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With the aim of resolving theoretical issues associated with the fourth root prescription for dynamical
staggered fermions in lattice QCD simulations, we consider the problem of finding a viable lattice Dirac
operator D such that �detDstaggered�

1=4 � detD. Working in the flavor field representation we show that in
the free field case there is a simple and natural candidate D satisfying this relation, and we show that it has
acceptable locality behavior: exponentially local with a localization range vanishing �

����������
a=m

p
for lattice

spacing a! 0. Prospects for the interacting case are also discussed, although we do not solve this case
here.
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I. INTRODUCTION

The development in recent years of an improved stag-
gered fermion formulation [1] has made unquenched nu-
merical lattice QCD simulations possible at realistically
small quark masses. The resulting impressive agreement
between the calculated parameters of QCD phenomenol-
ogy and their experimental values [2,3] (along with pre-
dictions for quantities not yet measured experimentally
[4]) indicates that the long-time dream of being able to
do high-precision lattice QCD calculations is now becom-
ing reality. However, the advantageous properties of stag-
gered fermions for numerical implementation are currently
offset by unresolved problematic issues at the conceptual/
theoretical level. In particular, there is concern [5–7] about
the use of the fourth root of the staggered fermion deter-
minant to represent the fermion determinant of a single
dynamical (sea) quark. A number of works have appeared
recently addressing this concern via theoretical consider-
ations [8–15], derivations of predictions that can be used to
test its viability [16], and various numerical investigations
[17–19]. The present paper is intended as another theoreti-
cal contribution in this direction.

A staggered fermion is a lattice formulation of four
continuum fermion flavors, nowadays called ‘‘tastes’’ (to
distinguish them from the actual quark flavors). The fer-
mion determinant for a single quark flavor in this
framework is represented by a rooted determinant
det�Dstaggered�

1=4. While this formally goes over to the
determinant for a single quark flavor in the continuum
limit, the concern regarding this prescription is that it
does not fit in an obvious way into the framework of local
lattice field theory at nonzero lattice spacing. The lattice
model might therefore not be in the right universality class
to reproduce QCD. This raises the question of whether the
dynamical staggered fermion formulation is a first prin-
ress: adams@lorentz.leidenuniv.nl
dress.
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ciples approach to QCD or simply a phenomenological
model which describes QCD very well in a certain regime.

One way to establish that the universality class is the
right one would be to show that there is a viable (and, in
particular, local) single-flavor lattice Dirac operatorD such
that [5]

�detDstaggered�
1=4 � detD: (1.1)

This would imply equivalence between the dynamical
staggered fermion formulation and the manifestly local
formulation with sea quarks described by D. (To avoid
unitarity issues, D, with suitably adjusted bare mass,
should then also be used as the Dirac operator for the
valence quarks.) We will refer to (1.1) as the staggered
determinant relation (SDR) in the following.

The most direct attempt at a solution to the SDR is
simply to take D � �Dstaggered�

1=4. This is essentially the
approach taken by Jansen and collaborators in Ref. [9].
More precisely, they considered the operator

M � ��Dstaggered�
yDstaggered�

1=2jeven sites (1.2)

for which detM � det�Dstaggered�
1=2 since

�Dstaggered�
yDstaggered couples lattice sites by even to even

and odd to odd. ThusM is a candidate operator forD in the
case where 1=4! 1=2 in (1.1), i.e. the case of two degen-
erate quark flavors. However, this operator was found to
have unacceptable locality behavior: it is exponentially
local (for bare mass m> 0), but the localization range is
�m�1 and thus fails to vanish in the limit of vanishing
lattice spacing, a! 0 [9].

This negative result of Ref. [9] is unsurprising, since the
operator (1.2) does not take account of the staggered
fermion taste structure. The staggered fermion action can
be viewed as consisting of naive fermion actions for four
fermion species (the tastes), together with terms that
couple these, with the latter formally vanishing for a!
0. This suggests that, in attempting to find a local, single-
flavor lattice Dirac operator satisfying the SDR, one should
-1 © 2005 The American Physical Society
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1The free field version of the staggered Dirac operator in the
taste representation also arises from a first principles approach to
constructing the Dirac operator on the lattice [23].

2The part i�5 � �� in (2.2) is usually written as �5 � �5��

where f��g is a Hermitian representation of the Dirac � algebra
on taste space. Note that �� � �i�5�

� defines another (equiva-
lent) Hermitian representation of this algebra.
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consider operators of the form

D � r6 �W �m (1.3)

where r6 is the (massless) naive lattice Dirac operator, and
W is a term which formally vanishes for a! 0 and whose
role is to take account of the taste mixing in Dstaggered. In
this paper, working in the flavor field representation of
staggered fermions [20], we show that, in the free field
case, there is a natural candidate D of the form (1.3) which
satisfies the SDR. The W operator, although formally
vanishing for a! 0, turns out to involve a square root,
so its locality status is not immediately clear. We show,
however, that the operator does have acceptable locality
behavior: exponentially local, with localization range van-
ishing �

����������
a=m

p
for a! 0.

Our operator can be gauged (i.e. coupled to the link
variables) in a variety of ways. However, for reasons which
we will discuss later, it is most unlikely that a gauging of
this operator exists such that the SDR continues to hold in
the interacting case. Our operator should therefore be
regarded as a prototype, i.e. a first step on a path to
constructing more sophisticated operators which have a
chance of satisfying the SDR in the full interacting case.

Of course, there is no a priori guarantee that a viable
lattice Dirac operator satisfying the SDR actually exists in
the interacting case, so other approaches should also be
considered. One possibility is the following: If there is a
single-flavor D such that the effect of including the deter-
minant ratio det�Dstaggered�

1=4= detD in the lattice QCD
functional integral is simply to renormalize the bare cou-
pling constant ( just as dynamical heavy quarks do [21]),
then representing the sea quark determinant by
det�Dstaggered�

1=4 is equivalent to representing it by detD
together with a shift in the bare coupling. Since the latter
description is manifestly local, this is another way in which
the locality issue could be positively resolved. The pros-
pects for this, and the properties that such a D would be
expected to have, are also discussed in some detail in this
paper. The problem of finding such a D is seen to be
essentially equivalent to the problem of finding a solution
to a generalized version of the SDR.

