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We report exact analytical expressions relating the fundamental parameters describing the neutralino
sector in the context of the left-right supersymmetric model. The method used for such effects is the
projector formalism deduced without taking into account the Jarlskog’s projector formulas. Also,
expressions for the neutralino masses and the neutralino mixing matrix are determined . The results
are compared with numerical and analytical ones obtained in similar scenarios in the context of the
minimal supersymmetric standard model.
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I. INTRODUCTION

In Ref. [1], based on Jarlskog’s treatment of the
Cabibbo-Kabayashi-Maskawa matrix, the neutralino ob-
servables, in the context of the minimal supersymmetric
standard (MSSM), were described in terms of projectors.
There exact analytic expressions for the neutralino masses
were also obtained by diagonalizing the associated real
symmetric neutralino mass matrix. Then the same formal-
ism was applied to treat a more general case where the
associated neutralino mass matrix was given by a complex
symmetric matrix [2]. In this last reference, several
CP-conserving and -violating possible scenarios were con-
sidered in the study of the determining parameters of the
theory.

The purpose of this work is first to apply the projector
formalism [1,2] to study the existing connections among
the fundamental parameters describing the neutralino sec-
tor in the context of the left-right supersymmetric (LR
SUSY) model [3,4], and second, to compare the results
obtained to the ones obtained in the context of the MSSM
[2].

In the LR SUSY model which is based on the gauge
group SU�2�L � SU�2�R � U�1�B�L [5], the masses and
mixing matrices of the neutralinos and charginos are de-
termined by ML , MR, the left-right gaugino mass parame-
ters associated with the gauge group SU�2�L and SU�2�R,
respectively, MV , the gaugino mass parameter associated
with the gauge group U�1�B�L, �, the Higgsino mass
parameter and the ratio tan�k � ku=kd, where ku and kd
are the vacuum expectation values of the Higgs fields
which couple to d-type and u-type quarks, respectively
[6–13].

In Sec. II, we give a brief description of the LR SUSY
model and we write the Lagrangian density describing the
neutralino sector in terms of the two-component fermion
fields and the neutralino mass matrix expressed in terms of
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the fundamental parameters ML, �, tan�k, MR, and MV ,
where ML and � are considered, in general, as complex
numbers. In Sec. III, we compute the exact analytical
expressions for the neutralino masses and the correspond-
ing diagonalizing unitary matrix. Also, we plot these
masses versus the Higgsino parameter, in both the
CP-conserving and CP-violating cases, and we compare
the corresponding CP-conserving results with the numeri-
cal ones obtained in [12]. In Sec. IV, the projector formal-
ism [14] for this model is revised. Based on the explicit
construction of the diagonalizing neutralino mass matrix,
new formulas for the so-called reduced projectors are
constructed without appealing to the Jarlskog’s projector
formulas [14,15]. The fundamental properties of these
reduced projectors as well as the projectors and the so-
called pseudoprojectors [2] are proved. Also, the equiva-
lence of these reduced projectors with those obtained using
the Jarlskog’s formulas is proved. In Sec. V, using the new
reduced projector formulas, we express the complex pa-
rameter ML, in terms of the so-called eigenphases [2] and
the rest of the parameters. Moreover, taking advantage of
the mentioned equivalence we get a novel formula express-
ing the norm of this complex parameter in terms of its
phase and of the remaining fundamental parameters. An
alternative method to disentangle these parameters is pre-
sented in the Appendix. In Sec. VI, we compare the ex-
pected values of the fundamental parameters in similar
scenarios predicted by both the LR SUSY model and the
MSSM. Finally, in Sec. VII, we give our conclusions and
prospects.

II. A BRIEF DESCRIPTION OF THE LEFT-RIGHT
SUPERSYMMETRIC MODEL

In the LR SUSY model the full Lagrangian is given by
[4]

L � Lgauge �Lmatter �LY �V �Lsoft; (2.1)

where Lgauge contains the kinetic and self-interaction terms
for the boson vector fields �W�; W0�L;R and V0, and the
-1 © 2005 The American Physical Society
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Dirac Lagrangian of their corresponding superpartners,
i.e., the gaugino fields ���; �0�L;R and �0

V ; Lmatter contains
the kinetic terms for the fermionic and bosonic matter
fields, the Higgs fields and interaction of the gauge and
matter multiplets; V is a scalar potential, LY (Yukawa
Lagrangian) contains the self-interaction terms of the mat-
ter multiplets as well as of the Higgs multiplets, e.g., it
contains the self-interaction terms involving the fundamen-
tal Higgsino mass parameters �1 � �, �2, and �3:
Tr	�1��1

~�u�1�
T ~�d
, Tr	�2�� � ~�L��� � ~�L��d
, and

Tr	�3�� � ~�R��� � ~�R��d
, where �j, j � 1; 2; 3 are the
usual Pauli matrices, ~�d, ~�L;R and ~�L;R are the super-
partners of the bidoublet field �d and the four triplet fields
�L;R and �L;R, respectively, which we will define later (in
the following we will consider �2 � �3 � 0); and Lsoft is
the soft-breaking Lagrangian, involving the fundamental
gaugino mass parameters ML, MR, and MV , which gives
Majorana mass to the gauginos:

L soft � ML��aL�
a
L �

��aL ��aL� �MR��aR�
a
R �

��aR ��aR�

�MV��
0
V�

0
V �

��0
V

��0
V�: (2.2)

The Higgs sector contains two bidoublet fields,

�u;d �
�0

1 ��1
��2 �0

2

� �
u;d
�

�
1
2 ;

1
2 ; 0

�
; (2.3)

and four triplet fields,

�L;R �
1��
2
p �� ���

�0 � 1��
2
p ��

 !
L;R

; (2.4)

and

�L;R �
1��
2
p �� ���

�0 � 1��
2
p ��

 !
L;R

: (2.5)

The Higgs �L;R transform as �1; 0; 2� and �0; 1; 2�, respec-
tively. The triplet Higgs �L;R which transform as �1; 0;�2�
and �0; 1;�2�, respectively, are introduced to cancel
anomalies in the fermionic sector that would otherwise
occur.

In order to generate mass for the gauge bosons we can
choose the vacuum expectation values of the Higgs fields in
the form [13]

h�Li � h�L;Ri � 0; h�Ri �
0 0
�R 0

� �
; (2.6)

h�ui �
ku 0
0 0

� �
; h�di �

0 0
0 kd

� �
: (2.7)

Thus, in the first stage, the spontaneous breaking of
SU�2�R � U�1�B�L to U�1�Y , according to the vacuum
expectation value h�Ri � 0, given in Eq. (2.6), generates
masses forW�R ,W0

R, and V0. The two neutral statesW0
R and

V0 mix yielding the physical field ZR and the massless field
115001
B. The vacuum expectation value vR of the triplet Higgs
�R has been chosen in the order of the TeV to provide large
masses to gauge bosons W�R and ZR. Next, through the
spontaneous breaking of SU�2�L � U�1�Y into U�1�em, ac-
cording to the chosen vacuum expectation values �u;d

given in Eq. (2.6), the left weak bosons W�L and W0
L as

well as B� acquire mass. Once again, the neutral fields mix
forming the massless photon A� and the physical gauge
field ZL. The masses of the right-handed gauge bosons are
given by

MWR
�

1���
2
p gR�k2

u � k2
d � v

2
R�

1=2; (2.8)

MZR �
1���
2
p vR�g2

R � 4g2
V�

1=2; (2.9)

whereas the masses of the left-handed ones are given by

MWL
�

1���
2
p gL�k2

u � k2
d�

1=2; (2.10)

MZL �
1���
2
p 	�k2

u � k2
d��g

2
L � 4g02�
e1=2; (2.11)

where gL, gR, gV , and g0 � gRgV=�g
2
R � 4g2

V�
1=2 are the

coupling constants of the gauge groups SU�2�L, SU�2�R,
U�1�B�L, and U�1�Y , respectively.

