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Lattice QCD with two dynamical flavors of domain wall fermions
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We present results from the first large-scale study of two-flavor QCD using domain wall fermions
(DWF), a chirally symmetric fermion formulation which has been proven to be very effective in the
quenched approximation. We work on lattices of size 163 � 32, with a lattice cutoff of a�1 � 1:7 GeV
and dynamical (or sea) quark masses in the range mstrange=2 & msea & mstrange. After discussing the
algorithmic and implementation issues involved in simulating dynamical DWF, we report on the low-lying
hadron spectrum, decay constants, static quark potential, and the important kaon weak matrix element
describing indirect CP violation in the standard model, BK. In the latter case we include the effect of
nondegenerate quark masses (ms � mu � md), finding BMSK �2 GeV� � 0:495�18�.
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I. INTRODUCTION

An improved theoretical understanding of the nonper-
turbative aspects of QCD is increasingly important due to
the continuing advance of experiments involving hadrons.
Such understanding is an important ingredient in obtaining
precise values of the parameters of the standard model and
the search for new physics. It is also key to understanding
the fundamental properties of QCD itself which are under
intense investigation at BNL, Jefferson Lab, FNAL,
CERN, and other places.

The fundamental theoretical tool to investigate QCD
nonperturbatively is lattice QCD, the regularized field
theory of QCD on a discrete Euclidean space-time lattice.
Treatment of the fermion field in such a regularization has
been a long-standing difficulty because flavor and chiral
symmetry are badly broken in practical numerical simula-
tions using conventional lattice fermions. A revolutionary
theoretical framework to realize flavor and chiral symme-
try on the lattice was constructed by Kaplan [1] and sub-
sequently reformulated and extended in two distinct ways
by Narayanan and Neuberger [2] and Shamir [3] who
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suggested that the new fermions be used to study vector
gauge theories, and especially QCD. These new fermions,
known as domain wall fermions (DWF), turned out to be in
a class of lattice fermions that satisfy the Ginsparg-Wilson
relation [4]. Later, Neuberger developed still another
closely related lattice fermion called overlap fermions [5].

Today, both domain wall and overlap fermions are com-
monly used in quenched lattice QCD simulations, those
where the fermion determinant is set to one in all path
integrals used to calculate expectation values. In this paper,
we report on the first large-scale two-flavor dynamical
simulations with domain wall fermions, those where the
fermion determinant is included in all path integrals used to
calculate expectation values. From a perturbative point of
view, this is equivalent to keeping all closed fermion loop
contributions (at lowest order, the hadronic vacuum polar-
ization) to all orders in all Feynman diagrams.

To realize chiral symmetry, domain wall fermions utilize
an extra fifth dimension, demanding increased computa-
tional resources that are essentially linear in this extra
dimension. Nevertheless, quenched QCD calculations
with domain wall fermions were carried out, showing
good chiral symmetry can be achieved with a practical
number of lattice sites in the extra dimension (Ls � 10)
[6–8]. Subsequently, within the quenched approximation
domain wall fermions were used in many calculations—
showing dramatic improvement in scaling toward the con-
tinuum limit over conventional formulations [9–13]; were
used in pioneering calculations of weak interaction had-
ronic matrix elements [11,14,15]; and proved efficacious in
nonperturbative operator renormalization [15–17].
-1 © 2005 The American Physical Society
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1Our preference for domain wall over overlap fermions is
largely historical since they were developed for numerical simu-
lations earlier. However, to our knowledge domain wall fermions
are at present more efficient with respect to computer resources.
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As mentioned already, large-scale computations using
domain wall fermions so far have been restricted to the
quenched approximation. The problem with such calcula-
tions is that there is no way to systematically reduce the
errors due to quenching without simply performing the
unquenched calculation. Past experience indicates that
the size of the error ranges between 5%–10% for many
observables but can be much greater, depending on the
observable (the critical temperature of the hadron to quark-
gluon plasma phase transition is a well-known example
where the quenching error is more than 40%). In [12] the
ratio of pseudoscalar decay constants in the quenched
approximation was found to be fK=f� � 1:13�3�; this
was different from the experimental value, � 1:22. On
the other hand, in this work, we find fK=f� � 1:175�11�,
as discussed in Sec. V. Moreover, there are important
physical objects, the flavor singlet mesons and scalar me-
sons, for example, which are believed to be very sensitive
to dynamical or sea quark effects. Ultimately, to perform
accurate lattice QCD calculations these effects must be
included.

Recently, large-scale dynamical fermion simulations
using Wilson fermions [18–20] and improved staggered
fermions [21,22] (using two light degenerate quarks and a
heavier quark for the strange quark) have been reported.
Both formulations break chiral symmetry and the former
also breaks flavor symmetry (a severe problem, theoreti-
cally and practically). Nevertheless, calculations using
either type of fermions, done with two or more sufficiently
small lattice spacings, have yielded results which agree
accurately with experiment for some observables. QCD
simulations using staggered fermions are much less com-
putationally demanding, making them attractive. However,
the action corresponds to four degenerate fermions in the
continuum limit, so to simulate a single flavor requires the
fourth root of the determinant. For this to be a legitimate
procedure there must be a local action for a single flavor of
staggered fermions which had the same determinant as this
fourth root. While there is no proof that such a decom-
position is impossible, no such action has been constructed
to date. The flavor symmetry breaking intrinsic to stag-
gered fermions also leads to larger than expected discreti-
zation errors, a problem that is significantly reduced by
improving the naı̈ve discretization (see [23–25]). Even
with these improvements, an extended chiral perturbation
theory [26,27] with many extra low-energy constants cor-
responding to the leading lattice-spacing errors must be
used to do the chiral extrapolations. Without this extra
complexity, the precise agreement with experiment could
not be achieved without costly reductions in the lattice
spacing. While more computationally demanding than
staggered fermions, the Wilson fermion formulation is still
much less demanding than DWF. However, this action
severely breaks chiral symmetry, leading to large discreti-
zation errors [starting at O�a� rather than O�a2� for unim-
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proved Wilson fermions] and a problematic
renormalization structure. In addition to this, the Wilson-
Dirac operator for a single flavor cannot be proved to have
a positive determinant for positive quark mass, which is an
important prerequisite for simulating an odd number of
dynamical flavors exactly using the currently available
algorithms.

For these reasons, full QCD simulations with DWF are
necessary as they avoid these theoretical uncertainties by
providing a fermion formulation with both exact flavor
symmetry and good chiral properties. In fact , in the limit
of an infinite extra dimension domain wall fermions posses
exact chiral symmetry at nonzero lattice spacing, that is,
away from the continuum limit. When the extent of the
extra dimension (Ls) is finite, explicit chiral symmetry
breaking is induced and is quantified in the form of a small
additive quark mass mres, where res � residual. The do-
main wall fermion Dirac operator has the nice property that
for positive mass and even LS its determinant is positive,
and so taking the square-root of the two-flavor determinant
is a well-defined operation. This, in combination with
algorithms such as the polynomial [28] and rational
[29,30] hybrid Monte Carlo algorithms, allows an odd
number of dynamical flavors to be simulated exactly. In
addition, if the gauge fields are sufficiently smooth that the
underlying Wilson-Dirac operator is not in the parity bro-
ken Aoki phase [31], then the theory is expected to be
local. This condition has been met in quenched studies. We
refer the interested reader to [32] and references therein for
a full explanation. Note that the same locality condition
applies to overlap fermions. Thus unquenched lattice QCD
with domain wall, or overlap,1 fermions promises to be the
closest nonperturbatively regularized theory to continuum
QCD. This continuumlike (symmetry) property is central
to the argument that despite Ginsparg-Wilson fermions
being naı̈vely more expensive, superior scaling with the
lattice-spacing a and greatly simplified renormalization
structure may eventually overcome the increased computa-
tional burden since dynamical lattice simulations are
known to scale as a��7�8� as the continuum, chiral, and
infinite lattice volume limits are approached.

Several years ago some of us performed a study of the
finite temperature QCD phase transition using dynamical
domain wall fermions [33]. Large explicit chiral symmetry
breaking was evident in, for example, the quark mass
dependence of the pion mass, which is now believed to
be caused by the gauge field being sufficiently rough that
there was a condensation of zero modes of the four-
dimensional Wilson-Dirac operator appearing in the do-
main wall fermion operator (the Aoki phase); the lattice
scale in these simulations was below 1 GeV. Here we have
-2
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moved to a finer lattice-spacing, a�1 � 1:7 GeV, and use
an improved gauge action which significantly reduced the
explicit chiral symmetry breaking in quenched calculations
by an order of magnitude [12]. As discussed in Sec. V,mres

is a few MeV in this calculation, so we are confident that
our simulation is not inside the Aoki phase and that, in fact,
explicit chiral symmetry breaking is small and under pre-
cise control for a relatively modest Ls � 12. The mass of
the two dynamical domain wall quarks, mq � mf 	mres,
is roughly in the range one half to 1 times the strange quark
mass, meaning the residual quark mass due to the finite size
of the fifth dimension is a small fraction of the input quark
mass.

This paper is organized as follows: The lattice action and
its numerical implementation with various improvements
are described in Sec. II. The ensemble of gauge field
configurations is summarized in Sec. III. Thermalization
and autocorrelations in simulation time are discussed in
Sec. IV. Physical results are presented in Sec. V with an
emphasis on an analysis to next-to-leading order in chiral
perturbation theory. In Sec. VI we discuss aspects of chiral
symmetry related to domain wall fermion simulations and
compare and contrast dynamical and quenched simula-
tions. We summarize our results and conclusions in
Sec. VII.
II. IMPLEMENTATION OF DYNAMICAL DWF

In this section we will discuss the algorithmic and
implementation details involved in generating dynamical
ensembles with the domain wall fermion action. As a first
step we must precisely define the domain wall fermion
action that we have used. For the domain wall fermion
Dirac operator DDWF, we use the same definition and
conventions as [10]. However, were we simply to use the
action S � SF 	 SG with

SF �
X
x

��DDWF� (1)

and SG representing the gauge action [in our case the
doubly blocked Wilson (DBW2) action], then we would
face a problem: the fifth direction in the domain wall
fermions framework naturally gives rise to unphysical
heavy propagating modes in this direction, while we are
only interested in the physics of the light mode which is
bound to the domain walls. The number of such modes will
diverge in the Ls ! 1 limit and so dominate the path
integral. To cancel off this divergence we add a set of
Pauli-Villars fields to the action such that S � SF 	 SG 	
SPV with

SPV �
X
x

�yDDWF�mf � 1��: (2)

Note that, while the original formulation of the domain
wall fermion action included Pauli-Villars fields [34], here
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we are using a slightly different form for these fields which
was introduced in [35].

To simulate dynamical fermions on the lattice we have a
choice of many algorithms [28–30,36–38]. As in this work
we are simulating an even number of dynamical flavors, it
is convenient to use the well-known, exact, hybrid Monte
Carlo (HMC) � algorithm [36,37]. The precise details of
the HMC algorithm can be found in the cited papers, but
for convenience we will sketch an overview here:
(i) T
-3
he fermionic part of the action is rewritten in
terms of a set of bosonic fields using the relation:Z

d �
d �e M � det�M�

�
Z

d��
d�y�e��

y�1=M��: (3)

For this bosonic integral to converge, the matrix M
must have eigenvalues whose real parts are posi-
tive. Because of this condition this algorithm may
not be applied to QCD-like theories with an odd
number of flavors. However, it may be applied to
theories where quark flavors appear in degenerate
mass pairs. In this situation we may use the fact that

�5RDDWFR�5 � DyDWF; (4)

where R is the reflection operator in the fifth di-
mension, to rewrite det�DDWF�

2 as
det�DyDWFDDWF�. The matrix that will appear in
the bosonic integral is therefore

1

DyDWFDDWF
; (5)

which is the square of a Hermitian matrix and so is
positive semidefinite.
(ii) A
n auxiliary field, P�, also is added to the action.
This field plays the role of a conjugate momenta to
the gauge field in a molecular dynamics evolution.
(iii) T
he evolution of the gauge field is split up into
trajectories. At the beginning of each trajectory the
pseudofermion field, denoted � in Eq. (4), and the
conjugate momenta are chosen from a heatbath.
The gauge field and conjugate momenta are then
evolved some distance in ‘‘molecular dynamics
time’’ using a discretization of Hamilton’s equa-
tions, which must be reversible. Several discretiza-
tion techniques exist in the literature [37,39,40]; in
this work we are mainly using that introduced in
[37], although we present also the results of an
exploratory study of the multiple time-scale tech-
nique of [40].
(iv) I
f the evolution of the gauge field exactly followed
Hamilton’s equations then this algorithm would be
complete. However, to correct for discretization
errors, a Metropolis accept/reject step is performed
at the end of every trajectory.
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Each step in the molecular dynamics evolution requires
an inversion of the domain wall Dirac operator. While we
use an even-odd preconditioned form for the operator to
speed this up, it is, of course, still the most expensive part
of the gauge field generation. In the following subsections
we give details of our attempts to minimize both the
number of inversions needed and the cost of each of these
inversions.