The paper is organized as follows. After a general dis-
cussion of the problem of finding viable solutions to the
SDR, we arrive at our free field candidate D in Sec. II. In
Sec. III we prove that this operator has the good locality
behavior mentioned earlier. Our argument is entirely ana-
lytic and the techniques are of a generally applicable
nature; we also apply them to give a new derivation of
the negative locality result for the operator considered
previously by Jansen and collaborators [9]. (Their argu-
ment in the free field case had a numerical as well as
analytic component.) We conclude in Sec. IV with a dis-
cussion of the issues and prospects for the interacting case.
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II. CONSIDERATIONS FOR FINDING A
CANDIDATE D

For concreteness we specialize to 4 spacetime dimen-
sions in this section (everything generalizes straightfor-
wardly to arbitrary even dimensions). The usual
staggered fermion action, obtained via spin diagonaliza-
tion of the naive action [22], is Sstaggered �

a4P
x

� �x�Dst �x� where the staggered Dirac operator is
given by

Dst � ��
1

a
r� �m (2.1)

with ���x� � ��1��x1�����x��1�=a and r� �
1
2 �r

�
� �r

�
��

the symmetrized gauge-covariant difference operator. The
usual flavor (i.e. taste) identification comes about by con-
sidering the free field propagator: it has 4 poles, and the
momentum space Brillouin zone is divided into 4 subre-
gions, each containing a single pole, with the momenta in
each of these subregions being interpreted as the momenta
of different fermion tastes. An alternative, and conceptu-
ally more appealing way to identify the tastes is provided
by the flavor (taste) field representation of the staggered
fermion action derived in [20]. In this representation the
taste fields are manifest from the beginning in the fermion
action. The taste fields live on the blocked lattice
(spacing � 2a), whereas the lattice paths and link varia-
bles which specify the gauging of the action are those of
the original lattice. The action in general gauge back-
ground does not have a simple expression in this setting
though, making it more difficult to work with in practice.
However, in the free field case the action does have a
simple expression. Denoting the staggered Dirac operator
in the taste field representation by Dstt, it can be written in
the free field case as [20]1

Dfree
stt � ��

� � 1�
1

2a
r� � i��5 � ���

1

2�2a�
�� �m

(2.2)

where now the (free field) difference operators are on the
blocked lattice; �� � r

�
� �r

�
� [so that � �

P
��� is

�2a�2 times the blocked lattice Laplace operator], and
f��g is a Hermitian representation of the Dirac � algebra
on taste space C4.2

The importance of taking account of taste structure when
attempting to find a solutionD to the SDR can now be seen
in the free field case as follows. The �-matrix representa-
tion f��g in (2.2) can be chosen such that the diagonal
-2
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matrix elements in each of the ��’s all vanish. Then the
taste-mixing terms in the free field Lagrangian correspond
to the terms with ��’s in the free field Dirac operator (2.2).
Therefore, if the taste-mixing terms are ‘‘turned off’’ the
free field Dirac operator reduces tor6 � 1�m, wherer6 �
�� 1

2ar� is the (massless) free field naive Dirac operator
and 1 is the identity matrix on taste space. Consequently,
3The interacting case is more difficult, since the taste field
representation of the staggered Dirac operator is not given
simply by some gauging of the r�’s and ��’s in (2.2) but has
a more complicated structure [20].
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�detDfree
st �

1=2 ! det
r6 �m

0

0

r6 �m

� �
;

�detDfree
st �

1=4 ! det�r6 �m�

(2.3)
or, alternatively,
�detDfree
st �

1=2 ! det

��������������������������������������
�r6 �m�y�r6 �m�

p
0

0��������������������������������������
�r6 �m�y�r6 �m�

p
0@ 1A; �detDfree

st �
1=4 ! det�

��������������������������������������
�r6 �m�y�r6 �m�

q
�: (2.4)
In the former case the fractional powers of detDfree
st become

determinants of ultralocal lattice Dirac operators, while in
the latter case they become determinants of operators
which cannot be expected to have good locality properties.
If we now imagine turning back on the taste-mixing terms,
there is reason to hope that there will be corresponding
deformations of �r6 �m0

0
r6 �m� or r6 �m into some two-taste

lattice Dirac operator ~D or single-taste D, respectively,
which continues to have good locality behavior, such that
�detDfree

st �
1=2 � det ~D and �detDfree

st �
1=4 � detD. On the

other hand, if a solution D to the SDR, or a solution ~D to
the version of the SDR with fractional power 1=2 of the
staggered fermion determinant, has been constructed
‘‘blindly’’ without taking account of the taste structure of
the staggered fermion formulation, it can happen that when
taste-mixing terms are turned off in the free field case the
scenario (2.4) arises; then it is to be expected that the D or
~D have bad locality behavior. In fact this is essentially the
situation for the solution ~D � M considered in [9], and the
negative locality result found there is therefore unsurpris-
ing. However, the possibility (2.3) gives hope of doing
better than this, at least in the free field case.3

In light of (2.3), when attempting to find a viableD in the
free field case it is natural to consider Dirac operators of the
form

D � ��
1

2a
r� �

1

2a
W �m (2.5)

on the blocked lattice, where the purpose of 1
2aW is to take

account of the taste-mixing terms in the staggered Dirac
operator. In particular, W should formally vanish �a2 for
a! 0, and should lift the species doubling of the naive
Dirac operator. In other words, 1

2aW is to be a Wilson-type
term.