To find the neutralino masses we must consider the
interaction terms between the gauge bosons, the Higgs,
and their superpartners. The neutralino particles are pro-
duced in two stages of symmetry breaking. The first stage
involving the vacuum expectation value vR of �R generates
masses for three heavy neutralinos ~�0

k, k � 5; 6; 7. The
second stage involving the vacuum expectation values ku
and kd of the Higgs�u and �d generates mass for the light
neutralinos ~�0

k, k � 1; . . . ; 4. The Lagrangian for light
neutralinos is given by [13]

LLN � �
i���
2
p gLku ~�0

1u�
0
L � i

���
2
p gRgV

g1
ku ~�0

1u�
0
B

� i
���
2
p gRgV

g1
kd ~�0

2d�
0
B �

i���
2
p gLkd ~�0

2d �ML�
0
L�

0
L

�

�
�4MRg2

V �MVg2
R�

g1

�
�0
B�

0
B � 2� ~�0

1u
~�0

2d

� H:c:; (2.12)

where �0
B � �gR�

0
V � 2gV�

0
R�=g1 with g1 � �g

2
R �

4g2
V�

1=2; �0
L;R and �0

V are the neutral gaugino fields; and
~�0

1u and ~�0
2d are the neutral Higgsino fields, i.e., the super-

partner of the neutral Higgs fields �0
1u and �0

2d; , respec-
tively, defined in Eq. (2.3).

The above Lagrangian in matrix form can be written as
follows:

L LN � �
1
2�	

0�TN	0 � H:c:; (2.13)
-2
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where N is in general a complex symmetric matrix given
by

N �

ML 0 � 1��
2
p gLku

1��
2
p gLkd

0
4MRg2

V�MVg2
R

g2
1

��
2
p
gRgVku
g1

�
��
2
p
gRgVkd
g1

� 1��
2
p gLku

��
2
p
gRgVku
g1

0 �2�
1��
2
p gLkd �

��
2
p
gRgVkd
g1

�2� 0

0
BBBBBBB@

1
CCCCCCCA
;

(2.14)

and the two-component fermion field is

�	0�T � ��i�0
L;�i�

0
B; ~�0

1u; ~�0
2d�: (2.15)

III. THE NEUTRALINO MASSES AND THE
DIAGONALIZING MATRIX IN THE LEFT-RIGHT

SUPERSYMMETRIC MODEL

The two-component light neutralino mass eigenstates �0
j

are related to the two-component fermion fields given in
Eq. (2.15) as

	0
k �

X4

l�1

Vkl�
0
l ; k � 1; . . . ; 4; (3.1)

where V is a unitary matrix satisfying

ND � VTNV;

�
X4

j�1

m~�0
j
Ej; (3.2)

and

N2
D � V�1NyNV; (3.3)

�
X4

j�1

m2
~�0
j
Ej; (3.4)

where �Ej�4�4 are the basic matrices defined by �Ej�ik �
�ji�jk, and ~�0

j stand for the four component Majorana
neutralinos:

~� 0
j �

�0
j

��0
j

 !
; j � 1; . . . ; 4: (3.5)

Here, we suppose that the real eigenvalues of ND are
ordered in the following way:

m~�0
1
� m~�0

2
� m~�0

3
� m~�0

4
: (3.6)

A. Exact analytical expressions for the neutralino
masses

As we have seen in the above section, in the left-right
supersymmetric model, the masses, the mixing parameters,
and the CP-violating properties of the neutralino are de-
termined by the fundamental complexML � jMLjei�L and
115001
� � j�jei�� and real tan�k � ku=kd, MR, and MV pa-
rameters. To know the neutralino masses predicted by the
present model, we can solve the characteristic equation
associated with the Hermitian matrix H � NyN. More
precisely, the square root of the positive roots of this
characteristic equation corresponds to the physical neutra-
lino masses. The neutralino masses predicted by the
present model are known only for the CP-conserving
case under the limit of large ML;R or large j�j [13],
more precisely on the assumptions that jML;R ��j 

MZL , MR >MV , and 4g2

VMR � g
2
RMV=g

2
1 ’ 4g2

VMR=g
2
1.

Indeed, a numerical analysis has been implemented to
solve the mentioned characteristic equation [13], assuming
determined values for the gauge boson masses, couplings
constants and taking �, the Higgsino mass parameter, as a
free quantity. Here we put into practice a method [1,2]
giving exact analytic expressions for the neutralino masses.

Starting from Eq. (3.3), we get

�NyN�V � VN2
D � 0: (3.7)

A more explicit form of this matrix equation is

�H11 �m
2
~�0
j
�V1j �H12V2j �H13V3j �H14V4j � 0;

H21V1j � �H22 �m
2
~�0
j
�V2j �H23V3j �H24V4j � 0;

H31V1j �H32V2j � �H33 �m2
~�0
j
�V3j �H34V4j � 0;

H41V1j �H42V2j �H43V3j � �H44 �m
2
~�0
j
�V4j � 0;

(3.8)

j � 1; . . . ; 4, where Hij �
P4
k�1 N

�
kiNkj:

H11 � M2 � jMLj
2; H22 � 4
2M2 �M2

RV;

H33 � 4j�j2 � �1� 4
2�M2 sin2�k;

H44 � 4j�j2 � �1� 4
2�M2 cos2�k;

H12 � H�21 � �2
M2;

H13 � H�31 � �M�2j�je
i�� cos�k � jMLje�i�L sin�k�;

H14 � H�41 � M�2j�jei�� sin�k � jMLje
�i�L cos�k�;

H23 � H�32 � 2
M�2j�jei�� cos�k �MRV sin�k�;

H24 � H�42 � �2
M�2j�jei�� sin�k �MRV cos�k�;

H34 � H�43 � �
1
2�1� 4
2�M2 sin�2�k�;

where M � gLMZL=
���������������������
g2
L � 4g02

q
, 
 � gRgV=g1gL, and

MRV � �4g
2
VMR � g

2
RMV�=g

2
1.

