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Simulating full QCD with the fixed point action
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Because of its complex structure the parametrized fixed point action can not be simulated with the
available local updating algorithms. We constructed, coded, and tested an updating procedure with 2 + 1
light flavors, where the targeted s quark mass is at its physical value while the u and d quarks should
produce pions lighter than 300 MeV. In the algorithm a partially global gauge update is followed by
several accept/reject steps, where parts of the determinant are switched on gradually in the order of their
costs. The trial configuration that is offered in the last, most expensive, stochastic accept/reject step differs
from the original configuration by a Metropolis + over-relaxation gauge update over a subvolume of
~(1.3 fm)*. The acceptance rate in this accept/reject step is ~0.4. The code is optimized on different
architectures and is running on lattices with L; = 1.2 fm and 1.8 fm at a resolution of a = 0.15 fm.
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L. INTRODUCTION

There is a considerable freedom in formulating QCD on
the lattice. This freedom is reflected in the large number of
actions tested and used in the quenched approximation.
There are no miracles: good scaling, good chiral proper-
ties, theoretical safety and the costs are in balance. Short of
an algorithmic breakthrough one can expect to see in the
future a plethora of full QCD simulations and results
obtained with different formulations adapted to the physi-
cal problem as it happened in the quenched approximation.

In this paper we discuss a full QCD algorithm for 2 + 1
light flavors with the parametrized fixed point action [1-4].
The lightest quark mass m,; which can be simulated is set
only by the small chiral symmetry breaking caused by the
parametrization error, the costs of a full updating sweep are
practically independent of m,,,.

Our updating procedure has no special problems in
connecting different topological sectors nor in suppressing
the topological susceptibility. The algorithm is exact and
the action certainly describes QCD in the continuum limit.
It is a partially global update where the pieces of the
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determinant are switched on gradually in the order of their
costs. The partially global update implies that this is a
volume-squared algorithm which constraints the size of
lattices one can cope with in the simulations. Actually,
the cost of a specific section of the algorithm, the eigen-
value solver, increases even faster with the volume, but in
the present simulations this part is not dominating.

In the ongoing runs the target spatial sizes are L, =~
1.2 fm and 1.8 fm with a resolution a =~ 0.15 fm. The
target pion mass is below 300 MeV. On the 1.2 fm lattice
we also ran with the smallest m,,; quark mass which can be
treated with our Dirac operator, basically with massless
quarks.

Actions which approximate the fixed point of a renor-
malization group transformation have been tested in detail
in d = 2 and d = 4. The present form of the QCD fixed
point action and the related codes are the result of a long
development to which many of our colleagues contributed
(see Ref. [5] and references therein). The algorithm dis-
cussed here is optimized and running on three different
platforms (IBM SP4, PC Cluster, Hitachi SR8000). This
paper is organized as follows. In Sec. II we briefly describe
the fixed point action. Sec. III summarizes the partial lobal
stochastic update and its improvements in a general form
while Sec. IV describes how the update is implemented in
our simulation. In Sec. V we present some numerical
results that illustrate the updating algorithm.
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II. THE ACTION

A. The parametrized fixed point action

The special QCD action which is the fixed point of a
renormalization group transformation has several desirable
properties [6]. It is a local solution of the Ginsparg-Wilson
equation [7],

vsD + Dys = Dys2RD, (D

with a nontrivial local matrix R which lives on the hyper-
cube [8]. The quark mass is introduced as

1 1
D(m) =D + m<2R 2D>. 2)
Equation (1) guarantees that the Dirac operator is chirally
invariant. Since it is the fixed point of a renormalization
group transformation, it has no cutoff effects in the classi-
cal limit. The parametrized version of this action is an
approximation which has been carefully tested in the clas-
sical limit and in quenched simulations [5,9-11].

The parametrized fixed point gauge action S,(U) [2] is a
function of plaquette traces built from the original gauge
links U, and from smeared links. The smeared link con-
tains staples in an asymmetric way: the weights of staples
which lie in, or orthogonal to the plane of the plaquette are
different. The gauge action is a polynomial of smeared and
unsmeared plaquette traces. The 5 nonlinear and 14 linear
parameters are fitted to the fixed point action.