A. New force term

The initial studies of dynamical domain wall fermions
[33] used separate sets of bosonic fields to simulate the
fermionic and Pauli-Villars parts of the action. This is
potentially wasteful, especially for a large fifth dimension,
as the entire reason for including the Pauli-Villars term was
to cancel much of the contribution from the domain wall
fermion Dirac operator. By using disparate sets of fields
this cancellation is only apparent after the average over
these fields; over a single trajectory the mismatch between
these two pieces of the action may introduce large forces,
and therefore large time-step errors, into the molecular
dynamics evolution.

In an attempt to avoid this problem we have imple-
mented a form of the Hamiltonian for the molecular dy-
namics evolution, first suggested in [35], that uses a single
set of bosonic fields to estimate both the fermion and Pauli-
Villars terms. To do this we simply note that

det�Dy�mf�D�mf��

det�Dy�1�D�1��
� det

�
D�1�

1

Dy�mf�D�mf�
Dy�1�

�
�1

�
Z

d��
d�y�e�Sn���; (6)

with

Sn�
X
x

�yD�mf�1�
1

Dy�mf�D�mf�
Dy�mf�1��: (7)

This approach needs no more memory space than the
previous one and requires exactly the same number of
Dirac operator inversions as before, although they are
performed on different sources. However, the cancellation
between the fermion and Pauli-Villars contributions to the
molecular dynamics force now happens exactly, step-by-
step in the leapfrog evolution, rather than stochastically.

Table I gives the parameters for, and results of, a small
volume head-to-head comparison of the old and new force
TABLE I. Small lattice comparison of HMC ev
gauge action with � � 5:2 and two flavors of dom
0:02.

Force Term �t Steps/Trajectory Trajectories

Old 1=64 33 1000–1880
Old 1=32 17 1000–1929
New 1=32 17 1000–1936
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terms on an 83 � 4� 8 ( where the parameters are spatial
volume times temporal length times Ls) lattice using the
Wilson gauge action with � � 5:2, and Nf � 2 domain
wall fermions with mf � 0:02. As can be seen the new
force term has both a significantly higher acceptance than
the old force term when compared at the same step size,
and a (small) reduction in the number of conjugate-
gradient iterations needed. The difference of the
Hamiltonian used in the molecular dynamics evolution
between the first and the last configuration in a trajectory,
�H, is also measured. We find the theoretical relation to
the acceptance [39,41],

Prob acc � erfc
� ������������
h�Hi

p
=2
�
� exp

0@�
�����������������
h��H�2i

p
2�

1A; (8)

holds to a good accuracy. For large space-time volume V
and small size �t, the scaling

��������������
��H�2

q
� C�H��t�

2
����
V
p

(9)

is expected, where the coefficient C�H is independent of
volume and step size at leading order. By switching to the
new force term, C�H is reduced by more than a factor of 2,
leading to an increased acceptance, as seen in Table I.

A similar or somewhat better reduction of the discreti-
zation error of the new force term is observed for the larger
lattices (163 � 32� 12) and smaller couplings on which
we base much of this work. A detailed description of the
basic parameters for these ensembles is deferred until
Sec. III; here we give only the details relevant for the
HMC evolution which are summarized in Table II. We
also present the results of a short test using the old force
term for 45 trajectories, starting from the thermalized
lattice of the lightest sea quark mass. Using the new force
term, C�H is reduced to �40% of its value with the old
force term, and the acceptance is increased from 56% to
77%, as shown in Table II. An important observation is that
C�H is almost independent of the sea quark mass for the
new force term in our simulation. This is in contrast to the
empirical assumption [42,43], C�H / m��sea , �� 2.

In Sec. II C we will discuss a technique that allows us to
exploit this new force term even more successfully.
olutions. All these evolutions use the Wilson
ain wall fermions with a bare mass of msea �

Acceptance CG iterations/Trajectory C�H

87% 8336 26.5
59% 4310 30.0
79% 4179 12.9
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TABLE II. Parameters for the large lattice HMC evolutions. The averaged elapse time per one trajectory of our particular
implementation on 32 mother boards (32 MB� 100 GFLOPS theoretical peak speed) or 64 mother boards (64 MB�
200 GFLOPS) QCD on a digital signal processor, and the observed acceptance in the Metropolis test are also quoted. The CPU
time includes the computation time for the chiral condensation h �qqiLmval�msea

and the r� t on-axis Wilson loop hW�r; t�i with �r; t� �
f�1; 1�; �1; 2�; �2; 1�g, but it does not include the time for input/output. The scaled squared energy difference between the first and the
last configuration in a trajectory, C�H �

�����������������������
h��H�2i=V

p
=��t�2, is quoted with the standard deviation error. ‘‘0.02 (OLD)’’ are the results

of a small number of trajectories using the old force term.

msea �t Steps/Trajectory Trajectories Acceptance C�H Time/Trajectory (machine)

0.02 (OLD) 1=100 51 45 56% 39(4)
0.02 1=100 51 656–5361 77% 16.2(2) 0.8784(6) hours (64 MB)
0.03 1=100 51 615–6195 78% 15.8(1) 0.8324(4) hours (32 MB)
0.04 1=80 41 625–5605 68% 16.4(2) 0.7116(2) hours (32 MB)
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B. Chronological invertor

For the inversion of the Dirac operator in each molecular
dynamics (MD) step (the most time consuming procedure
in the calculation) we use the chronological invertor tech-
nique of [44]. We employ the conjugate-gradient algorithm
to find an approximate solution, �, of the inverse of the
matrix ~DyD (here ~D represents the even-odd precondi-
tioned Dirac operator), acting on the source vector �F,
by iteratively minimizing

�y ~Dy ~D�� �y�F ��yF�; (10)

starting from an initial guess. In the chronological invertor
technique this starting vector is forecast by minimizing
Eq. (10) in the subspace spanned by the set of solutions
from previous leapfrog steps.2 The precise solution is
calculated by the conjugate-gradient (CG) algorithm start-
ing from this forecast, so the number of CG iterations is
reduced. In this subsection we will continue to discuss the
even-odd preconditioned form of the operator.

The first 655 trajectories in the msea � 0:02 evolution
described in Table II were generated using a simple linear
extrapolation of the previous two solution vectors as an
initial guess for the conjugate-gradient algorithm [37],
after which we moved to the chronological invertor using
the previous seven vectors (we found little advantage to
using more than this number, as explained below). Figure 1
shows the average and standard deviation of the conjugate-
gradient iteration count versus the leapfrog integration step
for trajectories 500 to 655 and 3000 to 4000. The reduction
in the number of CG iterations needed when using the
chronological inverter was readily apparent. (Note: while
the number of inversions is 52, the first and last of these are
half-steps so the total distance moved in molecular dynam-
ics time is 51=100). There is, however, the overhead in-
volved in implementing the chronological forecast. A
comparison of the time taken for producing a single tra-
2We found it is helpful to do Graham-Schmidt orthogonaliza-
tion twice in order to find the minimal residual vector from the
subspace, while it was done just once in [44].
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jectory in our particular implementation shows roughly a
factor of 2 speed-up whereas the CG iteration count is
reduced from that without forecasting by a factor of
2.6(1), 3.2(2), 3.3(2) for the msea � 0:02; , 0.03, and 0.04
evolutions, respectively. Table III summarizes the number
of CG iterations for the first 15 steps of the molecular
dynamics trajectory for msea � 0:02, msea � 0:03, and
msea � 0:04, together with the total number of CG itera-
tions per trajectory. How the CG converges to the precise
solution on a typical configuration of the msea � 0:02
ensemble is illustrated in Fig. 2 for various numbers of
previous solutions, Np, used in the forecast. The precision
of the forecast is improved by increasing Np. Since the
improvement is saturated for Np 
 7 for all sea quark
masses used, we carried out our simulation with Np � 7.
FIG. 1 (color online). Conjugate-gradient iteration count for
the chronological inverter using the previous seven vectors
compared with a linear extrapolation of the previous two vectors
for the msea � 0:02 ensemble.
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TABLE III. Average CG count and standard deviation (shown
in square brackets) versus molecular dynamics step for trajecto-
ries 3000 to 4000 of each ensemble, together with the average for
the total number of CG iterations per trajectory.

Leapfrog step msea � 0:02 msea � 0:03 msea � 0:04

1=2 step 715[11] 513.9[49] 401.5[32]
Step 1 626[11] 435.0[49] 340.4[32]
Step 2 543[11] 363.3[47] 284.7[29]
Step 3 477[13] 297.6[50] 231.7[32]
Step 4 411[19] 227.3[90] 172.3[48]
Step 5 346[15] 181.1[61] 137.2[46]
Step 6 280[12] 175.0[54] 128.2[41]
Step 7 277[13] 157.9[58] 120.5[29]
Step 8 269[10] 149.7[39] 117.8[21]
Step 9 274[14] 146.0[60] 116.4[48]
Step 10 275[15] 154.5[74] 115.6[51]
Step 11 275[14] 158.3[47] 127.3[28]
Step 12 269[17] 153.6[78] 122.0[65]
Step 13 282[15] 152.6[76] 120.5[52]
Step 14 279[17] 158.8[76] 122.1[51]

Total 16 014[396] 9214[130] 5964[71]
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Using the chronological invertor technique, we must
be careful to preserve reversibility of the MD evolu-
tion, which is a condition for the HMC algorithm to
satisfy detailed balance. To be precise, a trajectory
starts with a gauge configuration and its conjugate momen-
tum, �U�I�� �x�; P

�I�
� �x��, and evolves to another pair,

�U�F�� �x�; P
�F�
� �x��, at the end of the trajectory. Starting

another evolution with the latter pair with flipped momen-
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FIG. 2 (color online). The residues of CG, Eq. (11), as a
function of the number of CG iteration are plotted for various
numbers of previous solutions, Np, on a typical configuration of
the msea � 0:02 ensemble.
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tum, �U�F�� �x�;�P
�F�
� �x��, the counterpart of the first con-

figuration, �U0�I�� �x�;�P
0�I�
� �x��, is produced. We require

that U0�I�� �x� is the same as U�I�� �x� to satisfy detailed
balance.

Exact reversibility is broken in two ways in the numeri-
cal simulation. Because of round-off errors, the gauge links
become nonunitary and are reunitarized at the end of each
trajectory. This is not a reversible process but only causes
small changes in the link elements for the parameters
employed in this simulation (This statement quantified
below). As mentioned previously, a more worrying source
of irreversibility is the chronological invertor. Unless the
convergence criteria is stringent enough so that the solution
of the CG is effectively independent from the forecast
vector, the force from the pseudofermion action is different
from the corresponding flipped fermion force in the re-
versed trajectory, and reversibility breaks down. Our con-
vergence criteria in the CG is implemented so that the
relative norm of the preconditioned residual vector is equal
to or less than a small number, Rconv,

res CG �
j� ~DyDWF

~DDWF����Fj

j�Fj
� Rconv; (11)

where � is the solution vector and �F is the source vector.
We define U�N� � U0�I� to be the configuration obtained

by evolving U�I�, with initial momentum P, N=2 steps
followed by N=2 steps with the reversed momentum and
have calculated the deviation between U�n� and U�I� after n
steps along this path using two different measures:

d�U�n�;U�I���

��������������������������������������������������������������������
1

4 �18Nvol

X
x;�

kU�n�� �x��U
�I�
� �x� k2

vuut ; (12)

dmax�U
�n�
� �x�; U

�I�
� �x�� � max

x;�;i;j
j�U�n�� �x� �U

�I�
� �x��ijj; (13)

where, for a generic matrix M, k M k2 represents the l2
norm [45]. These are plotted in Fig. 3 for N � 20, 40, 100,
200, 400, and 1000 using a starting configuration from the
msea � 0:02 ensemble [d�U�n�; U�I�� and dmax�U

�n�; U�I��
are relatively independent of the sea quark mass]. The
crucial issue is how small Rconv must be so that the break-
ing of reversibility is negligible. In Fig. 4, d�U�N�; U�I�� and
dmax�U�N�; U�I�� are plotted as a function of Rconv for a
starting configuration in the msea � 0:02 ensemble and
N � 102—the value we use in our simulations. For
Rconv 
 10�6 the MD is not reversible. d�U�n�; U�I�� �
reaches the edge of floating point accuracy at Rconv �

10�7 but dmax�U
�n�
� ;U

�I�
� � is still resolved. For Rconv �

10�8, both deviations are below single precision accuracy
and comparable to the deviations due to reunitarization
which are shown by the dotted lines in the graph. From
these checks we choose Rconv � 10�8 as the CG conver-
gence criterion in our simulation.
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C. Multiple time-scale leapfrog evolution

In this section we discuss the multiple time-step leapfrog
integration scheme of [40]. While this technique was not
used in the main part of this work, a small study was
performed to test its usefulness; the results of which will
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R

conv
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FIG. 4 (color online). The breaking of reversible dynamics
measured by d�U0�I�� ;U�I�� � and dmax�U

0�I�
� ;U�I�� � as a function of

the CG convergence criteria, Rconv. The dotted lines are observed
upper bound of deviations due to the reunitarization process. The
error bar at Rconv � 1e�8 was obtained using five configurations.
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be included here as they are both encouraging and
instructive.