For fixed j, Eq. (3.8) represents a system of homoge-
neous linear equations depending on only one of the neu-
tralino masses. Thus, the neutralino masses can be
determined by solving the characteristic equation associ-
ated with this system; that is

X4 � aX3 � bX2 � cX� d � 0; (3.9)
-3
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where
a � jMLj
2 � 8j�j2 �M2

RV � 2�1� 4
2�M2;

b � �4j�j2 � �1� 4
2�M2�2 �M2
RV�jMLj

2 � 8j�j2 � 2M2� � 8jMLj
2�j�j2 � 
2M2� � 16
2M2j�jMRV sin�2�k� cos��

� 4M2j�j jMLj sin�2�k� cos��� ��L�;

c � 16j�j4jMLj
2 � 4�1� 4
2�2M4j�j2sin2�2�k� � 16
2M2jMLj

2�2j�j2 � 
2M2� �M2
RV�M

4 � 8j�j2�M2 � jMLj
2�

� 16j�j4� � 4M2j�j jMLj�4j�j
2 �M2

RV� cos��L ���� sin�2�k� � 8
2M2MRV	M
2jMLj cos�L

� 2j�j�4j�j2 � jMLj
2� cos�� sin�2�k�
;

and

d � 64
4M4j�j2jMLj
2sin2�2�k� � 32
2M2j�j2jMLjMRV sin�2�k��M2 cos�L sin�2�k� � 2j�j jMLj cos���

� 4M2j�j2M2
RV sin�2�k��M

2 sin�2�k� � 4j�j jMLj cos��L ����� � 16j�j4jMLj
2M2

RV:
400

500

m χ̃ 0
i

(GeV)
Solving Eq. (3.9), we get the exact analytic formulas for the
neutralino masses

m2
~�0

1
; m2

~�0
2
�
a
4
�
�
2
�

1

2

���������������������������
��$�

�
4�

s
; (3.10)

m2
~�0

3

; m2
~�0

4

�
a
4
�
�
2
�

1

2

���������������������������
��$�

�
4�

s
; (3.11)

where

� �

���������������
�
2
�$

s
; $ �




321=3
�
�21=3��

3

;


 � ���
��������������������
�2 � 4�3

q
�1=3; � �

a2

2
�

4b
3
;

� � a3 � 4ab� 8c; � � b2 � 3ac� 12d;

� � 2b3 � 9abc� 27c2 � 27a2d� 72bd:

B. Neutralino masses, numerical results

Let us consider the CP-conserving scenarios Sc1 and
Sc2 described in Table I. These scenarios are similar to the
ones studied in Ref. [13] where they have been used to
compare the predicted results for the neutralino masses in
TABLE I. Input parameters for scenarios Sc1 and Sc2. All
mass quantities are given in GeV.

Scenario MR ML ku tan�k

1.6
Sc1 300 50 92.75

4.0

1.6
Sc2 1000 250 92.75

4.0
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the left-right SUSY model and the MSSM. Thus, for both
scenarios, we consider the coupling constant values gR �
gL � gV � 0:65, the gaugino parameters ML 
 MV �
0:0 GeV, and the mixing phases �L � �� � 0.
Figures 1 and 2 show the behavior of the physical neutra-
lino masses m~�0

i
, i � 1; . . . ; 3, versus �, computed from

Eq. (3.11), for the inputs of scenarios Sc1 and Sc2 with
tan�k � 1:6, respectively. Notice that the values of the
neutralino mass m~�0

4
are so big that they cannot be seen.

Both figures accurately reproduce the results of Ref. [13].
We observe the correct size ordering of the neutralino
masses, such as required by Eq. (3.6). Also, in both scenar-
ios, we find that for values of j�j � 200 GeV, the neutra-
lino massesm~�0

1
are approximately ML and for large values

of j�j, the masses of the neutralinos m~�0
i
, i � 3; 4, are

heavier than MR. The same analysis is true in the case of
scenarios Sc1 and Sc2, where tan�k � 4:0, as can be ob-
-200 -100 0 100 200
0

100

200

300

µ (GeV)

FIG. 1 (color online). Neutralino masses m~�0
i
, i � 1; . . . ; 3, as

functions of � for scenario Sc1, assuming tan�k � 1:6.
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-400 -200 0 200 400
0

200

400

600

800

1000

µ (GeV)

m χ̃ 0
i

(GeV)

FIG. 4 (color online). Neutralino masses m~�0
i
, i � 1; . . . ; 4, as

functions of � for scenario Sc2, assuming tan�k � 4:0.

TABLE II. Input parameters for scenario Snc1. All mass quan-
tities are given in GeV.

Scenario j�j MR ML ku tan�k

20
Snc1 300 50 92.75 4.0

248

-400 -200 0 200 400
0

200

400

600

800

1000

µ (GeV)

m χ̃ 0
i

(GeV)

FIG. 2 (color online). Neutralino masses m~�0
i
, i � 1; . . . ; 3, as

functions of � for scenario Sc2, assuming tan�k � 1:6.
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served in Figs. 3 and 4. However, comparing Figs. 1 and 3,
corresponding to scenarios Sc1 with different values of
tan�k, i.e., tan�k � 1:6 and tan�k � 4:0, respectively, we
find that for small values of j�j, the variations of the
neutralino masses with respect to � in Fig. 3 are smoother
than in Fig. 1. This is an important fact to consider when
we study the inverse problem, that is, the determination of
the fundamental parameters based on the knowledge of the
physical neutralino masses.

Let us now study the behavior of the neutralino masses
m~�0

i
, i � 1; 2, with respect to the variation of �� and �L.

Let us consider two possible CP-violating scenarios Snc1

described in Table II, characterized by two different values
of the Higgsino mass parameter, j�j � 20 GeV and j�j �
248 GeV. Figures 5 and 6 show the behavior of the neu-
tralino masses m~�0

1
and m~�0

2
, respectively, as a function of

�� and �L for input parameters of scenario Snc1 with
-200 -100 0 100 200
0

100

200

300

400

500

µ (GeV)

m χ̃ 0
i

(GeV)

FIG. 3 (color online). Neutralino masses m~�0
i
, i � 1; . . . ; 4, as

functions of � for scenario Sc1, assuming tan�k � 4:0.
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j�j � 20 GeV. Comparing these figures we observe that
the variation of the values of m~�0

1
is bigger than the one of

m~�0
2
. Superposing these figures, the corresponding surfaces

do not overlap, that is, the size ordering [see Eq. (3.6)] of
the masses m~�0

1
and m~�0

2
is conserved even if in the

CP-violating case. Figures 7 and 8 show the behavior of
the neutralino masses m~�0

1
and m~�0

2
, respectively, as a

function of �� and �L for input parameters of scenario
-2

0

2

-2

0

2

10

15

20

25

-2

0

2Φµ (rad)

ΦL (rad)

m χ̃ 0
1

(GeV)

FIG. 5 (color online). Neutralino mass m~�0
1
, as a function of

�� and �L for input parameters according to scenario Snc1 with
j�j � 20 GeV.
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0

2
179

180

181

182

-2

0

2
Φµ (rad)

ΦL (rad)

m χ̃ 0
1

(GeV)

FIG. 6 (color online). Neutralino mass m~�0
2
, as a function of

�� and �L for input parameters according to scenario Snc1 with
j�j � 20 GeV.

