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Nonperturbative renormalization of composite operators with overlap fermions
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We compute nonperturbatively the renormalization constants of composite operators on a quenched
163 � 28 lattice with lattice spacing a � 0:20 fm for the overlap fermion by using the regularization-
independent (RI) scheme. The quenched gauge configurations were generated with the Iwasaki action. We
test the relations ZA � ZV and ZS � ZP and find that they agree well (less than 1%) above � � 1:6 GeV.
We also perform a Renormalization Group (RG) analysis at the next-to-next-to-leading order and match
the renormalization constants to the MS scheme. The wave function renormalization Z is determined
from the vertex function of the axial current and ZA from the chiral Ward identity. Finally, we examine the
finite quark mass behavior for the renormalization factors of the quark bilinear operators. We find that the
�pa�2 errors of the vertex functions are small and the quark mass dependence of the renormalization
factors to be quite weak.
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I. INTRODUCTION

Lattice QCD is a unique tool to compute the mass
spectrum, leptonic decay constants and hadronic matrix
elements of local operators nonperturbatively from first
principles. Renormalization of lattice operators is an es-
sential ingredient needed to deduce physical results from
numerical simulations. In this paper we study the renor-
malization properties of composite bilinear operators with
the overlap quark action.

In principle, renormalization of quark bilinears can be
computed by lattice perturbation theory. However, it is
generally difficult to go beyond one loop in such calcula-
tions. To overcome these difficulties, Martinelli et al. [1]
have proposed a promising nonperturbative renormaliza-
tion procedure. The procedure allows a full nonperturba-
tive computation of the matrix elements of composite
operators in the regularization-independent (RI) scheme
[1,2]. The matching between the RI scheme and MS, which
is intrinsically perturbative, is computed using only the
well behaved continuum perturbation theory.

This method has been shown to be quite successful in
reproducing results obtained by other methods, such as
chiral Ward Identities [3]. The method has also been
successfully applied to determine renormalization coeffi-
cients for various operators using the Wilson [4–7], stag-
gered [8], domain-wall [9], chirally improved [10], and
overlap fermions [11,12]. The purpose of the current work
is to study the application of this nonperturbative renor-
malization procedure to the renormalization of the quark
field and the flavor nonsinglet fermion bilinear operators,
and also to study their quark mass dependence for the case
of overlap fermions.
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Neuberger’s overlap fermion [13,14] is shown to have
correct anomaly and exact chiral symmetry on the lattice
[13–15] with finite cutoff. As a consequence, many chiral-
symmetry relations [15,16] and the quark propagator [17]
preserve the same structure as in the continuum. The use of
the overlap action entails many theoretical advantages
[18]: it has no additive mass renormalization, there are
no O�a� artifacts, and it has good scaling behavior with
small O�a2� and O�m2a2� errors [17,19]. In addition, it
forbids mixing among operators of different chirality and,
therefore, can be very helpful in computing weak matrix
elements.

The outline of this paper is as follows. In Sec. II, we
review the nonperturbative method (NPM) proposed in
Ref. [1] and introduce the notation used in the remainder
of this work. In Sec. III, we briefly describe the overlap
fermion formalism. We present the numerical results for
the renormalization constants as well as the Renormali-
zation Group (RG) analysis of the quark bilinear in Sec. IV
and Sec. V. In Sec. VI, we examine the finitem behavior of
the renormalization factors of the quark bilinear operators.
We complete our discussion with our conclusions in
Sec. VII.

II. NONPERTURBATIVE RENORMALIZATION
METHOD

In this section, we review the nonperturbative renormal-
ization method of Ref. [1], which we will use to compute
the renormalization constants of quark bilinears in this
paper. The method imposes renormalization conditions
nonperturbatively, directly on quark and gluon Green’s
functions in Landau gauge.
-1 © 2005 The American Physical Society
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We start by considering the definition for the momentum
space quark propagator. Let S�x; 0� be the quark propagator
on the gauge-fixed configuration from a source 0 to all
space-time points x. The momentum space propagator is
defined as the discrete Fourier transform over the sink
positions

S�p; 0� �
X
x

exp��iplatt � x�S�x; 0�; (1)

where platt is the dimensionless lattice momenta.
In our case, we use the periodic boundary condition in

spatial directions and the antiperiodic boundary condition
in time direction. We have then the dimensionful momenta

pi �
2�
Nsa
�ni � Ni=2�; and

pt �
2�
Nta
�nt � 1=2� Nt=2�;

(2)

for an N3
s � Nt lattice.

We also define the square of the absolute momentum as
the Euclidean inner product of the momenta defined in
Eq. (2)

�pa�2 �
X
�

platt
� platt

� ; (3)

where we use convention that p is dimensionful and platt
� is

dimensionless.

A. Three-Point Function

Consider the flavor nonsinglet fermion bilinear operator

O��x� � � �x�� �x�; (4)

where � is the Dirac gamma matrix

� 2 f1; ��; �5; ���5; ���g; (5)

and the corresponding notation will be {S, V, P, A, T},
respectively. The flavor index is suppressed. The connected
three-point function with an operator insertion at position 0
between the quark fields at x and y is given by

GO�x; 0; y� � h �x�O��0� � �y�i � hS�x; 0��S�0; y�i; (6)

where S�0; y� is the quark propagator from y to 0. It is the
inverse of the Dirac operator.1 Note, S�x; 0� here is not
translational invariant. Only when averaging over all gauge
configurations, i.e.,

hS�x; 0�i; (7)

is it translational invariant.
1Note that since we use the overlap fermion formalism, the
fermion field  in Eqs. (4) and (6) will be replaced by  ̂ �
�1�D=2� , where D is the massless overlap operator. As a
result, the S�x; 0� and S�0; y� are effective quark propagators to
be described in Sec. III.
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Using �5 Hermiticity, the Fourier transform of the three-
point function is given by

GO�pa; p0a� �
Z
d4xd4ye�i�p�x�p

0�y�GO�x; 0; y�;

�

��Z
d4xS�x; 0�e�ip�x

�

� �
�Z

d4yS�0; y�eip
0�y
��
;

�

�
S�p; 0���5

�Z
d4ySy�y; 0�eip

0�y
�
�5

�
; (8)

where the y refers only to the color and spin indices. This
can be written as

GO�pa; p
0a� � hS�p; 0����5S

y�p0; 0��5�i: (9)

From this, one can define the vertex function as the ampu-
tated three-point function

�O�pa; p0a� � S�pa��1GO�pa; p0a�S�p0a��1; (10)

where

S�pa� � hS�p; 0�i; (11)

which is translational invariant and is a 12� 12 matrix in
color-spin space.

Finally, a projected vertex function is defined

�O�pa� �
1

Tr�P̂2
O�

Tr��O�pa; pa�P̂O�; (12)

where P̂O � � is the corresponding projection operator.

B. RI-MOM Renormalization Condition

The renormalized operator O��� is related to the bare
operator

O��� � ZO��a; g�a��O�a�; (13)

and the renormalization condition is imposed on the three-
point vertex function �O�pa� at a scale p2 � �2 as

�O;ren�pa�jp2��2 �
ZO��a; g�a��
Z ��a; g�a��

�O�pa�jp2��2 � 1

(14)

to make it agree with the tree-level value of unity [1]. The
procedure is often called RI-MOM scheme, in which
MOM means momentum scheme, it is also simply called
RI scheme. Here Z is the field or wave function renor-
malization

 ren � Z1=2
  : (15)

In order to alleviate the nonperturbative effects from the
spontaneous chiral-symmetry breaking, high virtuality
with �� �QCD is required. On the other hand, to avoid
the discretization errors, one would need�	 1=a. So, for
the RI-MOM procedure to be a valid and practical renor-
malization scheme, there should exist a window in the
-2
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renormalization scale �, i.e. �QCD 	 �	 1=a. In this
work, the renormalization constants are extracted from
�pa�2 > 1 which, in principle, should have large discreti-
zation errors. But, as we will see later, we do not see large
discretization errors. This is also the case observed in
previous studies [1,4,9,12].

