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We use the invariance of a physical picture under a change of Lagrangian, the reparameterization
invariance in the space of Lagrangians and its particular case—the rephrasing invariance—for analysis of
the two-Higgs-doublet extension of the standard model. We found that some parameters of theory like
tan� are reparameterization dependent and therefore cannot be fundamental. We use the Z2 symmetry of
the Lagrangian, which prevents a �1 $ �2 transition, and the different levels of its violation, soft and
hard, to describe the physical content of the model. In general, the broken Z2 symmetry allows for a CP
violation in the physical Higgs sector. We argue that the two-Higgs-doublet model with a soft breaking of
Z2 symmetry is a natural model in the description of electroweak symmetry breaking. To simplify the
analysis, we choose among different forms of Lagrangian describing the same physical reality a specific
one, in which the vacuum expectation values of both Higgs fields are real. A possible CP violation in the
Higgs sector is described by using a two-step procedure with the first step identical to a diagonalization of
the mass matrix for CP-even fields in the CP-conserving case. We find a very simple, necessary, and
sufficient condition for a CP violation in the Higgs sector. We determine the range of parameters for
which CP violation and flavor-changing neutral current effects are naturally small—it corresponds to a
small dimensionless mass parameter � � Rem2

12=�2v1v2�. We show that for small � some Higgs bosons
can be heavy—with mass up to about 0.6 TeV—without violating of the unitarity constraints. If � is large,
all Higgs bosons except one can be arbitrarily heavy. We discuss, in particular, main features of this case,
which corresponds for �! 1 to a decoupling of heavy Higgs bosons. In the model II for Yukawa
interactions we obtain the set of relations among the couplings to gauge bosons and to fermions which
allows us to analyze different physical situations (including CP violation) in terms of these very
couplings, instead of the parameters of Lagrangian.
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1This very transformation is called in [2] as Higgs basis
transformation.
I. INTRODUCTION

A spontaneous electroweak symmetry breaking of
SU�2� �U�1� (EWSB) via the Higgs mechanism is de-
scribed by the Lagrangian

L � LSM
gf �LH �LY: (1.1)

Here, LSM
gf describes the SU�2� �U�1� standard model

interaction of gauge bosons and fermions, LH is the
Higgs scalar Lagrangian, and LY describes the Yukawa
interactions of fermions with Higgs scalars.

In the minimal standard model (SM) one scalar isodoub-
let with hypercharge Y � 1 is implemented. Here LH �

�D���
yD��� V, with the Higgs potential V � ��4=2�

m2�2=2. A minimum of V describes the vacuum expecta-

tion value (v.e.v.) v as h�i � v=
���
2
p
�

���������������
m2=2�

p
. In this

model there is one physical Higgs boson; its couplings to
the gauge bosons can be expressed via masses as gSM

W ����
2
p
MW=v, gSM

Z �
���
2
p
MZ=v. The Yukawa interaction has a

form:

L Y �
X
gSM
f QL�qR � H:c: with gSM

f �
���
2
p
mf=v:

In this paper we study in detail the simplest extension of
the SM, with one extra scalar doublet called the two-Higgs-
doublet model (2HDM) which contains more physical
05=72(11)=115013(26)$23.00 115013
neutral and charged Higgs bosons (see e.g. [1]). We treat
aCP violation in the Higgs sector as a natural feature of the
theory.

This model contains two doublet fields, �1 and �2, with
identical quantum numbers. Therefore, its most general
form should allow for global transformations which mix
these fields and change the relative phase. Each such trans-
formation generates a new Lagrangian, with parameters
given by parameters of the incident Lagrangian and pa-
rameters of the transformation. That is the reparameteriza-
tion transformation1 of parameters of the Lagrangian.
Therefore, the physical reality described by some
Lagrangian L (physical model) is also described by
many other Lagrangians. We call this property a repara-
meterization invariance in a space of Lagrangians (with
coordinates given by its parameters) and discuss it together
with its particular case—a rephasing invariance—in
Sec. II A.

If a given Lagrangian demonstrates some property, say
AAA, explicitly, we call it the AAA Lagrangian or the
Lagrangian of AAA form; a set of reparameterization
equivalent Lagrangians with the same explicit property
constitutes a AAA family of Lagrangians.
-1 © 2005 The American Physical Society
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We found that some quantities, considered often as
fundamental parameters of theory, like tan�—a ratio of
vacuum expectation values of fields �1 and �2 —are in
fact reparameterization dependent.

One of the earliest reasons for introducing the 2HDM
was to describe the phenomenon of CP violation [3], an
effect which can be potentially large. Glashow and
Weinberg [4] found that the CP violation and the flavor-
changing neutral currents (FCNC) can be naturally sup-
pressed by imposing on the Lagrangian a Z2 symmetry,
that is the invariance on the Lagrangian under the inter-
change

�1 $ �1; �2 $ ��2 or

�1 $ ��1; �2 $ �2: (1.2)

This symmetry forbids the �1 $ �2 transitions.
The most general Yukawa interaction LY violates this Z2

symmetry leading to the potentially large flavor-changing
neutral current effects. The Yukawa interaction can lead
(via loop corrections) to the CP violation even if such
violation is absent in the basic Higgs Lagrangian.
Imposing some constraints on LY allows to eliminate
this source of the CP violation.

Since in nature both the CP violation and FCNC effects
are small, we discuss separately cases of the exact Z2

symmetry (then CP is conserved) and of different levels
of its violation, soft and hard. We consider also a general
renormalizability of widely discussed forms of 2HDM
Lagrangians. We analyze these problems in Sec. II B.

The EWSB is described by vacuum expectation values
of fields �1;2 with generally different phases. This phase
difference can be eliminated by a suitable rephasing trans-
formation, resulting in the Lagrangian in a real vacuum
form (see Sec. III). We use such a Lagrangian in a particu-
lar form with coefficients of the mass (quadratic) terms in
the Higgs potential expressed by coefficients of quartic
terms of potential and vacuum expectation values.

In such form of Lagrangian the real and imaginary parts
of a coefficient at the mixed quadratic term, describing a
soft violation of Z2 symmetry, have different properties.
The real part can be treated as a free parameter of theory,
while the imaginary part (describing a CP violation) is
constrained by the parameters of quartic terms of Higgs
Lagrangian and the vacuum expectation values.

In Sec. IV we come forward to the observable (physical)
Higgs particles. The Goldstone modes and charged Higgs
bosons H� are separated easily. In the neutral sector two
isotopic doublets give after EWSB one Goldstone mode,
two pure scalars (CP-even) �1, �2, and one CP-odd
‘‘pseudoscalar’’ A. These three states do generally mix
leading to the physical states hi�i � 1; 2; 3� without a
definite CP parity. The interaction of these states with
matter gives observable effects of CP violation. We con-
struct these states by a two-step procedure, with the first
step corresponding to the diagonalization of a partial mass-
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squared matrix for CP-even neural components of Higgs
doublets. This leads to the states h and H, discussed
usually in a context of the CP-conserving case. It allows
us to consider a general CP nonconserving case in terms of
states h, H, and A, customary in the case of CP conserva-
tion. In these terms analyses of CP violation effects be-
come very transparent and some important results can be
obtained easily.

In Sec. V the description of Yukawa couplings is given.
A most general form of Yukawa interaction violates CP
symmetry, leads to a tree-level FCNC, and breaks Z2

symmetry in a hard way (by loop corrections). A specific
form of Yukawa interaction, in which each right-handed
fermion isosinglet is coupled to only one scalar field,�1 or
�2, guarantees an absence of the hard violation of Z2

symmetry if this violation is absent in the proper Higgs
Lagrangian LH. With such Yukawa sector the CP violation
arises only from a structure of the Higgs Lagrangian, and
FCNC effects can be naturally small. Here we consider the
well-known model II [1] in the explicit form, which is
defined with accuracy up to the rephasing transformation.

In the investigation of phenomenological aspects of
2HDM it is useful to apply relative couplings, defined as
ratios of the couplings of each neutral Higgs boson hi�i �
1; 2; 3�, to the gauge bosons W or Z and to the quarks or
leptons (j � W;Z; u; d; ‘ . . . ), to the corresponding SM
couplings:

��i�j � g�i�j =g
SM
j : (1.3)

As their squared values are in principle measurable, we
treat ��i�j themselves as measurable quantities. These rela-
tive couplings and the relations among them are less af-
fected by the radiative corrections than the Higgs couplings
themselves (see Sec. V D).

We present formulas for the relative couplings describ-
ing interactions of the observable Higgs bosons with fer-
mions and gauge bosons and then derive the set of relations
among these couplings, including obtained by us pattern
and linear relations as well as known sum rules. These
relations are very useful in the analyses of different physi-
cal scenarios.

Parameters of Lagrangian are constrained by positivity
(vacuum stability) and minimum constraints, discussed in
Sec. VI. In most cases the physical phenomena related to
the Higgs sector are described with a good accuracy by the
lowest nontrivial order of the perturbation theory (that is
the tree approximation for the description of the Higgs
sector itself and the one-loop approximation for the
Yukawa contribution to the Higgs boson propagators and
Higgs couplings to the photons and gluons). This should be
reliable for not too large values of parameters of quartic
terms of the Lagrangian; we consider the relevant unitarity
and perturbativity constraints in Sec. VI C. Most of the
above constraints were obtained in literature for a soft
-2
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violation of Z2 symmetry. We discuss the main new aspects
in case of the hard violation of Z2 symmetry in Sec. VI D.

In 2HDM there is an attractive possibility that one of
neutral Higgs bosons h1 is relatively light and similar to
that in the SM while others (h2, h3, and H�) are much
heavier; this is discussed in Sec. VII. The studies of 2HDM
are based often on an assumption of decoupling of these
heavy Higgs bosons from the known particles, i.e. effects
of these additional Higgs bosons disappear if their masses
tend to infinity. However, such an assumption is not neces-
sary for the description of phenomena in the presence of
heavy but not extremely heavy new particles.

For the Higgs Lagrangian in a real vacuum form the
mentioned decoupling phenomenon is governed by a singe
dimensionless parameter � / Rem2

12. The mass range of
possible heavy Higgs bosons, allowed by perturbativity
and unitarity constraints, depends strongly on �. For large
� the decoupling limit is realized, i.e. the above mentioned
additional Higgs bosons can be very heavy (and almost
degenerate in masses) and moreover such additional Higgs
bosons practically decouple from the lighter particles. We
analyze briefly properties of all Higgs bosons and their
interactions in this decoupling limit.

At small � masses of h2, h3, and H� are bounded from
above by the unitarity constraints. Such Higgs bosons can
be heavy enough to avoid observation even at next genera-
tion of colliders. Nevertheless, some nondecoupling effects
can appear for the lightest Higgs boson. We present some
sets of parameters which realize this physical picture with-
out decoupling, still respecting the unitarity constraints.
We argue that this nondecoupling option of 2HDM is more
natural for the weak CP violation and FCNC (in spirit of
t’ Hooft’s concept of naturalness [5]).

Section VII contains our summary and discussion of
results.

In the Appendix we present trilinear and quartic cou-
plings of physical Higgs bosons in a general CP-violating
case and give the series of useful forms for a full collection
of trilinear Higgs self-couplings in the CP-conserving, soft
Z2-violating case. For the case when the Yukawa interac-
tion is described by model II, we express all these trilinear
couplings via the parameter �—the masses and the relative
couplings to the gauge bosons and fermions of the physical
Higgs bosons entering the corresponding vertex.
2Similar to the gauge parameter of gauge theories.
II. HIGGS LAGRANGIAN

To keep the value of � � M2
W=�M

2
Zcos2	W� equal to 1 at

the tree level, one assumes in 2HDM that both scalar fields
(�1 and �2) are weak isodoublets (T � 1=2) with hyper-
charges Y � �1 [6]. We use Y � �1 for both doublets
(the other choice, Y1 � 1, Y2 � �1, is used in the minimal
supersymmetry model (MSSM); this case is also described
by equations below with a trivial change of variables).

The most general renormalizable Higgs Lagrangian can
be written as
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L H � T � V; (2.1a)

where T is the kinetic term with D� being the covariant
derivative containing the EW gauge fields, and V is the
Higgs potential. For 2HDM we have

T � �D��1�
y�D��1� � �D��2�

y�D��2�

� ß�D��1�
y�D��2� � ß��D��2�

y�D��1�; (2.1b)

V �
�1

2
��y1�1�

2 �
�2

2
��y2�2�

2 � �3��
y
1�1���

y
2�2�

� �4��
y
1�2���

y
2�1� �

1

2
	�5��

y
1�2�

2 � H:c:


� f	�6��
y
1�1� � �7��

y
2�2�
��

y
1�2� � H:c:g

(2.1c)

�
1

2
fm2

11��
y
1�1� �m

2
22��

y
2�2� � 	m

2
12��

y
1�2� � H:c:
g:

(2.1d)

The Eq. (2.1d) represents a mass term. Note that �1�4,m2
11,

andm2
22 are real (by Hermiticity of the potential), while the

�5�7, m2
12, and ß are in general complex parameters. (We

explain necessity of mixed kinetic ß terms in Sec. II B 2.)
Therefore, this potential contains 14 independent parame-
ters while the entire Higgs Lagrangian—16. We will see
that CP violation in the Higgs sector, which is a natural
feature of 2HDM, can appear only if some of these coef-
ficients are complex.