In [40] a procedure was outlined for constructing leap-
frog integrators for which a different time-step size could
be used for different parts of the molecular dynamics
Hamiltonian. The parts of this Hamiltonian which produce
the dominant contribution to the leapfrog integration dis-
cretization error may then be treated with a finer discreti-
zation than the remainder. In the case where the dominant
contribution to the discretization error comes from the
gauge piece of the Hamiltonian, for which the molecular
dynamics force term is relatively inexpensive to compute, a
large improvement in the efficiency of the algorithm is
possible.

For the standard actions this does not seem to be the
case. However, there is some evidence that when using the
modified force term described in Sec. II A the dominant
errors are coming from the gauge part of the action.
Figures 5 and 6 contrast the individual contributions of
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FIG. 5 (color online). The individual contributions to the total
change in the Hamiltonian from the various components of the
Hamiltonian for the large step size, old force term simulation
described in Table I. The shaded bars represent the trajectories
which failed the accept/reject step, while the empty bars tally all
trajectories.
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FIG. 6 (color online). The individual contributions to the total
change in the Hamiltonian from the various components of the
Hamiltonian for the large step size, new force term simulation
described in Table I. The shaded bars represent the trajectories
which failed the accept/reject step, while the empty bars tally all
trajectories. Note that the magnitude of the differences is domi-
nated by the gauge and momentum parts of the Hamiltonian, and
the noticeable trend that trajectories for which the change in the
gauge part of the Hamiltonian is positive are more likely to be
rejected.
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the gauge, momentum, fermion, and Pauli-Villars terms to
the total change in the Hamiltonian over a trajectory for the
small volume, large step size runs tabulated in Table I. As
can be seen, for the old force term this change is approxi-
mately the same size for all contributions, while for the
new force term the gauge and momenta contributions are
much larger than the (combined) fermion contribution.
There also is a noticeable skew in the distributions for
the gauge and momenta pieces of the Hamiltonian, with
a positive change in the gauge Hamiltonian being rejected
much more often than a negative change.

To test if the discretization error for the new force term
is, indeed, dominated by the contributions from the gauge
and momenta pieces of the Hamiltonian, we have per-
formed a trial of the multiple gauge-step leapfrog integra-
tor over 45 trajectories, starting from trajectory 1505 of the
msea � 0:04 evolution. Over this range the standard algo-
114505
rithm had an acceptance of 56%. Performing two gauge
integration steps for every fermion integration step the
acceptance moved up to 91%, confirming the gauge mo-
menta pieces are the dominant cause of the discretization
error. While we would like to exploit this fact by using a
large fermion step size combined with a small gauge step
size, we have found that in the few tests that we have
undertaken the performance of the chronological invertor
degrades as the fermion step size increases by an amount
that almost completely offsets the fewer number of inver-
sions needed. However, this is an approach worthy of a
more extended study, and even if it does not allow the move
to larger fermion step sizes, the gain in acceptance we have
observed is appreciable.
III. SIMULATION DETAILS

As mentioned previously, our simulations have been
made using the standard domain wall Dirac operator
[34], combined with the Paulli-Villars field with the action
introduced in [35]. For each of our three dynamical en-
sembles we employ two dynamical flavors, with Ls � 12
and M5 � 1:8 (we use the notation and conventions intro-
duced in [10] for the domain wall fermion action), on
lattices of size 163 � 32. The fermion boundary conditions
are periodic in the spatial directions and antiperiodic in the
time direction. These ensembles have bare quark masses of
0.02, 0.03, and 0.04. The basic HMC parameters are tabu-
lated in Table II; all Dirac matrix inversions were per-
formed using the conjugate-gradient algorithm with a
stopping condition of 10�8.

We use the DBW2 gauge action [46] with � � 0:80, the
same action we have used in previous quenched studies
[12,47]. This action approximates the renormalization
group trajectory by using the standard plaquette P1�1 and
a 1� 2 rectangular plaquette P1�2:

Sg � �
�
3

�X
x

�1� 8c1�TrP1�1 	 c1 TrP1�2

�
: (14)

This form was originally suggested by Iwasaki [48–50],
who, using a perturbative approach, estimated a value of
c1 � �0:331. In [51] a nonperturbative estimate, of c1 �
�1:4069, was made in the quenched approximation. While
we are working with dynamical fermions, this is the value
we use; our intent being to exploit the improvement in the
chiral properties of domain wall fermions that this gauge
action provides [12], rather than to be as close as possible
to the renormalized trajectory. Of course, it is possible that
the effects of the determinant will negate any such im-
provement. This issue is discussed further in Sec. VI.

The measurements of wall source hadron correlators on
the msea � 0:04 ensemble were mistakenly performed us-
ing a nonuniform separation. While most of the measure-
ments are separated by 50 trajectories , measurement 30 is
separated by 49 trajectories from 29, and 34 is separated by
-8
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51 trajectrories from 33. The effect of this unequally
separated ensemble should be negligible.
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FIG. 7 (color online). The history of qq (mval � mdyn), up to
trajectory 1000, for all evolutions. The average from trajectory
3000 onwards is shown as a dashed horizontal line.
IV. THERMALIZATION AND
AUTOCORRELATIONS

In this section we discuss the related issues of thermal-
ization and autocorrelations for quantities calculated on
our ensembles. Each evolution started from an ordered
lattice, running for O�10� trajectories without the accept/
reject step applied, and leaving O�600� trajectories for the
lattice to thermalize. The precise numbers for each evolu-
tion are given in Table IV. As a check of the number of
trajectories needed to thermalize the configurations we
have calculated chiral condensate hqqi�mval � msea� on
every trajectory, using a single hit of a random source.
Figure 7 shows this, together with the average value for
trajectory 3000 and above, which agree well with each
other by the 600th trajectory.

For the results presented later in this work we use 94
configurations from each ensemble, separated by 50 HMC
trajectories. For the msea � 0:02 and msea � 0:03 ensem-
bles these configurations are taken sequentially from the
thermalization point given in Table IV. For themsea � 0:04
evolution we leave a gap of 250 trajectories, starting from
trajectory 1775, due to a hardware error on trajectory 1772
that was not detected until after the entire evolution was
finished. The trajectory passed the accept/reject step, and
no effect was seen in any of the physical observables that
we have calculated; nevertheless, to be cautious, we have
allowed this gap of 250 trajectories for the evolution to
rethermalize. Table V gives the results for the bare lattice
values of the chiral condensate (for mval � msea), and the
r� t on-axis Wilson loop, hW�r; t�i, with �r; t� �
f�1; 1�; �1; 2�; �2; 2�; �3; 3�g for these sets of configurations.
While we do not use these values in the rest of this work,
we include them here as they may be of utility for others
trying to work at this set of parameters.

To test this spacing of 50 trajectories we have calculated
the autocorrelation function, defined for some observable,
O�t� (here t labels the trajectory, and runs from 1 to Ndata),
as
��t� �
1

Ndata � t

XNdata�t

t0�1

�O�t0� � �O��O�t0 	 t� � �O�; (15)
TABLE IV. Evolution details and number o

msea Until accept/reject Thermaliza

0.02 28 656
0.03 25 615
0.04 5 625
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�O �
1

Ndata

XNdata

t0�1

O�t0�; (16)

on the msea � 0:02 ensemble for the plaquette and the
correlation function of the time component of the local
axial-vector current at time-slice 12. The former was mea-
sured every trajectory, while the latter was calculated every
10 trajectories using a Coulomb gauge-fixed box source of
size 10 and a point sink. Figures 8 and 9 show both the
normalized autocorrelation function ��t�=��0� and the in-
tegrated autocorrelation length

	int�tmax� �
1

2
	

1

��0�

Xtmax

t�1

��t� (17)

for these two quantities, versus the separation in trajecto-
ries and the maximum separation over which correlations
were calculated, tmax, respectively. The quoted error on the
integrated autocorrelation length is calculated using a jack-
knife procedure: as is standard, each jackknife sample is
constructed by removing a contiguous group of data-
points, covering Nblock trajectories, from the available
data. On the jth jackknife sample (j 2 
0; Ndata=Nblock�)
we construct an estimate of the autocorrelation function,
f configuration used for physical results.

tion Trajectories Configurations

5361 94
6195 94
5605 94
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TABLE V. The bare chiral condensate, h �qqiLmval�msea
, and the r� t on-axis Wilson loop,

hW�r; t�i.

msea Nconfigs h �qqiLmval�msea
hW�1; 1�i hW�2; 1�i hW�2; 2�i hW�3; 3�i

0.02 94 0.002 542(11) 0.646 706(50) 0.407 777(80) 0.17 601(10) 0.033 633(80)
0.03 94 0.0 034 419(98) 0.646 594(47) 0.407 629(82) 0.17 572(10) 0.033 287(81)
0.04 94 0.0 043 255(81) 0.646 561(48) 0.407 562(71) 0.175 615(97) 0.033 330(81)

0.9
1
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�j�t� �
1

Nsum

0@ XjNblock�t

t0�1

�O�t0� � �Oj��O�t0 	 t� � �Oj�

	
XNdata�t

t0��j	1�Nblock	1

�O�t0� � �Oj��O�t0 	 t� � �Oj�

1A;
(18)

�O j �
1

Ndata � Nblock

 XjNblock

t0�1

O�t0� 	
XNdata

t0��j	1�Nblock	1

O�t0�

!
;

(19)

where Nsum is the total number if terms in the two summa-
tions; this is not simply Ndata � Nblock � t, as if t is greater
than or equal to jNblock or Ndata � �j	 1�Nblock we must
drop the first or last summation, respectively, in Eq. (18).
Estimates of the integrated autocorrelation length on every
jackknife sample are constructed from Eq. (17) and used to
calculate the error in the standard fashion. Ideally, we
would like to work in the regime such that Nblock �
tmax; 	int for a value of Nblock which leads to an appreciable
number of jackknife samples. Here we use Nblock � 100.
This leads to an acceptable number of jackknife samples
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FIG. 8 (color online). Plaquette autocorrelation function and
integrated autocorrelation length for the msea � 0:02 ensemble.
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(� 50) but may be too short for a solid estimation of the
error for the axial-axial data. As can be seen from Figs. 8
and 9, the integrated autocorrelation length plateaus at� 3
for the plaquette and � 35 for the axial-axial correlator.
While these values would suggest that the autocorrelations
may be under control for our configurations, caution
should be taken both because their extraction is insensitive
to correlations longer than O�100� trajectories, and be-
cause the autocorrelation length depends on the quantity.