In practice, one usually matches the results to the per-
turbative scheme, e.g. MS scheme, in order to compare
with experimental quantities. We will discuss perturbative
matching in Sec. IV. In general, the vertex function �O�pa�
may have intrinsically nonperturbative contributions, e.g.
from the Goldstone boson propagator, which are not in-
cluded in perturbative calculations. To this end, we either
go to large enough momentum such that the nonperturba-
tive effects are suppressed or somehow remove them from
the data.

There are several ways to obtain the renormalization
constant ZO for the operator O. For the Z in Eq. (14),
one could use a known ratio involving Z to have it
eliminated in Eq. (14). The first way is to extract Z 
from the vertex function of the conserved vector or axial-
vector current. For example, if one uses the conserved
vector current, then ZVC � 1. From the renormalization
condition

ZVC
Z 

�VC�pa�jp2��2 � 1; (16)

one then obtains

Z �
1

48
Tr��VC��pa����jp2��2 : (17)

One can also extract Z directly from the quark propa-
gator. From Ward Identity (WI), it follows [1]

Z �
�i
12

Tr
�
@S�pa��1

@p

�
p2��2

: (18)

To avoid derivatives with respect to a discrete variable, it is
suggested [1] to use

Z0 �
�i
12

Tr
P4
��1 ���p�a�S�pa�

�1

4
P4
��1�p�a�

2

��������p2��2
; (19)

which, in the Landau gauge, differs from Z by a finite
term of order �2

s [20]. The matching coefficient can be
computed using continuum perturbation theory, and up to
order �2

s [20]

Z0 
Z 
� 1�

�2
s

�4��2
��2� 
 . . . : (20)

In the Landau gauge

��2� �
�N2

c � 1�

16N2
c
�3
 22N2

c � 4Ncnf�; (21)

where Nc is the number of colors and nf the number of
dynamical quarks. However, as pointed out in Ref. [9], due
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to the ambiguity as to how the discrete lattice momentum p
is defined, this method will introduce roughly 10%–20%
uncertainty in determining Z .

The third way is to first calculate the renormalization
constant ZA from the axial Ward identity [11,19,21] with a
local current, and then use the renormalization condition
for the axial current

ZA
Z 

�A�pa�jp2��2 � 1; (22)

to eliminate the unknown Z from Eq. (14). Combining
Eqs. (14), (22), and the ZA from the Ward identity, one
obtains

ZO � ZA
�A�pa�jp2��2

�O�pa�jp2��2

: (23)

This way, other renormalization constants, such as ZS, ZP,
ZV , and ZT can be obtained and the identity relations ZS �
ZP and ZV � ZA due to chiral symmetry can be checked.
Note here, the local axial-vector current is finite. Thus,
ZA is independent of scale, but depends on the lattice
spacing a.

In this work, we shall adopt the third approach as
mentioned above. It is known that ZA as determined from
the Ward identity has a small statistical error at the level of
0.2% [21] and will not contribute much to the overall error.
When we study the quark mass dependence, we shall use
the wave function renormalization from the quark propa-
gator to obtain its dependence for the renormalization
factors of the quark bilinear operators.
III. OVERLAP FERMION

The massless overlap-Dirac operator in lattice units is
[14]

D�0� � �1
 �5��H��; (24)

where ��H� is the matrix sign function of a Hermitian
operator H. ��H� depends on the background gauge field
and has eigenvalues 
1. Any such D is easily seen to
satisfy the Ginsparg-Wilson relation [22]

f�5; Dg � D�5D: (25)

For the topological sector with no zero modes, it follows
easily that f�5; D�1�0�g � �5 and by defining ~D�1�0� �
�D�1�0� � 1=2� we see that it anticommutes with �5

f�5; ~D�1�0�g � 0: (26)

The standard choice of ��H��x; y� is ��H� �
HW=jHW j � HW=�H

y
WHW�

1=2, where HW�x; y� �
�5DW�x; y� is the Hermitian Wilson-Dirac operator. DW
is the usual Wilson-Dirac operator on the lattice. However,
in the overlap formalism the Wilson mass parameter �
needs to be negative in order to generate zero modes.
-3



TABLE I. Lattice parameters.

Action Volume NTherm NSamp 
 a (fm)

Physical
Volume
(fm4)

Iwasaki 163 � 28 10000 5000 2.264 0.200 3:23 � 5:60
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In the present work, we use the standard Wilson-Dirac
operator, which can be written as

DW�x; y� �
�
	x;y � 


X
�

f�r� ���U��x�	y;x
�̂


 �r
 ���U
y
��x� a�̂�	y;x��̂g

�
: (27)

The negative Wilson mass �� is then related to 
 by


 �
1

2���� 
 8
: (28)

� is chosen such that 
 > 
c and � < 2r, and hence there is
no species doubling and there can be zero modes for the
massless quark. We take r � 1 and � � 1:368 (which
corresponds to 
 � 0:19) in our numerical simulation.

It is shown that the flavor nonsinglet scalar, pseudoscalar
[23], vector, and axial [23,24] bilinears in the form
� KT�1� 1

2D� (K is the kernel which includes �matrices
and T is the flavor SU�Nf� matrix) transform covariantly
under the global chiral transformation 	 � T�5�1�
D=2� as in the continuum. The 1� 1

2D factor is also
understood as the lattice regulator which projects out the
unphysical real eigenmodes ofD at � � 2. For the massive
case, the fermion action is defined as � �D 
ma � �1�
1
2D� so that the tree-level wave function renormalization
of the quark propagator is unity. In this case, the Dirac
operator can be written as

D�m� � �D
ma
�
1�

1

2
D
�

� �

m
2



�
��

m
2

�
�5��H�: (29)

With the  field in the operators and the interpolation
fields for hadrons replaced by the lattice regulated field
 ̂ � �1� 1

2D� , the regulator factor will be associated
with the quark propagator in the combination �1�
1
2D�D�m�

�1 in Green’s functions, leading to an effective
quark propagator [17]

S�x; y� �
�
1�

1

2
D
�
D�m��1 � �Dc 
m�

�1; (30)

where the operator Dc � �D=�1� 1
2D� is chirally sym-

metric in the continuum sense, i.e. f�5; Dcg � 0 [25,26];
but, unlike D, it is nonlocal. Thus, the effective quark
propagator in Eq. (30) turns out to have the same form as
in the continuum, i.e. a chirally symmetric Dc plus a mass
term in the inverse propagator [17,27–29]. By studying the
dispersion relation of the pseudoscalar and vector mesons,
it is learned [17] that the �ma�2 errors are much smaller
than those of the Wilson fermion, making it a viable option
for studying the heavy-light systems. Furthermore, it af-
fords a nonperturbative renormalization of the heavy-light
decay constant via the chiral Ward identity and the unequal
114509
mass Gell-Mann-Oakes-Renner relation [17]. The prelimi-
nary study of the charmonium spectrum with the quenched
overlap fermion seems encouraging as far as the hyperfine
splitting and the S-wave to P-wave charmonium splittings
are concerned [30].
IV. NUMERICAL RESULTS

In this paper we work on a 163 � 28 lattice with lattice
spacing, a � 0:20 fm, as determined from the pion decay
constant f� [31]. The gauge configurations are created by
the Iwasaki gauge action through the pseudoheat-bath
algorithm. A total of 80 configurations are used. The lattice
parameters are summarized in Table I.