-2

0

2

-2

0

2
471.5

472

472.5

473

-2

0

2
Φµ (rad)

ΦL (rad)

m χ̃ 0
1

(GeV)

FIG. 8 (color online). Neutralino mass m~�0
2
, as a function of

�� and �L for input parameters according to scenario Snc1 with
j�j � 248 GeV.

-2

0

2

-2

0

2

48

49

50

51

-2

0

2Φµ (rad)

ΦL (rad)

m χ̃ 0
1

(GeV)

FIG. 7 (color online). Neutralino mass m~�0
1
, as a function of

�� and �L for input parameters according to scenario Snc1 with
j�j � 248 GeV.
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Snc1 with j�j � 248 GeV. The same considerations as in
the previous analysis done for Figs. 5 and 6 are valid in this
case. However, we observe that the energy gap between the
surfaces in Figs. 7 and 8 is greater than in the case of the
surfaces of Figs. 5 and 6.

C. The eigenvectors forming the matrix V

We have found it useful to finish this section with the
computation of the matrix V. A more explicit form of this
matrix will allow us to prove some important relations in
the next section.

The diagonalizing matrix V can be obtained by comput-
ing the eigenvectors corresponding to the eigenvalues
given in Eq. (3.11). Indeed, by inserting a generic eigen-
value m~�0

j
, into Eq. (3.8) and dividing each one of these

equations by V1j, where it is assumed that V1j � 0, we get

H12

V2j

V1j
�H13

V3j

V1j
�H14

V4j

V1j
�m2

~�0
j
� �H11;

�H22 �m2
~�0
j
�
V2j

V1j
�H23

V3j

V1j
�H24

V4j

V1j
� �H21;

H32

V2j

V1j
� �H33 �m2

~�0
j
�
V3j

V1j
�H34

V4j

V1j
� �H31;

H42

V2j

V1j
�H43

V3j

V1j
� �H44 �m2

~�0
j
�
V4j

V1j
� �H41:

(3.12)

Solving this system of equations, and taking into account
the relation

jV1jj
2 � jV2jj

2 � jV3jj
2 � jV4jj

2 � 1; (3.13)

it yields the Vij matrix’s component

Vij �
�ij

�1j

j�1jjei�j������������������������������������������������������������������������
j�1jj

2 � j�2jj
2j � j�3jj

2j � j�4jj
2

q ; (3.14)

when i � 1; . . . ; 4. Here, the �j’s are arbitrary phases,
related to the CP eigenphases, which will be fixed by the
requirement that V satisfies Eq. (3.2), as we will see in the
next section,

�1j �

������������������

H22 �m
2
~�0
j

H23 H24

H32 H33 �m2
~�0
j

H34

H42 H43 H44 �m
2
~�0
j

������������������
; (3.15)

and �ij, i � 2; 3; 4, is formed from �1j by substituting the
�i� 1�th column by ��H21;�H31;�H41�.
IV. THE NEUTRALINO PROJECTORS,
PSEUDOPROJECTORS, AND CP EIGENPHASES

To describe the neutralino observables we can use the
projector formalism [1,2]. The neutralino projector matri-
ces can be defined as [14]
-6
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Pj � Pyj � VEjV
�1; (4.1)

so that

Pj�� � V�jV��j: (4.2)

These projectors satisfy the relations

PiPj � Pj�ij; TrPj � 1;
X4

j�1

Pj � 1; (4.3)

where �i; j� � �1–4� describe the neutralino mass-
eigenstate indices. Notice that from Eqs. (3.3) and (4.1) it
is possible to write

NyN �
X4

j�1

m2
~�0
j
Pj: (4.4)

As in the case of the study of the neutralino projector
formalism for complex supersymmetry parameters based
on the MSSM [2], here only the projectors are not suffi-
cient to describe the physical observables. For a complete
description of physical observables it is also necessary to
know the so-called pseudoprojector matrices and CP ei-
genphases. In the following we implement a method based
on the explicit knowledge of the diagonalizing matrix V to
obtain these quantities and demonstrate some of their
properties.

A. Reduced projectors

By inserting (3.14) into (4.2), we get

Pj�� �
pj�p

�
j�

1� jpj2j2 � jpj3j2 � jpj4j2
; (4.5)

where we define the reduced projectors

pj� �
���j
��1j

: (4.6)

Notice that the expression given in (4.6) is a new version of
the reduced projector formula [2]. Indeed, from this last
equation, it is clear that pj1 � 1. Moreover, from Eq. (4.5)
we deduce

Pj11 �
1

1� jpj2j2 � jpj3j2 � jpj4j2
: (4.7)

Thus, inserting this last result into (4.5), we prove the
ansatz used in [2]

Pj�� � Pj11p�j�pj�: (4.8)

On the other hand, using Eqs. (4.6) and (4.7), we can write
the matrix elements of the diagonalizing matrix V given in
Eq. (3.14) in terms of the reduced projectors; that is

V�j �

���������
Pj11

�j

s
p�j�; (4.9)
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where �j � e�2i�j stands for the CP eigenphases. As we
will see below, this last equation allows us to express the
LR SUSY parameters in terms of the reduced projectors
and the eigenphases.

A useful property verified by the reduced projectors pj�
is

Pj11

X4

��1

pi�p
�
j� � �ij; (4.10)

which can be directly deduced from Eq. (4.9), taking into
account the unitarity of V.

Let us now define other important matrices. From
Eq. (3.2), we can write

N �
X4

j�1

m~�0
j
V�EjVy �

X4

j�1

m~�0
j

�Pj; (4.11)

where

�P j � V�EjV
y (4.12)

are the so-called pseudoprojectors [2]. Using Eq. (4.9) and
the definition of Ej, the matrix elements of these pseudo-
projectors can easily be written in the form

�P j�� � V��jV
�
�j � Pj11pj�pj��j: (4.13)

From this last equation it is clear that �Pj is a symmetric
matrix, that is �PTj � �Pj.

Using Eq. (4.13), taking again into account the unitarity
of V, and the definition (4.2), we have

� �P�j �Pk��� �
X4

��1

�P�j�� �Pk�� �
X4

��1

V�jV�jV
�
�kV

�
�k

� �jkV�jV
�
�j � �jkPj��; (4.14)

that is, the pseudoprojectors satisfy

�P �j �Pk � �jkPj: (4.15)

In the same way, we can show that

�P �jPk � Ptk �Pj � �jk �Pj: (4.16)

As we have mentioned in the previous section, the
eigenphases �j must be chosen in such a way that the
diagonalizing matrix V satisfies Eq. (3.2) or equivalently
Eq. (4.11). Inserting Eq. (4.13) into Eq. (4.11) and using the
property Eq. (4.10) we get

�jm~�0
j
�

X4

��1

N��
p�j�
pj�
�

X4

��1

N��
��j

���j
: (4.17)

This last equation represents, for fixed j, four equivalent
relations serving to determine the fundamental parameters
of the model, namely, ML, �, MR, MV , and tan�k, in terms
of the reduced projectors, the physical neutralino masses,
the eigenphases, and the LR SUSY coupling constants. We
-7
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notice that, starting from Eq. (3.2) and using Eq. (4.9), a
more symmetric structure for the eigenphases �j can be
reached; that is

�jm~�0
j
� Pj11

X4

�;��1

p�j�N��p
�
j�: (4.18)

This relation can also be constructed directly from the
115001
more fundamental Eq. (4.17), by means of property
Eq. (4.10).