The Dirac operator [1,12] is constructed on smeared
gauge configurations V(U). This smearing is local and
contains links projected to SU(3). It is constructed using
renormalization group considerations [13] and it reflects
the discontinuous character of the chiral Dirac operator
when the topological charge changes [3]. The Dirac opera-
tor has fermion offsets on the hypercube only. In Dirac
space all the elements of the Clifford algebra enter. The
structure of these terms is restricted by the symmetries C,
P, ys-Hermiticity, and cubic symmetry. The 82 free coef-
ficients of this Dirac operator are determined by a fit to the
fixed point Dirac operator. We note that also for the
Chirally Improved Dirac operator—which has a similarly
complex structure—a global update has been suggested in
Ref. [14].

B. The 2 + 1 flavor action

Our goal is to simulate a 2 + 1 flavor system with quark
masses close to their physical values. As usual we integrate
out the fermionic fields and write the action as

S = BS,(U) + aD(m,g)u + dD(m,4)d + sD(my)s (3)

= BS,(U) — Indet* D(m, 4) — IndetD(my). 4)

The vys-Hermiticity of the Dirac operator ensures that
detD(m) is real, detD(m) = detDT (m). If D were an exact
solution of Eq. (1) then detD(m) would be positive for any
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m > 0. Because of parametrization errors our Dirac opera-
tor has no exact chiral symmetry and the requirement of
detD(m) > 0 puts a constraint on the quark mass m. For
now we assume that this condition is satisfied.

One can rewrite the action in an explicitly Hermitian
form

S = BS,(U) — Indet(D* (m,q)D(m,))

— Indet(y/D T (m,){/D(my)). 5)

We want to emphasize that the appearance of the square
root in Eq. (5) does not mean that we simulate a possibly
nonlocal action. The action we simulate is given by the
manifestly local form in Eq. (3).

III. THE STOCHASTIC UPDATE AND ITS
IMPROVEMENTS

The parametrized fixed point action contains many
gauge paths and SU(3) projections. It is too complicated,
if not impossible, to simulate with algorithms that would
require the derivative of the action with respect of the
gauge fields. For that reason we have adapted an updating
method that requires only a stochastic estimate of the
action at each step. The (partial) global stochastic update
was developed in [15], based on an old suggestion [16,17],
to simulate smeared link staggered actions. It was devel-
oped further in [18—20]. Stochastic or “noisy’’ updating
algorithms have been used in different context by many
other groups [21-24]. Here we take over the main points of
the global stochastic update but add several improvements
to create an efficient updating algorithm. In the next sec-
tion we will summarize the general ideas of the update,
then discuss the specific improvements we have
implemented.

A. The partial global stochastic update

In order to simplify the notation in this section we
consider an action with the generic form

S = BS,(U) — IndetATA. (6)

Here AtA describes 1 or 2 flavors of massive fermions as
discussed in Sec. II B. A Global Update proceeds in two
steps:
A: Update (a part of ) the configuration U — U’ with the
gauge action BS, using Metropolis, over-relaxation or
other updates.
One could accept or reject (A/R) the proposed U’ configu-
ration with probability

. <1 detA’TA’) ™

P,..=min(l —
e detAtA
This procedure clearly satisfies the detailed balance con-

dition but requires the evaluation of the fermionic deter-
minant. This lengthy calculation can be replaced by a
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stochastic estimator as follows. We write the determinant
ratio as a stochastic integral

detA’T A/

= det(Q1Q)!
detAtA

N f Dlntnle ' me- i tn-ntn (g)

where we introduced the notation

Q=A"1A 9)

B: For the stochastic accept/reject step we first create a
Gaussian random vector n with P(n) = exp(—ntn).
Now the new configuration is accepted with the proba-
bility

Pioeh = min(1, e45)), (10)
where

AS; = nT(Q1Q - ). (11)

Equation (11) defines the stochastic estimator AS/, the

change of the fermionic action with fixed n [15].
The stochastic update satisfies the detailed balance condi-
tion [16,17,19], and repeating steps A—B creates a se-
quence of gauge configurations with the proper
probability distribution.

For the 2 + 1 flavor system of Eq. (5) the stochastic
estimator contains two terms

AS; = 9l (@, Q4 — Dy, + pl@QIQ, - D7, (12)

with Qud = D/_l(mud)D(mud) and QS = D/_l(ms) X
VD(my).