Recently it has been speculated [32] that the overlap
operator with coarse lattice spacing of 0.2 fm, such as in
Ref. [31] and this study, might have a range as large as 4
lattice units. Thus, the calculations might be afflicted by
unphysical degrees of freedom as light as 0.25 GeV. It has
been shown [33] by direct calculations at lattice spacings
of 0.2 fm, 0.17 fm, and 0.13 fm that this is not the case. The
range of the overlap operator as defined in Ref. [34] is
about 1 lattice unit (in Euclidean distance or 2 units of
‘‘taxi driver’’ distance) for each of the above lattice spac-
ings. Therefore, the range of the overlap-Dirac operator
scales to zero in physical units in the continuum limit and
our 163 � 28 lattice, with spacing of 0.2 fm, used in this
study is in the scaling range.

The gauge field configurations are gauge fixed to
the Landau gauge using a conjugate gradient fourier ac-
celeration [35] algorithm with an accuracy of � �P
j@�A��x�j2 < 10�12. We use an improved gauge-fixing

scheme [36] to minimize gauge-fixing discretization er-
rors. Since gauge fixing is involved for the external quark
state, there are concerns about the effects of Gribov copies
on the numerical results of the renormalization procedure.
A study of two different realization of the Landau gauge
and a covariant gauge shows that the renormalization con-
stants from these gauge fixings differ by less than the
statistical errors of about 1%–1.5% level [37]. We shall
thus assume that the potential uncertainty due to Gribov
copies is at this 1%–1.5% level which is comparable to our
statistical errors.

Our numerical calculation begins with an evaluation of
the inverse of D�m� which is defined in Eq. (29). We use a
14th-order Zolotarev approximation [38] to the matrix sign
function ��HW�. In the selected window of x 2 �0:031; 2:5�
of ��x�, the approximation is better than 3:3� 10�10 [31].
-4
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We then calculate Eq. (30) for each configuration by using
multimass conjugate gradient method for both the inner
and outer loops. The detailed numerical description is
given in Ref. [31]. In the calculations, 
 � 0:19 was
used, which corresponds to � � 1:368. We calculate 15
quark masses by using a shifted version of the conjugate
gradient solver [16,19]. The bare quark masses ma are
chosen to be ma � 0:021 00, 0.030 33, 0.044 33,
0.064 17, 0.075 83, 0.089 83, 0.108 50, 0.129 50, 0.156 33,
0.187 83, 0.226 33, 0.268 33, 0.322 00, 0.400 00, and
0.600 00. With the scale determined by f�, they correspond
to pion masses 212(7), 247(6), 290(6), 342(6), 370(7),
400(7), 438(7), 478(8), 524(8), 575(9), 633(10), 692(11),
764(12), 862(13), 1092(17) MeV, respectively [31].

In the following, we give the steps for the numerical
calculation:
(a) A
fter we calculate the quark propagators in coordi-
nate space for each configuration, we use the
Landau gauge transformation matrix to rotate the
quark propagators to the Landau gauge. The discrete
Fourier transform is then used to calculate the quark
propagators in momentum space.
(b) N
ext, we calculate the five projected vertex func-
tions �O�pa� defined in Eq. (12), where we have
used the effective quark propagator in Eq. (30) for
the calculation. By definition, they are the ratios of
renormalization constants at the chiral limit (i.e.
Z ��a; g�a��=ZO��a; g�a�� from Eq. (14)) in the
RI scheme at scale �2 � p2. They are in general
dependent on �pa�2 which comes from two sources.
One is from the running of the renormalization
constants in the RI scheme; the other is from the
possible �pa�2 error.
(c) W
e decouple the two above mentioned scale depen-
dencies of the calculated �O�pa� by first dividing
out its perturbative running in the RI scheme.
Ideally, this should take care of the scale depen-
dence, since we have taken the scale to infinity.
However, due to the �pa�2 error on the lattice, there
can still be some �pa�2 dependence in the �O�pa�
after undoing the perturbative running. Following
Ref. [9], we shall attribute the remaining scale de-
pendence to the �pa�2 error and will use the simple
linear fit to remove it. This will be discussed in
Section V. For the scalar and pseudoscalar vertex
functions, there is an additional complication due to
the presence of quark mass poles [9]. We shall
remove them first and then extrapolate to the chiral
limit. Finally, we can check the expected relations
ZA � ZV and ZS � ZP.
(d) I
FIG. 1 (color online). The projected vertex function � defined
in Eq. (12) for the vector and axial-vector currents with different
bare quark masses.
n order to compare results with experiments, one
frequently quotes the scale-dependent results in the
MS scheme at certain scale. So the final step is to
perturbatively match the results from the RI scheme
to the MS scheme at� � 2 GeV for ZS, ZP, ZT , and
Z .
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A. Axial and vector currents

Let us consider first the vector and axial-vector currents.
Since each obeys a Ward Identity [39], their renormaliza-
tion constants are finite. In Fig. 1, we show the vertex
functions �A and �V from Eq. (12) for different bare quark
masses as a function of the lattice momentum �pa�2. We
find that they are weakly dependent on the mass, and
almost scale independent after �pa�2 � 2:0, which corre-
sponds to p � 1:4 GeV.

In the RI scheme, Eq. (14) implies that in the chiral limit

lim
m!0

�A=V�pa�jp2��2 � Z ��a; g�a��=ZA=V; (31)

and one expects that ZA � ZV for the overlap fermion, but
this is true only for large momenta p. At low momenta, �A
and �V may differ due to the effects of spontaneous chiral-
symmetry breaking [9].

Following Ref. [9], we show in Fig. 2 the quantities
�A � �V and 1

2 ��A 
 �V�, after linearly extrapolating
with respect to ma to the chiral limit. We can observe
from the upper panel of the figure that there is no effect
-5



FIG. 2. The upper panel is (�A � �V) versus �pa�2. We see that
ZA � ZV is valid above moderate �pa�2 � 2:5. Here we linear
extrapolate to the chiral limit (m � 0) with respect to ma. The
lower panel is 1

2 (�A 
 �V) versus �pa�2.
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of spontaneous chiral-symmetry breaking at moderate and
high momenta, where �A � �V tends to zero. In fact, the
percentage error between �A and �V is less than 1% at
�ap�2 � 2:5 (top panel) and is comparable to the statistical
error. This deviation decreases further for higher momenta.
On the other hand, the effects of spontaneous chiral-
symmetry breaking are clearly visible at low momenta
where �A and �V differ. In the lower panel of Fig. 2, we
plot 1

2 ��A 
 �V� against �pa�2. Since ZV and ZA are scale
independent, the slight �pa�2 dependence that one observes
in 1

2 ��A 
 �V� in Fig. 2 for �pa�2 > 2:5 reflects the scale
dependence of Z and the lattice �pa�2 error.

B. Pseudoscalar and scalar densities

The pseudoscalar and scalar densities differ from the
axial and vector currents in the sense that their renormal-
ization constants are not scale independent. The scalar and
pseudoscalar densities with the form � �1�D=2� and
� �5�1�D=2� transform under the lattice chiral trans-

formation as in the continuum [15,40,41]. From the Ward
114509
identities, one obtains the relations

ZS � ZP; (32)

Zm �
1

ZS
: (33)

Thus, the quantities ZS=ZP, ZSZm, and ZmZP are expected
to be scale independent.