A feature of the free field staggered Dirac operator (2.2)
in the taste field representation, which is very useful in this
context, is that �Dfree

stt �
yDfree

stt is trivial in spinor � flavor
space:

�Dfree
stt �

yDfree
stt �

1

�2a�2

�
�r2 �

X
�

�
1

2
��

�
2
� �2am�2

�
	 �1 � 1�: (2.6)

On the other hand, for a free field operator of the form (2.5)
we have

DyD �
1

�2a�2
��r2 � �W � 2am�2�1 (2.7)

trivial in spinor space. Comparing (2.6) and (2.7), and
noting that detD � det�DyD�1=2 (assuming 1

2aW �m 

0) and det�Dst� � det�DystDst�

1=2 (assuming m 
 0), we
immediately see that a sufficient criteria for the desired
determinant relation detD � �detDfree

st �
1=4 to be satisfied is

�W � 2am�2 �
X
�

�
1

2
��

�
2
� �2am�2: (2.8)

This has the solution

W �

��������������������������������������������
�2am�2 �

X
�

�
1

2
��

�
2

s
� 2am; (2.9)

which clearly has the required properties for 1
2aW to be a

Wilson-type term (i.e. W lifts species doubling and for-
mally vanishes �a2 for a! 0). Thus we have arrived at a
free field solution D to the SDR (1.1). Substituting (2.9)
into (2.5) we get the expression

D � ��
1

2a
r� �

1

2a

��������������������������������������������
�2am�2 �

X
�

�
1

2
��

�
2

s
: (2.10)

Note that turning off the taste-mixing terms in the free field
staggered fermion action, which, as pointed out previously,
corresponds to putting �� ! 0 in (2.2), has the same effect
as putting �� ! 0. By (2.10) this gives D! r6 �m (for
m 
 0); thus we have a realization of the scenario (2.3).
However, because of the square root in (2.10), it is not
immediately clear that good locality behavior of D, antici-
pated in our earlier discussion, is realized. In fact this
square root operator has some similarity with the free field
square root operator considered by Jansen and collabora-
-3
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tors in [9], which turned out to have unacceptable locality
behavior. Nevertheless, we show in the next section that
our operator does have good locality behavior. The reason
why its behavior is different from the operator in [9] is a bit
subtle, and to elucidate this we also provide in the next
section a new derivation of the negative locality result of
[9] which reveals the origin of the different behaviors.

We remark that other, ultralocal solutions to the SDR
exist in the free field case. Using �r2

� � �
1
2 ���

2 � ��

(2.6) reduces to �Dfree
stt �

yDfree
stt � ��1=�2a�

2���m2��1 � 1�
and it follows that the free field SDR is satisfied, e.g., by
D � ��1=�2a�2���m2�2 acting on scalar Grassmann
fields on the lattice. Other examples of ultralocal solutions
are easily constructed. However, these are unattractive
options since they do not have the form of a lattice Dirac
operator.

III. FREE FIELD LOCALITY RESULT

In this section we work in arbitrary spacetime dimension
d and show that the free field operator�������������������������������

�am�2 �
X
�

�2
�

s
(3.1)

on lattice with spacing a is exponentially local with local-
ization range vanishing �

����������
a=m

p
for a! 0; then D in

(2.10) obviously has this same locality behavior on the
blocked lattice. The argument proceeds in several steps.
First, we specialize to d � 1 dimension and write
114512
�������������������������
�am�2��2

q
�x; y� �

1

a

Z �

��

dp
2�

�������������������������������
�am�2���p�2

q
eip�x�y�=a

�
1

2�ia

I
jzj�1

dz
z

	
����������������������������������������������������
�am�2� �2� �z� z�1��2

q
zjx�yj=a

�
1

2�ia

I
jzj�1

dz
z

	
��������������������������������������������������
z�2��am�2z2� �z� 1�4�

q
zjx�yj=a

(3.2)

(the integral is counterclockwise around the unit circle in
the complex plane and we have set z � eip with ‘‘�’’ if
x� y > 0 and ‘‘�’’ if x� y < 0; for x � y either choice
can be used). The square root z �

���
z
p

is holomorphic after
making a cut in C; we choose the cut to be the half line of
negative real numbers R�. Then, by the residue theorem,
the circle around which the integral in (3.2) is performed
can be shrunk to a closed loop around the region containing
the z’s for which f�z� 2 R�, where

f�z� � z�2��am�2z2 � �z� 1�4� (3.3)

is the function inside the square root in (3.2), since outside
this region (and away from z � 0) z �

���������
f�z�

p
is holomor-

phic. The excluded z’s are found as follows:
f�z����; �2R�,�z�1�4���am�2���z2�0,��z�1�2� i
���������������������
�am�2��

q
z���z�1�2� i

���������������������
�am�2��

q
z��0: (3.4)
For given � 2 R� there are 4 solutions; we are only
interested in the ones with jzj � 1 and these are z �
z�s �

����������������������
�am�2 � �

p
� where

z � 1
is
2
�

���
s
p ��������������������
i� s=4

p
; s 2�0;1�: (3.5)

Thus the z’s for which f�z� 2 R� and jzj � 1 form curves
inside the unit circle in C, parametrized by (3.5) with s 2
�am;1�. It is useful to reparametrize these curves as
follows. We introduce

t � 1�

���������������������������������������
s=2

s=4�
����������������������
1� �s=4�2

p
vuut ; (3.6)

note that this is a strictly decreasing function of s with t �
1 for s � 0 and t! 0 for s! 1. After a little calculation
(3.5) can be reexpressed in terms of t as

z�t� � t� i�1� t�

�����������
t

2� t

r
; t 2�0; 1�: (3.7)
The z’s for which f�z� 2 R� and jzj � 1 are now parame-
trized by the curves z��t� and z��t� for t 2�0; tam� where
tam is given by setting s � am in (3.6); we write this out
explicitly for future reference:

tam � 1�

������������������������������������������������
am=2

am=4�
���������������������������
1� �am=4�2

p
vuut : (3.8)

These curves, which we denote by C� and C�, lie in the
lower and upper half planes of C, respectively. They have a
common limit point at z��0� � z��0� � 0. See Fig. 1.

According to the residue theorem, the integral (3.2)
remains unchanged when the unit circle is shrunk to a
closed curve C around C� [ f0g [ C�. In the limit this
reduces to an integral over C� [ f0g [ C� itself, with a
factor of 2 to take account of the fact that C goes along
C� [ C� twice, with opposite orientations. (This is assum-
ing that the argument in zjx�yj=a is sufficiently large to
avoid a divergence of the limit integral due to singularity
-4
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FIG. 1. The ‘‘exclusion curves’’ C. The locations of the end
points near 1 depend on am and converge to 1 for a! 0.
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at z � 0; an explicit criterion for this will be given further
below.)4 Then, using obvious symmetries, the integral can
be seen to be 2	 the real part of the integral over C�. (The
integrals over C� and C� are complex conjugate, so the
imaginary parts cancel out as they should.) The square root���������
f�z�

p
in the integral then reduces to i

���������
��t�

p
with the

explicit expression for ��t� determined below and the
sign determined to be �. Thus (3.2) reduces to�������������������������
�am�2 � �2

q
�x; y� �

�2

�a

Z tam

0
dt
��������dz�dt

��������
	

���������
��t�

p
Re�z��t�jx�yj=a�1�: (3.9)