An important example of a quantity which displays
correlations over the scale of many hundreds of trajectories
is the topological charge. To calculate the topological
charge the lattices are first smoothed by applying 20 steps
of APE smearing with a coefficient of 0.45; then the
topological charge is measured using a discretization of
the operator

Qtop �
1

32�2 
ijklTr
FijFkl�; (20)

which is based upon two definitions of the lattice field
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FIG. 9 (color online). Autocorrelation function and integrated
autocorrelation length for time-slice 12 of the correlation func-
tion of the time component of the local axial-vector current on
the msea � 0:02 ensemble.
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strength tensor, F��: that using the clover leaf pattern for
the simple (1� 1) plaquette,

and the analogous quantity for the 2� 1 rectangle,

where

An �M� �
1

2
�M�My�: (23)

While Eqs. (21) and (22) may simply be substituted into
Eq. (20) to obtain discretized expressions for the topologi-
cal charge (which we denote QC and QR, respectively),
they may also be combined such that the O�a2� errors
cancel between the two definitions. This gives the im-
proved topological charge operator [52]:

Qimp
2 �

5

3
QC �

2

3
QR: (24)

We also may construct a definition built up from a classi-
cally O�a2� improved field strength tensor [53]:

Qimp
4 �

25

9
QC �

20

9

1

32�2 
ijklTr
FCijF
R
kl� 	

4

9
QR; (25)

which is also O�a2� improved, but which has different
O�a4� errors. We use this last operator to quote our values
of the topological charge, although there would be little
difference if we had decided to use the operator of Eq. (24):
for the 2565 topological charge measurements made on our
dynamical ensembles, we observed only three cases in
which these two discretizations differed when rounded to
the nearest integer. We have also compared our values to
those calculated using the topological charge operator of
[54]: for a test over 418 measurements from the msea �
0:03 evolution we found 90% agreement on the nearest
integer, with the largest absolute difference being 0.76.
Figure 10 shows these topological charge values versus
trajectory for all of the ensembles. Note the correlations
over many hundreds of HMC trajectories. Although the
DBW2 action suppresses topology changing configura-
tions (this is the reason for its improved chiral properties
in conjunction with domain wall fermions) [12], consider-
ing the relatively large level of explicit chiral symmetry
breaking observed in our simulations (see Secs. V and VI),
we believe the long correlation length observed here is due
mainly to the small trajectory length HMC algorithm
which is known to move slowly between topological sec-
tors [55].
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V. PHYSICAL RESULTS

A. Hadron spectrum and decay constants

In this work hadron masses are extracted using standard
covariant fits (see, e.g. [56]) of two-point correlation func-
tions at relatively large Euclidean time interval from a
single meson or baryon source located at t � 0 so that
only a single exponential corresponding to the ground state
is fit in each case. The source is either a Coulomb gauge-
fixed wall source or a plain wall source. The latter corre-
sponds to averaging over a point source on a time slice after
averaging over the gauge field ensemble. We use only point
sinks. The wall sources generally have better overlap with
the ground states in which we are most interested, and
therefore lead to more accurate determination of the parti-
cle masses. However, the decay constants are more easily
obtained from the point source matrix elements. In the case
of the point source, we also computed the correlation
functions using a source located at t � 16, i.e. the maxi-
mum distance from the original source on our periodic
lattice, in order to improve our statistics. We consider
zero momentum states only. All quoted statistical errors
are estimated by fitting the correlation functions under a
standard single-elimination jackknife procedure.

We begin with the calculation of the residual mass, mres,
in order to define the chiral limit mf � �mres. mres is the
additive renormalization of the quark mass caused by
mixing between the left- and right-handed fermions local-
ized on opposite boundaries of the fifth dimension and is
defined from the explicit chiral symmetry breaking term in
the axial Ward-Takahashi identity for domain wall fermi-
-11
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FIG. 12 (color online). The residual mass extrapolated to
msea � mval � 0:0.
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ons [10]. We refer the reader to [10,12] for details of the
method to calculate mres. In Fig. 11 the effective residual
mass R�t� for msea � mval � 0:02 is shown for each time
slice (because the correlator is periodic, we fold the corre-
lation functions about the midpoint of the lattice in the time
direction which is why our plots range from t � 0 to 16). It
falls by about a factor of 2 over the first couple of times
slices and then remains constant. This nonlocal effect of
the extra dimension of domain wall fermions is well known
[12,32]. Taking the error-weighted average over time-
slices 4 through 16 and linearly extrapolating the msea �
mval points to mf � 0, we find amres � 0:001 372�49� (see
Fig. 12). We also use the axial Ward-Takahashi identity and
the partially conserved axial-vector current to extract the
renormalization factor ZA appearing in Eq. (32) [10]. We
find ZA � 0:75 734�55�, defined in the chiral limit and
extracted from a linear fit to the mass dependence of the
fully dynamical points (see Fig. 13).

Next, we turn to the vector meson mass. In principle, the
vector particle can decay hadronically into two pseudosca-
lars since vacuum sea quark effects are included in this
two-flavor simulation. However, in the regime we are
working the sea quarks are still relatively heavy, and,
taking into account that two pions must have relative
orbital angular momentum L � 1 for the decay to be
allowed, it is easy to note that our vector mass is always
below the threshold for this decay. Thus the two pion
states, while present in this channel, represent excited
states.

Figure 14 displays the effective mass in the vector
channel, msea � mval, averaged over all three spatial polar-
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FIG. 11 (color online). The residual mass plateau plot for
msea � mval � 0:02. The error-weighted average between time-
slices 4 and 16 is shown as a horizontal line.
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izations. Tables VI, VII, and VIII give the fitted masses
from the wall-point correlation functions for all combina-
tions of sea and valence quark masses for a set of time-slice
ranges chosen based on the effective mass plateaus shown
in Fig. 14. The masses are extracted from a fit to

lim
t!1

G�t� � A�e�mt 	 e�m�Nt�t�� (26)
-0.01 0 0.01 0.02 0.03 0.04 0.05
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FIG. 13 (color online). The renormalization factor for the
local, nonsinglet, axial current. This is defined in the chiral
limit. Here we show the data at finite mass for the fully
dynamical points together with the results of a linear extrapola-
tion to the chiral limit.
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TABLE VIII. The fitted vector meson mass from the wall-
point correlation function for msea � 0:04.

msea mval Fit range �2=dof Mass

0.04 0.01 7–16 1.72(99) 0.580(25)
0.04 0.015 7–16 1.8(10) 0.586(19)
0.04 0.02 7–16 1.7(10) 0.591(15)
0.04 0.025 7–16 1.58(99) 0.598(11)
0.04 0.03 7–16 1.51(95) 0.6084(92)
0.04 0.035 7–16 1.47(95) 0.6198(79)
0.04 0.04 7–16 1.44(97) 0.6323(70)
0.04 0.045 7–16 1.41(99) 0.6455(64)
0.04 0.05 7–16 1.37(100) 0.6590(59)

TABLE IX. The results of a fit to the quark mass dependence
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FIG. 14 (color online). The effective mass in the vector chan-
nel for msea � mval.

LATTICE QCD WITH TWO DYNAMICAL FLAVORS OF . . . PHYSICAL REVIEW D 72, 114505 (2005)
� 2Ae�m�Nt=2� cosh�m�Nt=2� t��: (27)

The mass plateaus are rather poor, especially for msea �
0:02, which is reflected in the values of �2 for the fits.
Additional statistics are desirable, though we note our
trajectory lengths are already quite long for dynamical
TABLE VI. The fitted vector meson mass from the wall-point
correlation function for msea � 0:02.

msea mval Fit range �2=dof Mass

0.02 0.01 5–16 1.9(10) 0.511(10)
0.02 0.015 5–16 2.0(11) 0.5278(77)
0.02 0.02 5–16 1.8(11) 0.5425(64)
0.02 0.025 5–16 1.7(11) 0.5567(56)
0.02 0.03 5–16 1.6(11) 0.5712(50)
0.02 0.035 5–16 1.7(11) 0.5860(47)
0.02 0.04 5–16 1.9(11) 0.6010(44)
0.02 0.045 5–16 2.1(11) 0.6160(41)
0.02 0.05 5–16 2.3(12) 0.6309(39)

TABLE VII. The fitted vector meson mass from the wall-point
correlation function for msea � 0:03.

msea mval Fit range �2=dof Mass

0.03 0.01 6–16 0.21(32) 0.537(13)
0.03 0.015 6–16 0.24(34) 0.5522(96)
0.03 0.02 6–16 0.37(42) 0.5669(79)
0.03 0.025 6–16 0.55(52) 0.5809(67)
0.03 0.03 6–16 0.75(62) 0.5946(58)
0.03 0.035 6–16 0.93(70) 0.6079(52)
0.03 0.04 6–16 1.07(76) 0.6213(47)
0.03 0.045 6–16 1.17(81) 0.6347(43)
0.03 0.05 6–16 1.25(85) 0.6481(40)
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fermion simulations (� 5000). Table IX shows the results
of performing two fits to the data in Tables VI, VII, and
VIII: a linear fit to the fully dynamical, msea � mval, points
(Fig. 15),

Mvector � a	 b�msea 	mres�; (28)

and a partially quenched fit to all the data,

Mvector � a	 b�msea 	mres� 	 c�mval 	mres�: (29)

As can be seen from the consistency of these two fits, the
of vector meson mass.

Fit �2=dof a b c

dynamical 0.9 (19) 0.448(15) 4.52(47)
partially quenched 0.34(40) 0.448(13) 1.78(43) 2.78(13)

-0.01 0 0.01 0.02 0.03 0.04 0.05
m

f

0.4

0.45

0.5

0.55

0.6

0.65

M
ve

ct
or

data
extrapolated value

FIG. 15 (color online). The fitted vector mass in the vector
channel for msea � mval. The solid line denotes a linear fit.
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TABLE XI. The N� mass from the wall-point correlation
function.

msea mval Fit range �2=dof Mass

0.020 0.010 3–5 0.10(67) 1.006(46)
0.020 0.015 5–9 1.6(1.4) 1.021(92)
0.020 0.020 5–9 1.5(1.4) 1.021(71)
0.020 0.025 5–9 1.4(1.3) 1.038(59)
0.020 0.030 5–9 1.3(1.3) 1.061(50)
0.020 0.035 5–9 1.1(1.2) 1.086(42)
0.020 0.040 5–9 0.9(1.1) 1.111(37)
0.020 0.045 5–9 0.72(99) 1.136(32)
0.020 0.050 5–9 0.54(87) 1.161(28)

0.030 0.010 5–8 0.6(1.2) 1.21(75)
0.030 0.015 5–8 0.39(90) 0.93(12)
0.030 0.020 5–9 1.1(1.3) 0.950(65)
0.030 0.025 5–9 0.8(1.1) 0.990(48)
0.030 0.030 5–9 0.64(98) 1.026(38)
0.030 0.035 5–9 0.59(93) 1.059(32)
0.030 0.040 5–9 0.60(93) 1.089(28)
0.030 0.045 5–9 0.62(94) 1.118(25)
0.030 0.050 5–9 0.64(95) 1.145(23)

0.040 0.010 5–7 0.21(97) 0.69(17)
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linear ansatz works well for this data. Considering the
small mass range available, we do not attempt more so-
phisticated fits. The linear extrapolation of the three (un-
correlated) points msea � mval to �m � �mu 	md�=2 (later,
when we discuss the pseudoscalar meson, we will see how
�m is determined) yields the value of the vector meson mass

corresponding to the physical � meson. From M� �

770 MeV we find

a�1
� � 1:691�53� GeV: (30)

A similar analysis has been carried through for the
nucleon mass. This is calculated from Coulomb gauge-
fixed wall-point two-point functions of the interpolating
field, JN � 
ijk�uiTC�5d

j�uk, using a positive parity pro-
jection. The results of a fit to a single exponential (Ae�mt)
are shown in Table X. Taking the negative parity projection
we may also extract the mass of the N�, the parity partner
of the nucleon, the results for which are tabulated in
Table XI. Figure 16 shows both these quantities for the
dynamical, msea � mval, points. In Fig. 17 we show the
APE plot (MI=M� vs �M�=M��

2 where MI represents the
mass of the N or N�), together with the results from
TABLE X. The fitted nucleon mass from the wall-point corre-
lation function.

msea mval Fit range �2=dof Mass

0.020 0.010 6–16 0.76(69) 0.679(19)
0.020 0.015 6–16 0.58(62) 0.719(12)
0.020 0.020 7–16 0.90(80) 0.755(12)
0.020 0.025 7–16 1.28(96) 0.789(10)
0.020 0.030 7–16 1.6(1.1) 0.8209(94)
0.020 0.035 7–16 1.8(1.1) 0.8510(89)
0.020 0.040 7–16 2.0(1.1) 0.8796(85)
0.020 0.045 7–16 2.1(1.1) 0.9071(83)
0.020 0.050 7–16 2.2(1.1) 0.9338(80)

0.030 0.010 7–16 1.43(88) 0.747(30)
0.030 0.015 7–16 1.29(93) 0.766(19)
0.030 0.020 7–16 1.13(84) 0.788(14)
0.030 0.025 8–16 1.14(86) 0.816(16)
0.030 0.030 8–16 1.05(80) 0.844(14)
0.030 0.035 8–16 1.01(77) 0.870(12)
0.030 0.040 8–16 1.02(77) 0.896(11)
0.030 0.045 8–16 1.06(79) 0.922(10)
0.030 0.050 8–16 1.12(81) 0.9481(95)

0.040 0.010 8–15 1.5(1.1) 0.748(44)
0.040 0.015 8–16 0.75(70) 0.778(35)
0.040 0.020 8–16 0.53(56) 0.808(25)
0.040 0.025 8–16 0.53(59) 0.835(19)
0.040 0.030 8–16 0.51(60) 0.860(15)
0.040 0.035 9–16 0.33(54) 0.875(15)
0.040 0.040 8–16 0.40(52) 0.910(11)
0.040 0.045 8–16 0.40(53) 0.935(10)
0.040 0.050 8–16 0.47(59) 0.9602(92)

0.040 0.015 5–8 0.16(63) 0.92(10)
0.040 0.020 4–8 0.19(52) 1.020(47)
0.040 0.025 5–9 0.50(84) 1.057(49)
0.040 0.030 5–9 0.55(88) 1.091(39)
0.040 0.035 5–9 0.56(88) 1.119(33)
0.040 0.040 5–9 0.54(87) 1.144(28)
0.040 0.045 5–9 0.52(85) 1.168(25)
0.040 0.050 5–9 0.50(84) 1.192(23)
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FIG. 16 (color online). The masses of nucleon and its parity
partner for the dynamical points (mf � msea � mval). The solid
line is a simple linear fit. Square symbols show the extrapolated
results at mf � �m.
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FIG. 17 (color online). APE plot of nucleon and its parity
partner. Filled symbols show the dynamical DWF results, while
open symbols show the quenched DWF results [12] with a�1 ’
1:3 GeV (squares) and a�1 ’ 2 GeV (diamonds). The upper and
lower triangles are dynamical DWF results at the physical light
quark mass ( �m) with diagonal and two-stage chiral extrapola-
tions from Table XIII. Stars indicate experimental values,
N�939� and N��1535�.