For the case of the pseudoscalar and scalar renormaliza-
tion, there is a complication due to the presence of the
quark condensate in the inverse quark propagator. Using
the axial Ward identity from the quark propagator, one has
[9]

m�P�p; p� �
1
12Tr�S�1�p��: (34)

It is known that due to the spontaneous chiral-symmetry
breaking, the trace of the inverse quark propagator picks up
a contribution from the quark condensate [42]. At large p2

[42], it is given by

1

12
Tr�S�1�p�� � m� h �qqi

4��s
3p2 
O�1=p

4� (35)

from first order perturbation [42]. This implies that the
renormalized Tr�S�1

ren�p�� should be

1

12
Tr�S�1

ren�p�� � mren � C1
h �qqi

p2 
O�1=p
4�: (36)

In the study of lattice artifacts of the Wilson fermion [43],
it is shown that there are three terms which mix at O�a� to
give an improved and renormalized quark field,

qren � Z1=2
 �1
 bqma�f1
 ac

0
q� 6D
mren� 
 acNGI 6@gq0;

(37)

where 6@ may appear due to gauge fixing. It is found [43] in
the study of the orderO�a� error of Wilson fermion, that c0q
is large. Combining Eqs. (36) and (37), one has [9]

1

12
Tr�S�1

latt�pa�� � . . .
 ZmZ �ma
mresa�

� C1Z 
a3h �qqi

�pa�2

 2�cNGI � c0q��pa�2


O�1=p4�; (38)

where terms of O�mcNGI� are neglected. Thus, in this case,
1
12 Tr�S�1

latt�pa�� diverges for large pa.
On the other hand, it is learned from the domain-wall

fermion [9] study on a 163 � 32� 16 lattice with Wilson
gauge action at 
 � 6:0, the explicit chiral-symmetry
breaking effect from the cNGI � c0q term is negligible for
moderately large values of �pa�2 and that the residual mass
is small. Since the explicit symmetry breaking is controlled
to a level <10�9 with the Zoloterav approximation of the
sign function [31] for the overlap fermion, we expect the
cNGI � c0q term to be negligibly small. It was already
-6



FIG. 3 (color online). A plot of 1
12 Tr�S�1

latt�pa�� versus �pa�2 for
different bare quark mass ma on 163 � 28 lattice, showing that
1

12 Tr�S�1
latt�pa�� approaches a constant value at large �pa�2.

FIG. 5. A plot of the slope of 1
12 Tr�S�1

latt�pa�� with respect to the
quark mass as a function of �pa�2. It is expected to be ZmZ at
large �pa�2 from Eq. (38).
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shown that the residual quark mass due to the numerical
approximation of the overlap operator is negligible [19].
Here, we shall verify the expectation that the cNGI � c0q
term is indeed negligible.

As shown in Fig. 3, 1
12 Tr�S�1

latt�pa�� for several quark
masses tend to constant values after �pa�2 � 4 . This
indicates that there is no discernible contamination due
to the explicit chiral-symmetry term 2�cNGI � c

0
q��pa�

2

which grows as �pa�2. Figure 4 shows the same at the
chiral limit which is obtained from linear extrapolation in
ma. In this case, 1

12 Tr�S�1
latt�pa�� tends to zero at large �pa�2

as expected from Eq. (38) with no residual mass. Plotted in
Fig. 5 is the slope of 1

12 Tr�S�1
latt�pa�� with respect to the

quark mass ma. It is expected to be ZmZ at large �pa�2
FIG. 4. The value of 1
12 Tr�S�1

latt�pa�� extrapolated to m � 0 vs
�pa�2 by a simple linear extrapolation. At large �pa�2, the
extrapolated value is zero within errors.
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from Eq. (38). These results are very similar to those of the
domain-wall fermion [9].

From Eqs. (34) and (38), one finds that

�P�pa; pa� �
Z 
ZP
� C1Z 

a3h �qqi

ma�pa�2

O�1=p4�: (39)

Since the quark condensate h �qqi has a contribution of hjQjimV
from the zero modes due to the topological charge Q, it is
expected that �P�pa; pa� has 1=m2 and 1=m singularities
as m! 0. Thus, it is suggested [9] to fit �P�pa; pa� with
the functional form involving pole terms. As illustrated in
Fig. 6, the singular behavior in m is quite visible. It is
suggested in Ref. [9] to fit the �P with a double and single
pole form for each pa
FIG. 6 (color online). �P versus �pa�2 with different masses.
Here, one can clearly see the strong divergent behavior for small
quark masses.
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FIG. 7 (color online). �S versus �pa�2 with different masses.
The chiral log behavior is also quite visible.

J. B. ZHANG et al. PHYSICAL REVIEW D 72, 114509 (2005)
�P�pa; pa� �
c1;P

�am�2


c2;P

�am�

 c3;P 
 c4;P�am�

2: (40)

This is appropriate for the case studied in Ref. [9] where
the lattice volume is relatively small (the space-time vol-
ume is �10 fm4) so that the zero mode contribution is
substantial and the quark mass is relatively heavy so that
the quenched chiral log is not significant. In our case, the
space-time volume at 184 fm4 is much larger. As such, the
zero mode contribution is expected to be smaller. In our
study of the quenched chiral log in the pion mass [31] with
the same lattice, it is found that the pion mass is basically
the same when calculated from either the hPPi, hA4Pi,
hA4A4i, or hPP� SSi correlators, indicating that the zero
mode effects are small and negligible within statistical
errors, even for the smallest pion mass at �180 MeV.
Our lowest pion mass is 212 MeV in the current study.
On the other hand, the quenched chiral log is quite promi-
nent with pion mass less than 400 MeV. Therefore, we
believe that the more appropriate approach is to relate the
quark condensate in Eq. (39) to the pion mass through the
Gell-Mann-Oakes-Renner relation

h �qqi � �
m2
�f

2
�

2m
; (41)

and use the power form for the pion mass where the leading
log is resummed through the cactus diagrams [44], i.e.

m2
��ma� � A�ma�1=�1
	� 
 B�ma�2: (42)

Here 	 is the quenched chiral log parameter.
Neglecting higher order terms and expanding f� ’

f��0� 
 c�ma�, we can approximate Eq. (39) as

�P;latt�ap;ma� ’ A1f�ma�
�1=�1
	���2 
 aP�ma�

�1=�1
	���1g


 A2 
 CP�ma
2� 
DP�ma�

2; (43)

where

A1 �
Aa3f2

��0�

2�pa�2
C1Z ; aP �

c
f��0�

;

A2 �
Ba3f2

��0�

2�pa�2
C1Z 
 ZmZ :

(44)

We plot �P�pa; pa� in Fig. 6 as a function of �pa�2 for
several ma. It is clear that at small �pa�2, it has a singular
behavior for small ma which is presumably due to the
divergent terms associated with the quenched chiral 	.

For �S, it also displays a singular behavior as shown in
Fig. 7. From the vector Ward identity, one has the relation

�S �
1

12

@Tr�S�p��1�

@m
: (45)

From Eq. (38), the above �S can be approximated with

�S�pa; pa� �
Z 
ZS


C1Z 
�pa�2

@a3h �qqi
@ma


 . . . (46)

for large �pa�2.
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Similar to the pseudoscalar case, substituting the pion
mass in Eq. (42) and the Gell-Mann-Oakes-Renner relation
in Eq. (41) to Eq. (45) and neglecting the higher order
terms beyond �ma�2, we obtain

�S;latt�ap;ma� � A1

�
�

	
1
 	

�ma��1=�1
	���2


 aS
1

1
 	
�ma��1=�1
	���1

	

 A2


 CS�ma
2� 
DS�ma�

2: (47)

At first glance, it appears that the quantity ZmZ in A2 is
not separable from the other term in Eq. (44). However, we
should note that we know the values of A, B, and f��0� in
Eq. (44) from an earlier study of the pion mass and decay
constant [31]. After fitting A1 and A2 in Eqs. (43) and (47),
one can compare the first term in A2 with A1 to obtain
ZmZ . As we shall see later, it turns out the first term in A2

is O�10�2� times smaller than ZmZ .
In order to obtain ZmZ and assess its finite m behavior,

we first subtract the divergent terms in Eqs. (43) and (47)
and then fit the subtracted vertex functions linear and
quadratic in m, i.e. with ma2 and m2a2 terms. In the
following subsection, we shall detail our fitting methods
and give the results. We should note in passing that it has
been suggested to use nondegenerate quark masses to
avoid the divergence in �P [11,45]. However, due to the
complication of the quenched chiral log, it is not applicable
here.

