1804 (155) 1776 (153) 2981 (270) 8323 (670) 12958
lobm 1222 (111) 1204 (110) 2083 (299) 5190 (320) 20573
20bm 1172 (079) 1156 (078) 1746 (173) 4520 (240) 28295
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FIG. 2. Probability density for the BMHA run (without over-
relaxation) of Table III, x = (U‘é}.
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This formula reflects that the algorithm which needs less
CPU time and produces a smaller value for the integrated
autocorrelation time is the more efficient one. The 7(i);,,
values, and hence the efficiencies, depend somewhat on the

operator chosen. Using Tim«UfD)) column 3 of Table II
collects the efficiencies found when comparing the BMHA
with the 5-hit MA at our coupling constant values, as given
in column 1. Enhancements in the range 1.46 to 2.06 are
found. Using other operators gives somewhat higher or
lower efficiencies, but no systematic trend in either direc-
tion. For all operators we find always an improvement of
the BMHA over the 5-hit MA.

The values of column 3 of Table II are reduced by
including overrelaxation sweeps in both the 5-hit MA
and the BMHA as is seen in columns 4 and 5. This comes

Y
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because the overrelaxation sweeps add uniformly CPU
time in both cases for which the integrated autocorrelation
times get reduced by more or less the same fraction in case
of the 5-hit MA as well as for the BMHA. In all cases the
numbers in columns 4 and 5 of Table II stay larger than 1,
which means that the BMHA delivers always the better
performance.

The last point is to consider whether the increase of CPU
time for including overrelaxation sweeps in the BMHA is
justified by the achieved decrease of integrated autocorre-
lation times or not. This is done by calculating the effi-
ciency of the BMHA with one or two overrelaxation
sweeps with respect to the plain BMHA. The results are
given in the last two columns of Table II. We see that in two
cases the performance with overrelaxation sweeps is worse
(numbers <1) than for the plain BMHA. For another case
there is almost no change, and in the two remaining cases
one overrelaxation sweep (10) before each BMHA sweeps
is best. The points for which the overrelaxation sweeps
help are close to the deconfining transition, where the
correlation length is large and overrelaxation sweeps are
expected to be efficient, whereas the other three points are
close to the bulk transition.

In conclusion, while the need for overrelaxation sweeps
varies, the BMHA outperforms the 5-hit MA always. Once
constructed the BMHA does (in contrast to the 5-hit MA)
not need any fine-tuning of parameters, so that it then
provides a straightforward approach to performing pure
lattice gauge theory simulations efficiently.
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