Recalling that the solution to f�z� � �� can be written as

(3.5) with s �
����������������������
�am�2 � �

p
, and noting that the relation

between s and t in (3.6) can be inverted to give s � 2�1�

t�2=
����������������
t�2� t�

p
, we find

���������
��t�

p
�

��������������������������������������
4�1� t�4

t�2� t�
� �am�2

s
: (3.10)

The sign in i
���������
��t�

p
can be determined by considering���������

f�z�
p

�
��������
z�2

p
for z near zero. Writing z � �� i	we have

z�2 � ��	2 � i2	��=�	4 � �2	��2�; hence, recalling that
4If the argument in zjx�yj=a is not sufficiently large, e.g. if x �
y, then the curve around which the integral is performed cannot
be completely shrunk to C� [ f0g [ C�—a small detour around
z � 0 must be included. This case is more subtle, and we do not
consider it here since it is not needed to derive the advertised
locality result.

114512
we have chosen the cut R� to define the square root,
z�2 ���!�!0� � i=	. From this it is straightforward to see that
the sign ini

���������
��t�

p
in the integral over C� is�, and this is

the origin of the minus sign in (3.9). Explicit expressions
for the remaining ingredients in the integrand in (3.9) are
readily found from (3.7):

jz�t�j �

�����������
t

2� t

r
; (3.11)

��������dzdt
��������� 1

2� t

�������������������������
1� t�2� t�
t�2� t�

s
: (3.12)

Note that the divergences �1=
��
t
p

for t! 0 in
���������
��t�

p
and

jdz�=dtj are compensated in (3.9) by powers of
��
t
p

in
z��t�

jx�yj=a�1 provided jx� yj> a, which we henceforth
assume to be the case. (This is the criterion alluded to
above.) We can now use (3.9) to draw conclusions about

the exponential decay of
�������������������������
�am�2 � �2

p
�x; y�. Explicit

evaluation of the integral in (3.9) will not be needed for
this, so we do not attempt to perform it here.

For fixed jx� yj> 0 and given t 2 �0; tam� the inte-
grand in (3.9) is dominated in the a! 0 limit by the
exponential factor z��t�jx�yj=a. From (3.11) we see that
jz��t�j increases with t for t 2 �0; tam� (recall tam � 1);
therefore there can be no cancellation between the expo-
nential factors for different t in the integral (3.9) and it

follows that
�������������������������
�am�2 � �2

p
�x; y� decays exponentially

�z��tam�
jx�yj=a for small a. From (3.7) we see that

tam � 1�
������������
am=2

p
�O�am�: (3.13)

Consequently, using (3.11), the magnitude of the exponen-

tial decay of
�������������������������
�am�2 ��2

p
�x; y� for small a (i.e. am� 1)

is found to be

jz��tam�jjx�yj=a � �1�
������������
am=2

p
�O�am��jx�yj=2a

� ��1�
���������
m=2

p ���
a
p
�O�am��1=

��
a
p

�jx�yj=2
��
a
p

�
a!0
�e�

�������
m=2
p

�jx�yj=2
��
a
p

� e��1=2��
����������
m=2a�
p

jx�yj: (3.14)

Thus the localization range for the exponential decay of�������������������������
�am�2 ��2

p
�x; y� is seen to be 2

������������
2a=m

p
.

We now supplement the preceding with a bound on

j
�������������������������
�am�2 � �2

p
�x; y�j which allows one to check that the

integral in (3.9) does not give rise to other factors which
mask the exponential decay when jx� yj is of the same
order of magnitude as

����������
a=m

p
. From (3.10) and (3.11) we

see that for t 2 �0; 1���������dz�dt
���������

���
2
p ��
t
p ;

���������
��t�

p
�

2��
t
p ; jz��t�j �

��
t
p
;

(3.15)
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7Specifically, the locality behavior of the continuum version of

6The factor 1=ad�1 originates from the first integral in (3.19):
�1=�2�a�d�1�

R
���;��d�1 dd�1pjeip�x=aj � 1=ad�1.
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and it follows from (3.9) that

j
�������������������������
�am�2 � �2

q
�x; y�j �

4
���
2
p

�a

Z tam

0
dt�

��
t
p
�jx�yj=a�3

�
8
���
2
p

�
�������
tam
p

�jx� yj � a�
�tam�

jx�yj=2a:

(3.16)

For am� 1 the exponential factor here reduces as in
(3.14) to give the same decay found earlier. The factor
1=

�������
tam
p

has no effect since by (3.13) it is� 1. On the other
hand, the factor 1=�jx� yj � a� blows up for jx� yj � a;
however it does not mask the exponential decay once jx�
yj 
 2a (and enhances the locality when jx� yj is large).5

When a is sufficiently small, the localization range (�����������
a=m

p
) of the exponential decay is much larger than a and

therefore does not get masked by this factor.
We now proceed to the case of arbitrary spacetime

dimension d and consider�������������������������������
�am�2 �

X
�

�2
�

s
�x; y� �

1

�2�a�d
Z
���;��d

ddp

	

������������������������������������������
�am�2 �

X
�

���p��
2

s

	 e
i
P
�

p��x��y��=a

: (3.17)

Writing x � �x1;x�, p � �p1;p� and setting

M�p� �

�������������������������������������������
�am�2 �

Xd
��2

���p��2

vuut (3.18)

we have������������������������������
�am�2�

X
�

�2
�

s
�x;y��

1

�2�a�d�1

	
Z
���;��d�1

dd�1peip�x=a
Z �

��

dp1

2�a

	
�����������������������������������
M�p�2��1�p1�

2
q

eip1�x1�y1�=a:

(3.19)
The integral over p1 here is the same as the previous d � 1
integral (3.2) except that m is replaced here byM�p�. It can
therefore be rewritten as (3.9) with this replacement. By
our previous argument this integral decays exponentially
�z��tM�p��

jx1�y1j=a. The decay is slowest when tM�p� is
largest, i.e. when M�p� is smallest, and this happens
when p � �0; . . . ; 0� in which case M � M�0� � am.
The same reasoning which led to (3.14) then implies that

for am� 1 the operator kernel
��������������������������������
�am�2 �

P
��2

�

q
�x; y�
5Recall that the derivation of (3.9), and hence also (3.16),
assumes jx� yj> a.
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decays �e��1=2�
���������
m=2a
p

jx1�y1j along the � � 1 axis.
Obvious modifications in the preceding show that the
same decay holds along any other coordinate axis. Thus
we see that the localization range is no smaller than
2
���
2
p ����������

a=m
p

. It could however be larger along directions
which are not parallel to a coordinate axis. To derive an
upper bound on the localization range we use bounds
similar to those leading to (3.16) to get6

j

�������������������������������
�am�2 �

X
�

�2
�

s
�x; y�j �

8
���
2
p

ad�1�
�������
tam
p

�jx� � y�j � a�

	 �tam�
jx��y�j=2a (3.20)

holding for each � � 1; 2; . . . ; d. It follows that

j

������������������������������
�am�2�

X
�

�2
�

s
�x;y�jd�

Yd
��1

8
���
2
p

ad�1�
�������
tam
p

�jx��y�j�a�

	�tam�
jx��y�j=2a

which in turn gives

j

������������������������������
�am�2�

X
�

�2
�

s
�x;y�j�

8
���
2
p

ad�1�
�������
tam
p

�
Q
�
�jx��y�j�a��

1=d

	�tam�kx�yk1=2da; (3.21)

where kx� yk1 �
P
�jx� � y�j is the ‘‘taxi-driver’’

norm. A calculation analogous to (3.14) gives

�tam�
kx�yk1=2daa! 0 � e��1=2d�

���������
m=2a
p

kx�yk1 : (3.22)

Since kx� yk � kx� yk1 it follows from this and (3.21)
that the localization range is no bigger than 2d

������������
2a=m

p
, i.e.

it lies between this value and the previously derived lower
limit 2

������������
2a=m

p
. This completes the demonstration of ex-

ponential locality, with localization range vanishing
�

����������
a=m

p
, claimed at the beginning of this section.

It is interesting to compare this result with the free field
locality result derived in [9] for the operator�������������������������������������������

�am�2 �
X
�

�r��
yr�

s
: (3.23)

This operator was shown there to be exponentially local but
with the localization range remaining finite in the a! 0
limit. The argument involved a mixture of analytic and
numerical calculations7; however, the result can be estab-
lished by purely analytic means, using the techniques
introduced in the preceding, as we now demonstrate.
this operator was analytically determined and numerical calcu-
lations were then performed to check that the lattice operator
kernel reduced to the continuum expression in the a! 0 limit—
see Part 3 of Appendix B in [9].
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This will also show the origin of the difference in locality behavior between our operator and this one. (Note
P
�r
y
�r� �

�r2; we use the latter expression in the following.)
In the d � 1 case,�������������������������
�am�2 �r2

q
�x; y� �

1

2�a

Z �

��
dp

�������������������������������
�am�2 �r2�p�

q
eip�x�y�=a �

1

2�ia

I
jzj�1

dz
z

����������������������������������������
�am�2 � �z� z�1�2

q
zjx�yj=a: (3.24)

Setting g�z� � �am�2 � �z� z�1�2 � z�2��am�2z2 � �z2 � 1�2� we proceed as before by determining the z’s satisfying
g�z� 2 R� and jzj � 1:

g�z����; �2R�,��z2�1�2���am�2���z2�0,�z2�1�
���������������������
�am�2��

q
z��z2�1�

���������������������
�am�2��

q
z��0: (3.25)

����������������������p

The solutions with jzj � 1 are z�s � �am�2 � ��where

z��s� � �s=2�
����������������������
1� �s=2�2

q
� �z��s�; s 2 �0;1�:

(3.26)
Note that z�s� ! 0 for s! 1. Hence the solutions form
curvesC� and C� inside the unit circle in C, parametrized,
respectively, by z��s� and z��s�, s 2 �am;1�. The curves
in this case are simply intervals on the real axis: C� �
�0; z��am�� and C� � ��z��am�; 0� (see Fig. 2). The
circle around which the integration in (3.24) is carried
out can now be shrunk to a closed curve around C� [ f0g [
C�, leading in the limit to an integral over these curves. By
arguments similar to those in the previous case one then
finds that

�������������������������
�am�2 �r2

p
�x; y� decays exponentially

�jz��am�jjx�yj=a. From (3.26) we see that for am� 1
the magnitude of the decay factor becomes
1

CC +−

FIG. 2. The exclusion curves C for the operator (3.24).
Compare with Fig. 1 for the operator (3.2).

114512
jz��am�jjx�yj=a � ��1� am=2�O��am�2��1=a�jx�yj

�
a!0

e��m=2�jx�yj: (3.27)

Thus the localization range in this case, 2=m, is indepen-
dent of a and remains finite in the a! 0 limit. The general
dimension d case can now be dealt with by an argument
analogous to our earlier one; this leads to the result that�������������������������
�am�2 �r2

p
�x; y� is exponentially local with lower and

upper bounds on the localization range being 2=m and
2d=m, respectively, showing that the range is also finite
�m�1 in the a! 0 limit in the general dimension d case.
Thus we reproduce the general finding of [9] for the local-
ity behavior of this free field operator.8

The origin of the different locality behavior of our
operator and the free field operator considered in [9] is
now apparent: The exponential decay in d � 1 dimension,
which, as we have seen, is the same as the decay along a
coordinate axis in general d dimensions, is given in both
cases by jzmaxj

jx�yj=a, where zmax is the point on the ‘‘ex-
clusion curves’’ in Fig. 1 (our case) or Fig. 2 (the case of
Ref. [9]) which is closest to the unit circle. In our case,

jzmaxj � �tam�
1=2 � �1�

������������
am=2

p
�O�am��1=2; (3.28)

resulting in decay �e��1=2�
���������
m=2a
p

jx�yj, whereas in the case
of Ref. [9],

jzmaxj � 1� am=2�O��am�2�; (3.29)

resulting in decay�e��m=2�jx�yj. The essential difference is
that the leading a-dependent term inside the bracket in
(3.28) is�

�������
am
p

whereas the corresponding leading term in
(3.29) is �am. This leads to the localization range being
�

����������
a=m

p
in the former case and �m�1 (independent of a)

in the latter. The former tends to zero for a! 0 while the
latter stays constant in this limit.
8In the expression for the free field operator kernel G�x; y� in
Eq. (3.11) of [9] the integration range for dp� (after a change of
variables p� ! p�=a) is ���=2; �=2�. But since �r2

��p�� �
sin2�p�� this gives precisely 1=2 of what the integration over
���;�� would give. Hence G�x; y� � �1=2d�

�������������������������
�am�2 �r2

p
�x; y�

so the locality result derived above applies.
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We remark that the technique of writing the kernel
O�x; y� of a free field lattice operator as an integral around
a closed curve in the complex plane, and then attempting to
shrink the curve as a way of deriving locality properties,
was used previously in a different context in Ref. [24].