1. Fitting

We adopt the fitting procedure used to fit the chiral logs
in the pion mass [31] and the Roper resonance in the
nucleon correlator [46] with priors. From the chiral log
fit of the pion mass [31], we obtain 	 to be in the range of
0.20–0.15 when the maximum pion mass for the fitting
-8



FIG. 8 (color online). Vertex functions for scalar (top) and
pseudoscalar (bottom) channels at the momentum corresponding
to � � 2 GeV.
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range is set to be �500-900 MeV. Since we are fitting �P
and �S in the similar quark mass range, we put a weak
constraint on the value of 	 with 	 � 0:18�5� which covers
the range of 	 in the fit of the quenched chiral log in the
pion mass. Data corresponding to the few lowest masses
are first fitted with A1P�A1S�, aP�aS�, and A2P�A2S� and then
these parameters are constrained with those fitted values to
fit the whole range of the masses with the forms in
Eqs. (43) and (47). It is observed that these vertex functions
are highly correlated between different masses and that the
correlation increases with higher momentum. This, we
TABLE II. Fitted parameters corre

Channel A1 aP�aS� 	

P 0.008(1) 0.08(9) 0.163(18) 1.
S 0.011(5) 0.14(42) 0.171(24) 1.
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believe, is due to the fact that the quark masses that we
are interested in are all much smaller than the external
momentum of pa � 4:145 which corresponds to � �
2 GeV that we will use to eventually match to the MS
scheme at this scale. In this sense, the high correlation is a
generic feature that this nonperturbative renormalization
procedure faces for light quarks.

We show in Fig. 8 the vertex functions �P�pa;ma� and
�S�pa;ma� at pa � 4:145 as a function of ma, together
with the fitted curves based on Eqs. (43) and (47). The
fitted parameters are given in Table II. We see from the
fitted parameters A1, aP�aS�, 	, and A2 from �P agree with
those fitted from �S, respectively, as we expected. This
supports our supposition that the singular behaviors in both
the �P�pa;ma� and �S�pa;ma� are due to the quenched
chiral log in h �qqi. We also tried to fit the pseudoscalar
vertex function in the form in Eq. (40) and found that it
does not fit well—the �2 is too large.

We note that the fitted central values of 	 tend to be on
the low side compared to our previous fit of the pion mass
which gives 	 � 0:20�3� [31] and is in agreement with 	�
0:23 as deduced from the topological susceptibility calcu-
lation with the overlap operator [47]. We think the reason is
that the smallest quark mass in the present fit which
corresponds to m� � 250 MeV is larger than that in the
previous fitting of the pion mass which corresponds to
m� � 180 MeV. According to the detailed study [31] of
the quenched chiral log as a function of the fitting range of
quark masses, this behavior of a smaller 	 for a higher
quark mass range is to be expected.

When we take the value of A � 1:3 and B � 1:1 from
our pion mass chiral log fit (Fig. 12 in Ref. [31]) in the
relevant mass range, it follows from Eq. (44) that

R �
Ba3f2

��0�

2�pa�2
C1Z �

BA1

A
� 0:0068; (48)
which is 2 orders of magnitude smaller than A2. We shall
subtract this contribution from A2 in Eq. (44) to obtain
ZmZ which changes its value by about half a � which is
not significant.

To eventually obtain ZS and ZP and their respective
finite m dependence, we define the subtracted �P and �S
by taking out the divergent terms in Eqs. (43) and (47) and
the first term in A2 in Eq. (44) on each Jackknife sample (J)
as
sponding to Eqs. (43) and (47).

A2 C D �2/dof

305(15) �0:024�6� �0:022�5� 1.29
302(17) �0:079�8� �0:020�5� 1.47

-9



FIG. 10 (color online). �T versus �pa�2 with different masses.
It has no significant mass dependence.FIG. 9 (color online). Z =ZP and Z =ZS and the ratio ZP=ZS

as a function of �pa�2.
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�sub;J
P �ma� � �JP�ma� � A

P
1Jf�ma�

�1=�1
	J���2


 aPJ �ma�
�1=�1
	J���1g �

BAP1J
A

; (49)
�sub;J
S �ma� � �JS�ma� � A

S
1J

�
�

	J
1
 	J

�ma��1=�1
	J���2



aSJ

1
 	J
�ma��1=�1
	J���1

	
�
BAS1J
A

: (50)

From Eqs. (43), (44), (47), and (49), we see that the
ratios of Z =ZP and Z =ZS are the subtracted vertices �P
and �S at the massless limit for each pa in the RI scheme,
i.e.

Z �pa�

ZP;S�pa�
� �subP;S �pa;ma � 0�: (51)

We plot in Fig. 9, Z =ZP, Z =ZS, and the ratio ZS=ZP as
a function of �pa�2. We see that for �pa�2 > 3, the ratio
goes to unity which is a confirmation that our fitting
procedure does not spoil the expected chiral property ZP �
ZS for the overlap fermion.

C. The tensor current

In Fig. 10, we show �T versus �pa�2 with different
masses. We can see that at moderate to large �pa�2, �T is
not sensitive to the quark masses. The chiral limit value is
obtained by a linear plus quadratic fitting as for the case of
vector and axial-vector currents and the results will be
presented in the next section.
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V. RUNNING OF THE RENORMALIZATION
CONSTANTS

In general, one can choose to define the renormalization
conditions for different p and p0 in Eq. (10). But the
virtuality of the quark states must be much larger than
�QCD. This is so because in order to obtain physical results
at certain scale (e.g. momentum or mass), one needs to
combine the matrix element of the renormalized operator
O��� with the Wilson coefficient function. The latter is
usually computed in continuum perturbation theory by
expanding in �MS

s at a scale of order of �. Thus, for the
validity of perturbation calculation, � must be large. On
the other hand, one would like to have�	 1=a in order to
have smaller O�a� effects. When spontaneous symmetry
breaking takes place, as is in QCD, a large � may not be
enough due to the presence of the Goldstone boson. For
example, at low momentum transfer q � p0 � p, the
Green’s function can have a Goldstone boson pole like
1=q2. However for fermions (but not for a scalar particle),
this contribution will be 1=p2 � 1=�2 smaller than the
perturbative contribution even when q2 � 0 [1]. Thus, it is
desirable to have a window �QCD 	 �	 1=a so that
both the nonperturbative effects and the lattice artifacts
are small. In practice, one finds that the renormalization
procedure prescribed here works well for ��a�2 as large as
6. In the current case, this corresponds to �� 2:5 GeV.

The renormalized operators are defined as

ZOObare � Oren: (52)

The fact that the bare operator is independent of the
renormalization scale �2 gives the renormalization group
(RG) equation,

�2 d

d�2 Oren �
1

ZO
�2 dZO

d�2 Oren (53)
-10
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� �
�O
2
Oren; (54)

where

�O � �
2�2

ZO

dZO
d�2 ; (55)

is the anomalous dimension.
The solution of ZO��2� can be written in the following

form

ZO��
2� �

CO��2�

CO��02�
ZO��

02�: (56)

Expanding the anomalous dimension in the coupling con-
stant �s

NONPERTURBATIVE RENORMALIZATION OF . . .
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�O �
X
i

��i�O

�
�s
4�

�
i
1
; (57)

and considering the running of �s in QCD 
 function

��s� perturbatively


��s�
4�

� �2 d

d�2

�
�s
4�

�
� �

X1
i�0


i

�
�s
4�

�
i
2
; (58)

where
i are the coefficients of the QCD
 function
��s�,
one can solve for the coefficient functions CO
perturbatively.