B. Explicit form of the reduced projectors

According to Eq. (4.6), to obtain the explicit form of the
reduced projectors in terms of the fundamental parameters
of the theory only we need to know the explicit form of
quantities ���j. For fixed j, they are given by
��1j � �4
2�1� 4
2�M4�m2
~�0
j
� 4j�j2sin2�2�k�� �M2�m2

~�0
j
� 4j�j2�	m2

~�0
j
�M2

RV � 8
2m2
~�0
j

� 16
2MRVj�j cos�� sin�2�k�
 � �m
2
~�0
j
�M2

RV��m
2
~�0
j
� 4j�j2�2; (4.19)

��2j � �2
�1� 4
2�M4	m2
~�0
j
� 4j�j2sin2�2�k�
 � 2
M2	m2

~�0
j
� 4j�j2
fm2

~�0
j
�MRV jMLje

�i�L � 2j�j sin�2�k�

� 	jMLje
�i��L���� �MRVe

i��
g; (4.20)

��3j � 2M3fj�j cos�k cos�2�k�	4

2MRV jMLje

i�����L� � �m2
~�0
j
�1� 4
2� �M2

RV�e
i��


� 2
2 sin�k�m
2
~�0
j
� 8j�j2cos2�k��MRV � jMLje

�i�L�g �M�m2
~�0
j
� 4j�j2��m2

~�0
j
�M2

RV��jMLje
�i�L sin�k

� 2j�jei�� cos�k�; (4.21)

and

��4j � 2M3fj�j sin�k cos�2�k�	4
2MRVjMLjei�����L� � �m2
~�0
j
�1� 4
2� �M2

RV�e
i��


� 2
2 cos�k�m2
~�0
j
� 8j�j2sin2�k��MRV � jMLje�i�L�g �M�m2

~�0
j
� 4j�j2��m2

~�0
j
�M2

RV��jMLje�i�L cos�k

� 2j�jei�� sin�k�: (4.22)
The formulas (4.19), (4.20), (4.21), and (4.22) allow us to
express, through the reduced projectors, all the essential
quantities of the model in terms of the original parameters.

C. Consistence with the Jarlskog’s formula

Using the projector properties (4.3) and some associated
with the coefficients of the characteristic polynomial (3.9),
we can write the projectors Pj in terms of the neutralino
masses and the H matrix, in the Jarlskog’s form [8]:

P1 �
�m2

~�0
4
�H��m2

~�0
3
�H��m2

~�0
2
�H�

�m2
~�0

4
�m2

~�0
1
��m2

~�0
3
�m2

~�0
1
��m2

~�0
2
�m2

~�0
1
�
;

P2 �
�m2

~�0
1

�H��m2
~�0

4

�H��m2
~�0

3

�H�

�m2
~�0

1
�m2

~�0
2
��m2

~�0
4
�m2

~�0
2
��m2

~�0
3
�m2

~�0
2
�
;

P3 �
�m2

~�0
2
�H��m2

~�0
1
�H��m2

~�0
4
�H�

�m2
~�0

2

�m2
~�0

3

��m2
~�0

1

�m2
~�0

3

��m2
~�0

4

�m2
~�0

3

�
;

P4 �
�m2

~�0
3

�H��m2
~�0

2

�H��m2
~�0

1

�H�

�m2
~�0

3
�m2

~�0
4
��m2

~�0
2
�m2

~�0
4
��m2

~�0
1
�m2

~�0
4
�
:

(4.23)

A more useful expression for these projectors is obtained if
we define

Pj �
~Pj
~�j

; (4.24)

where

~� j � �3m8
~�0
j
� 2am6

~�0
j
� bm4

~�0
j
� d: (4.25)

Indeed, by performing some algebraic manipulations we
get

~Pj�� � �m
6
~�0
j
H�� �m

4
~�0
j
�aH�� �H

2
���

�m2
~�0
j
�aH2

�� � bH�� �H
3
��� � d���: (4.26)

Now, combining Eqs. (4.8) and (4.24), we deduce the
expression

pj� �
Pj1�
Pj11

�
~Pj1�
~Pj11

; (4.27)

which can also be considered as a definition for the reduced
projectors.

Equations (4.6) and (4.27) are equivalent expressions for
the reduced projectors when we substitute into them the
-8
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exact analytical masses m~�0
j

given in (3.11). Thus, combin-

ing these equations and comparing the expressions (4.20),
(4.21), and (4.22) with the corresponding ~Pj1�;� � 2; 3; 4;
computed from Eq. (4.26), we can show that
115001
~P j1� � m2
~�0
j
���j; 8 � � 1; . . . ; 4; (4.28)
with
~Pj11 � M4	m2
~�0
j
� 4j�j2sin2�2�k�
	m2

~�0
j
�1� 4
2� � 16
4jMLj

2 �M2
RV � 8
2jMLjMRV cos�L


�M2�m2
~�0
j
� 4j�j2�f2j�j jMLj sin�2�k�	2�m2

~�0
j
�M2

RV� cos��L ���� � 8jMLjMRV
2 cos��


�m2
~�0
j
	�m2

~�0
j
�M2

RV� � 8
2jMLj
2
g � jMLj

2�m2
~�0
j
�M2

RV��m
2
~�0
j
� 4j�j2�2: (4.29)
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j
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FIG. 9. Graph of jMLj, using the general formula (5.2), for
inputs of scenario Sc3a, with �j � 1 (solid lines) and �j � �1
(dashed lines), as a function of the physical neutralino masses
m~�0

i
.

Indeed, Eqs. (4.28), for � � 1; 2; 3; constitute an identity
whereas for � � 1 it constitutes a useful equivalence, as
we will show in the next section.