The main ideas of the stochastic Monte Carlo update has
been known for a long time but it has not been used in
numerical simulations because of technical difficulties. In
its original form the acceptance rate in Eq. (10) is infini-
tesimally small unless the configurations U and U’ are
nearly identical. The root of this problem is twofold.

On one hand, if the typical values of | logdet(D’/D)| are
significantly larger than 1 the acceptance rate will be very
small, even if the determinant ratio was calculated deter-
ministically. On the other hand, an additional suppression
of the acceptance rate occurs due to the stochastic evalu-
ation in the A/R step. To illustrate this consider the case
when detD’/ detD = 1. Take a simple model for this situ-
ation with a Gaussian random variable P(x) o exp(—(x —
X0)?/20?). The relation (¢ *) =1 implies x, = 02/2
hence for large o the acceptance rate is extremely small,
~e 2 k1.

Note that the standard deviation of exp(—nt(QTQ —
1)7) is infinite if any of the eigenvalues of 0 = A'"!A is
smaller than 1/2 [19]. However, the extremely small ac-
ceptance rate occurs much before this bound is reached. In
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the following we discuss four improvement steps which are
essential to get an algorithm with a good acceptance rate.

B. Improvements of the Global Stochastic Update

In this section we discuss the different improvements we
implemented to increase the effectiveness of the stochastic
updating. In the reduction technique the UV part of the
determinant is separated, its value is calculated nonsto-
chastically and taken into account more frequently by
intermediate A/R steps. This increases the acceptance
rate in the stochastic A/R step significantly by reducing
both problems mentioned above. The subtraction tech-
nique separates the IR modes by calculating the eigenval-
ues and eigenvectors of the first few low eigenmodes of the
Dirac operator. It acts analogously for the IR modes as the
reduction for the UV part. The last two techniques, the
relative gauge fixing and the determinant breakup, are
applied in the last, stochastic A/R step, and are aimed at
reducing the fluctuations. The relative gauge fixing brings
the configuration U’ as close to U as possible. The deter-
minant breakup rewrites the Dirac operator as product of
operators. The stochastic estimator becomes a sum of
independent terms and its fluctuation is reduced.

The global stochastic monte carlo update would not be
effective without these improvements. On large lattices
even with the improvements one can update only a part
of the configuration before evaluating the stochastic esti-
mator making the algorithm to scale with the square of the
volume. Nevertheless on moderate volumes we found the
algorithm effective, allowing the dynamical simulation of
light, even nearly massless, quarks with an action where
the chiral breaking and lattice artifacts are small.

1. The Reduction

The stochastic change of the fermionic action can be
written as AS; = Y (w; — l)n? m; where w; are the real
eigenvalues of the operator Q1 and 'ry:r n; = 0(1). While
the eigenvalues of the Dirac operator are restricted to a
compact region, w; can vary between ~m to ~1/m,
though most of the eigenvalues correspond the the UV
modes are O(1). These UV modes contribute little to
AS individually, but there are so many of them that they
dominate the fluctuations. To reduce the fluctuations we
transform the Dirac operator D — D, such that the UV
modes of D, are condensed and thus the corresponding
eigenmodes of () are closer to unity. We choose D, such
that the change in the determinant det(D/D,) is calculable
analytically (nonstochastically).

The effect of the reduction on the eigenvalue spectrum
of D is illustrated in Fig. 1. The spectrum was calculated on
a single 4* quenched gauge configuration U with a =
0.15 fm in [3]. The larger ‘“Batman’-like structure corre-
sponds to the spectrum of the original Dirac operator. The
“Batman ears” are mainly the consequence of the non-
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FIG. 1 (color online). The eigenvalue spectrum of the Dirac
operator on a single 4* gauge configuration. The points of the
larger Batman-like figure correspond to the original Dirac op-
erator while the points of the smaller “wing-shape” structure in
the center represent the corresponding eigenvalues of the re-
duced Dirac operator D, /s. Sections marked by A, B, and C on
the original spectrum are mapped to sections a, b, and c after
reduction.

trivial R operator and are strongly reduced if one considers
the spectrum of DR which is close to a circle. An over-
whelming part of the eigenvalues are around the UV point
(s, 0) in the complex plane where s = 2.8. The points to the
right of the long dotted line represent 95% of the eigen-
values. With the reduction we attempt to move the eigen-
values of D/s close to 1. Following Refs. [15,25,26] we
define a reduced Dirac operator