A. Reparameterization and rephasing invariance

1. Reparameterization invariance

Our model contains two fields with identical quantum
numbers. Therefore, it can be described both in terms of
fields �k �k � 1; 2�, used in Lagrangian (2.1), and in terms
of fields �0k obtained from �k by a global unitary trans-
formation F̂ of the form:

�01
�02

 !
� F̂

�1

�2

 !
;

F̂ � e�i�0
cos	ei�=2 sin	ei�
��=2�

� sin	e�i�
��=2� cos	e�i�=2

 !
: (2.2)

The transformation (2.2) induces the changes of coeffi-
cients of Lagrangian, which we call a reparameterization
transformation (RPaT). The set of RPaT’s represents the 3-
parametrical reparameterization transformation SU�2�
group, with three reparameterization parameters2 (�, 	,

) acting in the 16-dimensional space of Lagrangians with
coordinates given by �1�4, Re�5�7, Im�5�7, m2

11;22,
Re�m2

12�, Im�m2
12�, Reß, and Imß.
-3



Higgs basis families (v1 = 0  or v2 = 0)

Real vacuum family (v1,v2 real)

Soft Z   violation + Model II family2

FIG. 1. Schematic presentation of reparameterization equiva-
lent space of Lagrangians. Different strips represent families
with different explicit properties. A particular case when the soft
Z2-violating and model II Lagrangians families coincide is
shown.
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In the ß � 0 case the transformation (2.2) does not
change the form of kinetic term. It induces RPaT’s of the
form

�01 � c2�1 � s
2�2 � cs�� 2csRe�~�6 � ~�7�;

�02 � s2�1 � c2�2 � cs�� 2csRe�~�6 � ~�7�;

�03 � �3 � cs�; �04 � �4 � cs�;

e2i��05 � �5 � ei
s	c�� 2is Im ~�5 � 2ic Im�~�6 � ~�7�
;

ei��06 � c2�6 � s
2�7 �

ei


2
cs��1 � �2 ���;

ei��07 � c2�7 � s
2�6 �

ei


2
cs��1 � �2 ���; (2.3a)

�m0�211 � c2m2
11 � s

2m2
22 � 2cs�2

12;

�m0�222 � s2m2
11 � c

2m2
22 � 2cs�2

12;

ei��m0�212 � m2
12 � e

i
	cs�m2
11 �m

2
22� � 2s2�2

12
: (2.3b)

where c � cos	, s � sin	, �2
12 � Re�m2

12e
�i
�, ~�5 �

�5e
�2i
, ~�6;7 � �6;7e

�i
, and

�0 � �1 � �2 � 2��3 � �4 � Re ~�5�;

� � cs�0 � 2�c2 � s2�Re�~�6 � ~�7�;

� � �c2 � s2��0 � 8csRe�~�6 � ~�7� � 2i Im ~�5:

The transformation F̂ (2.2) represents this very repar-
ameterization group in the space of fields �i (the scalar
basis) supplemented by U�1� symmetry group with pa-
rameter �0, which describes an overall phase freedom.

By construction, the Lagrangian of the form (2.1) with
coefficients �i, m2

ij and that with coefficients �0i, �m
0�2ij

given by Eq. (2.3) describe the same physical reality. We
call this property a reparameterization invariance.

A set of physically equivalent Higgs Lagrangians,
obtained from each other by the transformations (2.3),
forms the reparameterization equivalent space, being a
three-dimensional subspace of the entire space of
Lagrangians—Fig. 1. The parameters of Lagrangian can
be determined from measurements in principle only with
accuracy up to the reparameterization freedom; the differ-
ent Lagrangians within the reparameterization equivalent
space are physically equivalent.

All in principle observable quantities are invariants of
reparameterization transformations (IRpaT), that are, for
example, masses of observable Higgs bosons. Each of
them is determined as eigenvalues of mass matrix (4.5)
and (4.3). The coefficients of secular equations for diago-
nalization of this mass matrix (4.5) (among them—trace of
this matrix and its determinant) can be constructed from
these eigenvalues. Therefore, they are also IRpaT. The
same is valid for the eigenvalues of Higgs-Higgs scattering
matrices. The set of these IRpaT, classified in respect of
isospin and hypercharge of Higgs-Higgs system, is pre-
sented in Ref. [7].
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The approach for construction of IRpaT is proposed in
[8]. The group-theoretical approach for construction of all
independent invariants of this transformation is presented
in Ref. [9].

Remark on the ß � 0 case.—The transformation (2.2)
induces for ß � 0 change of the kinetic term (2.1b):

T � z�1
1 �D��01�

y�D��01� � z
�1
2 �D��02�

y�D��02�

� ß0�D��01�
y�D��02� � ß0��D��02�

y�D��01�; (2.4)

with

z�1
1 � 1� 2csRe�e�i
�; z�1

2 � 1� 2csRe�e�i
ß�;

ß0 � e�i��c2ß� s2e2i
ß��:

So, in order to restore a canonical form of the kinetic term a
field renormalization is needed in addition to the trans-
formations (2.3). This case will be discussed in more detail
elsewhere.

Remark on physical parameters.—Some parameters of
theory which are treated often as physical (and in principle
measurable) ones are in fact reparameterization dependent.
The most important example provides a ratio of vacuum
expectation values of scalar fields, tan� (3.7). For example,
under the transformation (2.2) with � � � [see Eq. (3.7b)]
and 
 � 0, angle � changes to �� 	.
-4
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2. Rephasing invariance

It is useful to consider a particular case of the trans-
formations (2.2) with 	 � 0. It also can be treated as a
global transformation of fields with independent phase
rotations (rephasing transformation of the fields):

�k ! e�i�i�k; �k � 1; 2�; �1 � �0 �
�
2
;

�2 � �0 �
�
2
; � � �2 � �1:

(2.5)

This transformation leads to a change of phase of some
coefficients of Lagrangian [the rephasing transformation
(RPhT) of the parameters]:

�1�4 ! �1�4; m2
11 ! m2

11; m2
22 ! m2

22;

�5 ! �5e
�2i�; �6;7 ! �6;7e

�i�;

m2
12 ! m2

12e
�i�; ß! ße�i�:

(2.6)

By construction, the Lagrangian of the form (2.1) with
coefficients �i, m2

ij and that with coefficients given by
Eq. (2.6) describe the same physical reality. We call this
property a rephasing invariance; it is similar to the defini-
tion given in [10].

The transformations (2.6) represent the one-parametrical
rephasing transformation group with parameter �. By
construction, this group is a subgroup of the reparameteri-
zation transformation group.

The one-dimensional rephasing equivalent space is a
subspace of the entire three-dimensional reparameteriza-
tion equivalent space of Lagrangians. The rephasing
equivalent space is given by the sets of parameters of
Lagrangians at different �. One can say that the entire
reparameterization equivalent space is sliced to the rephas-
ing equivalent subspaces (represented by the vertical strips
in Fig. 1).

Remarks.—The concept of the rephasing invariance is
easily extended to the description of a whole system of
scalars and fermions by adding to the transformation (2.6)
transformations (5.2b) for the Yukawa parameters.

The transformation for scalar fields (2.2) evidently in-
duces changes into the set of Yukawa parameters. This may
hide some properties of the Yukawa Lagrangian, which are
explicit in a definite scalar basis (e.g. model I or model II,
see Sec. V). The Kobyashi-Maskawa matrix represents the
reparameterization transformation from the quark basis of
QCD to the electroweak basis.

We will see that CP symmetry is conserved in the Higgs
sector if there exists a Lagrangian in the form (2.1) with all
parameters real. Obviously, this violation does not appear
if the Lagrangian with complex parameters can be trans-
formed by means of some RPaT (2.3) to a form with all
parameters real.
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B. Lagrangian and Z2 symmetry

The violation of the Z2 symmetry (1.2) in the
Lagrangian allows for the �1 $ �2 transitions. The gen-
eral Higgs Lagrangian LH (2.1) violates Z2 symmetry by
terms of the operator dimension 2 (with m2

12), what is
called a soft violation of Z2 symmetry, and of the operator
dimension 4 (with �6;7 and ß), called a hard violation of Z2

symmetry.

(a) A
-5
n exact Z2 symmetry.—This case is described by
the Lagrangian LH (2.1) with �6 � �7 � ß �
m2

12 � 0 and only one parameter �5 can be complex.
The RPhT (2.6) with a suitable phase � allows to get
another form of Lagrangian with a real �5, within
the rephasing invariant space.
(b) A
 soft violation of Z2 symmetry.—In the case of soft
violation of Z2 symmetry one adds to the Z2 sym-
metric Lagrangian the term m2

12��
y
1�2� � H:c:,

with a generally complex m2
12 (and �5) parameter.

This type of violation respects the Z2 symmetry at
small distances (much smaller than 1=M) in all
orders of perturbative series, i.e. the amplitudes for
�1 $ �2 transitions disappear at virtuality k2 �
M2 ! 1. That is the reason for the name—a
‘‘soft’’ violation. The RPhT’s (2.6) applied to the
Lagrangian with a softly violated Z2 symmetry can-
not change its character; they generate a whole soft
Z2 violating Lagrangian family (the crossed ‘‘verti-
cal’’ strip in Fig. 1).
(c) A
 hard violation of Z2 symmetry.—In the general
case the terms of the operator dimension 4, with
generally complex parameters �6, �7, and ß, are
added to the Lagrangian with a softly violated Z2

symmetry. This is called a hard violation of Z2

symmetry.
This case includes both the opportunity of a
hidden soft Z2 symmetry violation (obtained from
an exact or softly violated Z2 symmetry case by a
general RPaT) and of the true hard violation of Z2

symmetry, which cannot be transformed to the case
of exact or softly violated Z2 symmetry by any
RPaT (2.3). In the latter case the Z2 symmetry is
broken at both large and small distances in any
scalar basis.
1. The case of a hidden soft Z2 violation

Let our physical system be described by the Lagrangian
with exact or softly violated Z2 symmetry Ls. The general
RPaT (2.3) converts this Lagrangian to a form Lhs with
�6; �7 � 0 and ß � 0. We call Lhs a Lagrangian with a
hidden soft Z2 violation.

To simplify discussion of such a case we first apply to Ls
the RPhT (2.6) to eliminate the phase of �5. We obtain the
Lagrangian LR

s with real �5 (still m2
12 can be complex

leaving open an opportunity for CP violation). Then we
apply to LR

s a general RPaT (2.3) and obtain Lagrangian
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Lhs in the form (2.1), with generally complex �5 and
nonzero �6;7 (but still ß � 0). We get from (2.3)

�01 � c2�1 � s2�2 � cs�;

�02 � s2�1 � c
2�2 � cs�; �03 � �3 � cs�;

�04 � �4 � cs�;

�05 � e�2i��5 � e
2i
	cs�� 2is2�5 sin2

;

�06 �
ei�
���

2
	cs��1 � �2� � A
;

�07 �
ei�
���

2
	cs��1 � �2� � A
;

with A � �c2 � s2��� 2ics�5 sin2
;

� � cs	�1 � �2 � 2��3 � �4 � �5 cos2
�
:

(2.7)

The Eqs. (2.7) allow to find parameters of the
Lagrangian LR

s with the explicit soft violating Z2 symme-
try and real �5, once the parameters of Lhs are known. The
procedure is as follows:
(1) T
he value of 
� � is determined from the equation

�06 � �
0
7

�0�6 � �
0�
7

� e2i�
���: (2.8a)
(2) A
fter that one can determine angle 	 via equation

�06 � �
0
7

�01 � �
0
2

� ei�
���
tan2	

2
: (2.8b)
(3) N
ext one can determine quantity � and 2cs�5 sin2

via the real and imaginary parts of

e�i�
�����06 � �
0
7� � �c

2 � s2��� 2ics�5 sin2
:

(2.8c)
(4) T
hen one can determine the angle � and the parame-
ter �5 as the phase and the module of the quantity

e�i��5 � �05 � e
2i�
���	cs�� 2is2 sin2
�5
:

(2.8d)
(5) F
inally, all remaining quantities �1�4 can be deter-
mined easily from the first four Eqs. (2.7).
Equations (2.8c) and (2.8d) represent two different ways
of obtaining the parameter �5. Besides, quantity � can be
obtained both via Eq. (2.8c) and from the basic definition
� � �1 � �2 � 2	�3 � �4 � �5 cos2

. The existence of
these two ways can be considered as two constraints on the
Lagrangian. It shows explicitly that in this case the quartic
sector is described by only eight independent parameters
115013
(�1�5 and 	, �, 
) instead of 10 independent parameters of
the general Lagrangian (2.1) (�1�4, Re�5�7, Im�5�7).

2. Some features of the true hard Z2 violation

The most general Higgs Lagrangian (2.1) cannot be
transformed to the form with �6 � �7 � 0 by any RPaT.
We denote this case as that with true hard Z2 symmetry
violation. Let us discuss briefly what should be done in this
case with the mixed kinetic terms in Eq. (2.1b). First we
observe that this mixed kinetic term can be removed by the
nonunitary transformation, e.g.

��01; �
0
2� !

� �����
ß�
p

�1 �
���
ß
p
�2

2
������������������������
jßj�1� jßj�

p �

�����
ß�
p

�1 �
���
ß
p
�2

2
������������������������
jßj�1� jßj�

p �
: (2.9)

However, in presence of the �6 and �7 terms, the renor-
malization of quadratically divergent, nondiagonal two-
point functions leads anyway to the mixed kinetic terms
(e.g. from loops with ��6�1;3�5 and ��7�2�5). It means that ß

becomes nonzero at the higher orders of perturbative the-
ory, and vice versa a mixed kinetic term generates counter-
terms with �6;7. Therefore all of these terms should be
included in Lagrangian (2.1a) on the same footing, i.e. the
treatment of the hard violation of Z2 symmetry without ß

terms is inconsistent (see also [11,12]). (The phenomenon
is analogous to a need of a quartic coupling of the form
��4 in the renormalization of the � �5 � theory [13].)
Note that the parameter ß is generally running like parame-
ters �’s. Therefore, the Lagrangian remains off diagonal in
fields �1;2 even at very small distances, above the EWSB
transition. Such theory seems to be unnatural.