V. GENERAL DISENTANGLED FORMULA OF ML

IN TERMS OF THE EIGENPHASES

From Eq. (4.17), choosing � � 1 and using (2.14), we
get

�jm~�0
j
� ML �M

sin�k�3j � cos�k�4j

��1j
: (5.1)

Inserting (4.21) and (4.22) into (5.1) and solving a linear
algebraic equation for ML, we get

ML �
��1jm~�0

j

Dj
�j �

2M2

Dj
fj�je�i�� sin�2�k��m2

~�0
j
�M2

RV�

� �m2
~�0
j
� 4j�j2�

� 2
2M2MRV	m
2
~�0
j
� 4j�j2sin2�2�k�
g

� Aj�j � Bj; (5.2)

where

Aj �
��1jm~�0

j

Dj
� �

m~�0
j

Dj
f�m2

~�0
j
�M2

RV��m
2
~�0
j
� 4j�j2�2

� 4
2�1� 4
2�M4	m2
~�0
j
� 4j�j2sin2�2�k�


�M2�m2
~�0
j
� 4j�j2�	8
2m2

~�0
j
� �m2

~�0
j
�M2

RV�

� 16
2j�jMRV cos�� sin�2�k�
g; (5.3)

Bj �
2M2

Dj
fj�je�i�� sin�2�k��m2

~�0
j
�M2

RV��m
2
~�0
j
� 4j�j2�

� 2
2M2MRV	m
2
~�0
j
� 4j�j2sin2�2�k�
g; (5.4)
and

Dj � �f�m
2
~�0
j
�M2

RV��m
2
~�0
j
� 4j�j2�2

� 8
2M2�m2
~�0
j
� 4j�j2�	m2

~�0
j
� 2j�jMRV

� cos�� sin�2�k�


� 16
4M4	m2
~�0
j
� 4j�j2sin2�2�k�
g: (5.5)

Equation (5.2) allows us to determinate the behavior of
jMLj and �L in terms of the eigenphases �j and the
physical masses m~�0

j
, when the rest of the fundamental

parameters are fixed. We notice that this equation has been
obtained without use of the Jarlskog’s projector formula
(4.23) or its equivalent (4.26). The method used to obtain it
is direct and it is based essentially on the fact that �1j is
independent of jMLj and of �L.

Figure 9 shows the behavior of jMLj as a function of the
neutralino masses m~�0

j
, for input parameters of the
-9
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FIG. 11. Graph of jMLj, using the general formula (5.2), for
inputs of scenario Sc3c, with �j � 1 (solid lines) and �j � �1
(dashed lines), as a function of the physical neutralino masses
m~�0

i
.

TABLE III. Input parameters for scenarios Sc3a; . . . ; Sc3d. All
mass quantities are in GeV.

Scenario j�j MR MV tan�k �j

1
Sc3a 248 500 50 30

�1

1
Sc3b 248 500 500 30

�1

1
Sc3c 500 500 50 30

�1

10 1
Sc3d 248 500 50

50 �1

( |M L | − m 0 )/ 2
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CP-conserving scenario Sc3a, given in Table III (as before,
we assume gL � gR � gV � 0:65, and ku � 92:75). We
observe that for small values of the neutralino masses, i.e.,
for masses of order 200 GeV approximately, the size of
jMLj becomes the same in both cases, the scenario Sc3a
with �j � 1 and the scenario Sc3a with �j � �1. Let us
now consider the scenario Sc3b, which is the same as the
scenario Sc3a, except for the value of MV which has been
increased from 50 to 500 GeV. In this case, the common
value of jMLj in both scenarios, i.e., Sc3b with � � �1, is
found to be jMLj � 300 GeV, in the region of small physi-
cal neutralino masses of the order of 300 GeV, as we can
see from Fig. 10. Figure 11 shows the behavior of jMLj as a
function of the neutralino massesm~�0

j
, for input parameters

of the CP-conserving scenario Sc3c, given in Table III.
300 400 500 600 700
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( |M L | − m χ̃ 0
j

)/ 2

FIG. 10. Graph of jMLj, using the general formula (5.2), for
inputs of scenario Sc3b, with �j � 1 (solid lines) and �j � �1
(dashed lines), as a function of the physical neutralino masses
m~�0

i
.
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This scenario differs from the scenario Sc3a in the value of
� which has now been taken j�j � 500 GeV. We observe
that the curves corresponding to the input parameters of
scenario Sc3c with different eigenphase values, i.e., �j �
�1, intersect when m~�0

j
� 412:17 GeV, giving the com-

mon value of jMLj � 412:93 GeV, which is bigger than
the corresponding common values of jMLj computed in the
previous scenarios. On the other hand, if we compare the
curves representing the behavior of jMLj as a function of
200 300 400 500 600 700

-7.5
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-2.5

0

2.5

5

7.5

10

m χ̃ 0
j

χ̃ j

FIG. 12. Graph of jMLj as a function of the physical neutralino
masses m~�0

i
, using the general formula (5.2), for inputs of

scenario Sc3d. The curves are tan�k � 10, �j � 1 (light solid
lines); tan�k � 10, �j � �1 (light dashed lines); tan�k � 50,
�j � 1 (heavy solid lines) and tan�k � 50, �j � �1 (heavy
dashed lines).
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TABLE IV. Input parameters for scenario Sc4. All mass quan-
tities are in GeV.

Scenario j�j MR MV tan�k �L

0
Sc4 248 500 50 30

�

200 300 400 500 600 700
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( |M L | − m χ̃ 0
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)/ 2

FIG. 13. Graph of jMLj as a function of the physical mass m~�0
i

for input parameters of scenario Sc4 with �L � 0. Here, accord-
ing to Eq. (5.6), the graphs with the � and � signs are
represented in solid and dashed lines, respectively.
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FIG. 14. The same as in Fig. 13 but with �L � �.
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the physical neutralino masses for different values of the
parameter tan�k, we do not observe important differences
between them when the values of this last parameter are
chosen in the range 30–50. However, if we compare the
mentioned curves for values of tan�k chosen, for instance,
in the ranges 10–30 or 10–50, we observe that for small
neutralino masses m~�0

i
, the values of jMLj approach from

the right to the given value of m~�0
i
, and this approach is

more significant for big values of tan�k than for small ones
when �j � 1 and vice versa. This approach is more sig-
nificant for small values of tan�k than for big ones when
�j � �1. This means that the value of the light neutralino
mass which provides the value of jMLj which is indepen-
dent of the eigenphases �j � �1 increases when tan�k
augments. The above mentioned behavior of the parame-
ters is verified as seen in the plots of Fig. 12, where we plot
jMLj versus m~�0

i
, for inputs of scenario Sc3d with tan�k �

10 and tan�k � 50:

A. An alternative way to obtain jMLj

When � � 1, Eq. (4.28) combined with Eqs. (4.19) and
(4.29), allows us to express the norm of ML in terms of the
rest of the fundamental parameters �L, j�j, ��, tan�k, and
MRV and the physical masses m~�0

j
. Indeed, inserting (4.19)

and (4.29) into (4.28) and solving a quadratic algebraic
equation for jMLj, we get

jMLj �
�Bj �

�����������������������������������������������������
B2
j � 4Dj�Cj �m2

~�0
j
��1j�

q
2Dj

; (5.6)

where

Bj � �4M2fj�j�m2
~�0
j
�M2

RV��m
2
~�0
j
� 4j�j2�

� cos��L ���� sin�2�k�

� 2
2M2MRV	m2
~�0
j
� 4j�j2sin2�2�k�
 cos�Lg; (5.7)

Cj ��M
2m2

~�0
j
�m2

~�0
j
�M2

RV��m
2
~�0
j
� 4j�j2�

�M4	m2
~�0
j
�1� 4
2��M2

RV
	m
2
~�0
j
� 4j�j2sin2�2�k�
;