TABLE XIII. Mass ratio of physical N (N�) and �. MN and
MN� are calculated with both diagonal and two-stage extrapola-
tions (Table XII), while M� is always from diagonal extrapola-
tion.

Fit MN=M� MN�=M�

diagonal 1.329(59) 1.77(26)
two stage 1.221(98) 2.20(30)

TABLE XII. Physical baryon mass at the light quark mass ( �m)
by diagonal (mval � msea ! �m) or two-stage (mval ! �m;msea !
�m) extrapolation. The valence extrapolation (mval ! �m) results

are obtained with linear fits using all valence masses in Tables X
and XI.

msea MN �2=dof MN� �2=dof

�m (diagonal) 0.605(26) 0.5(1.5) 0.81(12) 1.1(2.1)
�m (two stage) 0.556(44) 0.4(1.3) 1.00(13) 0.7(1.7)

0.02 0.633(15) 0.27(32) 0.951(57) 0.04(18)
0.03 0.687(21) 0.024(67) 0.841(84) 0.035(97)
0.04 0.704(35) 0.05(11) 0.892(73) 0.50(48)

LATTICE QCD WITH TWO DYNAMICAL FLAVORS OF . . . PHYSICAL REVIEW D 72, 114505 (2005)
quenched DWF with DBW2 gauge action [12] for the
nucleon. We note that the dynamical and the quenched
values are in good agreement. Of course, in a comparison
between the nucleon and rho masses, we must bear in mind
that the rho is stable for all values of the quark masses
studied here, which introduces a systematic error that
easily could be 10% or more in the ratio mN=m�.
However, we are encouraged to think that our error in m�

may be smaller than this, since the value of the lattice
spacing determined from the rho mass agrees quite closely
with that implied by our calculation of f� and of the
Sommer scale r0 as discussed later in this section and in
Sec. V B, respectively.

In Figs. 16 and 17 we show an extrapolation to the
physical point mf � �m. To perform this extrapolation we
have used a linear ansatz for the quark mass dependence of
the nucleon. The extrapolated values shown in the figures
are taken from a fit to just the dynamical points, the results
of which are given in Table XII. As can be seen, the
nucleon mass is 2 standard deviations (9%) larger than
experiment. Note that our spatial lattice size L ’ 1:9 fm
is not small enough that we would expect to see significant
finite volume effects in our data for the quark masses we
are using; LM� ’ 4:7 for our lightest mass. Systematic
numerical studies [57–59], as well as theoretical calcula-
tions [60], on the finite volume effects in the nucleon mass
114505
with two-flavor Wilson fermions indicate a few percent
finite volume mass shift with similar parameters to our
lightest point. However, as the � mass receives similar
finite volume effect [57,58], the ratio at the physical limit
can shift as little as & 1%. Assuming that holds also for
DWF, finite volume effect may be responsible for a minor
part of the discrepancy. In addition, the systematic error
associated with the linear fit is at least of the scale of this
discrepancy. This can be seen by comparing the diagonal
extrapolation and two-stage linear extrapolation, where the
valence limit mval ! �m is taken first with fixed msea, then
dynamical extrapolation msea ! �m is performed. The re-
sult is shown in Tables XII and XIII and in Fig. 17 (triangle
down). The difference between the two extrapolations
indicates inapplicability of the linear ansatz. This ansatz
clearly does not properly account for observed mass de-
pendence of the nucleon. However, the statistical accuracy
on the nucleon mass needs to be improved before more
appropriate fits can be used [61–65].

The physical N� mass is studied similarly. The diagonal
and two-stage extrapolations yield different results, but
both are consistent with experiment to within 1 standard
deviation (10%) below and above. We note that the MN� at
the lightest simulated point might suffer from the threshold
effect, since MN 	M� � 1:045�12� and MN� �
1:021�71�. However the large statistical uncertainty pre-
vents us from discussing this point further.

The analysis of the pseudoscalar mesons will be some-
what more involved since partially quenched chiral pertur-
bation theory is at our disposal, and there are two channels,
pseudoscalar and the axial vector, which couple to the
physical pion and kaon states. Figures 18–20 show the
-15
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FIG. 18 (color online). The effective mass in the pseudoscalar
channel for msea � mval � 0:02 (circles), 0.03 (squares), and
0.04 (diamonds). Here we use the point-point Kuramashi-source
correlation function. Similar results hold for msea � mval.
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FIG. 20 (color online). The effective mass in the axial-vector
channel for msea � mval � 0:02 (circles), 0.03 (squares), and
0.04 (diamonds). Here we use a Coulomb-gauge-fixed wall
source with a point sink. Similar results hold for msea � mval.
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pseudoscalar meson effective mass computed from the
point-point and wall-point correlation functions. In each
case we show msea � mval; however the cases where
msea � mval are similar. As expected, the point-point cor-
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FIG. 19 (color online). The effective mass in the pseudoscalar
channel for msea � mval � 0:02 (circles), 0.03 (squares), and
0.04 (diamonds). Here we use a Coulomb-gauge-fixed wall
source with a point sink. Similar results hold for msea � mval.
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relators exhibit plateaus that emerge at later times com-
pared to the wall-point ones. As the quark mass increases,
even the latter plateau emerges (from below) at rather late
times. The statistical errors for the point-point axial-vector
case are somewhat larger than for the others, especially at
smaller valence quark mass. Based on the above plateaus
we fit the correlation functions from tmin � 9 to tmax � 16.
The results do not change by more than 1 standard devia-
tion when tmin is changed by two units in either direction,
provided �2=dof remains acceptable which was almost
always the case. Results for all quark mass combinations
are summarized in Tables XIV, XV, XVI, and XVII. Fitted
meson masses among these four methods are mostly con-
sistent within one (statistical) standard deviation, except
for the lightest point (msea � 0:02, mval � 0:01) where the
mass in the point-point pseudoscalar channel is almost 2
standard deviations higher than the rest. This may indicate
that our statistical errors are underestimated due to the
limited length in simulation time of our evolution (�
5000 trajectories).

The pseudoscalar decay constant fPS is obtained from
the point-point correlation function, either directly (axial-
vector), or through the Ward-Takahashi identity (pseudo-
scalar) [10,12]. When using a point source, A in Eq. (26) is
proportional to the square of the decay constant.
Specializing to the pseudoscalar,

A �
jh0j�jPSij2

2MPS
; (31)
-16



TABLE XV. The fitted pseudoscalar meson mass from the
axial-vector wall-point correlation function.

msea mval Fit range �2=dof Mass

0.02 0.01 9–16 0.62(79) 0.2154(35)
0.02 0.015 9–16 0.30(56) 0.2558(28)
0.02 0.02 9–16 0.22(45) 0.2910(24)
0.02 0.025 9–16 0.27(44) 0.3227(22)
0.02 0.03 9–16 0.40(50) 0.3518(21)
0.02 0.035 9–16 0.55(59) 0.3789(20)
0.02 0.04 9–16 0.72(68) 0.4045(20)
0.02 0.045 9–16 0.90(76) 0.4288(19)
0.02 0.05 9–16 1.06(84) 0.4520(19)
0.03 0.01 9–16 0.56(94) 0.2221(38)
0.03 0.015 9–16 0.50(77) 0.2620(32)
0.03 0.02 9–16 0.48(70) 0.2967(29)
0.03 0.025 9–16 0.48(66) 0.3280(27)
0.03 0.03 9–16 0.51(65) 0.3568(25)
0.03 0.035 9–16 0.55(66) 0.3837(24)
0.03 0.04 9–16 0.61(70) 0.4091(23)
0.03 0.045 9–16 0.67(74) 0.4333(22)
0.03 0.05 9–16 0.73(79) 0.4564(21)
0.04 0.01 9–16 0.40(55) 0.2241(35)
0.04 0.015 9–16 0.56(64) 0.2621(29)
0.04 0.02 9–16 0.64(70) 0.2962(26)
0.04 0.025 9–16 0.62(70) 0.3273(25)
0.04 0.03 9–16 0.55(68) 0.3562(23)
0.04 0.035 9–16 0.47(64) 0.3831(22)
0.04 0.04 9–16 0.40(61) 0.4086(21)
0.04 0.045 9–16 0.34(60) 0.4329(20)
0.04 0.05 9–16 0.31(61) 0.4561(20)

TABLE XVI. The pseudoscalar meson mass and decay con-
stant computed from the pseudoscalar point-point correlation
function.

msea mval Fit range �2=dof Mass Decay constant

0.02 0.01 9–16 0.95(81) 0.2211(28) 8:80�11� � 10�2

0.02 0.02 9–16 0.39(52) 0.2938(18) 9:494�62� � 10�2

0.02 0.03 9–16 0.57(63) 0.3528(19) 0.10161(78)
0.02 0.04 9–16 0.54(62) 0.4051(17) 0.10720(77)
0.02 0.05 9–16 0.52(62) 0.4525(16) 0.11244(77)
0.03 0.02 9–16 0.53(66) 0.3050(26) 9:740�86� � 10�2

0.03 0.03 9–16 0.68(68) 0.3610(18) 0.10253(56)
0.03 0.04 9–16 0.61(69) 0.4123(20) 0.10926(76)
0.04 0.04 9–16 1.4(11) 0.4087(16) 0.11059(57)

TABLE XIV. The fitted pseudoscalar meson mass from the
wall-point correlation function.

msea mval Fit range �2=dof Mass

0.02 0.01 9–16 0.79(85) 0.2160(37)
0.02 0.015 9–16 1.05(95) 0.2556(31)
0.02 0.02 9–16 1.3(11) 0.2902(28)
0.02 0.025 9–16 1.6(11) 0.3213(26)
0.02 0.03 9–16 1.8(12) 0.3501(25)
0.02 0.035 9–16 2.0(13) 0.3771(24)
0.02 0.04 9–16 2.2(13) 0.4026(23)
0.02 0.045 9–16 2.3(14) 0.4269(22)
0.02 0.05 9–16 2.5(14) 0.4502(21)
0.03 0.01 9–16 1.6(12) 0.2240(28)
0.03 0.015 9–16 1.3(11) 0.2631(24)
0.03 0.02 9–16 1.04(94) 0.2975(22)
0.03 0.025 9–16 0.90(85) 0.3287(20)
0.03 0.03 9–16 0.81(80) 0.3575(19)
0.03 0.035 9–16 0.77(77) 0.3844(18)
0.03 0.04 9–16 0.76(76) 0.4098(17)
0.03 0.045 9–16 0.78(77) 0.4339(16)
0.03 0.05 9–16 0.82(79) 0.4570(15)
0.04 0.01 9–16 1.06(91) 0.2254(38)
0.04 0.015 9–16 1.08(91) 0.2639(35)
0.04 0.02 9–16 1.11(91) 0.2978(33)
0.04 0.025 9–16 1.14(91) 0.3287(31)
0.04 0.03 9–16 1.15(91) 0.3573(29)
0.04 0.035 9–16 1.13(91) 0.3840(27)
0.04 0.04 9–16 1.09(89) 0.4094(25)
0.04 0.045 9–16 1.03(87) 0.4336(24)
0.04 0.05 9–16 0.96(84) 0.4568(23)
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where � � � ���5 for the axial vector and � �5 for the
pseudoscalar, and MPS is the pseudoscalar mass. We have
for the lattice matrix elements

h0j � �4�5 jPSi � flat
PSMPS �

fPS

ZA
MPS; (32)

h0j � �5 jPSi � fPS
M2

PS

2�mval 	mres�
; (33)

where the first equation defines the decay constant and the
second results from it and the use of the Ward-Takahashi
identity. The finite renormalization factor ZA appears in the
first equation as we use the local definition of the flavor
nonsinglet axial-vector current which is not (partially)
conserved. On the other hand, no such factor appears in
Eq. (33) because the combination �mval 	mres��
h0j � �5 jPSi is a renormalization group invariant, pro-
tected from renormalization by the Ward-Takahashi iden-
tity for all a. The bare quark mass associated with the field
 is mval 	mres.