When finding a signature of this case in the arbitrary
form of Lagrangian it is useful to consider a polarization
operator matrix for two fields:

P �
�11 �12

�21 �22

� �
:

In the general case the ratio �12=��11 ��22� is a running
quantity at large Higgs boson virtuality k2 in contrast to the
case of a hidden Z2 symmetry, where this ratio is not
running.

Indeed, let us consider the Lagrangian with soft viola-
tion of Z2 symmetry, Ls, like in Sec. III. The one-loop
polarization operator matrix for two fields has a form

P �
�s

1 0
0 �s

2

� �
k2 � finite terms;

for k2 ! 1. The elements �s
1 and �s

2 describe renormal-
ization of fields�1 and�2, respectively. There is no mixed
kinetic term, and the �1 $ �2 transitions at small dis-
tances are absent.

Under RPaT, the Ls is converted to the Lagrangian Lhs,
with nonzero �6 and �7 terms (2.7), still with ß � 0. This
Lagrangian leads to the polarization operator with a non-
zero mixed term:
-6
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P 0k2 �
�s

1cos2	��s
2sin2	 �12

��
12 �s

2cos2	��s
1sin2	

 !

with �12 � ��
s
1 ��s

2�e
�i
 sin	 cos	. Naı̈vely, this form

of the polarization operator suggests that one should in-
troduce in the Lagrangian the mixed kinetic term describ-
ing transitions �01 $ �02. However, the renormalization
group analysis ensures that in this case the ratio
�12=��11 ��22� at large k2 is renormalization invariant
quantity (in contrast to the mentioned above case of the
true hard violation of Z2 symmetry). In such case there
exist some parameters �; 	; 
 which restore the incident
form of LH with soft Z2 symmetry violation, i.e. without
kinetic terms. In such scalar basis the transitions �1 $ �2

are absent at small distances. Since the kinetic term of
Lagrangian can be obtained from the initial diag�1; 1� form
by the orthogonal transformation (2.2), one can conclude
that the mentioned relations among parameters of new
quartic terms prevent an appearance of the mixed kinetic
term in the Higgs Lagrangian in any reparameterization
equivalent Lagrangians. As it was mentioned above, this is
in contrast to the general case with the true hard violation
of Z2 symmetry, where �1 $ �2 transitions at different
large k2 cannot be ruled out simultaneously by any RPaT
(2.3).

The other example is given by the EWSB procedure
(Sec. III) in the case of soft violation of Z2 symmetry. It
transforms the Lagrangian expressed in terms of fields�1;2

to that written in terms of Higgs fields h1�3 andH�. In this
form many quartic couplings appear but there are some
relations among them, since all of them were obtained
from the initial Lagrangian Ls with six parameters
(�1�4, Re�5, Im�5) and the orthogonal transformation
from the (�1; �2) basis to (H�; h1; h2; h3) basis with the
additional three parameters. In this Lagrangian a mixed
polarization operator may appear also but no mixed kinetic
term in contrast to the case of true hard violation of Z2

symmetry. This is due to the mentioned relations among
parameters of new quartic terms which prevent appearance
of the mixed kinetic term in the Higgs Lagrangian [14].
The detailed discussion of these problems will be done
elsewhere.

Other aspects of the hard violation of Z2 symmetry are
related to the description of Yukawa sector. This will be
discussed in Sec. V.

Remarks.—The diagonalization described by Eq. (2.9) is
rather special and it changes even the definitions of �’s,
that would destroy relatively simple relations between the
masses of the Higgs bosons discussed below.

Although in this paper we present relations for the case
of hard violation of Z2 symmetry at ß � 0 one should keep
in mind that loop corrections can change results signifi-
cantly. Such treatment of the case with hard violation of Z2

symmetry is as incomplete as in most of the papers con-
sidering this ‘‘most general 2HDM potential.’’ A full treat-
115013
ment of this problem goes beyond the scope of the present
paper.

III. VACUUM

The extremes of the potential define the vacuum expec-
tation values (v.e.v.’s h�1;2i) of the fields �1;2 via equa-
tions:

@V
@�1

���������1�h�1i;
�2�h�2i

� 0;
@V
@�2

���������1�h�1i;
�2�h�2i

� 0: (3.1)

This equation has trivial electroweak symmetry conserv-
ing solution h�1i � 0, h�2i � 0 and electroweak symme-
try violating solutions, discussed below. With accuracy to
the choice of z axis in the weak isospin space, and using the
overall phase freedom of the Lagrangian to choose one
vacuum expectation value real, most general electroweak
symmetry violating solution can be written in a form

h�1i �
1���
2
p

�
0
v1

�
; h�2i �

1���
2
p

u
v2e

i�

� �
: (3.2)

It is useful to describe the discussed extremes with the
aid of quantities

y1 � h�
y
1 ih�1i; y2 � h�

y
2 ih�2i;

y3 � h�
y
1 ih�2i; y3y�3 � y1y2:

(3.3)
A. u � 0 solution, charged vacuum

For

y�3y3 � y1y2 � 0 we have u � 0: (3.4)

In this case the v.e.v.’s are given by equations

�1y1 � �3y2 � �
�
6y
�
3 � �6y3 � m2

11=2;

�2y2 � �3y1 � ��7y
�
3 � �7y3 � m2

22=2;

�4y�3 � �5y3 � �6y1 � �7y2 � m2
12=2:

(3.5)

Depending on the parameters of potential, the extremum
given by this solution of (3.1) describes either saddle point
or a minimum of the potential, denoted as a charged
vacuum, with a heavy photon and other nonphysical prop-
erties [15,16].

B. u � 0 solution, physical (neutral) vacuum

Another solution of extremum condition (3.1) is realized
at

y�3y3 � y1y2 � 0; which gives u � 0: (3.6)

The solution has a form

h�1i �
1���
2
p

0
v1

� �
and h�2i �

1���
2
p

0
v2e

i�

� �
: (3.7a)

It satisfies a condition for U�1� symmetry of electromag-
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netism. This extremum realizes minimum of potential if its
parameters are such that all eigenvalues of mass-squared
matrix in this extremum point are nonnegative, as in
Sec. VI B. In the analysis we consider only this very
case. (At this set of parameters the vacuum energy corre-
sponding to the solution (3.5) is larger than that for the
solution (3.7) [15,16].) The v.e.v’s v1;2 (and therefore
parameters of whole Lagrangian) obey the SM constraint:
v2

1 � v
2
2 � v2, with v � �

���
2
p
GF�

�1=2 � 246 GeV. The
other parameterization of these v.e.v.’s is also used:

v1 � v cos�; v2 � v sin�; � 2
�

0;

2

�
: (3.7b)

The rephasing of fields (2.5) shifts the phase difference �
as

�! �� �: (3.8)

Therefore, the phase difference � between the v.e.v.’s has
no physical sense (it was discussed e.g. in [10]).

The arbitrariness described by (3.8) allows to simplify
further calculations in a following way. Let us take some
Lagrangian describing our model and calculate v.e.v.’s
(3.7). Then, by making the RPhT with � � �, we get the
Lagrangian in a real vacuum form (a real vacuum
Lagrangian) (and the potential in a real vacuum form).
By definition, the relative phase of v.e.v.’s derived from this
Lagrangian equals zero. In accordance with Eq. (2.6) we
get now

�1�4;rv � �1�4; �5;rv � �5e
�2i�;

�6;rv � �6e
�i�; �7;rv � �7e

�i�;

ßrv � ße�i�; m2
12;rv � m2

12e
�i�;

(3.9)

where we denote the particular values of parameters of
such Lagrangian (potential) by subscript rv.

The following combinations of parameters and new
quantities are useful:

�3;rv � �4;rv � Re�5;rv � �345;rv;

v1

v2
�6;rv �

v2

v1
�7;rv �

��67;rv;

~�67;rv;

m2
12;rv � 2v1v2��� i��:

(3.10)
115013
For given v1;2 the extremum condition (3.1) does not
constrain Rem2

12;rv, while it does so for Imm2
12;rv, allowing

to express it via Im��5�7;rv�:

� � 0|{z}
Z2sym

� 1
2 Im�5;rv|�����{z�����}

soft

� 1
2 Im�67;rv|������{z������}

hard

: (3.11)
Here (and in the subsequent equations) the first under-
braced term corresponds to the Z2 symmetric case, the
second and third terms are added to each other in the
case of explicitly soft and hard violations of Z2 symmetry,
respectively. In particular, in the Z2 symmetric case
m2

12;rv � 0 and consequently Im�5;rv � 0.
Beginning from here all expressions will be presented for

the potential in a real vacuum form, without writing ex-
plicitly the subscript rv. We will explicitly comment when
other forms of Lagrangian will be discussed.

Remarks.—The set of real vacuum Lagrangians forms a
subspace in the entire reparameterization equivalent
space— the real vacuum Lagrangian family. It is pictured
in Fig. 1 by the black horizontal line. In different points of
this subspace the tan� values are different.

C. Our form of the potential

It is useful for the subsequent calculations to describe
the potential in terms of v1, v2, and � instead of three
quadratic parameters m2

11;22; m
2
12 [17]. The Eqs. (3.1) and

(3.10) allow us to obtain relations

m2
11 � �1v

2
1 � �345v

2
2|����������{z����������}

Z2sym

� 2�v2
2|�{z�}

soft

�
v2

v1
Re�3v2

1�6 � v
2
2�7�|������������������{z������������������}

hard

;

m2
22 � �2v2

2 � �345v2
1|����������{z����������}

Z2sym

� 2�v2
1|�{z�}

soft

�
v1

v2
Re�v2

1�6 � 3v2
2�7�|������������������{z������������������}

hard

:

(3.12)
From these relations we obtain another form of real
vacuum potential, used in this paper:
V �
�1

2

�
��y1�1� �

v2
1

2

�
2
�
�2

2

�
��y2�2� �

v2
2

2

�
2
� �3��

y
1�1���

y
2�2� � �4��

y
1�2���

y
2�1� �

1

2
	�5��

y
1�2�

2 � H:c:


� f	�6��
y
1�1� � �7��

y
2�2�
��

y
1�2� � H:c:g �

1

2
��345 � 2 Re�67�	v2

2��
y
1�1� � v2

1��
y
2�2�


� Re	�6��
y
1�1� � �7��

y
2�2�
v1v2 � ��v2�1 � v1�2�

y�v2�1 � v1�2� � 2� Im��y1�2�v1v2 � �1
v4

1

8
� �2

v4
2

8
:

(3.13)
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In this form the quartic terms are as those in the initial
potential (2.1) but with particular values of parameters �i
equal to �i;rv (3.9). The mass term is determined via v.e.v.’s
v1, v2 and the parameters �i plus a single free dimension-
less parameter �. The quantity � / Imm2

12 is given by
Eq. (3.11). (Sometimes instead of � a dimensional parame-
ter �, defined via �2 � �v2, is used.)

In the above equation the soft Z2-violating contribution
is written as a sum of two terms, so that the variation of
each of them do not influence v.e.v.’s. The derivatives of
first term ( / �) over �k are equal to zero at the extremum
point h�ki � vk=

���
2
p

. The second term ( / �) is equal to
zero for real �1;2, independently on their absolute values.
This decomposition is less transparent in Lagrangians with
� � 0.

The vacuum energy density given by minimum (3.7) is
equal to

Evac � V�h�1i; h�2i�

� �
�1v4

1

8
�
�2v4

2

8
� �345

v2
1v

2
2

4

�R��6v
2
1 � �7v

2
2�
v1v2

2
: (3.14)

Remark.—The transformation (2.2) with 
 � 0, 	 �
��, or 	 � =2� � gives (v1 � v, v2 � 0) or (v1 � 0,
v2 � v), respectively. The sets of the obtained
Lagrangians form Higgs basis Lagrangian families; they
are pictured as gray shaded vertical strips in the reparame-
terization equivalent Lagrangian space presented in Fig. 1.
These cases cannot be described by our potential (3.13)
since some of the coefficients (3.10) and (3.11), used at the
transformation to this form, are singular at v2 ! 0 or v1 !
0. For both of these cases sin2� � 0. Therefore, our analy-
sis based on the potential (3.13) is valid only for
Lagrangians with

sin2� � 0 (3.15)

(domain of entire reparameterization equivalent space of
Fig. 1 between two gray strips). Some results for the Higgs
basis Lagrangian can be found in [10,18,19].
IV. PHYSICAL HIGGS SECTOR

The fields �1;2 change under the transformation (2.2).
We introduce now the, in principle, observable Higgs
fields and their couplings. These fields and couplings are
evidently reparameterization independent. (The reparame-
terization dependent are parameters describing the trans-
formation to this physical basis, see below.)

A standard decomposition of the fields �1;2 in terms of
component fields is made via
115013
�1 �
’�1

v1 � �1 � i�1���
2
p

0@ 1A; �2 �
’�2

v2 � �2 � i�2���
2
p

0@ 1A:
(4.1)

At ß � 0 such decomposition leads to a diagonal form of
kinetic terms for new fields ’�i ; �i; �i, while the corre-
sponding mass matrix is off diagonal. The mass-squared
matrix can be transformed to the block diagonal form by a
separation of the massless Goldstone boson fields, G0 �
cos��1 � sin��2 and G� � cos�’�1 � sin�’�2 , and the
charged Higgs boson fields H�:

H� � � sin�’�1 � cos�’�2 ; (4.2)

with the mass-squared equal to

M2
H� �

�
�� 1

2��4 � Re�5 � Re�67�

�
v2: (4.3)
A. Neutral Higgs sector—general introduction

By definition �1;2 are the standard C- and P-even (sca-
lar) fields. The field

A � � sin��1 � cos��2; (4.4)

is C-odd (which in the interactions with fermions behaves
as a P-odd particle, i.e. a pseudoscalar). In other words, the
�1;2 and A are fields with opposite CP parities (see e.g. [1]
for details). (Note that sometimes the set �1, �2, and A is
called the weak basis [10].)