IV. DISCUSSION

Working in the flavor (taste) representation for staggered
fermions, we have shown that in the free field case there is
a simple and natural Wilson-type lattice Dirac operator D
on the blocked lattice, given by (2.10), which satisfies
detD � �detDstaggered�

1=4 and is exponentially local with

localization range vanishing �
����������
a=m

p
for a! 0. The tech-

niques developed to derive the free field locality result are
of a generally applicable nature, and we also used them to
give a new, purely analytic derivation of the negative local-
ity result in [9]. They can also be used to study free field
locality properties of other lattice operators of current
interest, in particular, the overlap Dirac operator [25],
which is treated in a forthcoming paper [26].

Our free field operator can be gauged, i.e. coupled to the
link variables of the original lattice, in a variety of ways.
The simplest way is to define link variables V� on the
blocked lattice in terms of the link variables U� on the
original lattice by

V��2x� � U��2x�U��2x� a�̂� (4.1)

(�̂ � unit vector in the positive � direction); then the
difference operators r�, �� on the blocked lattice in
(2.10) can be coupled to V� in the usual way—this speci-
fies the ‘‘minimal gauging’’ of our D. However, the result-
ing operator cannot be expected to satisfy the SDR in the
interacting case. Our argument in Sec. II does not carry
over to this case; it is specific to the free field case.

Regarding the possibility of gauging our operator such
that the SDR does continue to hold in the interacting case,
we note the following. The taste-mixing part of the stag-
gered Dirac operator leaves unbroken a U(1) subgroup of
the continuum U(4) axial flavor symmetry.9 In the taste
representation, this symmetry can be expressed in the free
field case as

f�5 � �5; Dsttg � 0; �m � 0� (4.2)

with notations as in (2.2). This chiral symmetry protects
staggered fermions against additive mass renormalization
[27–29]. The sea quark effective action in dynamical
staggered fermion simulations is logdet�Dst�

1=4 �
9We are assuming that the mass term of the staggered fermion
is of the standard form m�1 � 1�. [If the mass matrix is not
proportional to the identity operator then the interpretation of the
U(1) symmetry is different.] Note that the U(1) symmetry is not
the diagonal U(1) subgroup in U(4). The latter, associated with
the axial anomaly, is explicitly broken by the taste-mixing part of
Dstaggered.

114512
1
4 Tr logDst, the same as for a usual staggered fermion
modulo an overall factor 1=4. Thus the protection against
additive mass renormalization is also present in this case.
This situation would be difficult, if not impossible, to
reconcile with the existence of a single-flavor D satisfying
the SDR unless the D is also protected against additive
mass renormalization: if the bare mass is small then for
staggered fermions the physical mass will also be small,
whereas for a lattice fermion described by a D which does
not have a chiral symmetry the physical mass will be large
due to the additive mass renormalization induced by radia-
tive corrections. Since our D is of Wilson-Dirac form, any
gauged version of it will be afflicted with additive mass
renormalization, unless there is a very special choice of
gauging which endows this D with a new, hitherto undis-
covered type of chiral symmetry. The latter seems very
unlikely though, so most probably a gauged version of our
D satisfying the SDR simply does not exist.

The symmetry corresponding to (4.2) for �Dstt�
yDstt in

the free field case is

��5 � �5; �Dstt�
yDstt� � 0; �m � 0�: (4.3)

But, as noted in Sec. II, �Dstt�
yDstt � 1 � 1 in the free field

case, so (4.3) is trivially satisfied. This explains why it was
possible to find a single-flavor D without chiral symmetry
but nevertheless satisfying the SDR in the free field case. In
the interacting case �Dstt�

yDstt is no longer�1 � 1 and the
gauged version of the symmetry (4.3) is a nontrivial
property.

Although a gauged version of our D satisfying the SDR
is unlikely to exist, the free field locality result for it is still
relevant as a general indication of the possibility of having
local single-flavor Dirac operators satisfying the SDR, and
as a first step toward constructing more sophisticated op-
erators which have a chance to be local (also for m � 0)
and satisfy the SDR in the full interacting case. At present
it is the only analytic positive locality result derived for a
solution of the SDR in any gauge background (the back-
ground in our case being the trivial one).

The above discussion indicates that, for a viable D to
satisfy the SDR in the full interacting case, it should have
an exact chiral-type symmetry (presumably corresponding
in some way to the aforementioned chiral symmetry of
staggered fermions). The only such symmetry currently
known for single-flavor lattice Dirac operators is the
lattice-deformed chiral symmetry [30] possessed by opera-
tors satisfying the Ginsparg-Wilson (GW) relation [31–33]
and its generalizations [34]. This suggests to look for free
field solutions to the SDR which also satisfy the GW
relation, in the hope that among these there may be a D
which can be gauged such that the SDR continues to hold
in the interacting case. In fact this was already investigated
by numerical means on finite lattices in Ref. [13]. The
numerical results there appear to be encouraging.
However, the problem can also be addressed analytically
-8
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and when this is done difficulties become apparent. Setting
the lattice spacing of the blocked lattice to unity for con-
venience, the GW relation in its broad form is

�5D�D�5 � 2D�5RD (4.4)

where R is an arbitrary local scalar Hermitian operator. As
noted at the end of Sec. II, a sufficient condition for the free
field D to satisfy the SDR is

DyD � ��m2: (4.5)

In the free field case, assuming �5-Hermiticity Dy �
�5D�5 and exploiting the fact that solutions to (4.4) are
of the form D � �2R��1�1� �5�� where �2 � 1 and �y �
�, the most general solution to (4.4) is seen to be of the
form

DGW �
1

2R

�
1�

�� ~r� �W������������������������
�~r2 �W2

p �
; (4.6)

where ~r� andW are sums of scalar operators multiplied by
an even number of � matrices. Straightforward algebra
now shows that requiring this operator to satisfy (4.5) fixes
the W such that

DGW � �� ~r�
R
jRj

������������������������������������������������������������������
���m2��1� 1

4 �2R�
2���m2��

�~r2

s

� R���m2�: (4.7)

This is the general solution to (4.4) and (4.5) in the free
field case. The numerical solutions investigated in
Ref. [13] are particular cases of this operator (or more
precisely, approximations to it on finite lattices) with the
~r�’s being scalar operators. The main interest here is in the
casem � 0, since it is in the chiral limit thatD should have
the chiral symmetry implied by the GW relation (4.4).