Tables XVI and XVII show the results for fPS, which
agree well between the two methods except for the heaviest
valence mass point at msea � 0:02 where there is a �1:5
standard deviation discrepancy between central values.
114505
Note that the errors from the axial-vector correlator are
2–3 times larger than from the pseudoscalar, so we quote
central values and statistical errors from the latter.

Next, we wish to extrapolate our results to the physical
light quark masses, �m � �mu 	md�=2 and ms (our simu-
lation is not at a level of precision sufficient to account for
isospin breaking effects arising from mu � md; thus we
work with degenerate up and down valence quarks). Since
we have simulated a theory where the strange quark is
-17



TABLE XVII. The pseudoscalar meson mass and decay con-
stant computed from the axial-vector point-point correlation
function.

msea mval Fit range �2=dof Mass Decay constant

0.02 0.01 9–16 0.43(54) 0.2110(76) 8:97�32� � 10�2

0.02 0.02 9–16 0.47(63) 0.2891(39) 9:55�18� � 10�2

0.02 0.03 9–16 0.58(76) 0.3487(40) 0.1011(20)
0.02 0.04 9–16 0.73(88) 0.4014(34) 0.1058(18)
0.02 0.05 9–16 0.78(92) 0.4492(30) 0.1100(17)
0.03 0.02 9–16 0.65(69) 0.3065(59) 9:75�29� � 10�2

0.03 0.03 9–16 1.5(10) 0.3610(31) 0.1032(14)
0.03 0.04 9–16 0.59(71) 0.4134(40) 0.1086(24)
0.04 0.04 9–16 0.52(64) 0.4124(25) 0.1100(16)
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quenched and msea � mval, the proper framework for such
an extrapolation is partially quenched chiral perturbation
theory [66]. The next-to-leading order (NLO) partially
quenched chiral perturbation theory formulas for the pseu-
doscalar mass squared and decay constant made from
degenerate valence quarks are [67,68]

M2
PS�1�loop� � M2

�
1	

�M2

M2

�
; (34)

fPS�1�loop� � f
�
1	

�f
f

�
; (35)

�M2

M2 �
2

N

�
M2 �M2

SS

16�2f2 	
2M2 �M2

SS

M2 A0�M2�

�

�
16

f2

�
�L5 � 2L8�M

2 	 �L4 � 2L6�NM
2
SS

�
; (36)

�f
f
� �NA0�M

2
vS� 	

8

f2 �L5M
2 	 L4NM

2
SS�; (37)

with

M2 � 2B0�mval 	mres�; (38)

M2
SS � 2B0�msea 	mres�; (39)
TABLE XVIII. Parameters from chiral perturba
from the pseudoscalar wall point, and axial-vector
�2 is from uncorrelated fits in mf�� msea;val�.

mf range Fit range �2=dof 2B0

Pseudoscalar

0.01–0.03 9–16 0.12(13) 3.94(27)
0.01–0.04 9–16 1.7(10) 4.18(16

Axial

0.01–0.03 9–16 0.22(17) 4.04(28)
0.01–0.04 9–16 1.66(80) 4.23(14)
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M2
vS �

�M2 	M2
SS�

2
; (40)

A0�M
2� �

1

16�2f2 M
2 ln

M2

�2
�
: (41)

The subscript ‘‘S’’ implies a sea quark inside the meson,
�� is the chiral perturbation theory cutoff scale, f is the
decay constant in the chiral limit, and Li are Gasser-
Leutwyler low-energy constants that appear in the O�p4�
chiral lagrangian of QCD.

We begin by fitting the pseudoscalar meson mass to
Eqs. (34) and (36). To be fully consistent we should
perform a simultaneous fit of MPS and fPS as both fit
functions depend on B0 and f. However, as we explain in
the following, the fPS fit is problematic. As such, for the
MPS fit we use a fixed value of af � 0:078, which is the
result of a linear fit to the decay constant mass dependence.
The results are summarized in Table XVIII and, for the
wall-point axial vector, shown in Fig. 21. We have taken
�� � 1 GeV; a change in this scale is absorbed into the
scale-dependent Li, leaving the value of B0 unchanged.
The NLO formula works well for quark masses up to about
0.04, where the fit quality begins to degrade. From
Table XIX, we note that a simple linear fit (lowest order
in chiral perturbation theory) to the m � msea � mval

points,

M2
PS � c	 b�m	mres�; (42)

is consistent with the NLO fit. This fit and data are shown
in Fig. 22. In fact, the deviations from this simple linear
form are quite small. However, so is the contribution of the
logarithm predicted by NLO chiral perturbation theory. We
conclude that our data are consistent with NLO chiral
perturbation theory for mf & 0:04.

The NLO fit is constrained to vanish in the chiral limit
mf � �mres as it must be due to the universality of the
low-energy domain wall fermion theory [10]. Remarkably,
the simple linear fit, which is not constrained, extrapolates
to m2

PS � 0 (within 1 standard deviation of the statistical
error) atmf � �mres (see Fig. 22). This is in stark contrast
tion theory fits to the values of m2
PS computed

wall point. (Tables XIVand XV, respectively).

L5 � 2L8 L4 � 2L6

�1:51�74� � 10�4 �1:9�12� � 10�4

�1:4�44� � 10�5 �1:17�43� � 10�4

�1:87�90� � 10�4 �1:2�11� � 10�4

�4:0�48� � 10�5 �7:7�33� � 10�5
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to the situation in the quenched approximation [10,12],
where the vanishing point from a simple linear extrapola-
tion occurred whenmf � ��2� 3� �mres. This we attrib-
uted to the presence of quenched chiral logarithms,
�m2

PS lnm2
PS. Here Eq. (36) shows the chiral logarithms

are much weaker, �m4
PS lnm2

PS. Thus this comparison of
the quenched and Nf � 2 theories nicely confirms the
predictions of chiral perturbation theory and the low-
energy effective theory of domain wall fermions [10,16].

Another interesting feature of Fig. 21 is that our simu-
lations happen to coincide with the region where sea quark
TABLE XIX. Results from a fit of the pseudoscalar meson
mass squared to a linear form. Only the dynamical, msea � mval,
points are included. In contrast to the case in the quenched
approximation, when extrapolated to zero quark mass the result
is consistent with zero. This may be explained by the absence of
a contribution from the quenched chiral logarithm.

Fit range �2=dof c b

Pseudoscalar

9–16 1.0(20) �0:0047�39� � 10�3 4.19(13)

Axial

9–16 0.5(14) �3:1�34� � 10�3 4.12(11)
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mass effects on m2
PS appear to be the greatest (in an

absolute sense). Near the chiral limit, msea �
constant curves approach each other since they must van-

ish at the same place, and as mval gets heavy, they also
merge since the heavy quarks are insensitive to the light sea
quarks.

Now we discuss the determination of �m. �m is found from
the intersection of the NLO fit to �amPS�

2 with the line
�amPS�

2 � �am��
2 where m� is the mass of the neutral

pion, 134.9766 MeV, and the lattice-spacing a is set from
the vector meson mass evaluated at �m. This procedure is
performed iteratively until convergence (in practice the
number of iterations & 5). We find �m � 0:00 017�11�.
Similarly, we find mDK � 0:0225�15�, where mDK is the
quark mass for which a pseudoscalar meson made of
degenerate quarks has the same mass as the neutral kaon
mK0 � 497:672 MeV. Since the NLO formulas forM2

K and
fK for nondegenerate valence quarks depend on the same
parameters as in Eqs. (36) and (37), we make a determi-
nation of ms (and fK) by extrapolating to this nondegen-
erate limit [67,68]. These equations read:

�M2
K

M2
K

�
�1

N�M2
K �M

2
��

�M2

� �M2
SS�A0�M2

��

	 ��2M2
K 	M

2
� 	M2

SS�A0�M2
33��

�
16

f2 
�L5 � 2L8�M2
K 	 �L4 � 2L6�NM2

SS�; (43)
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�fK
f
�

1

N16�2f2 �m
2
K �m

2
SS� �

m4
� 	m2

K�m
2
SS � 2m2

��

2N�m2
K �m

2
��

�

�
1

m2
�
A0�m2

�� �
1

m2
33

A0�m2
33�

�
�
N
2
�A0�m2

uS�

	 A0�m
2
sS�� 	

8

f2 �L5m
2
K 	 L4Nm

2
SS�; (44)

M2
� � 2B0� �m	mres�; (45)

M2
K � B0� �m	ms 	 2mres�; (46)

M2
33 � 2M2

K �M
2
�: (47)

Note: Equations (36) and (43) have different logarithmic
terms. The mass of the nondegenerate meson with one
valence and both dynamical quark masses fixed to �m is
also shown in Fig. 21, plotted versus the mass of the
remaining valence quark. Thus, using Eq. (43) and the
parameters determined from the degenerate formula, we
find ms � 0:0446�29�, our final value. As a consistency
check, we may take this value, together with the value for
�m, and use the results of the partially quenched fit to the

vector meson mass (Table IX) to estimate the mass of the�
meson. This gives a value of M� � 978�12� MeV; com-
fortably close to the experimental value of 1019 MeV. For
comparison we also have extracted the strange quark mass
from the linear fit. Using the three msea � mval points, one
finds a value for the strange quark mass of ms �
0:04 177�64�, 7% smaller than the NLO value. The differ-
ence is easily appreciated from inspection of Figs. 21 and
22 and demonstrates the significance of the NLO analysis
in this case. Finally, it is important to note that �m andms as
quoted above are bare quark masses that correspond to the
physical �- and K-meson states; the renormalized quark
mass is defined as Zm�m	mres�, where Zm is a scheme and
scale-dependent renormalization factor.

We now move to the extraction of the decay constants
from the point-point correlators. Recall that the errors on
the decay constant from the axial-vector case are signifi-
cantly larger than in the pseudoscalar case, so we focus on
the latter; our conclusions do not depend on this choice. In
contrast to the above analysis for m2

PS, the NLO chiral
perturbation theory formula for the decay constant,
Eqs. (36) and (37), does not fit the data. The results of
this fit are presented in Table XX. Restricting mf � 0:03,
TABLE XX. Parameters from next-to-leading o
fPS listed in Table XVI. Li refers to Gasser-Leut
1 GeV. �2 is from uncorrelated in mf�� msea;, m

mf range Fit range �2=dof af

0.01–0.03 9–16 0.14(32) 5:36�48� �
0.01–0.04 9–16 3.2(18) 4:54�33� �
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the resulting fit is shown in Fig. 23. While it reproduces the
data used in the fit reasonably well, it misses the larger
mass points badly. Including these points in the fit does not
change the fit results significantly except to increase the
value of �2. Note that the msea � �m line bends down
steeply as mval ! 0 which yields a value for f� �
100�10� MeV, �30% smaller than the physical value.

There is just enough data to attempt a restricted next-to-
next-to-leading order (NNLO) fit, in which we include all
of the O�p6� analytic terms: C1m

2
sea, C2m

2
val, and

C12mseamval. This fit is not a systematic application of
chiral perturbation theory, as we do not include the (un-
calculated) logarithmic terms which also appear at this
order. However, performing this fit allows us to investigate
the utility of moving to the next order, and estimate the size
of the terms needed. The results of the NNLO fit are
summarized in Table XXI. While the value of �2 is accept-
able, the errors on the fitted parameters are extremely large,
especially in the case of C1.

The basic problem is that the coefficient of the log term,
which has been calculated analytically in the continuum
rder chiral perturbation theory fits to values of
wyler low-energy constants evaluated at � �
val� fits.

L5 L4

10�2 7:92�96� � 10�4 7:2�63� � 10�5

10�2 7:14�80� � 10�4 1:29�23� � 10�4
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TABLE XXII. Parameters from linear fits to values of fPS listed in Table XVI. �2 is from
uncorrelated in mf�� msea;, mval� fits. For comparison, results from a two parameter linear fit,
fP � af	 c1�m	mres�, to the mf � msea � mval data points are included in the last line.

mf range Fit range �2=dof af c1 c2

0.01–0.04 9–16 0.41(43) 7:81�16� � 10�2 0.622(20) 0.164(51)
0.02–0.04 9–16 0.12(72) 7:81�14� � 10�2 0.783(42)

TABLE XXI. Parameters from next-to-next-to-leading order chiral perturbation theory fits to
values of fPS listed in Table XVI. All quark mass points were used in the fit. Li refers to Gasser-
Leutwyler low-energy constants evaluated at � � 1 GeV. Ci are O�p6� counterterms. �2 is from
uncorrelated in mf�� msea;, mval� fits.