(5.8)

and Dj is given in Eq. (5.5).
The formula for jMLj given in Eq. (5.6) constitutes an

alternative to the one given in Eq. (5.2), serving to study the
behavior of jMLj as a function of the phase �L, the
physical mass m~�0

j
, and the rest of the fundamental pa-

rameters. For instance, let us consider the possible
CP-conserving scenario Sc4 given in Table IV. In this
case, the behavior of jMLj in terms of one of the physical
masses m~�0

j
is shown in Figs. 13 and 14. It is clear that

superposing Figs. 13 and 14, we reconstruct Fig. 9.
Comparing these figures, we also observe that, in the
115001
CP-conserving case, when �� � 0, the eigenphase values
�j � �1 correspond to the ML phase values �L � ��,
respectively. The same considerations are valid when we
take �� � �. That is, in the CP-conserving case, when all
the parameters but m~�0

j
are fixed, the choice of the two

different values �L � 0, � in Eq. (5.6) corresponds to the
-11



NIBALDO ALVAREZ-MORAGA AND ARTORIX DE LA CRUZ DE OÑA PHYSICAL REVIEW D 72, 115001 (2005)
choice of the two possible values of the eigenphases �j �
1, �1, in Eq. (5.2) .

VI. DETERMINING LR SUSY PARAMETERS

In this section we investigate the behavior of jMLj and
�L when the eigenphases �j, j � 1; 2, change. We con-
centrate on two possible scenarios Snc2 and Snc3, de-
scribed in Table V, for fixed input constants
gL � gR � gV � 0:65 and ku � 92:75. Thus, in these
cases we assume that the physical masses m~�0

1
and m~�0

2

as well as � and MR are known. The MV parameter would
eventually be allowed to vary but in this case we assume
that it has a fixed value in each one of the mentioned
scenarios.

Figure 15 shows the behavior of the norm of ML, calcu-
lated from Eq. (5.2), as a function of the eigenphase �1,
with input parameters of scenario Snc2 when m~�0

1
�

164:36 GeV. This is a scenario, similar to the Sp1-type
-3 -2 -1 0 1 2 3

165.5

165.6

165.7

165.8

165.9

166

a rg (η1 ) (rad)

|M L | (GeV)

FIG. 15. Norm of ML as a function of arg��1� according to
scenario Snc2, for m~�0

1
� 164:36 GeV, �� � 0 (heavy solid

curve), �=8 (light solid curve), �=6, (heavy dashed curve),
and � (light dashed curve).

TABLE V. Input parameters for scenarios Snc2 and Snc3. All
mass quantities are in GeV and all angles are in radians.

Scenario j�j �u m~�0
1

m~�0
2

MR MV tan�k

0
�=8

Snc2 248 164.36 241.94 300 20 30
�=6
�
0

�=8
Snc3 150 156.24 236.79 300 50 4.0

�=6
�
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scenario used in [2] in the context of the MSSM, charac-
terized by a big rate between ku and kd, i.e., tan�k � 30.
For small values of ��, we observe small differences
among the plots of jMLj. For all the plots shown in this
figure, the mean value of jMLj is 165.75 GeV approxi-
mately and the maximum amplitude difference of them is
0.6 GeV approximately.

Figures 16 and 17 show the dependence of the mixing
phase �L and the relative phase �L � arg��1�, respec-
tively, calculated from Eq. (5.2), with respect to the eigen-
phase �1, in the Snc2 scenario with m~�0

1
� 164:36 GeV.

We observe, for all the cases �� � 0, �8 , �6 , �, a linear
dependence between �L and arg��1�. Thus, �L � arg��1�
when arg��1� 2 	�

�
2 ;

�
2
, �L � �� arg��1� when

arg��1� 2 ���;�
�
2�, and �L � ��� arg��1� when

arg��1� 2 �
�
2 ; ��.
-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

a rg (η1 ) (rad)

[ΦL − a rg (η1 )] (rad)

FIG. 17. Relative difference between �L and arg��1� as a
function of arg��2� as observed from Fig. 16.
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FIG. 16. Mixing parameter �L as a function of arg��1� with
the same set of fixed parameters used in Fig. 15.
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FIG. 20. Relative difference between �L and arg��2� as a
function of arg��2�, as observed from Fig. 19.
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FIG. 18. Norm of jMLj as a function of �2 in the case of
scenario Snc2, with m~�0

2
� 241:94 GeV, �� � 0 (heavy solid

line), �=8 (light solid light), �=6 (heavy dashed line), and �
(light dashed line).
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Figure 18 shows the behavior of the norm of ML, calcu-
lated from Eq. (5.2), as a function of the eigenphase �2,
with input parameters of scenario Snc2 when m~�0

2
�

241:94 GeV. In this case, the mean amplitude difference
of jMLj for the different plots is greater than before,
120 GeV approximately. However, in the region of small
��, and arg��j�, j � 1; 2, the results are closely similar,
that is, the values of jMLj concentrate in the range 150–
170 GeV. Figures 19 and 20 show the dependence of the
mixing phase �L and of the relative phase �L � arg��2�,
respectively, calculated from Eq. (5.2), with respect to the
eigenphase �2, for input parameters of scenario Snc2. As
before, for all the cases �� � 0, �8 , �6 , �, we observe the
same linear dependence between �L and arg��1� practi-
-3 -2 -1 0 1 2 3
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-1

-0.5

0

0.5

1

1.5

a rg (η2 ) (rad)

ΦL (rad)

FIG. 19. Mixing parameter �L as a function of arg��2� with
the same set of fixed parameters used in Fig. 18.
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cally. However, the nonexact linearity implies differences
in the behavior of j�Lj when it is measured with respect
to arg��2� and �L, as we can see by comparing Figs. 18
and 21.

Let us now assume another possible scenario, Snc3,
described in Table V, where j�j � 150 GeV and tan�k �
4. In this case, either the physical masses are given by
m~�0

1
� 156:238 GeV or m~�0

2
� 236:39 GeV, the same as

in the case of scenario Snc2, there exists practically a linear
dependence between the eigenphase and the mixing phase
�L. Thus, a description of jMLj in terms of �L is similar to
the one based on the eigenphases. Figure 22 shows the
behavior of ML with respect to the phase �L, computed
from Eq. (5.6), according to the Snc3 scenario with
-3 -2 -1 0 1 2 3
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140

160

180

200

220

240

ΦL (rad)

|M L | (GeV)

FIG. 21. Norm of jMLj as a function of �L, computed from
Eq. (5.6), for scenario Snc2, with m~�0

2
� 241:94 GeV, �� � 0

(heavy solid curve), �=8 (light solid curve), �=6 (heavy dashed
curve), and � (light dashed curve).
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FIG. 22. Norm of jMLj as a function of �L, computed from
Eq. (5.6), for scenario Snc3, with m~�0

1
� 156:24 GeV, �� � 0

(heavy solid curve), �=8 (light solid curve), �=6 (heavy dashed
curve), and � (light dashed curve).
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m~�0
1
� 156:238 GeV. Comparing with Fig. 15, constructed

in similar conditions according to scenario Snc2, in this
case we observe a greater dispersion of the values of jMLj
when �� vary. For small phases �1 � �L � 1 and 0 �
�� �

�
8 , the values of ML lie in the range 163–166 GeV,

approximately. Figure 23 shows the behavior of ML with
respect to the phase �L, computed from Eq. (5.6) for input
parameters of scenario Snc3 with m~�0

2
� 236:39 GeV.