The decomposition (4.1) results in the (symmetric)
mass-squared matrix M in the �1, �2, A basis

M �

M11 M12 M13

M12 M22 M23

M13 M23 M33

0@ 1A; (4.5a)

with

M11 �

�
c2
��1 � s2

��� s
2
� Re

�
�67

2
� ~�67

��
v2;

M22 �

�
s2
��2 � c2

��� c
2
� Re

�
�67

2
� ~�67

��
v2;

M33 �

�
�� Re

�
�5 �

1

2
�67

��
v2;

M12 � �

�
�� �345 �

3

2
Re�67

�
c�s�v

2;

M13 � �

�
��

1

2
Im ~�67

�
s�v

2;

M23 � �

�
��

1

2
Im ~�67

�
c�v2;

(4.5b)

where we use abbreviations c� � cos�, s� � sin�. As we
-9
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discuss below M33 is equal to the mass-squared of the
CP-odd Higgs boson in the CP-conserving case, namely,

M2
A � M33 � 	�� Re��5 �

1
2�67�
v2: (4.5c)

The masses squared M2
i of the physical neutral states

h1�3 are eigenvalues of the matrix M. These states are
obtained from fields �1; �2; A by a unitary transformation
R which diagonalizes the matrix M:
115013
h1

h2

h3

0@ 1A � R
�1

�2

A

0@ 1A; with RMRT � diag�M2
1;M

2
2;M

2
3�:

(4.6)

The diagonalizing matrix R can be written as a product of
three rotation matrices described by three Euler angles
�i 2 �0; � (we define ci � cos�i, si � sin�i):
R � R3R2R1; R1 �

c1 s1 0

�s1 c1 0

0 0 1

0BB@
1CCA; R2 �

c2 0 s2

0 1 0

�s2 0 c2

0BB@
1CCA; R3 �

1 0 0

0 c3 s3

0 �s3 c3

0BB@
1CCA;(4.7a)

R �

R11 R12 R13

R21 R22 R23

R31 R32 R33

0BB@
1CCA �

c1c2 c2s1 s2

�c1s2s3 � c3s1 c1c3 � s1s2s3 c2s3

�c1c3s2 � s1s3 �c1s3 � c3s1s2 c2c3

0BB@
1CCA:(4.7b)
We adopt the convention for masses that M2  M1 but
shall not require any other ordering.

Remarks.—Note that in the case where there is an exact
Z2 symmetry and �5 � 0 there appears an additional
Peccei-Quinn symmetry. Then A is a massless Goldstone-
like boson, MA � 0. The spontaneous violation of this
symmetry results in a light particle with mass, which is
generated due to nonperturbative effects.

For the basic Higgs Lagrangian (2.1) in the case of a soft
violation of Z2 symmetry and model II or I for the Yukawa
interaction (see below), the perturbative corrections give
no counterterms violating the Z2 symmetry in a hard way.
Therefore, with a suitable renormalization procedure, the
mixed kinetic terms do not appear in the Lagrangian in
h1�3 basis [the rotation (4.6) keeps kinetic term diagonal in
all orders]. At the same time, the mass terms and mixing
angles �i change due to the renormalization. Some aspects
of this procedure were discussed in [14].

B. Condition for CP violation

In general, the obtained Higgs eigenstates hi (4.6) have
no definite CP parity since they are mixtures of fields �1;2

and A having the opposite CP parities. This provides a CP
nonconservation within the Higgs sector.

The interaction of these Higgs bosons with matter ex-
plicitly violates the CP symmetry. Such mixing (and vio-
lation of CP) is absent if and only if M13 � M23 � 0. If
sin2� � 0 it means that Im ~�67 � 0 and � / Im�m2

12� � 0.
From the (3.11) it follows that the CP violation is absent if
all coefficients in potential of a real vacuum form are real.
A simple but cumbersome calculation shows that a similar
conclusion is valid also for the potential in a Higgs basis
form, i.e. for sin2� � 0. In other words, CP symmetry in
the Higgs sector is not violated if among different repar-
ameterization equivalent potentials a potential with all real
�i, m2

ij parameters can be found.
Vice versa, the complexity of some parameters of the
potential in a real vacuum form is a sufficient condition for
CP violation in the Higgs sector. For an arbitrary form of
Lagrangian (in entire reparameterization space) the neces-
sary and sufficient condition for CP violation in the Higgs
sector can be written as complexity of some of the combi-
nations [which are invariant under RPhT; see (2.6)]

��5�m
2
12�

2; ��6m
2
12; ��7m

2
12: (4.8)

The quantity of each is not a reparameterization invariant
one but these forms are very simple. (For the soft Z2

violated potential one should be Im��5�m
2
12�

2 � 0—cf.
[20].) The RPa invariant conditions for CP violation
[2,8] are more complex.

C. Diagonalization of the scalar CP-even sector

It is useful to start with the diagonalization of scalar h12i
sector of matrix M which is given by the rotation matrix
R1. It results in the neutral, CP-even Higgs fields which we
denote as h and ��H�, while the CP-odd field A remains
unmixed. (Sign minus at H is needed in order to match a
standard convention used for CP-conserving case, see e.g.
[1].) We got

h

�H

A

0BB@
1CCA � R1

�1

�2

A

0BB@
1CCA

with R1MRT
1 �M1 �

M2
h 0 M013

0 M2
H M023

M013 M023 M2
A

0BB@
1CCA; (4.9)

with M013;M
0
23 given in Eq. (4.14).

Let us stress that in the general CP nonconserving case
the states h, H, and A have no direct physical sense, they
are only subsidiary concepts useful in the calculations and
-10
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discussions. In the case of CP conservation (realized for
M013 � M023 � 0) the fields h, H, and A represent physical
Higgs bosons: h1 � h, h2 � �H, h3 � A. This is why we
use instead of �1 the mixing angle � 2 ��=2; =2�,

� � �1 � =2; (4.10)

which is customary for the CP-conserving case. Using this
angle we get

H � cos��1 � sin��2; h � � sin��1 � cos��2:

(4.11)

The diagonalization of the respective h12i corner of mass-
squared matrix M (4.5) results in

M2
h;H �

1
2�M11 �M22 �N �;

N �
����������������������������������������������
�M11 �M22�

2 � 4M2
12

q
:

(4.12)

The following expressions for angles are useful in some
applications:

cos2� �
M11 �M22

M2
H �M

2
h

; sin2� �
2M12

M2
H �M

2
h

;

sin2�
sin2�

�
��345 � �� 3=2 Re�67�v2

M2
H �M

2
h

:

(4.13)

D. Complete diagonalization

The above diagonalization keeps, in general, two off-
diagonal elements in matrix M1 (4.9):

M013 � c1M13 � s1M23

� �

�
� cos��� �� �

Im ~�67

2
cos��� ��

�
v2;

M023 � �s1M13 � c1M23

�

�
� sin��� �� �

Im ~�67

2
sin��� ��

�
v2: (4.14)

If at least one of these off-diagonal terms differs from zero,
the additional diagonalization is necessary, and the mass
eigenstates, being admixtures of CP-even and CP-odd
states, violate the CP symmetry. In this case we express
the physical Higgs boson states h1�3 via h, H, A:

h1

h2

h3

0BB@
1CCA � R3R2

h

�H

A

0BB@
1CCA

with RMRT � R3R2M1R
T
2R

T
3 �

M2
1 0 0

0 M2
2 0

0 0 M2
3

0BB@
1CCA:
(4.15)

The squared massesM2
i in Eq. (4.15) are the eigenvalues

of the mass-squared matrix M (4.5), i.e. they are roots of
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the corresponding cubic equation (see the solution, e.g., in
Ref. [21]). Note, that the trace of mass-squared matrix does
not change under the unitary transformations. Therefore,
we have mass sum rule

M2
1 �M

2
2 �M

2
3 � M2

h �M
2
H �M

2
A

� M11 �M22 �M33: (4.16)

The relation (4.15) allows us to discuss the general
CP-violating case in terms customary for the
CP-conserving one, i.e. with parameters MH;Mh, MA,
and �. The angles �2, �3 describe mixing of the
CP-even states (h, H) with the CP-odd state A.

E. Various cases of CP violation

Here we present various cases of CP violation.
If � � 0 and Im ~�67 � 0, CP symmetry is not violated.

The h, H, and A are physical Higgs bosons, with masses
given by Eqs. (4.12) and (4.5c), and �2 � �3 � 0.

If "13 � jM013=�M
2
A �M

2
h�j � 1 the Higgs boson h1

practically coincides with h (�2 � 0). The interaction of
h1 with other particles respects CP-symmetry (with an
accuracy �"13). The diagonalization of the residual h23i
corner of mass-squared matrix (4.9) with the aid of rotation
matrix R3 (4.7a) gives states h2 and h3. They are super-
positions of H and A states with potentially large mixing
angle �3:

tan2�3 �
�2M023

M2
A �M

2
H

; �2 � 0: (4.17a)

If MA � MH, the CP-violating mixing can be strong even
at small but nonzero jM023j=v

2. The states h2 and h3 have
no definite CP parity and the mass difference jM2

2 �M
2
3j is

larger than jM2
H �M

2
Aj.

3 For example, at MH � 300 GeV,
jMH �MAj � 5 GeV, and M023 � 0:02v2 we have jM2

2 �
M3

3j � 25 GeV, sin2�3 � 0:8.
At the growth of MH � MA the proper widths of H and

A become large so that theH and A peaks overlap strongly.
In such cases the tree approximation may be too rough for a
reliable calculation of masses Mi and mixing angles.
Therefore one should supplement the mass-squared matrix
(4.5) by a (complex) matrix of Higgs polarization operators
as is customary in the description of low energy phe-
nomena (see discussion in Sec. VII A).

If "23 � jM023=�M
2
A �M

2
h�j � 1, the Higgs boson h2

practically coincides with �H (�3 � 0). The interaction
of matter with h2 does not violate CP symmetry. Similarly
to the previous case, the diagonalization of the h13i part of
mass-squared matrix (4.9), with the aid of rotation matrix
R2(4.7a), gives states h1 and h3. They are superpositions of
-11
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h and A states with potentially large mixing angle �2:

tan2�2 �
�2M013

M2
A �M

2
h

; �3 � 0: (4.17b)

Similarly to the previous case, if MA � Mh, the
CP-violating mixing can be strong even at small M013=v

2.
The case of a weak CP violation combines both of the

described above cases (4.17). If both jM013j � jM
2
A �M

2
hj

and jM023j � jM
2
A �M

2
Hj the CP-even states h, H are

weakly mixed with the CP-odd state A, and parameters
�2 and �3 are simultaneously small:

tan�2 � s2 �
�M013

M2
A �M

2
h

� �2;

tan�3 � s3 �
�M023

M2
A �M

2
H

� �3;

�j�2j; j�3j � 1�:

(4.18a)

To the second order in s2 and s3 the corresponding
masses are

M2
1 � M2

h � s
2
2�M

2
A �M

2
h�;

M2
2 � M2

H � s
2
3�M

2
A �M

2
H�;

(4.18b)

withM3 given by the sum rule (4.16) . In the particular case
of a soft violation of Z2 symmetry we have

s2 � �
cos��� ��

M2
A �M

2
h

v2; s3 � ��
sin��� ��

M2
A �M

2
H

v2:

(4.18c)

The case of intense coupling regime with MA � Mh �
MH [23] may also give strong CP-violating mixing even
with small both � and Im ~�67.

Remark.—Note that in MSSM, etc. CP symmetry can be
violated by interaction of Higgs fields with different scalar
squarks, etc. In this case the mixed polarization operators
Im�HA and Im�hA appear leading to the CP violation in
the Higgs sector even for the CP-conserving Higgs poten-
tial. This violation can be visible if H and A or (and) h and
A are almost degenerate (see e.g. [24] and references
therein).

F. Couplings to gauge bosons

The gauge bosons V (W and Z) couple only to the
CP-even fields �1, �2. For the physical Higgs bosons hi
(4.6) one obtains simple expressions for their couplings,
which in terms of the relative couplings (1.3) read
115013
��i�V � cos�Ri1 � sin�Ri2; V � W or Z: (4.19a)

Note that due to unitarity of the transformation matrix R,
the following sum rule takes place [25]:

X3

i�1

���i�V �
2 � 1: (4.19b)

In particular, in the case of weak violation of the CP
symmetry considered above, with s2, s3 given by
Eqs. (4.18a), we obtain

��1�V � sin��� ��; ��2�V � � cos��� ��;

��3�V � �s2 sin��� �� � s3 cos��� ��:
(4.20)

G. Higgs self-couplings

The decomposition of the scalar fields �1;2 in terms of
physical fields hi allows us to identify the trilinear and
quartic couplings among them via parameters of
Lagrangian and elements of mixing matrix (4.7). They
were obtained in [26–28]. For completeness, we present
them for our specific form of Lagrangian (3.13) in the
Appendix.

In the case of soft Z2 symmetry violation in the CP
conservation case these equations simplify, and we present
in the Appendix self-couplings in this particular case as
well.

For this very case we present two useful forms for
trilinear couplings. First, we express these couplings in
terms of masses and mixing angles � and �. Second, for
the case of model II for Yukawa interaction (see below) we
find expressions for these trilinear couplings in terms of
masses and relative couplings to gauge bosons and quarks
(and the parameter �).

V. YUKAWA INTERACTIONS

A. General discussion

In the general case the Yukawa Lagrangian reads [10]

�LY � �QL	��1�1 � �2�2�dR

� ��1
~�1 � �2

~�2�uR
 � H:c:; (5.1)

with similar terms for the leptons. Here, QL refers to the 3-
family vector of the left-handed quark doublets, whereas
dR and uR refer to the 3-family vectors of the right-handed
field singlets (with qL � �1� �5�q=2 and ~�a � i
2��Ta ).
The Yukawa matrices � and � are three-dimensional ma-
trices in the family space with generally complex elements
(Yukawa parameters).