�2=dof af L5 L4 C1 C2 C12

0.56(58) 6:43�91� � 10�2 5:6�27� � 10�4 �2:2�44� � 10�4 3.2(76) 1.62(100) 6.8(28)
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FIG. 24 (color online). The meson decay constant. msea �
0:02 (circles), 0.03 (squares), and 0.04 (diamonds), together
with the results of a linear fit to the dynamical points. The
extrapolated value at msea � �mres is also shown.
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[Eq. (37)], is inconsistent with our data, which appears to
be mostly linear. The additional NNLO terms in the fit do
act to reduce the effect of this log, but this approach is both
badly constrained and nonsystematic. One interpretation of
our data is that the quark masses we are using are suffi-
ciently heavy that the NNLO terms are important relative
to the NLO terms. In this case, the only way to do better is
to simulate at even lighter values of the quark mass where
(presumably) chiral perturbation theory works well.

There are several other interpretations: both lattice arti-
facts [O�a2� in this study] and finite volume effects modify
the coefficient of the chiral log, possibly making it smaller.
In the former case we expect this effect to be of the order of
a few percent, while including finite size effects such as the
ones in [69] should not change the fits significantly since
our smallest mass still corresponds to mPSL * 3. Neither
of these effects therefore seem large enough to explain the
discrepancy. In [70], it is also suggested that using a
physical parameter, such as fK, as the chiral coupling
rather than f, leads to a better behaved chiral expansion.
This approach will have the effect of significantly reducing
the coefficient of the chiral logarithm when applied to our
data. If we allow the coefficient of the continuum chiral log
to be free parameter in the NLO equation, then we are able
to make a good fit (�2=dof � 0:48�38�). However, we find
that this coefficient is 0.2(4), instead of the value 1 pre-
dicted by the continuum theory, which is a large deviation.

A remaining alternative is to forsake most of the higher
order terms and do a simple linear fit. Again, this is not
systematic, as this leaves out the (known) NLO logarithmic
term. We fit the data with three independent terms, f, and
terms proportional to msea and mval (in other words, we
simply set the coefficient of the log term in the NLO
formula to zero):

fPS�af	c1
m1	m2	2mres

2
	c2�msea	mres�: (48)

As mentioned before, such a fit—the results of which we
summarize in Table XXII and Fig. 23—actually describes
114505
the data quite well. For comparison, f is also extracted
from a simple two parameter linear fit to the msea � mval

data points (see Table XXII and Fig. 24); these two linear
fits agree well. Using the three parameter linear fit, re-
stricted to mval � 0:04, we find f� � 134:0�42� MeV,
fK � 157:4�38� MeV, and fK=f� � 1:175�11�, while the
Particle Data Group gives f� � 130:7 MeV, fK �
160 MeV, and fK=f� � 1:224.

While the inability to fit our data to the predicted NLO
chiral perturbation theory form is discouraging, it is not
unprecedented: this problem also exists for the current
Wilson fermion [18,19], and staggered fermion [70] simu-
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lations. The former simulations, for dynamical masses in
the range such that M�=M� � 0:6� 0:8, saw little evi-
dence for the existence of the chiral log, extracting final
numbers using a polynomial ansatz for the mass depen-
dence ([71] discusses the matter further). The latter simu-
lations, which include much lighter dynamical masses, also
cannot fit the NLO formula for comparable quark masses.
They quote final results from a restricted NNLO fit which,
as above, leaves out the logarithmic terms that should
appear at that order. The advantage of this work, however,
is that we have a much cleaner extraction of the decay
constants due to both flavor and chiral symmetry being
respected at finite lattice spacing, allowing us to be con-
fident that this discrepancy from continuum NLO chiral
perturbation theory is a physical effect.

B. Static quark potential

In this section we discuss the extraction of the static
quark potential V�r� from the Wilson loop W�~r; t�. To
improve the signal we smear the operator in the spatial
coordinates using nsmear applications of APE smearing
[72],

U0i�x�  ProjSU�3�
Ui�x� 	 csmearU
�staple�
i �x���i � 1; 2; 3�;

(49)

where U�staple�
i �x� is the sum of four spatial staples. Using

these smeared links we construct the spatial path between
the infinitely heavy quark and antiquark by employing the
Bresenham algorithm [73].
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	int, of the Wilson loops, hW�r; t�i, for msea � 0:02.
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To cut down on short-term noise, we measure the static
quark potential more frequently than every 50 trajectories,
although our final results are obtained from a block-
average over 50 trajectories. Figure 25 shows the inte-
grated autocorrelation times of a selection of Wilson loops,
which are � 25 trajectories for r � 8. In total we use 941,
559, and 473 configurations for msea � 0:02, 0.03, and
0.04, respectively; these configurations are separated by
five trajectories for msea � 0:02, while one in every ten
trajectories is measured for msea � 0:03 and 0.04.
Trajectories from 1775th to 2025th of msea � 0:04 are
abandoned due to the hardware error described in Sec. IV.

We use the theoretical formula

hW�~r; t�i
hW� ~r; 0�i

� C�~r� exp
�V�~r�t�; (50)

which should hold for large t, and (following [12]) extract
V� ~r; t� from

V� ~r� � log
�
hW�~r; t�i
hW� ~r; t	 1�i

�
; (51)

together with C�~r� from

C� ~r� �
hW� ~r; t�it	1

hW� ~r; 0�ihW� ~r; t	 1�it
: (52)

To maximize the overlap factor C�~r� we have explored the
two dimensional parameter space for the smearing,
�csmear; nsmear�, in the range 0 � csmear � 1, 0 � nsmear �
60. We conclude �csmear; nsmear� � �0:5; 20� is a reasonable
choice for all of r we use.

The dependence of the potential to the temporal length
of the Wilson loop is carefully examined to control the
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FIG. 26 (color online). The static quark potential of msea �
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axis in the graph.r �
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contamination from excited states. We found V� ~r� and C�~r�
extracted from t 
 5 and r � 8 is relatively independent of
t, and we therefore extract our results from this range. This
can be seen clearly in Fig. 26, which shows V� ~r� formsea �
0:02. The effect of the positivity violation in improved
gauge actions [74] for small t is evident in the graph:
V�r� extracted from t < 3 approaches its asymptotic value
from below for r �

���
2
p

. This was also observed in
quenched simulations [75], and the effect on C� ~r� is dis-
cussed in [76,77]; our selection of temporal length is set as
large as possible to exclude this lattice artifact. The poten-
tial extracted from t � 4, 5, and 6 is shown in Fig. 27 for
the msea � 0:02 ensemble versus r. We see no evidence of
string-breaking for large r.

For ease of comparison with other work, we also fit the
potential to the form

V� ~r� � Vcont�r� � l�V�~r�; r � j ~rj; (53)

Vcont�r� � V0 �
�
r
	 
r; (54)

�V�~r� �
�

1

~r

�
�

1

r
; (55)

where 
1=~r� is the lattice Coulomb potential [50,78–80],�
1

~r

�
�
Z �

��

dk3

8�2

exp�i ~k � ~r�P
i

sin2�ki=2� � 4c1
P
i

sin4�ki=2�
: (56)

This form is often used in an attempt to correct the break-
ing of the rotational symmetry of the lattice. The correction
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FIG. 27 (color online). The static quark potential extracted
from t � 4, 5, and 6 for msea � 0:02. The black curve is the
fit result to Eq. (55) with l � 0 using t � 5 and
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� r � 8.
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term �V�~r� describes the corresponding data 
V�data�� ~r� �
Vcont�r��=l qualitatively well as seen in Fig. 28, in which
Vcont�r� and l are from the fit result using t � 5, r 2 


���
3
p
; 8�

onmsea � 0:02 ensemble. We also note that the fit parame-
ters, especially �, become less sensitive to the selection of
rmin by adding the lattice Coulomb term, although the
errors become larger.

The fit results (both with and without the lattice
Coulomb term), together with Sommer scale [81],

r0 �

�������������������
1:65� �




s
; (57)

are presented in Table XXIII. As can be seen in Fig. 29, a
major source of systematic error is the selection of t, with
the rmax dependence being almost negligible. To be pre-
cise, one can see a mild but continuous increase of r0 as t
becomes large. At t � 7, the signal to noise ratio becomes
poor, and the statistical error of the data at t � 6 is less
controlled as seen in Fig. 26. We therefore choose to take
our central values from t � 5 and r 2 
rmin; rmax� �



���
3
p
; 8�, quoting a systematic error due to the selection of

t, as well as fit range by the shift of central values of these
parameters. The selection is varied in either direction in
t; rmin; rmax at once. The fit ranges rmin 2 


���
2
p
;
���
6
p
�, rmax 2


7; 9�, and t � 5; 6 are swept. More detailed results includ-
ing the direct evaluation of the force rV� ~r�, and compari-
son with quenched simulation will be presented elsewhere
[76,82].

Although in this paper we use the hadronic observables
to set the lattice scale, we also may set the scale from r0.
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r
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FIG. 28 (color online). �VL�~r� and its corresponding recon-
struction from fit data, 
V�data��~r� � Vcont�r��=l. Data extracted on
msea � 0:02 configuration at t � 5, r 2 


���
3
p
; 8� is used in the fit.
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TABLE XXIII. The results of fit Eq. (55) without (l � 0) and with (l � 0) the lattice Coulomb
correction, l�V�~r�, to data of the static quark potential extracted at t � 5, r 2 
rmin; rmax� �


���
3
p
; 8� for msea � 0:02, 0.03, 0.04. The first and the second errors are the statistical error and the

estimation of the systematic error due to the selection of the fit ranges. t; 
rmin; rmax� are swept in
the region of t � 5; 6,

���
2
p
� rmin �

���
6
p

, and 7 � rmax � 9.

msea r0 � 
 V0 l

0.02 4.177(22)(99) 0.398(7)(47) 0.0718(11)(49) 0.753(6)(25) 0 (fixed)
0.02 4.126(23)(106) 0.518(18)(57) 0.0665(14)(65) 0.805(10)(38) 0.35(4)(15)
0.03 4.066(25)(32) 0.368(8)(29) 0.0776(14)(20) 0.728(7)(16) 0 (fixed)
0.03 4.026(26)(62) 0.457(21)(55) 0.0736(17)(29) 0.766(11)(26) 0.26(5)(17)
0.04 4.076(27)(29) 0.399(9)(57) 0.0753(15)(33) 0.749(7)(29) 0 (fixed)
0.04 4.020(29)(34) 0.520(23)(28) 0.0699(18)(23) 0.801(12)(13) 0.35(5)(14)
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The sea quark mass dependency of r0 is shown in Fig. 30.
This mass dependence is consistent with that observed
using other fermion formulations [18,19,83–85].
Linearly extrapolating to the chiral limit, we obtain a value
of r0 in lattice unit of

r0jmsea!�mres
� 4:278�54��	174

�11 �: (58)

This value is obtained from the fit without the lattice
Coulomb term and the systematic error in the second
parenthesis is estimated by the various choice of fit ranges.
We note that the large positive shift of the central value (	
174) is due to the rise of the r0 at rmin �

���
3
p

from t � 5 to
t � 6. This could be a sign of the remaining excited states
contamination but it is less conclusive with the comparably
large statistical error at t � 6 as seen in Fig. 29. We note
that r0 depends on msea so mildly that linear fit of 1=r0
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FIG. 29 (color online). t dependence of the Sommer scale r0

for msea � 0:02, 0.03, 0.04 as well as the lineary extrapolated
value at chiral point msea � �mres. The fit formula with the
lattice Colomb term correction, Eq. (55) with l � 0, are used.
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yields a very close value, r0jmsea!�mres
� 4:287�58�, at the

chiral limit. The fit with the lattice Coulomb term yields
similar value, r0 � 4:235�56�. All of these three numbers
are within the quoted statistical error.

For our final results we use the continuum fitting form,
and a linear fit to the mass dependence; taking r0 � 0:5 fm
we get

a�1
r0
� 1:688�21��	69

�4 � GeV; (59)

which, in contrast to the situation in the quenched approxi-
mation [12], is consistent with the value, a�1

� �

1:691�53� GeV, extracted from the rho meson mass.