The four loop solution [48] of the coefficient function in
Eq. (56) is (we have suppressed the subscripts for the
specific operator O)
C��2� �

�
�s���
�

�
��0
�
1


�
�s���

4�

�
� ��1 � �
1 ��0� 


1

2

�
�s���

4�

�
2
�� ��1 � �
1 ��0�

2 
 ��2 
 �
1
2 ��0 � �
1 ��1� �
2 ��0�




�
�s���

4�

�
3
�

1

6
� ��1 � �
1 ��0�

3 

1

2
� ��1 � �
1 ��0�� ��2 
 �
1

2 ��0 � �
1 ��1� �
2 ��0�



1

3
� ��3 � �
1

3 ��0 
 2 �
1
�
2 ��0� �
3 ��0
 �
1

2 ��1 � �
2 ��1� �
1 ��2�

�	
; (59)

where

� i �
��i�

2
0
; 
i �


i

0
: (60)

Tables III, IV, and V give the anomalous dimensions ��i� for Z , Zm, and ZT in the RI/MOM scheme for the quenched
approximation [20,48,49]. In the case of chiral fermions, ZS � ZP � 1=Zm, so that CS��2� � CP��2� � 1=Cm��2�. Note
that, in Refs. [20,48,49], the definition of Z’s is the inverse of our definition in Eq. (52).

The coupling constant itself is running with respect to �. The four loop formula is given by [50]

�s
4�
�

1


0 ln��2=�2
QCD�

�

1 lnln��2=�2

QCD�


3
0ln2��2=�2

QCD�



1


5
0ln3��2=�2

QCD�
f
2

1ln2 ln��2=�2
QCD��


2
1 lnln��2=�2

QCD�

2
0�

2
1g



1


7
0ln4��2=�2

QCD�

�

3

1ln3 ln��2=�2
QCD��

5

2

3

1ln2 ln��2=�2
QCD�� �2


3
1� 3
0
1
2� lnln��2=�2

QCD�



1

2
�
3

1� 3
2
0
3�

	
: (61)
TABLE III. Quenched Z anomalous dimensions ��i� .

��0� ��1� ��2� ��3�

0 44.6667 2177.0737 130 760.2969
The QCD 
 function is scheme independent only up to
two loops. The additional terms of the expansion have been
computed in the MS scheme in Ref. [51].

In this work, the value of �s was calculated at four loops
using a lattice value of �QCD taken from Ref. [52] as

�QCD � 238
 19 MeV: (62)

Both ZA and ZV are scale independent, but this is not the
case for Z . The scale invariant (SI) vertex for the axial and
vector current is defined by removing the renormalization
group running of Z as
�SI
A;V��ap�

2� � �A;V��ap�2�=C ��ap�2�; (63)

where C is defined in Eq. (59) with the anomalous di-
mension coefficients from Table III. We normalize
C ���a�2 � 4:15� � 1, which corresponds to � �
2:0 GeV, in order to compare with the �pa�2 dependence
of �A;V��ap�2�.
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FIG. 12 (color online). The same as Fig. 11 for �sub
S and �sub;SI

S .
The slope of SI versus �pa�2 is about 0.008 beyond �pa�2 � 4:0.

TABLE V. Quenched ZT anomalous dimensions ��i�T .

��0� ��1� ��2�

2.666 67 80.4444 3268.2996

TABLE IV. Quenched Zm anomalous dimensions ��i�m .

��0� ��1� ��2� ��3�

8 252 11 769.5469 557 837.9375
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Figure 11 shows both �A��ap�2; ma � 0� and
�SI
A ��ap�

2; ma � 0� as a function of �pa�2. By comparing
them, we see that the renormalization group running due to
Z is not appreciable for �pa�2 > 3, but it does tend to
make the SI data flatter as a function of �pa�2. The remain-
ing scale dependence of �SI

A ��ap�
2; ma � 0� is very small.

A plausible explanation for it is an �ap�2 error [9]. Fitting
the remaining scale dependence to the form [9]

�SI
A ��ap�

2� � �SI
A 
 c�ap�

2; (64)

for a range of momenta that is chosen to be ‘‘above’’ the
region where the condensate effects are important, one can
obtain the scale invariant �A which is denoted as �SI

A .
When a linear fit of the SI data versus �ap�2 is performed

for 2:4< �ap�2 < 5:7, the gradient is� 0:001. In the ideal
case, the gradient should be zero. This small value is thus
interpreted as an O�a2� error. This shows that the �pa�2

error of the ratio of Z and ZA is small, but we do not know
their individual �pa�2 error separately. It appears that the
�pa�2 error in Z0 as defined from the quark propagator in
Eq. (19) is as large as �10% at p � 2 GeV [9,12].
However, this relatively large �pa�2 error in ZSI

 must be
FIG. 11 (color online). �A ( labeled as ‘‘bare’’) and the scale
invariant �SI

A versus �pa�2 in the chiral limit. They coincide near
�pa�2 � 4:1. The later is almost �pa�2 independent after �pa�2 >
2:4, the slope versus �pa�2 is about 0.001.
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cancelled to a large extent by that of ZA, resulting in a small
�pa�2 error in �SI

A (only 0.4% at �pa�2 � 4:1). As will be
discussed in the next subsection, we will use ZA deter-
mined from the chiral Ward identity to obtain Z . Since ZA,
in this case, is determined from the pion state at rest, it is at
a momentum scale of �QCD. Thus, it should have small
�pa�2 error. Using this value of ZA and �SI

A ��ap�
2; ma � 0�

to obtain ZSI
 , and thus ZRI �2 GeV� should give a �pa�2

error of �0:4% which we shall consider as the systematic
error in O�a2�.

In the case of �sub
S � Z =ZS, both Z and ZS run with

�2. Figure 12 shows �sub
S and the corresponding scale

invariant (SI) vertex, �sub;SI
S , after three loop running. We

see that �sub;SI
S is much flatter than �sub

S for �pa�2 > 3:0.
The linear fit of the SI data versus �pa�2 in the range of
4:0< �ap�2 < 5:7, gives a gradient of 0.008(3). This is an
order of magnitude larger than that of the axial vector (and
that of the tensor current below). This relatively larger
gradient could be due to the systematic uncertainty in
subtracting the chiral divergence in �S or the mismatch
of the �pa�2 errors between ZSI

 and ZSI
S or both.

The SI result of �T which comes from the three loop
running of ZT [49] and four loop running of Z is plotted in
Fig. 13 along with �T . The linear fit to the SI data in the
range of 2:0< �ap�2 < 5:7 gives a gradient of�0:0004�2�.

It is worthwhile pointing out that comparing to the
Domain-Wall fermion case on a 163 � 32� 16 lattice
with Wilson gauge action at 
 � 6:0 [9], we find that the
remaining scale dependence as measured by the gradient in
�pa�2 is comparable for the �SI

S case. But the gradient for
�SI
A =�SI

T is 1/2 orders of magnitude smaller than that in the
Domain-Wall fermion case. Since the Domain-Wall fer-
mion with finite 5th dimension and the rational polynomial
approximation of the sign function that we adopt in the
present work are two different approximations of the same
-12



FIG. 14. ~ZA�ma� vs quark mass ma.

FIG. 13 (color online). The same as Fig. 11 for �T and �SI
T .

The later is almost �pa�2 independent after �pa�2 > 2:0, the
slope versus �pa�2 is about �0:0004.
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overlap fermion in 4 dimensions [53], the �pa�2 errors in
the scale invariant vertices serve as a measure of the O�a2�
errors of the approximation.

A. Determining ZA from Ward identity

Before applying the renormalization group running (an
inverse operation of Eq. (63)) to match to the MS scheme at
certain scale, we need to input ZA to Eq. (23) in order to
determine other renormalization constants from the respec-
tive vertex functions. As explained in Sec. II B, we prefer
using ZA from the chiral Ward identity to determine Z 
than directly obtaining it from the quark propagator. This is
partly due to the fact that there is ambiguity in the lattice
definition of momentum [9] in Eq. (19). Furthermore, it is
shown in the study with Domain-Wall fermion [9] and an
earlier study of the overlap fermion [12] that the �pa�2

errors in the scale invariant ZSI
 are quite large.