D, = De” 2in P/l (13)

Choosing the coefficients ¢; = (—1)"*!/i the reduced op-
erator is D,/s = 1+ O((D/s — 1)"*1). The ratio of the
determinants D, and D can be expressed in terms of traces
of D

detD, = detDe™ 21 ciTrP/s=1)
= detDe™ 2im1 TP, (14)

and can be calculated nonstochastically by evaluating
TrD*, k = 1, n. The computing time and the complexity
of the code to do the trace calculations increase rapidly as n
increases. With our Dirac operator we decided to stop at
n =4 in the reduction. Working with D, is not much
different from D. Both in multiplication and inversion
the exponential term in Eq. (13) can be approximated by
a relatively low order polynomial.

In Fig. 1 the smaller wing-shape object in the center
corresponds to the eigenvalues of D, /s on the same gauge
configuration as before. Sections marked as A, B, and C on
the original spectrum are mapped to sections a, b, and ¢
after reduction, illustrating how the eigenvalues are trans-
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formed. The origin is a stationary point. The main effect of
the reduction is condensing the UV modes. The points to
the left of the short dotted line again represent 95% of the
eigenvalues. This region is not very obvious in the figure
since all its points are contained in a circle around (1, 0)
with radius of about 0.01 (with the overwhelming part of
the eigenvalues being much closer), showing the strength
of the reduction. Accordingly, the UV fluctuations, that is
the contribution of the UV modes to the stochastic estima-
tor ASy, is greatly reduced.
At this point the action Eq. (5) can be written as

S = BS,(U) + Syy — IndetD (m,q)D,(m,4)
— IndetD, (m;), (15)

where
Syy = =2 Z a; TrD (m,;) — Z a; TrD'(m;)  (16)
i=1 i=1
carries most of the UV part of the determinant.

2. The subtraction

The reduction of the Dirac operator as discussed in the
previous section effects mainly the nonphysical UV part of
the determinant. The subtraction that we introduce here
deals with the low lying IR eigenvalues of the Dirac
operator. The small eigenvalues of D’ can create large w;
eigenvalues of ) = D'~ D. Besides suppressing such con-
figurations in the (full QCD) equilibrium configurations,
their presence produces large fluctuations in the stochastic
estimator, reducing therefore the acceptance rate in the
stochastic A/R step. By calculating some low lying eigen-
values (and the corresponding eigenvectors) one can take
into account their contribution more frequently and deter-
ministically, so they do not participate in the stochastic A/
R step.

Denote the right and left eigenvectors of the Dirac

operator by
Dv, = Av,,  wiD=awl. (17)

The eigenvectors w} can be chosen to fulfill the normal-

ization condition
whvy = 6. (18)
In terms of the (non-Hermitian) projector operators
P, =uv,w! (19)

which, due to Eq. (18), satisfy the relation P = P,, the
Dirac operator can be written as

D= AP, (20)

The subtracted Dirac operator is defined by replacing a set
of the lowest eigenvalues by the constant s
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D,=D+ Z(s — )P, 21

low

We assume that we subtract the complex conjugate pairs
together. For an arbitrary analytic function f(D) the sub-
traction gives

f(Dy) = f(D) + D (f(s) = (AP, (22)

low

Subtracting the reduced Dirac operator of Eq. (13) gives

then
=S ci(A/s—1)
+ Z(s — e Z )PA.

low

—Zci(D/s—l)[

D,, =De 7

The small eigenvalues of the subtracted, reduced D,, op-
erator are replaced by s while its UV part is condensed near
s. The stochastic estimator of D, has reduced fluctuations
and reduced absolute value as well.