Obviously the transformation (2.2) induces changes in
the elements of matrices �i and �i. In particular, the
rephasing invariance is extended to the full Higgs�
Yukawa Lagrangian space if one supplements the trans-
-12
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formations (2.5) of fields �1;2 by the following transfor-
mations of fermion fields

QLk ! QLkei
qk ; dRk ! dRkei�
qk�
dk�;

uRk ! uRkei�
qk�
uk�:
(5.2a)

The corresponding transformations of the parameters of
Yukawa Lagrangian supplementing the transformations
(2.6) are

�1 ! �1

ei
d1

ei
d2

ei
d3

0@ 1Ae�i�1 ; �1 ! �1

ei
u1

ei
u2

ei
u3

0@ 1Aei�1 ;

�2 ! �2

ei
d1

ei
d2

ei
d3

0@ 1Ae�i�2 ; �2 ! �2

ei
u1

ei
u2

ei
u3

0@ 1Aei�2 :

(5.2b)

An existence of the off-diagonal (in family index) terms
in the Yukawa matrices results in the flavor-changing
neutral currents. The rephasing invariance under the trans-
formations (2.5) and (5.2b) allows to make real the diago-
nal elements of only one matrix � and one matrix �.
Complex values of the other elements of matrices �1;2

and �1;2 can result in the complex values of one-loop
corrections to some �’s and in consequence to the CP
violation in the Higgs sector discussed above (even for
real bare coefficients m2

12 and �’s). In the latter case, the
corresponding CP-violating terms should be included in
the Higgs Lagrangian in order to have a standard multi-
plicative renormalizability.

Note that in the case when simultaneously �1 � 0 and
�2 � 0 or �1 � 0 and �2 � 0 (i.e. right-handed fermion
of the type dR or uR interacts with both fields �1 and �2),
the counterterms corresponding to the one-loop corrections
to the Higgs Lagrangian contain operators of dimension 4,
which violate Z2 symmetry (1.2) in a hard way. They
contribute to the renormalization of parameters ß, �6,
and �7 [11,20]. Therefore, to have only the soft violation
of Z2 symmetry (to prevent �1 $ �2 transitions at small
distances), one demands that [4,29]

each right-handed fermion couples to
only one scalar field; either �1 or �2:

(5.3)

The case �2 � �1 � 0 with diagonal �1, �2 corre-
sponds to the well-known model II, while
�2 � �2 � 0—to the model I (see e.g. [1]). For the
Lagrangian having simultaneously model II and soft Z2

violated form these properties [vanishing �6, �7, ß � 0 and
(5.3)] are stable under the radiative corrections. Note that
general RPaT makes these properties of Lagrangian
hidden.

If for a given physical system both the model II (or
model I) and the soft Z2-violating Lagrangians exist but
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do not coincide, the radiative corrections transform a
Lagrangian to that with a true hard violation of Z2 sym-
metry. In this case only a general model like model III and
with true hard violation of the Z2 symmetry is renormaliz-
able. We do not study this case since we consider it
unnatural.

B. Model II

We limit ourselves to the case when the physical reality
allows for the description of Higgs-fermion interaction in a
form, where the fundamental scalar field �1 couples to
d-type quarks and charged leptons ‘, while �2 couples to
u-type quarks (we take neutrinos to be massless)—the
model II Lagrangians, which are represented by a crossed
vertical strip in Fig. 1.

Using matrices �1 � diag�gd1; gd2; gd3� and �2 �
diag�gu1; gu2; gu3�, we get

�LII
Y �

X
k�1;2;3

gdk �QLk�1dRk �
X

k�1;2;3

guk �QLk
~�2uRk

�
X

k�1;2;3

g‘k �‘Lk�1‘Rk � H:c: (5.4)

Certainly, the general RPaT (2.3) transforms Yukawa
Lagrangian to a form where this basic definition of
model II cannot be seen. These are hidden model II forms
of Lagrangian. In entire reparameterization equivalent
space these Lagrangians form a family shown by a crossed
vertical strip in Fig. 1 (in this figure we suggest that this
family coincides with soft Z2 symmetry violated family).

The suitable choice of phases in transformations (2.6)
and (5.2b) eliminates phase difference of vacuum expecta-
tion values and makes all Yukawa parameters real. It gives
a model II Lagrangian in a real vacuum form. We will use
such a Lagrangian below. It corresponds to the intersection
of crossed and black strips in Fig. 1.

As it was written above, different forms of Lagrangian
can have different values of tan�. To underline that we use
the mentioned Lagrangian, we will supply (only in this
section) quantity � in this case by a subscript II, �! �II.

Since v.e.v.’s of scalar fields are responsible for the
fermion mass similarly as in the SM, the relative Yukawa
couplings of the physical neutral Higgs bosons hi (1.3) are
identical for all u-type and for all d-type quarks (and
charged leptons). They can be expressed via elements of
the rotation matrix R (4.6):

��i�u �
1

sin�II
	Ri2 � i cos�IIRi3
;

��i�d �
1

cos�II
	Ri1 � i sin�IIRi3
:

(5.5)

(Note that e.g. the interaction �dL�g1 � ig2�dR � H:c: reads
for the Dirac fermions as �d�g1 � i�5g2�d.)

In the particular case of weak CP violation [with small
s2, s3 (4.18)] these relative couplings, together with the
-13



TABLE I. Basic relative couplings in the weak CP-violated 2HDM (II). In the upper lines results for the case with no CP violation
and in lower lines the corresponding corrections / s2, s3 are presented.

�V �u �d

h1 sin��II � �� ��0�
cos�
sin�II

��is2 cot�II�
cos�
sin�II

��is2 tan�II�

h2 � cos��II � �� ��0� �
sin�

sin�II
��is3 cot�II� �

cos�
cos�II

��is3 tan�II�

h3 0

��s2 sin��II � �� � s3 cos��II � ���

�i cot�II�
�s2

sin�
sin�II

� s3
cos�
sin�II

� �i tan�II�
�s2

sin�
cos�II

� s3
cos�

cos�II

�
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corresponding ones to gauge bosons, are presented in
Table I.

For the interaction of the charged Higgs bosons e.g. with
t quark, the Lagrangian (5.4) gives

LH�tb �
Mt

v
���
2
p cot�II �b�1� �5�H�t

�
Mb

v
���
2
p tan�II �b�1� �5�H�t� H:c: (5.6)

In the cases of weak CP-violating and soft Z2-violation
the relative coupling of the neutral scalar hi to the charged
Higgs boson can be written as

��i�H� �
�
1�

M2
i

2M2
H�

�
��i�V �

M2
i � �v

2

2M2
H�

Re���i�u � �
�i�
d �:

(5.7)
C. Set of useful relations in model II

The unitarity of the mixing matrix R allows us to obtain
a number of relations [25,30,31] between the relative
couplings of neutral Higgs particles to the gauge bosons
(4.19a) and fermions (5.5) (basic relative couplings). Since
such couplings can be treated as measurable quantities,
relations between them are especially useful in phenome-
nological analyses.

Let us remind here that in these relations we use the
quantity tan�II which coincides with the ratio v2=v1 only
for a model II Lagrangian (and does not have this simple
sense for other forms of Lagrangian). It is described via the
basic relative couplings for hi as

tan 2�II �
���i�V � �

�i�
d �
�

��i�u � �
�i�
V

�
1� j��i�d j

2

j��i�u j2 � 1
�

Im��i�d
Im��i�u

: (5.8)

Certainly, these expressions hold also for h;H; A, except
the last one, which is absent for h;H.
(1) T
he pattern relation among the basic relative cou-
plings holds of each neutral Higgs particle hi (in
particular also for h;H; A in the case of CP conser-
vation) [30,31]:
115013-14
���i�u � �
�i�
d ��

�i�
V � 1� ��i�u �

�i�
d ; or

���i�u � �
�i�
V ���

�i�
V � �

�i�
d � � 1� ���i�V �

2:
(5.9)
(2) A
 vertical sum rule for each basic relative coupling
�j for all three neutral Higgs bosons hi is given by
[32]: X3

i�1

���i�j �
2 � 1 �j � V; d; u�: (5.10)

For couplings to the gauge bosons this sum rule,
written also above in Eq. (4.19b), takes place inde-
pendently on a particular form of the Yukawa
interaction.
(3) T
he relations (5.5) allow us also to write for each
neutral Higgs boson hi a horizontal sum rule [32]:

j��i�u j2sin2�II � j�
�i�
d j

2cos2�II � 1: (5.11)

These sum rules guarantee that the cross section to
produce each neutral Higgs boson hi (or h;H; A) of
the 2HDM, in the processes involving Yukawa in-
teraction, cannot be lower than that for the SM
Higgs boson with the same mass [32].
(4) B
esides, the useful linear relation follows directly
from Eqs. (4.19a) and (5.5):

��i�V � cos2�II�
�i��
d � sin2�II�

�i�
u

� cos2�II�
�i�
d � sin2�II�

�i��
u

)

�
��i�V � Re�cos2�II�

�i�
d � sin2�II�

�i�
u �;

Im�cos2�II�
�i�
d � sin2�II�

�i�
u � � 0:

(5.12)
(5) T
he relation for CP violated parts of Yukawa cou-
plings is obtained by exclusion of �II from the
Eqs. (5.11) and (5.12)

�1� j��i�d j
2� Im��i�u � �1� j�

�i�
u j2� Im�

�i�
d � 0:

(5.13)
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1. Some applications

Remember that the relative couplings to quarks are
generally complex in contrast to the couplings to gauge
bosons. For hi (or h;H; A) we found the following results:

From (5.11) we get

j��i�u j � 1) tan�II � 1;

j��i�d j � 1) tan�II � 1:
(5.14)

It is instructive to consider now consequences of the rela-
tions (5.9)–(5.10) for the case when some basic relative
couplings of a Higgs boson are close to �1.

In virtue of (5.11) we have for moderate tan�

j��i�u j � 1) j��i�d j � 1: (5.15)

Note, that if tan� is extremely large or extremely small,
the horizontal sum rule allows j��i�d j to differ strongly from
1 or j��i�u j to differ strongly from 1, respectively [in agree-
ment with (5.14)].

Taking for definiteness the case of ��2�j � �1, we get:
From (5.10),

��2�u � �1) ��1�u � �i�
�3�
u ;

��2�d � �1) ��1�d � �i�
�3�
d :

(5.16)

For ��2�V ��1

if ��2�V � �1)

8>>>><>>>>:
�a� ��2�u � ��2�V or ��2�d � ��2�V ;

�b� ��2�u � ��2�d � ��2�V ;

�c� ��1�V � ��3�V � 0;
�d� ��1�u �

�1�
d � ��3�u �

�3�
d � �1:

(5.17)

The property (a) obtained from (5.8), means that the
coupling of h2 to at least one fermion type (u or d) is close
to the ��2�V . The property (b) follows from property (a) and
(5.12), at moderate tan�. The fact that the couplings of
Higgs bosons to gauge bosons are real leads, with the aid of
(5.10), to the property (c). Taking into account property (c)
and the pattern relation (5.8) we obtain property (d): the
product of Yukawa couplings for other Higgs bosons (not
h2) is close to the corresponding product for pseudoscalar
A in the CP-conserving case.

Certainly, results analogous to (5.16) and (5.17) hold in
the cases when ��1�j � �1 or ��3�j � �1.
D. Comments on radiative corrections

All results described so far were obtained in the tree
approximation. Let us discuss briefly the stability of rela-
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tions (5.9)–(5.13) among in principle measurable parame-
ters of the model in respect to the radiative corrections
(RC) (treated mainly as the one-loop effects).

Certainly, the observable quantities correspond to the
Lagrangian (and potential) with RC. Then one can treat the
presented relations (5.9)-(5.13) as obtained from the renor-
malized parameters [the elements of mass-squared matrix
M, the v.e.v.’s ratio tan� (3.7b) and the corresponding
Euler angles �i of Eq. (4.7)].

The approach which we adopt in our analysis is to deal
with the relative couplings (1.3)—the ratios of the cou-
plings of each neutral Higgs boson hi to the gauge bosons
W or Z and to quarks or leptons (j � W;Z; u; d; ‘ . . . ), to
the corresponding SM couplings. We assume that for each
such relative coupling the RC are included in both: the
couplings of the 2HDM (in the numerator) and those of SM
(in the denominator). The largest RC to the Yukawa � �qq
couplings are the one-loop QCD corrections due to the
gluon exchange. They are identical in the SM and in the
2HDM and cancel in both ratios �u and �d. The same is
valid for purely QED RC to all basic couplings as well as
for electroweak corrections including virtual Z or W
contributions.

The situation is different for the electroweak corrections
containing Higgs bosons in the loops. They are different in
the SM and 2HDM; moreover, their values depend on the
parameters of 2HDM. These type of RC may modify
slightly some relations presented in Sec. V. However, it is
natural to expect that these RC are small (below 1%)
except for some small corners of parameter space.

A delicate problem appears in a description of RC for
the physical states after EWSB. The physical Higgs states
become unstable and they have no asymptotic states.
Therefore, the mass matrix, obtained from (4.5) with RC,
and the scattering matrix, written in terms of these fields,
become non-Hermitian. The effects of instability can be
neglected when these Higgs bosons are almost stable (their
widths are much smaller than the masses and mass split-
tings). These effects should be taken into account in the
case of the approximate mass degeneracy, i.e. when some
of masses Mi are very close to each other. In such case a
good description of the masses and couplings is given by
an approximation in which a (complex) matrix of polar-
ization operators is added to the mass matrix (4.5). Full
treatment of this problem demands a subtle theoretical
analysis.
VI. CONSTRAINTS FOR HIGGS LAGRANGIAN

The parameters of Higgs potential are constrained by
three types of conditions:
(i) p
-15
ositivity (vacuum stability) constraints

(ii) m
inimum constraints
(iii) t
ree-level unitarity and perturbativity constraints,

which we will discuss below. The positivity and unitarity
constraints were discussed in literature till now only for the
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case of a soft Z2 violation [33–37], and the unitarity
constraints only in the CP-conserving case [38,39]. In
the same case of soft Z2 violation the latter constraints
were extended to the CP nonconserving case in [33]. Here
we present some new results for the case of hard Z2

symmetry violation (see [7]).