Similarly, in this case, the values of jMLj in the mentioned
lies in the range 155–185 GeV, approximately. Thus, the
value of jMLj must be localized in the intersection of these
regions, i.e. it is determined more accurately in the case of
the scenarios where the mass m~�0

1
is a known quantity.
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FIG. 23. The same inputs as in Fig. 22, but considering the
neutralino mass m~�0

2
� 236:79 GeV.
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VII. CONCLUSIONS

In this paper we have studied the implications of a
complex symmetric neutralino mass matrix in the context
of the left-right SUSY model. This matrix was described
by seven real parameters jMLj, �L, j�j, ��, MR, MV , and
tan�k. To find analytical expressions for the physical
masses m~�0

j
; j � 1; . . . ; 4, of the neutralinos and some

connecting relations among the parameters, at the tree
level, we have diagonalized this matrix by constructing
the corresponding diagonalizing unitary matrix. The
masses, obtained by solving the associated characteristic
polynomial to this problem, have been ordered by sizes and
plotted as a function of the Higgsino parameter j�j, and
also as a function of the mixing phases �� and �L. In the
CP-conserving case, when all except the� parameter were
fixed, according to the possible scenarios studied in
Ref. [6], we observe that there is no intersection between
the different curves representing the behavior of the neu-
tralino masses as a function of�. In the CP-violating case,
considering two possible scenarios, similar to the previous
ones but where j�jwas fixed and �� and �L were allowed
to vary, we observe that there is no overlapping between
the surfaces representing the behavior of the neutralino
masses m~�0

1
and m~�0

2
.

The inverse problem consisting to determine the mixing
parameters jMLj and �L in terms of the rest of the funda-
mental parameters has been solved using the projector
formalism without appeal to the Jarlskog’ projector for-
mula. In this way, the so-called reduced projectors have
been expressed essentially in terms of the minors of the
determinant of the matrix formed from the product be-
tween the original mass matrix and its adjoint. Thus, the
ML parameter has been disentangled and expressed in
terms of the eigenphases by solving a simple linear alge-
braic equation, in contrast to the standard treatment where
you need to solve a system of six linear equations with six
unknowns (see the Appendix). Moreover, combining the
novel definition of the reduced projectors with the
Jarlskog’ formula and then solving a quadratic algebraic
equation we have obtained a new formula expressing the
norm ofML in terms of the mixing parameter �L and of the
rest of the fundamental parameters. This last formula
provides a description for the behavior of jMLj in terms
of �L equivalent to the one in terms of the eigenphases.

In the treatment of the inverse problem, in the
CP-violating case, we have considered two scenarios, the
first one similar to the Sp1 type considered in [2] in
the context of the MSSM, characterized by a big rate
between ku and kd and the second one characterized by a
relatively small rate between ku and kd, with similar con-
ditions to those studied in [13] but adapted to the
CP-violating case. In both scenarios, we have observed
that the value of jMLj can be determined more accurately if
we know the mass of the lighter neutralino.
-14
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A similar analysis can be carried out for the chargino
sector. This sector is more difficult to treat using the
projector technique because the corresponding chargino
mass matrix is not symmetric and requires two unitary
matrices to diagonalize it. This analysis is underway and
will be reported in a separate communication.
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APPENDIX: THE STANDARD METHOD

In this Appendix we demonstrate the equivalence be-
tween the method implemented in the above section and
the one using the Jarlskog’s formula (4.23), or Eq. (4.26).
The method using the Jarlskog’s formula to express ML in
terms of the eigenphases and of the rest of the fundamental
parameters has been used in Ref. [2], in the case of the
MSSM.

Equation (4.17), for fixed j, represent a system of four
complex algebraic equations serving to determine the six
fundamental LR SUSY parameters and corresponding ei-
genphase and physical neutralino mass in terms of the
reduced projectors. The explicit form of this system of
equations is obtained by inserting Eq. (2.14) into
Eq. (4.17), to give

�jm~�0
j
� ML �M�sin�kp�j3 � cos�kp�j4� (A1)
115001
�
MRVp

�
j2 � 2
M�sin�kp

�
j3 � cos�kp

�
j4�

pj2
(A2)

�
M sin�k�2
p�j2 � 1� � 2�p�j4

pj3
(A3)

�
M cos�k�1� 2
p�j2� � 2�p�j3

pj4
: (A4)

The inverse of these equations determines the fundamental
LR SUSY parameters in terms of pj�; that is

ML � �jm~�0
j
�M�sin�kp

�
j3 � cos�kp

�
j4�; (A5)

MRV �
pj2�jm~�0

j
� 2
M�sin�kp

�
j3 � cos�kp

�
j4�

p�j2
; (A6)

� �
M
2

�sin�kpj4 � cos�kpj3��1� 2
p�j2�

jpj3j
2 � jpj4j

2 ; (A7)

where the complex neutralino mass of ~�0
j is given by

�jm~�0
j
� �M

�sin�kp
�
j3 � cos�kp

�
j4��1� 2
p�j2�

jpj3j2 � jpj4j2
: (A8)

Also, as MRV is a real quantity, from (A6) we obtain
tan�k � �
Im	pj4�p

�
j2�

2
 � 2
�jpj4j
2 � jpj2j

2 � jpj3j
2�Im	pj4p

�
j2


Im	pj3�p
�
j2�

2
 � 2
�jpj3j
2 � jpj2j

2 � jpj4j
2�Im	pj3p

�
j2

: (A9)
The complex reduced projectors pj2, pj3, and pj4 can be
computed from (A2)–(A4) without considering an explicit
dependence of jMLj and �L. Solving this system, equiva-
lent to six linear equations with six real unknowns, we get

pj2 �
1

2

� �m2

~�0
j
� 4j�j2�Z�j ; (A10)

pj3 � 2
M�m~�0
j
��j sin�kZj � 2j�jei�� cos�kZ�j �;

(A11)

pj4 � �2
M�m~�0
j
��j cos�kZj � 2j�jei�� sin�kZ�j �;

(A12)

where

Z j � Zj1 �m~�0
j
�jZj2; (A13)

with
Z j1 �
1

2
Dj
f�m2

~�0
j
�MRV2��m2

~�0
j
� 4j�j2�

� 4
2M2	m2
~�0
j
� 2MRV j�je

i�� sin�2�k�
g;

(A14)

and

Z j2 � �
2
M2

Dj
	MRV � 2�ei�� sin�2�k�
: (A15)

Thus inserting (A11) and (A12) into (A5), we obtain

ML � m~�0
j
�j � 2
M2�m~�0

j
�jZ

�
j

� 2j�je�i�� sin�2�k�Zj�

� Aj�j � Bj; (A16)

where Aj and Bj are given in Eqs. (5.3) and (5.4),
respectively.
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