The ratio of the determinants of D,, and D, can be
calculated analytically using the relation

A ci(A/s—1)
detD, = detD,, Z

low

(23)

The inversion of D using that of Dy is given by
D != [1 +Z< — 1>P,\}Ds‘1. (24)
low

The smallest eigenvalues of D are replaced by the constant
s in D, therefore the conjugate gradient method converges
faster for D.
At this point the action of Egs. (5) and (15) can be
written as
S = BS,(U) + Suy + Sk — IndetDfy(m,g)D s (m,iq)
— IndetD, (m,), (25)

where

sw =25 (- S 1))

low i

+ Z( M L, Zc,(%— 1>i>. (26)

low i

3. The relative gauge fixing

Even if U’ is a gauge transform of U, hence the deter-
minant ratio is exactly 1, the eigenvalues of Q) =
D(U")"'D(U) are in general different from 1 (only their
product is 1). As a consequence the stochastic estimator in
the A/R step can have large fluctuations, greatly reducing
the acceptance rate [20]. These fluctuations can be reduced
significantly by gauge transforming U’ so as to maximize
>« uRe Tr(Ug U*M), i.e. by bringing U’ as close to U as
possible. (We have also tried to fix the gauge in both U and
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U’ by some given ‘“‘absolute” gauge fixing condition, but
the method discussed above was more efficient.)

4. The determinant breakup

The reduction, subtraction, and relative gauge fixing
result in significant improvement of the stochastic estima-
tor. Further improvements can be achieved by writing the
Dirac operator as the product of [ terms

The corresponding stochastic estimator is the sum of [/
terms

AS; = Zni(n* = D, (28)

with [ stochastic 7 vectors and Q; = A/71A;. If the eigens-
pectrum of the individual A; operators is closer to a con-
stant the fluctuation of the stochastic estimator is reduced.
In Refs. [19,27], following a suggestion in Ref. [28], the
terms in Eq. (27) were chosen to be identical, A; = A'/..
While this choice does reduce the fluctuations, it creates [
equally singular terms and requires the calculation of the
Ith root for each of them. We found it is more effective to
generalize the mass shifting method of [25] and write the
Dirac operator as

1 Apo)  Aluy) Alp—y)
A= X X ... X X A(w;), (29)
s Al " Alw) Ay~

where A(u) = ‘+M (A+ w) and uoy = 0. The mass shift

values u; are chosen such that each term in AS contrib-
utes approximately equally.

The first term in Eq. (28) is the easiest to analyze. At
lowest order in u;

W}L(Qfﬂl —Dn =

A at A ar)"
+0(u), (30)

;(M1+ﬂ_&_ﬂ>

Unless the operators A and A’ are close to each other, u;/A
has to be small to control the stochastic fluctuations.
Consequently w; has to be much smaller than the smallest
eigenvalue of A. Later terms allow larger change in the
shift masses ;. The last mass of the series, w;, is chosen
such that the stochastic estimator of the single operator
A(u,) is comparable to the previous terms. It is interesting
to note that the leading term in Eq. (30) vanishes for a
Ginsparg-Wilson Dirac operator with R = const. However
it is not zero in our case.

In practice we combine the reduction, subtraction, rela-
tive gauge fixing and the determinant breakup. Only the
last two terms of Eq. (25) are treated stochastically. For the
degenerate u and d quarks we can have

Alp) = (

Dr(mud) + M

A = Dy (m,a), S FRCIY
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where the subtraction is defined as in Eq. (22). Each term in
the stochastic estimator requires two multiplications and
two inversions by A(w). For the inversion a standard con-
jugate gradient or its variant can be used.
For the s quark the situation is slightly more compli-
cated. The A operator contains a square root operation
A =+/D,.(m,), D(m;) + p
s+ u

Ap) = ( ) (32)

Again, each term in the stochastic estimator requires two
multiplications and two inversions by A(u). For both of
these we approximate the square root operator by a poly-
nomial series. Polynomials have been used to approximate
both positive and negative roots of Dirac operators before
[19,27,29]. Our situation is different because the operator
D,(my) is complex. The case of optimal polynomials for a
complex spectrum has been studied in [30]. Fortunately the
strange quark mass is sufficiently heavy and a Taylor
expansion in (D(m)/s — 1) works well.

IV. THE ALGORITHM WITH 2 + 1 FLAVORS

We describe now the algorithm which has been coded,
tested and optimized for different platforms.The algorithm
starts with a partially global gauge update which is fol-
lowed by several accept/reject steps, where parts of the
determinant are switched on gradually in the order of their
costs. It is convenient to rewrite the action of Eq. (25) in a
different form

S = (B + 8B)S,(U) + [S§y — 8BS,(U)]
+ [SUV - S%V + Sillgpr] + [SIR - S?lgpr
— IndetD](m,,q) Dy (m,q) — IndetD, (my)].  (33)

The meaning of the different terms will be explained in the
rest of this section.