A. Positivity (vacuum stability) constraints

To have a stable vacuum, the potential must be positive
at large quasiclassical values of fields j�kj (positivity con-
straints) for an arbitrary direction in the ��1; �2� plane.
These constraints were obtained for the case of soft Z2

violation (see e.g. [33–37]). They are

�1 > 0; �2 > 0; �3 �
�����������
�1�2

p
> 0;

�3 � �4 � j�5j �
�����������
�1�2

p
> 0:

(6.1)

To obtain these constraints it is enough to consider only
quartic terms of the potential. Let ��y1�1� � x1  0,
��y2�2� � x2  0. Then ��y1�2� �

���������
x1x2
p

cei� with jcj �
1 (due to Schwartz theorem). The quadratic form V�x1; x2�
should be positive at large xi at different c and �. At x2 �
0 or x1 we obtain two first conditions. At c � 0 the
third inequality is derived. At c � �1 with variation of
� in respect to the phase of �5 we obtain the latter
constraint.

B. Minimum constraints

The condition for vacuum (3.1) describes the extremum
of potential but not obligatory the minimum. The minimum
constraints are the conditions ensuring that the above
extremum is a minimum for all directions in ��1; �2�
space, except of the Goldstone modes (the physical fields
provide the basis in the coset). This condition is realized if
the mass matrix squared for the physical fields is positively
defined, which means that its eigenvalues, i.e. the physical
mass-squared, are positive: M2

h1�3
;M2

H� > 0. In some ap-
plications the necessary conditions for that: positivity of all
diagonal elements, principal minors, and the determinant
of mass-squared matrix in different forms (4.5) or (4.15),
are useful (see discussion in Sec. III).

C. Unitarity and perturbativity constraints

The quartic terms of Higgs potential (�i) are trans-
formed to the quartic self-couplings of the physical
Higgs bosons. They lead, in the tree approximation, to
the s-wave Higgs-Higgs and WLWL and WLH, etc. scat-
tering amplitudes for different elastic channels. These
amplitudes should not overcome unitary limit for this
partial wave—that is the tree-level unitarity constraint.

The unitarity constraint was obtained first [4] in the
frame of minimal SM, with one Higgs doublet and Higgs
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potential V � ��=2���y�� v2=2�2 as the condition 3� �
8. In this model the Higgs boson massMH � v

����
�
p

and its
width �H, given mainly by a decay of Higgs boson to the
longitudinal components of gauge bosons WL, ZL (origi-
nated from the Goldstone components G�), grow with MH
as M3

H. Therefore, the unitarity limit corresponds simulta-
neously to the case where �H � MH, so that the physical
Higgs boson disappears. On the other hand it is well known
that for � * 8 at

���
s
p

> v
����
�
p

* v
�������
8
p

� 1:2 TeV the
Higgs boson self-interaction become strong; it is realized
as a strong interaction of WL and ZL (appeared as
Goldstone modes of a Higgs doublet at EWSB).
Therefore, the unitarity limit is a boundary (in �’s space)
between two different physical regimes. Below the unitar-
ity limit we have a more or less narrow Higgs boson with
well-known properties (and no strong interaction effects in
the Higgs sector). Above the unitarity limit the Higgs
boson disappears as a particle, discussion in terms of the
observable Higgs particle becomes senseless, and the
Higgs sector becomes strongly interacting.

Akeroyd et al. [39] have derived the unitarity constraints
for the 2HDM without a hard violation of Z2 symmetry for
the CP-conserving case, i.e. for real �1�5. In the general
CP nonconserving case with soft violation of Z2 symmetry
the parameter �5 is complex. The application of the RPhT
(2.6) allows us to eliminate the phase of �5, coming to the
rephasing equivalent Lagrangian with real �s5 � j�5j (m2

12

remains complex). Use of this Lagrangian allows us to
extend the results presented in [39] for unitary constraints
to the CP nonconserving case [33].

In the considered cases the Z2 symmetry is not violated
by the quartic terms of potential. Unitarity constraints are
written in Ref. [33] as the bounds for the eigenvalues
�Z2parity
Y� of the high energy Higgs-Higgs scattering matrix

for the different quantum numbers of an initial state: total
hypercharge Y, weak isospin �, and Z2 parity. These
bounds given separately for the Z2-even (�1�1 and
�2�2) and Z2-odd (�1�2) initial states are as follows:

j�Z2
Y��j< 8 with

�even
21� �

1

2
��1 � �2 �

�����������������������������������������
��1 � �2�

2 � 4j�5j
2

q
�;

�odd
21 � �3 � �4; �odd

20 � �3 � �4;

�even
01� �

1

2
��1 � �2 �

�������������������������������������
��1 � �2�

2 � 4�2
4

q
�;

�odd
01� � �3 � j�5j;

�even
00� �

3��1 � �2� �
����������������������������������������������������������
9��1 � �2�

2 � 4�2�3 � �4�
2

p
2

;

�odd
00� � �3 � 2�4 � 3j�5j: (6.2)

For real �5 these conditions coincide with those from [39],
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4Generally, this property is an important feature of any con-
sistent theory describing phenomena at some distances (ener-
gies), that is an independence of its predictions from the
dynamics at smaller distances, described by some mass scale
M [40].
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obtained however without the above mentioned identifica-
tion of various contributions.

At small � these constraints result in a moderately large
upper bound of 600� 700 GeV for MH, MA, MH� (see
examples in Table II of Sec. VII B), see also e.g. [39] for
the CP-conserving case. At large �, all Higgs bosons
except h1 become heavy without violating of the unitary
constraints (6.2).

The correspondence between a violation of the tree-level
unitarity limit and a lack of realization of the Higgs field as
a resonance (a particle), as in the minimal SM, takes place
in the 2HDM only in the case when all constraints (6.2) are
violated simultaneously. In the case when only some of
these constraints are violated the physical picture becomes
more complex. One can imagine, for example, a situation
when some of the Higgs bosons are ‘‘normal’’ scalars, i.e.
their properties can be estimated perturbatively, while the
others interact strongly at sufficiently high energy. In such
case, the unitarity constraints work differently for different
physical channels, in particular, for different Higgs bosons.

The perturbativity condition (constraint) for a validity of
a tree approximation in the description of some particular
phenomena (e.g. interactions of the lightest Higgs boson
h1) may be less restrictive than the presented above general
unitarity constraints. The explicit form of the perturbativity
constraint should be found;, however, this is a subject for a
separate consideration. In particular, the effective
parameters of perturbation theory for the Yukawa interac-
tion is g2=�4�2. Therefore, one of the necessary condi-
tions for the smallness of radiative corrections is
jgj � 4.

D. The case of hard Z2 violation

The analysis of the case with hard Z2 violation (i.e. the
potential with �6;7 terms) is more complicated. One can say
definitely that the positivity constraints (6.1) are valid for
some particular directions of a growth of the quasiclassic
fields �1;2. Similarly, unitarity constraints (6.2) hold for
such transition amplitudes which do not violate the Z2

symmetry.
For the hard violation of Z2 symmetry one should con-

sider new directions in the ��1; �2� space which appear
due to �6, �7 terms and the processes like �1�1 ! �1�2,
which violate the Z2 symmetry. Therefore the new posi-
tivity and unitarity constraints should include parameters
�6, �7. In any case conditions (6.2) are necessary for
unitarity [7].

VII. HEAVY HIGGS BOSONS IN 2HDM

Many analyses of 2HDM assume a SM-like physical
picture: the lightest Higgs boson h1 is similar to the Higgs
boson of the SM while other Higgs bosons escape obser-
vation being too heavy. Besides, many authors assume in
addition that masses of other Higgs bosons M are close to
the scale of new physics, M��, and that the theory
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should possess an explicit decoupling property4, i.e. the
correct description of the observable phenomena must be
valid for the (unphysical) limit M ! 1 [37,41– 44].
However, the 2HDM allows also for another realization
of the mentioned SM-like physical picture.

Looking on formulas from Sec. IV we see that the large
masses of Higgs particles may arise from large parameters
� or �0s, or both. Obviously, large values of �0s may be in
conflict with unitarity constraints, which is not the case for
large �. Below we discuss these two very distinct sources
of large masses, and their different phenomenological
consequences.

A. Decoupling of heavy Higgs bosons

In 2HDM the decoupling case corresponds to

�� j�ij: (7.1)

(It cannot be realized for the exact Z2 symmetry.) In this
case equations for masses and mixing angles �i (4.13)
simplify. First we find, with accuracy up to the �=� terms,
masses of the subsidiary Higgs states obtained at the first
stage of diagonalization (4.9)–(4.14). From Eqs. (4.12) we
derive

M2
h

v2
� c4

��1 � s4
��2 � 2s2

�c
2
��345|�����������������������{z�����������������������}

soft

� 4s2
�c

2
� Re�67|��������{z��������}
hard

;

M2
H

v2 � �� s2
�c

2
���1 � �2 � 2�345�|������������������������{z������������������������}

soft

� 	�c2
� � s

2
��Re ~�67 � �4s

2
�c

2
� � 1=2�Re�67
|���������������������������������������{z���������������������������������������}

hard

:

(7.2)

At �! 1 we have �� �! =2. It is useful to char-
acterize a deviation from this value by a parameter ��� �

=2� ��� ��. Using s2� � sin2�, c2� � cos2�, we get
from the second line of Eq. (4.13):

��� � �
Las2�

2�
;

La � s2
��2 � c

2
��1 � c2��345|��������������������{z��������������������}

soft

� Re�2c2��67 � ~�67�|���������������{z���������������}
hard

:

(7.3)

The subsequent complete diagonalization, described in
Sec. IV D, is simplified by condition (7.1). We get the
following results:
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1. The lightest Higgs boson h1

The Eqs. (4.14), (3.11) show that under the condition
(7.1) the element M013 of the matrix (4.9), responsible for
the mixing of scalar h with A, is small as compared to the
mass difference M2

A �M
2
h � �v2. Therefore, the state h1

is very close to h. The mixing angle �2, describing the
CP-odd admixture in this state, is given by s2 � j�j=���
1� (4.18a). The shift of the mass of h1 from the Mh value
(7.2) is given by Eq. (4.18c), i.e. M2

1 �M
2
h � j�j=�, and

can be neglected.
Since for �! 1 the ��� ! 0 the scalar h1 couples to

the gauge bosons and to the quarks and leptons in the
model II as in the SM (with accuracy j�j=�) even for the
general CP nonconserving case. Besides, h1 practically
decouples from H�, since the quantity ��1�H� �O�j�j=��
(5.7).

2. Higgs bosons h2, h3, and H�

The Eqs. (4.3), (4.5c), and (7.2) show that

M2
H� � M2

A � M2
H � v2�

�
1�O

�
j�j
�

��
; (7.4a)

i.e. H�, H, and A are very heavy and almost degenerate in
masses, and similarly for h2 and h3

M2
H� � M2

2 � M2
3 � v2�

�
1�O

�
j�j
�

��
: (7.4b)

That is one of the reasons to consider the condition of the
decoupling regime (7.1) in the form, used e.g. in Ref. [37],

M2
A � j�jv

2: (7.5)

In the considered case the CP-violating mixing between
H and A can be strong, i.e. mixing angle �3 given by
Eq. (4.17a), can be large as it was discussed in Sec. IV E.

Since ��h�V � 1, the coupling of H to gauge bosons is
very small, while A does not couple to gauge bosons
(Table I). With mixing between H and A states given by
angle �3, we have

��H�V � cos��� �� � ���;

��A�V � 0) ��2�V � � cos�3���; ��3�V � sin�3���:

(7.6a)

Besides, the couplings of H and A to the u-type fermions
coincide in their modules (see Table I) (and the same is
valid for d-type fermions and charged leptons), so that also
the corresponding couplings of h2;3 have equal modules,
while their phases, related to the CP violation in the
� �uh2;3u� and � �dh2;3d� vertices, are given by the mixing
angle �3. Using Eqs. (5.5) and (4.7) we obtain

��2�u � i��3�u � cot�e�i�3 ;

��2�d � �i�
�3�
d � � tan�ei�3 :

(7.6b)
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The corresponding Higgs decay widths are given mainly
by the fermionic contributions,

�H � �A � �2 � �3 �
3

16
cot2�

�
1�

m2
b

m2
t
tan4�

�
MH;

(7.6c)

��A � �H�=�H �mt=MH. (Here we took into account that
v2=m2

t � 2.) The
gauge boson contributions to these widths are negligibly
small (� L2

a=�). Therefore, we have jM2
H �MAj

2 &

�AMA;�HMH at very large �. In this case the equations
for �3, M2;3, and �2;3 become more complex, since they
include shift of the A;H poles due to their proper widths
(7.6c). The obtained mass matrix becomes non-Hermitian,
therefore, the mixing angle �3 becomes complex, and
states h2, h3 become nonorthogonal. It is seen from
Eq. (4.17), corrected for these effects:

tan2�3 �
2M023

M2
A �M

2
H � i�MA�A �MH�H�

(7.7)

(see [14,45] for more details of mixing). In this case
Eqs. (7.6b) are modified.

Note that with this strong overlapping of states experi-
mental distinguishing of states h2, h3 may be difficult. The
visible effects of CP violation in the fermion interaction
(like spin correlations, etc.) will be very similar in two
quite different cases: of a true CP violation and of a strong
overlapping of H and A states without the CP-violating
mixing.