In the simplest case where R � 1=2 and ~r� � r�, i.e.
the usual symmetrized difference operator,DGW reduces in
the m � 0 case to

��r�

��������������������������������������
1�

1

4

X
���

�
����

�r2

�vuut �
1

2
�: (4.8)

While this operator correctly reproduces the continuum
free field Dirac operator in the a! 0 limit, it is most
unlikely to have acceptable locality behavior. The presence
of the ��~r2��1 inside the square root in the general
operator (4.7) makes it difficult to envisage that there exist
~r�’s and a local R for which this operator has acceptable
locality behavior either, in spite of the numerical indica-
tions from Ref. [13]. Thus it would seem that the condition
(4.5), which is sufficient, but not necessary, for the SDR to
be satisfied, is actually too restrictive to lead to a local
operator D satisfying both the SDR and GW relations.

The preceding considerations indicate that finding a
viable exact solution to the SDR in the interacting case is
114512
a difficult problem. However, to resolve the fourth root
issue is not actually necessary to have an exact solution; it
suffices to find a viable lattice Dirac operator which sat-
isfies the SDR approximately in the sense that the effective
action difference

d�U� � 1
4 logdetDst � logdetD (4.9)

is effectively just a lattice Yang-Mills action for the gauge
field. In this case, representing the quark determinant by
det�Dst�

1=4 is physically equivalent to representing it by
detD together with a renormalization of the bare coupling
constant (i.e. a shift in 
). In other words, d�U� has the
same effect as the fermion determinant for dynamical
heavy quarks [21]. In connection with this it is useful to
note that the perturbative expansion of a general single-
flavor lattice fermion determinant has the form [35]

logdetD �
�
�

1

8�2 log�am�2 � cD

�
SYM�A�

�
X1
n�2

�In�A;m� � vn�A; am��; (4.10)

where SYM�A� is the continuum Yang-Mills action,
In�A;m� is a nonlocal continuum functional of order n in
A, and the vn�A; am�’s (also nonlocal and of order n in A)
are terms which vanish for am! 0. The dependence on
the specific choice of lattice Dirac operator D enters only
through the numerical coefficient cD and the functions
vn�A; am�. [A gauge field-independent term which di-
verges for am! 0 has been ignored in (4.10).] In fact
the perturbative expansion of 1

4 logdetDst has the same
form (4.10) as a single-flavor Dirac operator [35]. Letting
cst denote the coefficient cD in this case, it follows that the
perturbative expansion of the effective action difference
(4.9) has the form

d�A� � �cst � cD�SYM�A� �
X1
n�2

wn�A; am� (4.11)

with each wn�A; am� vanishing for am! 0. Thus it would
seem that, in the perturbative setting at least, for am� 1
the effective action difference is indeed just a Yang-Mills
action for the gauge field, for any sensible choice of single-
flavor D. The situation is not this simple though—
although they vanish for a! 0, the functions vn in
(4.10) and wn in (4.11) still do affect the quantum contin-
uum limit. At the perturbative level this is manifested in
that Feynman diagrams with vertices from these terms can
be nonvanishing, in fact divergent. To see this, recall that
the terms in the perturbative expansion of logdetD are
given by 1-(fermion)-loop gluonic n-point functions. The
internal propagators and vertices in these receive radiative
corrections. In particular, unless D is protected by a chiral
symmetry, the radiative corrections to the internal propa-
gators give rise to a large additive mass renormalization.
Since there is no corresponding effect from Dst to cancel
-9



10In fact it is only when this UV filtering is applied that the
aforementioned agreement between the rooted staggered and
overlap determinants in 2 dimensions holds [17]. Without the
filtering the agreement breaks down, just as the agreement
between the low-lying eigenvalues does. So it is tempting to
ascribe the breakdown in the agreement between the determi-
nants to the breakdown in the agreement between the low-lying
eigenvalues. This gives a further hint that vanishing of dlow is
intimately connected with having agreement between the low-
lying eigenvalues of Dov and Dst.
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this, it will manifest itself in the divergence (for am! 0)
of various Feynman diagrams involving vertices from the
‘‘irrelevant’’ terms wn�A; am� in the effective action dif-
ference (4.11). Thus the importance of D having a chiral
symmetry becomes clear in this context as well.

In perturbative (lattice) QCD the renormalizations of
interaction vertices are independent of the renormalization
of the fermion propagator and bare mass. Thus (4.11) and
the observations above would suggest that, for am� 1,
the effective action difference d�A� is indeed essentially a
Yang-Mills action when the single-flavor lattice Dirac
operator D has an exact chiral symmetry; e.g., when D is
the overlap Dirac operator. Support for this hypothesis
comes from a numerical study carried out in two dimen-
sions in Ref. [17]. In two spacetime dimensions the per-
turbative expansion of logdetD is completely universal,
modulo terms which vanish for am! 0 [35] (this is a
reflection of the fact that QCD in two dimensions is super
renormalizable). Thus the first term in the right-hand side
of the effective action difference (4.11) is absent in this
case, and the hypothesis then states that representing the
quark determinant by det�Dst�

1=2 is equivalent to using
detDov (withDov being the overlap Dirac operator) without
any renormalization of the bare coupling. If this hypothesis
holds, then det�Dst�

1=2 should coincide with detDov for
equilibrium gauge configurations of an ensemble gener-
ated by taking the probability weight to be
e�
SYM�U� det�Dst�

1=2. And this is precisely what was found
to good accuracy in a numerical study in Ref. [17].