The renormalization constant ZA for the axial current
A� � � �i���5�1�D=2�� �

a

2 � can be obtained directly
through the axial Ward identity

ZA@�A� � 2ZmmZPP; (65)

where P � � �i�5�1�D=2�� �
a

2 � is the pseudoscalar den-
sity. For the case of the overlap fermion [11,19,21], Zm �
Z�1
S and ZS � ZP. Thus, Zm and ZP cancel in Eq. (65) and

one can determine ZA to O�a2� nonperturbatively from the
axial Ward identity using the bare mass m and bare opera-
tor P. To obtain ZA, we shall consider the on-shell matrix
elements between the vacuum and the zero-momentum
pion state for the axial Ward identity

ZAh0j@�A�j�� ~p � 0�i � 2mh0jPj�� ~p � 0�i; (66)
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where the matrix elements can be obtained from the zero-
momentum correlators

G@4A4P� ~p � 0; t� �
�X

~x

@4A4�x�P�0�
�
;

GPP� ~p � 0; t� �
�X

~x

P�x�P�0�
�
:

(67)

The nonperturbative ZA is then

ZA � lim
m!0;t!1

2mGPP� ~p � 0; t�
G@4A4P� ~p � 0; t�

: (68)

Given that the time derivative itself in G@4A4P� ~p � 0; t�
invokes an O�a2� error, it would be better to adopt a
definition for ZA which is devoid of this superfluous
O�a2� error. This can be achieved by noticing that, at large
t where the pion state dominates the propagator
G@4A4P� ~p � 0; t�, one can effectively make the substitution

G@4A4P� ~p � 0; t�t! 1








!m�GA4P� ~p � 0; t�: (69)

Consequently, Eq. (68) becomes

ZA � lim
m!0;t!1

2mGPP� ~p � 0; t�
m�GA4P� ~p � 0; t�

: (70)

Since the GPP and GA4P correlators are calculated at
finite ma, we shall define the renormalization factor

~Z A�ma� � lim
t!1

2mGPP� ~p � 0; t�
m�GA4P� ~p � 0; t�

; (71)

where the massless limit would give ZA. We plot the results
of ~ZA�ma� from Eq. (71) in Fig. 14. In view of the fact that
there is no O�a� error with the overlap fermion, ~ZA�ma�
-13



TABLE VI. Quenched RI to MS matching coefficients.

Z�0� Z�1�0 Z�2�0 Z�3�0 R at 2 GeV

Z 0.0000 �25:4642 �1489:9805 0.987 06
Zm -5.3333 �149:0402 �5598:9526 0.851 27
ZT 0.0000 �46:6654 �2067:9753 0.979 09

TABLE VII. Renormalization constants Z in RI, and MS
schemes at � � 2 GeV. The renormalization constant in the
SI scheme is normalized to be the same as that in the RI scheme
at 2 GeV. These renormalization constants are obtained from the
lattice with a � 0:200 fm.

Z RI at 2 GeV MS at 2 GeV

ZA 1.853(9) 1.853(9)
ZV 1.846(8) 1.846(8)
ZP 1.571(15) 1.845(17)
ZS 1.567(13) 1.841(15)
ZT 1.966(6) 1.925(6)
Z 2.307(18) 2.277(18)
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could have terms like m�QCDa
2 and m2a2, but could also

have terms like m=�QCD and �m=�QCD�
2. Thus, we pa-

rametrize it with the form which is linear and quadratic in
m [17,21]

~Z A�ma� � ZA�1
 bAm
 cAm
2�: (72)

As noticed before [21], it is conspicuously flat as a function
of ma suggesting that the O�a2� error from the action and
the axial-vector operator is small. From the fitting to the
form in Eq. (72) for the range of ma from 0.014 to 0.6, we
find that ZA � 1:849�4�, bA � �0:347�16� (in units of
�QCDa

2 with �QCD � 0:238 GeV), and cA � 0:317�21�
(in units of a2) with �2=dof � 0:54.

We observe that ZA is determined to the precision of
0.2% in statistical error. It is thus more desirable [9] to use
ZA from the Ward identity and �A to determine all the other
renormalization constants.

From the renormalization condition Eq. (22), we finally
obtain ZSI

 

ZSI
 � ZA�SI

A ; (73)

and the other SI renormalization constants from Eq. (23)

ZSI
O � ZA

�SI
A

�SI
O

: (74)

Since we normalize the scale invariant vertex functions
to the RI scheme at �pa�2 � 4:1, the renormalization con-
stant determined in Eq. (74) is just ZRI

O �� � 2 GeV�.

B. Matching to MS scheme

In order to confront experiments, one frequently likes to
quote the final results in the MS scheme at certain scale.
For light hadrons, the popular scale is 2 GeV. To obtain the
renormalization constants in the MS scheme at 2 GeV, one
can use the perturbatively computed coefficient functions
in Eq. (59) in the MS scheme to evolve the scale invariant
renormalization constant to the targeted scale, i.e.

ZMS
O ��� � CMS

O ���Z
SI
O : (75)

Alternatively, one can avoid the step of going to the scale
invariant quantity and, instead, match directly from the RI
scheme to the MS scheme at the same scale. The perturba-
tive expansion of the ratio ZMS=ZRI to two loop order are
given by the finite coefficients in the perturbative expan-
sion of ZRI [20]

R �
ZMS

ZRI � 1

�s
4�
�ZRI��1�0 


�
�s
4�

�
2
�ZRI��2�0 
 . . . : (76)

The numerical values of the matching coefficients, Z�1�0 ,
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Z�2�0 , and Z�3�0 in Eq. (76) used for Z , Zm, and ZT have been
calculated in Ref. [48] and Ref. [54], and are collected in
Table VI.

The results for ZA, ZV , ZP, ZS, ZT , and Z in the RI and
MS scheme at 2 GeV (for ZP, ZS, ZT , and Z ) are listed in
Table VII.

VI. FINITE m DEPENDENCE OF THE
RENORMALIZATION FACTORS

As discussed in Sec. III, a nonperturbative renormaliza-
tion of the heavy-light axial current via the chiral Ward
identity and the unequal mass Gell-Mann-Oakes-Renner
relation is possible with the overlap fermion at finite ma
[17]. This offers an opportunity to calculate heavy-light
decay constants and transition matrix elements without
being subjected to the uncertainty of the perturbative cal-
culation of the renormalization constants. In this section,
we shall examine the finite m behavior of the renormaliza-
tion factors. This is useful for the future study of heavy-
light decays and transitions.

Similar to the renormalization factor ~ZA�ma� defined in
Eqs. (71) and (72) for the axial current, we shall parame-
trize the renormalization factor for the other operators by

~ZO�ma� � ZO��a; g�a���1
 bOm
 cOm2�; (77)

where the linear m term includes terms like m�QCDa
2 and

m=�QCD and the quadratic m term includes terms like
m2a2 and �m=�QCD�

2.
To obtain the renormalization factors forO � V; S; P; T,

and  , we shall adopt the same renormalization condition
Eq. (14) for finite m. We shall use the quark propagator to
-14



FIG. 15 (color online). Renormalization factor ~ZA�ma� against
quark mass ma. The solid line is the correlated fit and the dashed
line is the uncorrelated fit.