B. Heavy Higgs bosons without decoupling

The option, where except of one neutral Higgs boson h1

(or h), all other Higgs bosons are reasonably heavy, can
also be realized in 2HDM for a relatively small �, i.e.
beyond the decoupling limit. In this case possible masses
of heavy Higgses are bounded from above by the unitarity
constraints for �i, discussed in Sec. VI C. These constraints
obtained for the CP-conserving case [39] can be generally
stronger in the case of CP violation, since the constraints
(6.2) puts limit on parameter j�5j while formulas for
masses contain solely Re�5. In the Table II we present
some particular examples of sets of parameters of the
potential for light h (mass 120 GeV) and heavy H, H�

for a nondecoupling case (small �) and satisfying unitarity
constraints (6.2).

The first three lines contain sets of parameters �i and �
for the case withoutCP violation with reasonably heavyH,
H�, A. One sees that these masses can be obtained for very
large or very small tan� and reasonably small � �
�Mh=v�

2, as well as for tan� � 1 with � � 0.
The fourth line of the Table II presents an example of the

natural set of parameters (see below), with heavy H and
H� in the weak CP violation case. Since here mixing
angles �2, �3 are small, the physical states h1, h2, h3 are
-18



TABLE II. Sets of parameters of potential for light h (mass of 120 GeV) and heavy H, H�

satisfying unitarity constraints in the nondecoupling case.

tan� �1 �2 �3 �4 �5 � Mh MH MA MH� s2 s3

50 1 6 5.5 �6 �6 0.24 120 600 600 600 0 0
0.02 6 1 5.5 �6 �6 0.24 120 600 600 600 0 0
1 6.25 6.25 6.25 �6 �6 0 120 600 600 600 0 0

10 4 8 4.4 �9 �0:5� 0:3i 0.24 120 700 206 556 0.09 0.02
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close to the states h, �H and A, existing in the CP
conserved case.

In the considered nondecoupling case couplings of the
lightest Higgs boson to the gauge bosons, quarks and
leptons can be either close to the corresponding SM values
(as in the decoupling case) or far from these values. The
case when all basic couplings of the lightest Higgs boson
are close to those of SM Higgs boson is discussed in detail
in paper [46], see also [30,31]. Note, that even in such cases
some nondecoupling effects due to heavy Higgs bosons
may appear, e.g. ��1�H� � 1, in contrast to the decoupling

limit, discussed in Sec. VII A, where ��1�H� � 0. It is worth
noticing that � parameter can be negative, which is not
possible in the decoupling limit.

C. A natural set of parameters of 2HDM

It is natural to consider 2HDM as low energy approxi-
mation of some more general theory operating at smaller
distances. In such theory fields �1 and �2 should differ in
some quantum numbers which cannot be seen at our rela-
tively large distances (like in MSSM). Therefore, it is
natural to assume that the 2HDM describing physical
reality allows an existence among the reparameterization
equivalent Lagrangians the one in which fields �k do not
mix at small distances (mixed kinetic term does not ap-
pear). That is the 2HDM with exact or softly violated Z2

symmetry. We assume such choice in this section.
Besides, it is naturally to assume that the CP symmetry

in the Higgs sector is violated only weakly at least for the
lightest Higgs boson h1. This assumption together with
rephasing invariance offers the basis for the selection of
the natural set of parameters of 2HDM.

The Eq. (4.9) shows that the CP symmetry for the light-
est Higgs boson is violated weakly if and only if jM013j �
jM2

A �M
2
hj. In view of (4.14), for the real vacuum

Lagrangian at �� � � =2 this condition can be rewrit-
ten in the form

v2jImm2
12j � v1v2jM

2
A �M

2
hj: (7.8)

For all other rephasing equivalent Lagrangians the con-
dition corresponding to the Eq. (7.8) contains both Imm2

12
and Rem2

12. Therefore, for the natural set of parameters of
2HDM we require that both jImm2

12j�v
2=v1v2� and

jRem2
12j�v

2=v1v2� are small for all rephasing equivalent
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Lagrangians. In virtue of (3.10) and (3.11) in the case of
soft violation of Z2 symmetry the same requirement is
transmitted to Im�5 and Re�5. Therefore, we define a
natural set of parameters as follows:

j�j; j�5j � j�1�4j: (7.9)

On the contrary, in the decoupling case, the term m2
12 has

the unnatural property Rem2
12 � jImm

2
12j. From this point

of view the decoupling case of 2HDM (7.1) is unnatural.
For the natural set of parameters of 2HDM the breaking

of the Z2 symmetry is governed by a small parameter �.
Because of the existence of a limit when Z2 symmetry
holds, a small soft Z2 violation in the Higgs Lagrangian
and the Yukawa interaction remains small also beyond the
tree level. In this respect we use the term natural in the
same sense as in Ref. [5]. (Note that also nondiagonal
Yukawa coupling matrices �1 and �2 (leading to FCNC)
are unnatural in this very sense).

In accordance with Eq. (4.5), for the natural set of
parameters also MA cannot be too large (see Table II).
This opportunity is not ruled out by data, see for
CP-conserving case e. g. [47].

Remark on Yukawa sector.—In the case of true hard
violation of Z2 symmetry the Yukawa sector cannot be
described by a simple model of type I or II, i.e. models like
model III should be realized. However in such models the
FCNC effects (and CP violation in the Higgs sector) are
naturally large. That is an additional reason why the natural
set of parameters of 2HDM corresponds to the case of
exact or softly violated Z2 symmetry with the model II or
model I for Yukawa interaction.
VIII. SUMMARY AND DISCUSSION OF RESULTS

In this paper we analyze various aspects of the two-
Higgs-doublet extension of the SM from the point of
view of its symmetries. We critically discuss the standard
formulations as well as applications of the 2HDM. Let us
describe our approach and summarize main results and
observations presented in the paper.

At the beginning we stress that the CP violation can be
implemented in a model in a few different ways. In this
paper we consider mainly the CP violation governed by
complex parameters of the Higgs Lagrangian. However,
there are other ways of implementation of CP violation.
For example the one mentioned in Sec. VA, which relies
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on complex elements of the Yukawa matrices. Another
way, used in fact in many analyses of MSSM, is based
on the CP nonconservation in the couplings of Higgs
bosons to superpartners. The renormalizability demands
to add in such cases the CP-violating terms also in the
Higgs Lagrangian.

In the analysis of symmetry properties of the model we
introduce the 16-dimensional space of Higgs Lagrangians
with coordinates given by the Lagrangian parameters.
Within this space there is the three-dimensional sub-
space— the reparameterization equivalent subspace,
formed by Lagrangians which can be obtained from a
chosen one by the reparameterization transformation
RPaT’s (2.3). All the Lagrangians from this subspace
describe the same physical reality (a reparameterization
invariance). Different properties of the physical model can
either be explicit or hidden for the different Lagrangians in
the mentioned reparameterization equivalent subspace.
Accordingly, different families of these Lagrangians are
suitable for the study of different properties of the model.
Obviously, all measurable quantities characterizing a sys-
tem (like the coupling constants and masses) are repara-
meterization invariant while many other parameters of
theory (like tan�) are reparameterization dependent.

Certainly the concept of the reparameterization invari-
ance, etc. can be easily generalized to a description of other
models, e.g. with three or more Higgs doublets sector, etc.
and for description of Yukawa interactions.

The reparameterization equivalent space is naturally
sliced to the rephasing equivalent subspaces, which are
described by transformations (2.2) with 	 � 0 (the
RPhT’s) represented by vertical strips in Fig. 1. One can
characterize these subspaces e.g. by the value of ratio of
v.e.v.’s tan�.

The CP violation in the Higgs sector means that the
physical neutral Higgs bosons have no definite CP parity.
The necessary condition for such CP violation is that
some coefficients of the Higgs Lagrangian are complex.
However, complex parameters can appear also in the
CP-conserving case if the pertinent form of Lagrangian
is not chosen. We found a specific, real vacuum form of a
Lagrangian in which complexity of the parameters of
Higgs Lagrangian becomes a sufficient condition for the
CP violation in the Higgs sector. For the arbitrary form of
Lagrangian we give a simple necessary and sufficient
condition for the CP violation in the Higgs sector (4.8).
This condition is simpler to use than a similar condition
written via IRpaT in Ref. [8].

Some authors consider also the case when basic Higgs
Lagrangians give no CP violation in the Higgs sector but
this violation appears through the Yukawa interaction. The
series of combination of Higgs self-couplings and Yukawa
couplings form reparameterization independent invariants,
describing condition for the CP violation. Note that in this
case loop corrections from the Yukawa interaction produce
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CP violated terms in the Higgs Lagrangian. From general
renormalizability such terms must be included in the basic
Higgs Lagrangian and our simple criteria for CP violation
(4.16) seem to be sufficient.

The 2HDM provides the mechanism of the EWSB
which allows for potentially large CP violation and
FCNC effects. These phenomena are controlled to a large
extent by the Z2 symmetry under transformation (1.2) of
the Lagrangian and various degrees of its violation. If the
Z2 invariance holds, then the considered doublets of scalar
fields �1;2 are the true fundamental basic fields before
EWSB. The soft violation of Z2 symmetry is given by
the mixed mass term �m2

12 in the Higgs potential. In this
case two doublets �1;2 mix near the EWSB scale but they
do not mix at sufficiently small distances. The RPaT con-
verts such Higgs Lagrangian, Ls, to the form with terms
typical for a hard violation of the Z2 symmetry (a hidden
soft Z2 violation form of Lagrangian). However, in this
case the parameters of the Higgs potential are interrelated
as it is given by Eq. (2.7) [see also Eqs. (2.8)]. It prevents an
appearance of a running coefficient at the mixed kinetic
term.

In the case of true hard violation of Z2 symmetry even
the discussion of Higgs potential alone is incomplete, since
it is necessary to consider more general Higgs Lagrangian
with the mixed kinetic term. The coefficient of this mixed
term of Lagrangian ß (2.1b) generally runs due to the loop
corrections. At some fixed distance (renormalization scale)
the kinetic part of the Lagrangian can be removed by
diagonalization like (2.9) but this term is restored at other
distances (renormalization scales) due to the loop correc-
tions from hard terms of the Higgs potential. We did not
find a fully consistent formulation of 2HDM in the case
when the mixed kinetic term is present. We argue, that due
to the mentioned relation to the phenomena at small dis-
tances, the case with soft violation of Z2 symmetry looks
much more attractive and natural.

In our calculation we keep separately contributions of
soft and hard violations of Z2 symmetry. Nevertheless, our
discussion of a hard violation of Z2 symmetry is as incom-
plete as all other existing analyses, since effects related to
the running coefficient of the mixed kinetic term should be
analyzed in addition.

The EWSB appears at the minimization of a Higgs
potential giving the vacuum expectation values for two
scalar fields, �1 and �2.For some set of parameters of
Lagrangian these v.e.v.’s describe a standard (neutral) vac-
uum. Generally, phases of these v.e.v.’s differ from each
other. However, this phase difference can be eliminated by
a suitable rephasing transformation giving the mentioned
above real vacuum Lagrangian. We prefer to express the
mass coefficients of Higgs potential via v1;2 and the free
dimensionless parameter � / Rem2

12, (3.10). We use in our
analysis such forms of Lagrangians.

For other sets of parameters of Lagrangian the condition
of minimum of the potential defines also exotic ‘‘charged
-20
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vacuum’’ with vacuum energy larger than that for the
standard vacuum [15,16].

Some physical model (’’physical reality’’) is described
by many reparameterization equivalent Lagrangians. On
the contrary, the description of Lagrangian in terms of the
observable Higgs fields hi is unique (reparameterization
invariant). For the neutral Higgs sector the transition from
fields �1 and �2 to the basis of observable Higgs bosons is
rather complicated. We have performed this in two steps.
First, we diagonalize the CP-even part of the mass-squared
matrix. For the Lagrangian in a real vacuum form this step
is identical to the one used in the CP-conserving case. It
allows us to describe the general CP-violating case in
terms of the well-known states h, H, and A treated now
as the subsidiary states (i.e. having no direct physical
meaning). Using these states it becomes evident that the
existence of complex coefficients in the Higgs potential in
a real vacuum form is a necessary and sufficient condition
for the CP violation in the Higgs sector. Our procedure
allows us to analyze easily various important cases when
one of neutral Higgs boson is almost the CP-even one,
while two other neutral Higgs bosons strongly mix, i.e. CP
symmetry can be strongly broken in the processes with
exchange of these Higgs bosons.

Considering the Yukawa interactions we note that for a
case of true hard violation of Z2 symmetry the most general
form of this interaction (e.g. model III) should be imple-
mented. However, we limit ourselves to models in which
each fermion isosinglet couples to only one Higgs field and
discuss the flavor structure of such couplings. We consider
in detail the model II. We assume that the model II
Lagrangian family coincides with the above mentioned
family of Lagrangians with explicit softly violated Z2

symmetry. We prefer to use the Lagrangian in the form
which corresponds to the real vacuum, model II and exact
or softly violated Z2 symmetry in the potential.

In this paper we extend our approach introduced earlier
for the CP-conserving case in [30,31] to the analysis of the
CP nonconserving case. This approach relies on using the
measurable (in principle) Higgs boson masses and basic
relative couplings (1.3) plus parameter � (3.10) instead of
variety of parameters � and mixing angles �i, �. This way
phenomenological analyses become more transparent.

We present a series of relations between different rela-
tive couplings of each Higgs boson, (5.9)–(5.13). Among
these relations there are well-known sum rules, the pattern
relation (obtained by us in [30] for the CP-conserving case
and in [31] for the CP violation), new linear relations and
their combinations. Equation (5.8) represents the formulas
which allow us to determine the quantity tan� for the
Lagrangian in model II form, tan�II.