A. Gauge update

The gauge update is a standard Metropolis/over-
relaxation local update with the fixed point gauge action
at coupling B, = B + 6 8. Here 68 (added at this point
and subtracted later) approximates the shift of the gauge
coupling due to the determinant and helps to generate
configurations with lattice spacing a that is close to the
target value already at this step. 4n,, gauge links, originat-
ing from n, consecutive lattice sites, are updated with
Metropolis and then the same links with over-relaxation
in a reversible sequence. This combination of updates we
shall call a “double update” in the following.

In the first test runs our target lattice spacing is a =
0.15 fm and n,, is 128 and 144 on the 83 X 24 and 123 X
24 lattices, respectively. In order to get the resolution a
close to the target value we had to tune the coupling B
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repeatedly. The figures in this paper refer to the choice 8 =
3.15.

B. The 1st accept/reject step

The gauge configuration created as discussed above is
accepted/rejected (A/R) with the action S{, — 6B8S,(U),
where Sy is a good gauge approximation to the reduction
contribution Syy of Eq. (16). The function S7y, is repre-
sented by different gauge loops with fitted coefficients on
the smeared configuration V(U). This smearing is the same
which was used in the parametrized Dirac operator
(Sec. IT A). Calculating Sy is fast and can be done without
building up the Dirac operator. The deviation between S7y,
and the exact reduction Syy will be corrected in the 2nd
accept/reject step below. The parameter 68 is chosen to
maximize the acceptance rate in this step. Figure 2 shows
the correlation between AS,, the change of the gauge
action, and ASyy, the change of the contribution from
the reduction, for a set of configuration pairs {U, U'}.
From the slope 68 = —0.15 seems to be a reasonable
choice. It is interesting to note that for our action the
introduction of the determinant increases the gauge cou-
pling. In the usual Wilson and staggered fermion simula-
tions this shift is larger and in the opposite direction. Since
the reduction contribution is large for distant configura-
tions and the —oBS, term cancels it only approximately,
we have to keep the number of updated links 47, in the
gauge update modest in order to get a good acceptance rate
in this 1st accept/reject. The combination of steps in
Secs. IVA and IV B is repeated N, times.

With the n, value quoted before, the 1st acceptance rate
is above 0.5. In the running simulations N = 28, i.e. 4 X
n X Ny = 15k links are double updated before the 2nd
accept/reject step.

AS

N L L L L L L
-30 -20 -10 0 10 20 30

FIG. 2 (color online). The correlation between ASyy and AS,.
The slope predicts the optimal value of 68 = 0.15.
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C. The 2nd accept/reject step

The cycle of repeated steps in Secs. IVA and IV B is
followed by a 2nd accept/reject decision. In this step the
Dirac operator is built on the U’ competitor configuration,
the traces are calculated for the exact reduction, and a
certain number of the lowest eigenvalues and eigenvectors
are determined. The proposed configuration is accepted/
rejected with the action (Syy — S§y) + SiRb. The first
term corrects the small error we made in the 1st A/R step
in approximating the traces in Syy with gauge loops. This
error is typically small as shown in Fig. 3, where the
change ASY, calculated in the gauge approximation is
shown as the function of its exact value. (The action
differences plotted in this figure are taken between con-
figurations which are offered to the 3rd A/R step, as a result
of several 2nd A/R steps. These large values of O(10)
would cause a very small acceptance rate in the 3rd step,
had we not taken into account this contribution more
frequently in the 2nd step.)

The last term Si{¥" is an approximation to the contribu-
tion of the low lying eigenvalues to the determinant Sir in
Eq. (26). n., eigenvalues and the corresponding Sig are
calculated for m,,; using an Arnoldi eigenvalue finder. The
eigenvalues for m, are determined from these, using lead-
ing order perturbation theory. (Because of the presence of
R in the Ginsparg-Wilson relation, Eq. (1), the reaction of
the eigenvalues on changing the quark mass is not a simple
shift.) This approximation is very good, the error is typi-
cally O(10~#). The combination of the steps in Secs. IVA,
IV B, and IV C is repeated N, times.