FIG. 17 (color online). The same as in Fig. 16 for ~ZV�ma�.
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obtain the finite m dependence for ~Z �ma� from Eq. (19),
except with Z � ~Z �ma � 0� normalized from ZA via the
renormalization condition, Eq. (22). We then follow the
above procedure in the preceding sections to obtain
~ZA�ma�, ~ZV�ma�, ~ZS�ma�, ~ZP�ma�, and ~ZT�ma�. The
~ZMS
 �ma;� � 2 GeV) for ~Z �ma� in the MS scheme at
� � 2 GeV is plotted in Fig. 15. The corresponding results
on ~ZA�ma�, ~ZV�ma�, ~ZMS

S �ma;� � 2 GeV�, ~ZMS
P �ma;� �

2 GeV�, and ~ZMS
T �ma;� � 2 GeV� are plotted in Fig. 16,

17, 19, 18, and 20, respectively.
We observe that these curves are all rather flat, with less

than 3% deviation for ma as large as 0.6. We make a
correlated fit of the finite m behavior with the form in
Eq. (77). The coefficients bO and cO are listed in
FIG. 16 (color online). Renormalization factor ~ZA�ma� calcu-
lated from �A against quark mass ma. The solid line is the
correlated fit and the dashed line is the uncorrelated fit.
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Table VIII. The fitted curves are drawn in Figs. 16, 17,
19, 18, and 20 as solid lines. For comparison, we also plot
the uncorrelated fits as dashed lines which have much
smaller �2=dof than those of the correlated fits. The flat-
FIG. 18 (color online). The same as in Fig. 16 for the renor-
malization factor ~ZP

MS�ma� in the MS scheme at � � 2 GeV.

TABLE VIII. Mass dependence of the renormalization factors
as defined in Eq. (77). bO is in units of �QCDa

2 with �QCD �

0:238 GeV. cO is in units of a2.

ZMS
O (2 GeV) bO cO �2=dof

A 1.853(9) 0.029(16) �0:003�2� 1.3
V 1.846(8) �0:0055�33� �0:013�7� 2.2
P 1.845(20) �0:015�12� 0.017(4) 0.3
S 1.841(15) 0.22(19) 0.004(2) 0.7
T 1.925(6) �0:012�8� �0:015�3� 1.6
 2.277(18) �0:001�2� 0.002(1) 0.8
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FIG. 20 (color online). The same as in Fig. 18 for ~ZT
MS�ma�.

FIG. 19 (color online). The same as in Fig. 18 for ~ZS
MS�ma�.
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ness inma suggests that theO��ma�2� dependence is weak.
This is consistent with the findings for the � and � masses
[19] and their dispersion relations [17]. The observed
O�ma2� and O�m2a2� dependence are much weaker than
those found with the chirally improved Dirac operator [10].
We do not know the finite m behavior of the domain-wall
fermion from the study of the quark bilinear operators [9].
The study of ~ZA�ma� and ~ZV�ma� from the nucleon matrix
elements found much stronger O�ma2� and O�m2a2� de-
pendence than observed here.

We should point out that in Sec. VA, ~ZA�ma� was
defined in Eqs. (71) and (72) with the implicit assumption
that ~ZP�ma� is not very different from ~ZS�ma� for the
available range of ma. Even though this does not in prin-
ciple affect the extraction of the renormalization constant
ZA at the massless limit of ~ZA�ma�, where ZP is equal to
ZS, the extrapolation could have a large uncertainty if
~ZP�ma� is very different from ~ZS�ma� for the range of
ma which is not close to the chiral limit. Thus, it is gratify-
114509
ing to see in Figs. 18 and 19 that the ma behaviors of
~ZP�ma� and ~ZS�ma� (in the MS scheme at 2 GeV in this
case) are very similar. They differ less than 3% for ma �
0:6. The upshot is that we should take the ma behavior in
~ZA�ma� in Fig. 16 as the correct one, instead of that in
Fig. 14 as defined in Eq. (71). Any attempt to correct for
the negligence of the ma dependence in ~ZP�ma� and
~ZS�ma� in Eq. (71) and compare with that in ~ZA�ma� in
Fig. 16 is expected to reflect different finite ma corrections
under different renormalization conditions.
VII. SUMMARY AND OUTLOOK

In this work, we performed a nonperturbative renormal-
ization calculation of the composite quark bilinear opera-
tors with the overlap fermion in the regularization-
independent scheme from the quark vertex function with
high virtuality. The renormalization group running of the
renormalization constants were calculated to obtain the
scale invariant (SI) renormalization constants and also
matched to the MS scheme at � � 2 GeV. The scale
invariant ZA from the Ward identity and the axial vertex
function were used to eliminate the wave function renor-
malization Z and determine the renormalization constants
from other vertex functions. Since ZA, as obtained from the
Ward identity, has a very small error (� 0:2%), it is more
desirable to use it to determine Z instead of using the
quark propagator to determine it. The latter can introduce
an error as large as �10%-20% [9].

After subtracting the quenched chiral log divergences in
the vertex functions �P and �S due to the presence of the
pseudoscalar meson, the expected relation ZS � ZP due to
chiral symmetry holds to high precision (� 1%) for a large
range of �pa�2 with �pa�2 > 3. The same is true for the
relation ZA � ZV . The resultant check on the chiral-
symmetry relations are comparable to those of the
domain-wall fermion [9] and somewhat better than the
chirally improved fermion [10] where it is found that
ZA=ZV � 1:03 and ZP=ZS � 0:95 for their smallest lattice
spacing at a � 0:078 fm.

We studied the finite m behavior in the renormalization
factors of these composite operators. This is useful if one
wants to use the same overlap-Dirac operator for both the
light and heavy quarks. With presentday computers, it is
not practical to reach a lattice spacing such that ma	 1
for the charm and bottom quarks. As such, one would like
to have a Dirac operator which has chiral symmetry and, at
the same time, has small O�ma2� and O�m2a2� errors. It
is suggested [17] that the overlap fermion with its effective
quark propagator having the continuum form might be
suitable for this purpose. Indeed the O�ma2� and
O�m2a2� errors in the dispersion relation are shown to be
small [17]. In this study, we find that the finite m depen-
dence is quite gentle in ~Z �ma�, ~ZA�ma�, ~ZV�ma�, ~ZP�ma�,
~ZS�ma�, and ~ZT�ma�. Forma as large as 0.6, the deviations
-16
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are generally less than 3.5% in these renormalization fac-
tors we studied.

Since the lattice community is geared to carrying out
large scale dynamical fermion calculations with chiral
fermions, it is worth studying the �pa�2 errors in the scale
invariant vertices to gauge the O�a2� errors and also the
mass dependence of the renormalization factors with the
overlap fermion.
114509
ACKNOWLEDGMENTS

Support for this research from the Australian Research
Council and DOE Grants No. DE-FG05-84ER40154 and
No. DE-FG02-02ER45967 and NNSF of China Grant
No. 10235040 are gratefully acknowledged.
[1] G. Martinelli, C. Pittori, C. T. Sachrajda, M. Testa, and
A. Vladikas, Nucl. Phys. B445, 81 (1995).

[2] M. Ciuchini, E. Franco, G. Martinelli, L. Reina, and
L. Silvestrini, Z. Phys. C 68, 239 (1995).

[3] G. Martinelli, S. Petrarca, C. T. Sachrajda, and
A. Vladikas, Phys. Lett. B 311, 241 (1993); 317, 660(E)
(1993).

[4] V. Gimenez, L. Giusti, F. Rapuano, and M. Talevi, Nucl.
Phys. B531, 429 (1998).

[5] A. Donini, V. Gimenez, G. Martinelli, M. Talevi, and
A. Vladikas, Eur. Phys. J. C 10, 121 (1999).

[6] V. Gimenez, L. Giusti, F. Rapuano, M. Talevi, and
A. Vladikas, Nucl. Phys. B, Proc. Suppl. 73, 210 (1999).

[7] D. Becirevic et al., Phys. Lett. B 444, 401 (1998).
[8] S. Aoki et al. (JLQCD Collaboration), Nucl. Phys. B,

Proc. Suppl. 73, 279 (1999).
[9] T. Blum, N. Christ, C. Cristian, C. Dawson, G. Fleming,

G. Liu, R. Mawhinney, A. Soni, P. Vranas, M. Wingate,
L. Wu, and Y. Zhestkov, Phys. Rev. D 66, 014504 (2002).
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