Using these relations we obtained various useful rela-
tions among couplings of Higgs bosons to quarks and
gauge bosons in the case when some of these couplings
(or their absolute values) are close to the corresponding
values in the SM (5.14)–(5.17).
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As the mentioned relations between relative couplings
are of great phenomenological importance it was crucial to
check how the radiative corrections influence them; we
argue that radiative corrections change only weakly the
considered relations.

Next we combine and discuss different types of con-
straints on the parameters of the Higgs potential (the
positivity condition or—in other words—the vacuum
stability condition at large quasiclassical values of �k,
the existence of a minimum, the tree-level unitarity con-
straint from the Higgs-Higgs scattering matrix) both in the
CP-conserving and CP-violating cases. Some of them
were known until now only in the CP-conserving case.
All known results were obtained for the case of soft viola-
tion of Z2 symmetry only. We ascertained that some of
these results are valid also in the case of hard violation of
Z2 symmetry, as a part of a more general system of
constraints.

We perform the detailed discussion on an opportunity
that in the 2HDM there is one light Higgs boson, while
others are much heavier, so that they can escape observa-
tion. As it was already claimed in [31,37], such a situation
can be realized in the different regions of �. At �� j�ij
we have decoupling case in which the lightest Higgs
bososn h1 is very similar to the SM Higgs boson, while
other Higgs bosons except h1 are very heavy and almost
degenerate in masses. We found simple expressions for
their couplings which hold for a possible strong
CP-violating mixing among them (7.6).

At small �, the reasonably heavy Higgs bosons, lighter
however than�600 GeV, may appear without violation of
unitarity constraints. This small � option looks more natu-
ral from the point of view of the rephasing invariance. Here
one can expect some nondecoupling effects due to the
heavy Higgs bosons [30,31,48]. The detailed analysis of
various SM-like realizations and some nondecoupling ef-
fects is presented in [46].

In the Appendix we present for completeness a whole set
of self-couplings of physical Higgs bosons in the general
CP-violating case. In addition, we present simple formulas
for the CP-conserving, soft Z2-violating case. In addition
to the well-known forms of these couplings, for the case
when the Yukawa interaction is described by model II, we
express all trilinear couplings via the Higgs masses and
their relative couplings to the gauge bosons and fermions
of the physical Higgs bosons entering corresponding vertex
and the parameter �.
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APPENDIX A: HIGGS SELF-COUPLINGS

The fact that the charged Higgs field H� and axial field
A are expressed via fields �k and angle � allows us to
obtain Higgs self-couplings in a two-step procedure. At the
first step we come to basis �1, �2,H�, A (4.1)–(4.4). Then
we perform transformation (4.7). It results in the appear-
ance of a suitable number of matrix elements Rij in addi-
tion to factors bA or aA [Eqs. (A1) and (A2)], which are
expressed via couplings �i, given in the real vacuum form,
and mixing angle �. In the equations below the symbol �
denotes a sum over permutations over summation indices
i; j, etc. (giving factors of n! for n identical indices).

For the couplings involving the charged Higgs bosons
we have

ghiH�H� � v
X

m�1;2;3

Rimbm;

ghihjH�H� �
X�

m�n�1;2;3

Ri0mRj0nbmn;

gH�H�H�H� � 2	sin4��1 � cos4��2

� 2cos2�sin2�Re�345

� 4 cos� sin��sin2�Re�6 � cos2�Re�7�
:

(A1)
115013
For the couplings among the neutrals we have

ghihjhk � v
X�
Ri0mRj0nRk0oamno;

ghihjhkhl �
X�
Ri0mRj0nRk0oRl0pamnop;

(A2)

with m � n � o � p � 1; 2; 3.
The coefficients bm, bmn, amno, amnop presented below

agree with the corresponding results of [26–28].

1. General formulas

a. Trilinear couplings

The trilinear couplings involving the charged Higgs
bosons are given by Eq. (A1), with

b1 � cos�fsin2���1 � �345� � �3

� cos� sin�	�tan2�� 2�Re�6 � Re�7
g;

b2 � sin�fcos2���2 � �345� � �3

� cos� sin�	Re�6 � �cot2�� 2�Re�7
g;

b3 � cos� sin� Im�5 � sin2� Im�6 � cos2� Im�7: (A3)

The trilinear couplings among neutral Higgs fields are
given by Eq. (A2), where:
a111 �
1
2�cos��1 � sin�Re�6�; a112 �

1
2�sin�Re�345 � 3 cos�Re�6�;

a113 � �
1
2	cos� sin� Im�5 � �1� 2cos2�� Im�6
; a122 �

1
2�cos�Re�345 � 3 sin�Re�7�;

a123 � �Im�5 � cos� sin��Im�6 � Im�7�;

a133 �
1
2fcos��sin2��1 � cos2�Re�345 � 2 Re�5� � sin�	sin2�Re�6 � cos2�Re��7 � 2�6�
g;

a222 �
1
2�sin��2 � cos�Re�7�; a223 � �

1
2	cos� sin� Im�5 � �1� 2sin2�� Im�7
;

a233 �
1
2fsin��cos2��2 � sin2�Re�345 � 2 Re�5� � cos�	cos2�Re�7 � sin2�Re��6 � 2�7�
g;

a333 �
1
2�cos� sin� Im�5 � sin2� Im�6 � cos2� Im�7�:

(A4)
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b. Quartic couplings

The quartic couplings involving two charged and two
neutral Higgs fields are given by Eq. (A1), where:

b11 � sin2��1 � cos2��3 � 2 cos� sin�Re�6;

b12 � �2	cos� sin���4 � Re�5� � sin2�Re�6

� cos2�Re�7
;

b13 � 2 cos�	cos� sin� Im�5 � sin2� Im�6

� cos2� Im�7
;

b22 � cos2��2 � sin2��3 � 2 cos� sin�Re�7;

b23 � 2 sin�	cos� sin� Im�5 � sin2� Im�6

� cos2� Im�7
;

b33 � sin4��1 � cos4��2 � 2cos2�sin2�Re�345

� 4 cos� sin��sin2�Re�6 � cos2�Re�7�:

(A5)

The quadrilinear couplings among four neutral Higgs
fields are given by Eq. (A2), where:

a1111 �
1
8�1; a1112 �

1
2 Re�6;

a1113 � �
1
2 cos� Im�6; a1122 �

1
4 Re�345;

a1123 � �
1
2�cos� Im�5 � sin� Im�6�;

a1223 � �
1
2	sin� Im�5 � cos� Im�7
;

a1133 �
1
4	sin2��1 � cos2���3 � �4 � Re�5�

� 2 cos� sin�Re�6
;

a1222 �
1
2 Re�7; a2222 �

1
8�2;

a2223 �
1
2 sin� Im�7;

a1233 � �
1
2	�2 cos� sin�Re�5 � sin2�Re�6

� cos2 Im�7
;

a1333 �
1
2 cos�	cos� sin� Im�5 � sin2��6

� cos2� Im�7
;

a2233 �
1
4	cos2��2 � sin2���3 � �4 � Re�5�

� 2 cos� sin�Re�7
;

a2333 �
1
2 sin�	cos� sin� Im�5 � sin2� Im�6

� cos2 Im�7
;

a3333 �
1
8	sin4��1 � cos4��2 � 2cos2�sin2�Re�345

� 4 sin� cos��sin2�Re�6 � cos2�Re�7�
:

(A6)
2. The CP-conserving, soft Z2-violating case

Below we collect couplings for the CP-conserving, ex-
plicitly soft Z2-violating case, �6 � �7 � Im�5 � 0.
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a. Couplings in terms of �i, �, �

First, for completeness we present well-known cou-
plings using our potential.

Trilinear couplings.—For the CP-even Higgs bosons we
have

ghhh � 3v	� cos�sin3��1 � sin�cos3��2

� 1
2 sin2� cos��� ���345
;

gHhh � vf3 cos� cos�sin2��1 � 3 sin� sin�cos2��2

� 	�1� 3sin2�� cos��� �� � sin� sin�
�345g;

gHHh � vf�3 cos� sin�cos2��1 � 3 sin� cos�sin2��2

� 	cos� sin�� �1� 3sin2�� sin��� ��
�345g;

gHHH � 3v	cos�cos3��1 � sin�sin3��2

� 1
2 sin2� sin��� ���345
: (A7)

For couplings involving the CP-odd A we have

gAAA � gAhh � gAHH � gAHh � gAH�H� � 0;

gAAh � v	� cos�sin2� sin��1 � sin�cos2� cos��2

� �sin3� cos�� cos3� sin���345

� 2 sin��� ���5
;

gAAH � v	cos�sin2� cos��1 � sin�cos2� sin��2

� �cos3� cos�� sin3� sin���345

� 2 cos��� ���5
: (A8)

In the charged Higgs sector we have

ghH�H�

v
�

sin2�
2
	sin� sin��1 � cos� cos��2

� cos��� ���345
 � sin��� ���3;

gHH�H�

v
�

sin2�
2
	sin� cos��1 � cos� sin��2

� sin��� ���345
 � cos��� ���3: (A9)

Quartic couplings.—In the CP-even sector we have: 3
2

ghhhh � 3	sin4��1 � cos4��2 �
1
2sin22��345
;

ghhhH �
3
2 sin2�	�sin2��1 � cos2��2 � cos2��345
;

ghhHH �
3
4sin22���1 � �2� � �1�

3
2sin22���345;

ghHHH �
3
2 sin2�	�cos2��1 � sin2��2 � cos2��345
;

gHHHH � 3	cos4��1 � sin4��2 �
1
2sin22��345
: (A10)
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Quartic couplings involving the CP-odd A:

ghhhA � ghhHA � ghHHA � gHHHA � ghAAA � gHAAA � 0;

ghhAA � sin2�sin2��1� cos2�cos2��2

��cos2�sin2�� sin2�cos2���345

�f1� cos	2�����
g�5;

ghHAA �
1
2 sin2�	�sin2��1� cos2��2� cos2��345


� sin	2�����
�5;

gHHAA � sin2�cos2��1� cos2�sin2��2

��cos2�cos2�� sin2�sin2���345

�f1� cos	2�����
g�5;

gAAAA � 3	sin4��1� cos4��2�
1
2sin22��345
: (A11)

Quartic couplings involving the charged Higgs bosons:

ghhH�H� � sin2�sin2��1 � cos2�cos2��2

� 1
2f1� cos	2��� ��
g�3

� 1
2 sin2� sin2��345;

ghHH�H� �
1
2 sin2���sin2��1 � cos2��2�

� 1
2 sin	2��� ��
�3 �

1
2 sin2� cos2��345;

gHHH�H� � sin2�cos2��1 � cos2�sin2��2

� 1
2f1� cos	2��� ��
g�3

� 1
2 sin2� sin2��345;

ghAH�H� � gHAH�H� � 0;

gAAH�H� � sin4��1 � cos4��2 �
1
2sin22��345;

gH�H�H�H� � 2	sin4��1 � cos4��2 �
1
2sin22��345
:

(A12)
b. Trilinear couplings in terms of masses

It is useful to express parameters �i via Higgs boson
masses and mixing angles with the aid of Eqs. (4.5) and
(4.12). We get

�1 �
1

cos2�

�
cos2�M2

H � sin2�M2
h

v2 � �sin2�
�
;

�2 �
1

sin2�

�
sin2�M2

H � cos2�M2
h

v2 � �cos2�
�
;

�345 �
sin2�
sin2�

M2
H �M

2
h

v2 � �;

�4 �
M2
A � 2M2

H�

v2 � �;

�5 � �
M2
A

v2 � �: (A13)

Now one can express triple Higgs couplings via masses �
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and �—this way a dependence on the parameter �
emerges.

For CP-even Higgs bosons

ghhh �
3

v sin2�
	�cos�cos3�� sin�sin3��M2

h

� cos2��� �� cos��� ���v2
;

gHhh �
1

2v sin2�
cos��� ��	sin2��2M2

h �M
2
H�

� �sin2�� 3 sin2���v2
;

gHHh �
1

2v sin2�
sin��� ��	� sin2��M2

h � 2M2
H�

� �sin2�� 3 sin2���v2
;

gHHH �
3

v sin2�
	�sin�cos3�� cos�sin3��M2

H

� sin2��� �� sin��� ���v2
: (A14)

For interactions with A

ghAA �
1

v

�
�2M2

A �M
2
h� sin��� ��

� �M2
h � �v

2�
cos��� ��
sin� cos�

�
;

gHAA �
1

v

�
�2M2

A �M
2
H� cos��� �� � �M2

H � �v
2�

�
cos��� ��
sin� cos�

�
: (A15)

For interactions with H�

ghH�H� �
1

v

�
�2M2

H� �M
2
h� sin��� ��

�
�M2

h � �v
2� cos��� ��

sin� cos�

�

�
1

v

�
�2M2

H� �M
2
h � 2�v2� sin��� ��

� 2�M2
h � �v

2� cos��� �� cot2�
�
;

gHH�H� �
1

v

�
�2M2

H� �M
2
H� cos��� ��

�
�M2

H � �v
2� sin��� ��

sin� cos�

�

�
1

v
	�2M2

H� �M
2
H � 2�v2� cos��� ��

� 2�M2
H � �v

2� sin��� �� cot2�
: (A16)

c. Trilinear couplings in terms of masses and relative
couplings in model II

For the model II for the interaction with fermions we
find (denoting by � either h or H)
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g��� �
3

2v
	���u � �

�
d � �

�
V�

�
u �

�
d ��M

2
� � �v

2� � ��V�v
2
;

g�1�2�2
� �

1

2v
��1
V 	�

�2
u �

�2
d �2M

2
�2
�M2

�1
� 3�v2� � �v2
 ��1 � �2�;

g�AA �
1

v
	�2M2

A �M
2
���

�
V � �M

2
� � �v

2����u � �
�
d �
;

gA�1�2
� gAAA � gAH�H� � 0;

g�H�H� �
1

v
	�2M2

H� �M
2
���

�
V � �M

2
� � �v

2����u � �
�
d �
:

(A17)
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