It must be remembered though that the perturbative
picture is not the full picture. Low-lying eigenvalues of
the Dirac operator are associated with long-range, low
energy dynamics in QCD which is not captured by the
perturbative framework. Indeed, numerical studies of the
Wilson fermion determinant in Ref. [36] show that the log
of the determinant cannot be modeled by a linear combi-
nation of local loop functionals [i.e. the functional of the
form TrU��� where U��� is the product of the link vari-
ables around a closed lattice path�]; in particular, it cannot
be modeled by a local lattice YM action. However, the
product of the Dirac eigenvalues of magnitude 
 �QCD

does admit such a description [36]. Thus, the aforemen-
tioned hypothesis, coming from the perturbative consider-
ations above, should be regarded as applying to the
truncations of det�Dst�

1=4, detD, and the effective action
difference d�U�, given by excluding the eigenvalues of
magnitude <�QCD. (A way to implement and study this
truncation in the perturbative setting is mentioned in [37].)

Specifically, defining detDhigh and detDlow to be the
products of the eigenvalues of D of magnitudes 
 �QCD,
and <�QCD, respectively, and splitting up the effective
action difference into d � dhigh � dlow in the obvious
way, the hypothesis can be stated as follows: ‘‘When D
is the overlap Dirac operator and am� 1 then dhigh�U� is
essentially a local lattice YM action in 4 dimensions, and
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essentially vanishing in 2 dimensions.’’ The question of
whether d�U� itself is effectively a local YM action (which
would give a positive resolution of the fourth root issue if
the answer is affirmative) is then reduced to a question of
whether or not dlow�U� is effectively zero. Thus it would be
highly desirable to numerically study det�Dst;low�

1=4,
detDov;low, and thereby dlow�U�, in equilibrium gauge
backgrounds in 4 dimensions. We remark that, in 2 dimen-
sions, combining the hypothesis that dhigh vanishes (in 2
dimensions) with the numerical agreement [17] between
the full rooted staggered and overlap determinants implies
that dlow does indeed vanish in this case.

In 4 dimensions numerical studies have found that, after
applying a UV-filtering procedure, there is good agreement
between the low-lying eigenvalues of Dov and Dst (modulo
a fourfold degeneracy in the latter)[17].10 Comparisons of
the spectrum of Dst with predictions of random matrix
theory also back up this picture [18,19]. While this does
not by itself prove that dlow vanishes, it is certainly com-
patible and suggestive of it.

While the numerical work in this direction may lead to a
resolution of the fourth root issue at a practical level, one
should ask whether it is possible to also get a resolution at
the theoretical level in this approach. If it is possible it will
probably happen as follows: (i) Use renormalization group
arguments to justify a perturbative treatment of dhigh and
verify the hypothesis that it is effectively a local lattice YM
action. (ii) By applying random matrix theory and theo-
retical implications of UV filtering to the low-lying spectra
of Dov and Dst show that dlow is effectively zero when
taking the quantum continuum limit.

Another interesting and promising approach to the
fourth root issue has been given recently by Shamir [14].
A renormalization group argument is used to express the
free field staggered fermion action in the flavor (taste)
representation on a lattice spacing a0 as an action on a
coarse lattice of spacing a � 2na0. This results in a de-
composition of the staggered fermion determinant in the
form

det�Dst� � det�Dn� det�G�1
n �: (4.12)

The operator Dn encodes the low energy/long-range dy-
namics of staggered fermions; it decays exponentially with
localization range �a, satisfies a GW relation when m �
0, and becomes proportional to the identity matrix in flavor
-10
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space in the large n limit: limn!1Dn � Drg � 1flavor.
Hence, in this limit

det�Dst�
1=4 � det�Drg� det�G�1=4

1 �: (4.13)

The magnitude of the spectrum of each G�1
n has a lower

bound�a; in units of the fine lattice spacing a0 this blows
up for large n, so the expectation is that in a gauged version
of this setting the effect of det�G�1=4

1 � in (4.13) is exactly
the same as that of the determinant of a heavy dynamical
fermion: to simply renormalize the bare coupling
parameter.

It should be pointed out though that the n! 1 limit
leading to (4.13) cannot actually be taken in practise—it
corresponds to a! 0—but amust remain nonzero since it
is the spacing of the lattice on which the staggered fermion
lives and the lattice QCD simulations are performed.
Therefore, in this approach one needs to remain at finite
n, i.e. the setting of (4.12). For large finite n the operator
Dn is close to being diagonal in flavor space, but is not
exactly diagonal. This is different from the situation in the
present paper where we obtain a single-flavor candidate
Dirac operator already at nonzero lattice spacing. To fully
resolve the fourth root issue in Shamir’s approach it is
necessary to find a single-flavor lattice Dirac operator D0

such that adding logdetD0 � 1
4 logdetDn to the lattice

gauge field action does not affect the quantum continuum
limit. Shamir has a proposal for this operator D0 [38].
Moreover, his approach has a definite possibility of being
extended to the interacting case, although this remains a
difficult challenge for future work.

An appealing feature of Shamir’s approach is that the
GW chiral symmetries of Dn and Drg (at m � 0) originate
in a clear and direct way from the chiral symmetry (4.2) of
the staggered Dirac operator. This also raises intriguing
questions. The chiral symmetry of a GW Dirac operator is
generally anomalous—it gets broken by the fermion inte-
gration measure [30]. On the other hand, the chiral sym-
metry of Dst gets broken spontaneously in the m! 0 limit
114512
(at least at strong coupling), and there is an associated
Goldstone meson [39,40]. In connection with this we
mention a potentially troubling aspect of the fourth root
prescription which has been pointed out already by Creutz
[41]: When the determinant for a single quark is repre-
sented by det�Dst�

1=4, what becomes of the Goldstone
meson associated with the spontaneous breaking of the
chiral symmetry of Dst? Single-flavor Dirac operators are
not supposed to have spontaneously broken chiral symme-
tries. This and other intriguing issues for the fourth root
prescription remain as an urgent topic for future work.

Finally, we mention that a completely different approach
to this issue, involving relating the fourth root prescription
to local theories via a parameter deformation in a family of
lattice theories in 6 spacetime dimensions, has been de-
scribed by Neuberger in Ref. [12].
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