At present we calculate n., = 48 eigenvalues, which
include all the eigenvalues with absolute value below =
0.40 and = 0.19 on the 83 X 24 and 123 X 24 lattices,
respectively. The reduction shifts these values further to
around =~ 1.0 and = 0.5. We use an Arnoldi routine from
the publicly available PARPACK package. The application is
far from optimal in our case. Even though the eigenvalues

20

AS®
(=]

T

I

20 . L . L . L

FIG. 3 (color online). The approximation of ASyy in terms of
gauge loops, AS¥,. This error is corrected in the 2nd A/R step.
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and eigenvectors are calculated on very similar configura-
tions and change little from step to step, the routine cannot
use this fact and calculates each eigenvalue set basically
independently. The internal calculations of the package are
also expensive, the multiplication of a vector by the Dirac
operator does not dominate it. These problems limit the
number of times the 2nd A/R step is repeated. We can
afford N, = 6 repetitions and the acceptance rate of the
2nd A/R step is around 0.65. Overall about = 90k links are
double updated before the 3rd A/R step.

D. The 3rd accept/reject step

The cycle described above is followed by a final, sto-
chastic accept/reject step with the action S — SiR" —
IndetD(m, ;)D,;(m,) — IndetD,(m;). The first part cor-
rects the small error we made in calculating the contribu-
tion of the low lying eigenvalues of D(m;) to the
determinant in the 2nd A/R step. For that we determine
the low lying spectrum of D(m,) on the competitor con-
figuration U’ which is first relative-gauge-fixed with re-
spect to U. The second term gives the stochastic estimator
of the subtracted, reduced, 2 + 1 flavor determinant. For
the light quarks we break up the determinant into 76 terms.
The lowest eigenvalue of the reduced subtracted Dirac
operator, D,,/s is around one and the first few mass shifts
have to be much smaller than that (see Sec. IIIB4). We
chose Au; = w;r; — p; = 0.01 for i = 1 — 20. The later
Ap values are considerably larger. Because of the sub-
traction of the low lying eigenmodes the conjugate gradient
iteration converges relatively fast, in about 70 steps at the
lowest mass shifts and in 5-10 steps at the largest, each
step requiring two D X v Dirac operator multiplications.
The exponential term for the reduction requires about 20
D X v multiplications. For m the determinant breakup has
38 terms and the smallest shift is Ay = 0.02. The square
root and its inverse of the reduced, subtracted Dirac op-
erator is approximated by their Taylor series in (D/s — 1).
In the smaller mass shift region we use 250—300 order
polynomials, for the larger mass shift values this reduces to
order 30—40. We expect that this section of the code could
be significantly improved.

With this closing accept/reject step the algorithm be-
comes exact. The steps in Secs. IVA,IVB, IV C, and IV D,
are repeated and the accepted configurations that went
through all three filters form a Markov chain corresponding
the parametrized fixed point action. The acceptance rate of
the 3rd A/R step is approximately 0.4.

E. Optimization and performance

The code is optimized on three different platforms (IBM
SP4, PC cluster and Hitachi SR8000). The dominating
numerical step is the multiplication of a vector by the
Dirac operator, D X v, which can be effectively parallel-
ized on all the platforms. The effectiveness of the internal
manipulations of the PARPACK package, however, is very
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sensitive to the architecture. It would be very preferable to
replace this part of the code by a QCD specialized piece.

The stochastic estimator (in the 3rd accept/reject) re-
quires = 21k and = 26k D X v multiplications on the
83 X 24 and 123 X 24 lattices, respectively. To calculate
the first 48 eigenvalues/eigenvectors of the Dirac operator
requires = lk and = 2k D X v multiplications on the
smaller and larger lattices, respectively.

At certain stages of the calculation the processors are
divided in two groups and work on the gauge and Dirac
part of the code independently. They are joined, however,
to calculate the stochastic estimator together.

V. PRELIMINARY RESULTS

In our first set of test runs, starting from two different
a = 0.15 fm quenched configurations, we generated about
400 + 600 83 X 24 configurations, each separated by a full
cycle of updates and A/R steps as described in Secs. IVA,
IVB, IVC, and IV D. We chose the run parameters, based
on earlier quenched runs, as B =3.15, 68 = —0.15,
m,q = 0.017, and m; = 0.095. Fig. 4 shows the equilibra-
tion of the plaquette as the function of updating steps for
our two sets. The units on the horizontal axis are given in
sweeps that correspond to a double update of the whole
lattice which corresponds to about 5 full cycles. We deter-
mined the lattice spacing from the static potential as a =
0.14(1) fm, which gives the spatial size L; = 1.1 fm. On
this rather small volume the hadron spectrum shows large
finite volume effects. Instead of the pion mass, which is
dominated by the volume, we estimate the quark mass from
the eigenvalue spectrum of the Dirac operator.

The left panel of Fig. 5 shows the first 48 low energy
eigenvalues on 50 a = 0.15 fm pure Yang-Mills configu-
rations with m, = 0.017. This quark mass corresponds to

1.17

| ! |
1.13 L
0 50 100
sweeps

FIG. 4 (color online). The equilibration of the plaquette as the
function of updating sweeps in a 2 + 1 flavor dynamical simu-
lation. The two series started from two different quenched gauge
configurations. One sweep on the horizontal axis corresponds to
a double update of the whole lattice.
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FIG. 5. The low lying eigenvalue spectrum of the Dirac op-
erator on 50 pure Yang-Mills (left) and 50 equilibrated dynami-
cal (right) configurations. Both panels correspond to 8% X 24,
a =~ 0.14 fm lattices with the same lattice quark masses.

m, = 300 MeV pions in the quenched approximation. The
right panel shows the first 48 low lying eigenvalues on 50
equilibrated dynamical configurations. The eigenvalues of
a massless chiral Dirac operator lie on circle if R = const.
Our Dirac operator has a nontrivial R in which case one
knows crude bounds only:the eigenvalues should lie be-
tween two circles touching each other at the origin. The
full spectrum on a 4*configuration in Fig. 1 gives more
information. A small quark mass shifts the eigenvalues to
the right. The scattering of the eigenmodes characterize the
chiral symmetry breaking of our approximate Dirac
operator.

While the scatter of the eigenmodes on the left panel is
not negligible, its scale is small (compare to the whole
spectrum of Fig. 1). In the quenched hadron spectrum
calculations of Refs. [5,10,11] at similar parameters no
exceptional configurations were observed which is consis-
tent with the quenched spectrum in Fig. 5 here.

There are several new features we can identify on the
right panel that corresponds to the dynamical configura-
tions. First we observe that the eigenmodes are shifted
somewhat to the left. Their value suggests a nearly zero
physical quark mass indicating a small additive mass re-
normalization of §m = —0.015. On the quenched configu-
rations 6m is practically zero. As we based our parameters
on the quenched spectroscopy, by accident we simulated an
approximately massless dynamical quark system. Since in
the 2nd A/R step of the update (Sec. IV C) we subtract the
low lying eigenmodes, this did not cause any increase in
computing time.

On its own a small mass renormalization is not a prob-
lem. It is the fluctuations of the eigenmodes beyond 6m
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that create exceptional configurations. These fluctuation
are suppressed on the dynamical configurations as com-
pared to the quenched case. The two panels of Fig. 5
contain the same number of eigenvalues and it is apparent
that the Dirac operator on the dynamical configurations is
much more chiral than on the quenched ones. This unex-
pected benefit is the effect of the fermionic determinant in
the Boltzmann weight and shows that its presence enhan-
ces the configurations where our parametrization of the
fixed point Dirac operator works better.

The very small eigenmodes, those with |A| < 0.1, are
completely missing from the right panel. This is the con-
sequence of the suppression of the low eigenmodes by the
determinant. The gauge update of Sec. IVA creates con-
figurations with real eigenmodes and some of these are
accepted by the A/R steps. One of these modes is present
on the right panel of Fig. 5 at A = 0.3. However as these
real eigenvalues move toward zero their determinants be-
come small and the configurations are eventually replaced
by configurations without real eigenmodes. On large vol-
umes the small complex eigenmodes are not completely

PHYSICAL REVIEW D 72, 114508 (2005)

suppressed but on these small volumes even those are
missing.

VI. CONCLUSION

In this paper we discussed the partial global stochastic
update method and its use to simulate dynamical fixed
point fermions. The original method is combined with
several improvement techniques. By separating and con-
trolling both the UV and IR modes of the Dirac operator
and the fluctuations of its stochastic estimator we found the
update efficient on moderate volumes even near the chiral
limit. To illustrate the algorithm we presented some pre-
liminary results on 8 X 24, a = 0.14 fm lattices with 2 +
1 flavors with an approximately massless light doublet.
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