C. Kaon B parameter

When studying the mixing of neutral kaon in the stan-
dard model, it is necessary to calculate the low-energy
0 0.01 0.02 0.03 0.04
m

sea
 + m

res

4

4.1

4.2

4.3

r 0

FIG. 30 (color online). Sommer scale r0 as a function of msea

and their chiral extrapolation using linear function. Error bars are
statistical only.
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TABLE XXIV. The pseudoscalar B parameter using degener-
ate valence quarks.

msea mval top range B�lat�
PS

0.02 0.01 14–17 0.488(14)
0.02 0.02 14–17 0.5524(92)
0.02 0.03 14–17 0.5923(72)
0.02 0.04 14–17 0.6229(61)
0.02 0.05 14–17 0.6485(55)
0.03 0.01 14–17 0.525(14)
0.03 0.02 14–17 0.5771(83)
0.03 0.03 14–17 0.6104(64)
0.03 0.04 14–17 0.6368(55)
0.03 0.05 14–17 0.6596(50)
0.04 0.01 14–17 0.512(12)
0.04 0.02 14–17 0.5747(85)
0.04 0.03 14–17 0.6133(69)
0.04 0.04 14–17 0.6425(58)
0.04 0.05 14–17 0.6662(51)

TABLE XXV. The bare pseudoscalar B parameter using non-
degenerate valence quarks, m1 and m2, for a dynamical mass of
0.02.

msea m1 m2 top range B�lat�
PS

0.02 0.02 0.01 14–17 0.526(12)
0.02 0.03 0.01 14–17 0.555(11)
0.02 0.03 0.02 14–17 0.5742(83)
0.02 0.04 0.01 14–17 0.577(10)
0.02 0.04 0.02 14–17 0.5929(77)
0.02 0.04 0.03 14–17 0.6085(67)
0.02 0.05 0.01 14–17 0.596(11)
0.02 0.05 0.02 14–17 0.6093(74)
0.02 0.05 0.03 14–17 0.6231(64)
0.02 0.05 0.04 14–17 0.6362(58)

TABLE XXVI. The bare pseudoscalar B parameter using non-
degenerate valence quarks, m1 and m2, for a dynamical mass of
0.03.

msea m1 m2 top range B�lat�
PS

0.03 0.02 0.01 14–17 0.556(11)
0.03 0.03 0.01 14–17 0.5799(95)
0.03 0.03 0.02 14–17 0.5954(73)
0.03 0.04 0.01 14–17 0.5999(91)
0.03 0.04 0.02 14–17 0.6116(67)
0.03 0.04 0.03 14–17 0.6244(59)
0.03 0.05 0.01 14–17 0.6171(90)
0.03 0.05 0.02 14–17 0.6262(64)
0.03 0.05 0.03 14–17 0.6375(56)
0.03 0.05 0.04 14–17 0.6487(52)
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matrix element, in QCD, of the effective weak interaction
operator

OLL � �s���1� �5�d �s���1� �5�d; (60)

between kaon states. This is usually quantified in terms of
the kaon B parameter,

BK �
h �K0j �s���1� �5�d �s���1� �5�djK0i

8
3 h

�K0jA4j0ih0jA4jK0i
(61)

�
h �K0j �s���1� �5�d �s���1� �5�djK

0i
8
3 f

2
KM

2
K

: (62)

Before describing the lattice calculation of BK, we ad-
dress the (unphysical) mixing of OLL with wrong chirality
dimension six operators. Such mixings are allowed in the
chiral limit due to the explicit breaking of chiral symmetry
of domain wall fermions with finite Ls. However, since
such explicit breaking is small, it is useful to understand
the order of magnitude of these mixings in terms of amres.
This allows us to argue they may be neglected in our
calculation. The framework for understanding this mixing
within a low-energy effective theory of domain wall fer-
mions was laid out in [10,16], but there the explicit ex-
ample of BK was not discussed. We begin by adding a
spurion field � to the low-energy effective action for
domain wall fermion QCD, whose only effect is to modify
the symmetry breaking terms in the action so they trans-
form in the same way as a conventional mass term. Each
spurion field in the modified action or effective weak
operator carries a factor of amres. After determining the
dependence of the correlation function on �, and therefore
amres, we set �! 1 to recover the low-energy theory of
domain wall fermions. In the exact theory, the original
four-quark operator transforms as a (27,1) dimensional
representation of SUL�3� � SUR�3� chiral symmetry
which must be true also for the modified wrong chirality
operators if they are to mix. All such operators [86] have at
least two right-handed quark fields, so at least two spurion
fields are needed to formally rotate these into left-handed
fields. Thus, to lowest order the mixing is ��amres�

2 or
O�10�6�; this is small enough that it may be neglected in
the present calculation. We note that the leading explicit
chiral symmetry breaking in the matrix element is still
O�amres�, however. This is just the statement that the chiral
limit for all low-energy observables is mf � �mres [10].
Once this trivial shift is taken into account, the error on BK
is again O��amres�

2�.
Details of the method used to calculate BK can be found

in [15]. We employ the so-called conventional method
[Eq. (61)], since difficulties of the quenched approxima-
tion, such as significant contamination by topological near-
zero modes, do not apply [15]. The lattice B parameter for
arbitrary quark mass, denoted BPS, is tabulated in
Tables XXIV, XXV, XXVI, and XXVII, for degenerate
114505-25
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FIG. 32 (color online). The pseudoscalar B parameter for
msea � 0:03 and a range of degenerate valence quark masses
versus the time-slice of the operator insertion.

TABLE XXVII. The bare pseudoscalar B parameter using
nondegenerate valence quarks, m1 and m2, for a dynamical
mass of 0.04.

msea m1 m2 top range B�lat�
PS

0.04 0.02 0.01 14–17 0.551(10)
0.04 0.03 0.01 14–17 0.5806(97)
0.04 0.03 0.02 14–17 0.5963(77)
0.04 0.04 0.01 14–17 0.6045(96)
0.04 0.04 0.02 14–17 0.6152(74)
0.04 0.04 0.03 14–17 0.6291(64)
0.04 0.05 0.01 14–17 0.6248(97)
0.04 0.05 0.02 14–17 0.6321(72)
0.04 0.05 0.03 14–17 0.6435(61)
0.04 0.05 0.04 14–17 0.6551(55)
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and nondegenerate valence quark masses, respectively. The
values shown are averages over the time-slice range for the
operator insertion top � 14–17. The source and sink pseu-
doscalar meson time slices were fixed to t � 4 and 28,
respectively. These values were chosen based on the
quenched calculation in [15] (a�1 � 2 GeV) where they
lead to reasonable plateaus, which is also the case here (we
also averaged the value of BPS over a larger time-slice
range, top � 10–22, and found good agreement in all
cases). This can be seen in Figs. 31–33. Note however,
that there are large fluctuations in the plateaus for the
smallest valence quark masses.

To extract BK, we fit our data for BPS to the predictions
of NLO chiral perturbation theory, and extrapolate/inter-
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FIG. 31 (color online). The pseudoscalar B parameter for
msea � 0:02 and a range of degenerate valence quark masses
versus the time-slice of the operator insertion.
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polate to the physical quark masses. Our preferred way to
do this is, of course, to take the (nondegenerate) limit

msea ! m; mval;1 ! ms; mval;2 ! m; (63)

corresponding to dynamical, degenerate up and down
quarks, and a quenched strange quark. However, as pre-
vious work has only used degenerate valence quark
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FIG. 33 (color online). The pseudoscalar B parameter for
msea � 0:04 and a range of degenerate valence quark masses
versus the time-slice of the operator insertion.
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FIG. 34 (color online). The pseudoscalar B parameter, ex-
tracted from time-slices 14 to 17; msea � mval. msea � 0:02
(circles), 0.03 (squares), and 0.04 (diamonds). The dashed lines
are from a fit to Eq. (65), evaluated at msea � 0:04, 0.03, 0.02,
and the solid line is an extrapolation, in the dynamical mass, to
�m. The range of quark masses used in this particular fit is 0:02 �
mf � 0:04.
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masses, extrapolating to the point

mval;1 � mval;2 � mDK; (64)

we also present results from this method, so we may
compare the two techniques.

The degenerate valence quark mass data is plotted in
Fig. 34. As can be seen, BPS displays a rather weak, but
noticeable, dependence on the sea quark mass. To be
precise: as msea decreases so does BPS. The predicted
dependence of BPS on msea and mval, when msea � mval, is

BPS � b0

�
1�

1

�4�f�2

�
6M2 log

M2

�2
�

��
	 �b1 � b3�M2 	 b2M2

SS: (65)

Fits using Eq. (65) are summarized in Table XXVIII.
TABLE XXVIII. The kaon B parameter from NL
mass to the physical point, msea � mlight. B0 is th

msea range mval range top range �2=dof

0.02–0.03 0.01–0.03 14–17 0.39(39)
0.02–0.04 0.01–0.04 14–17 1.27(89)
0.02–0.04 0.01–0.05 14–17 2.34(84)
0.02–0.03 0.02–0.03 14–17 0.18(25)
0.02–0.04 0.02–0.04 14–17 0.80(93)
0.02–0.04 0.02–0.05 14–17 1.45(72)
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Equation (65) does not simultaneously fit all of the data
very well. This is evident from Fig. 34: the results of the fit
for 0:02 � mval � 0:04 are shown and underpredict both
the lightest and heaviest points. However, as noted previ-
ously, we see large fluctuations in the plateau for the
lightest valence quark masses, and the systematic error
on these points probably outweighs the quoted statistical
error. Therefore, for our final results we exclude both the
mval � 0:01 andmval � 0:05 points; the latter in an attempt
to stay in the region for which NLO chiral perturbation
theory is valid.

We now move to the extraction of BK including the
effect of nondegenerate valence quarks. In this case sea
quark dependent log terms appear, as well as many new
nondegenerate valence quark terms:

BPS � b0

�
1	

M2
12

�4�f�2

�
�2�3	 
2� log

M2
12

�2
�
� �2	 
2�

� log�1� 
2� � 3
 log
1	 

1� 


�
	

2

3

1

�4�f�2

�
3

N
M2
SS

�

�
2� 
2

2

log

1	 

1� 


� 2
�
	

3

N
M2

12

�
2	 
2

�
1� 2
2 � 
3



log

1	 

1� 


	 2
2 log
M2

12�1� 
�

�2
�

���

	 b1M
2
12 	 b2M

2
SS 	 b3M

2
PS

�
�2	

M2
PS

M2
12

�
: (66)

In the above


 �
m2 �m1

m1 	m2 	 2mres
; (67)

M2
PS � 2B0�m1 	mres�; (68)

M2
12 � 2B0

m1 	m2 	 2mres

2
; (69)

where m1, m2 (m1 � m2) are the valence quark masses.
The log terms were computed in [87]. BPS is shown in
Fig. 35 for both the degenerate and nondegenerate mass
points, plotted as a function of �m1 	m2�=2. As can be
seen, the nondegenerate points appear to lie on a smooth
line connecting the degenerate mass points, a clear sign
O fit, including extrapolation of the sea quark
e value of the B parameter in the chiral limit.

b0 b1 � b3 b2 B�lat�
K

0.260(21) 0.527(99) 0.54(26) 0.521(30)
0.265(11) 0.744(44) 0.26(12) 0.550(16)
0.2522(86) 0.927(29) 0.27(10) 0.545(14)
0.258(18) 0.616(64) 0.49(25) 0.525(28)
0.2594(96) 0.826(33) 0.24(12) 0.547(15)
0.2476(79) 0.987(25) 0.24(10) 0.543(14)
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FIG. 35 (color online). The pseudoscalar B parameter; includ-
ing nondegenerate valence quarks, m1 � m2 (squares), and
degenerate valence quark masses (circles).
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that the nondegenerate mass effects are small. Fits to
Eq. (66) are summarized in Table XXIX. Note that the
value of BK is determined from the fit to Eq. (66) evaluated
at ms and �m. As in the degenerate case, we use valence
quark masses in the range 0:02 � mval � 0:04 for the
extraction of our final result.

It is customary to quote BK in the naive dimensional
regularization-MS scheme at � � 2 GeV. We accomplish
this in two steps. First we renormalize nonperturbatively in
the regularization independent scheme at a scale �� 1=a
[88] (note that this extraction makes use of the pertubative
two-loop, continuum, results for the running), and then we
match to MS in the continuum using one-loop perturbation
theory [89]. Details of our method are given in [47,88].
With ZMSBK � 0:93�2� [88] we find (adding errors in quad-
rature)

BMSK �2 GeV� � 0:509�18�; (70)

for the degenerate case, and
TABLE XXIX. Same as Table XXVIII, but

msea range mval range top range �2=dof b0

0.02–0.03 0.01–0.03 14–17 0.20(20) 0.260(2
0.02–0.04 0.01–0.04 14–17 0.84(74) 0.266(1
0.02–0.04 0.01–0.05 14–17 1.36(62) 0.2536(
0.02–0.03 0.02–0.03 14–17 9�12� � 10�2 0.258(1
0.02–0.04 0.02–0.04 14–17 0.55(79) 0.2591(
0.02–0.04 0.02–0.05 14–17 0.77(59) 0.2475(

114505
BMSK �2 GeV� � 0:495�18�; (71)

for the nondegenerate case. We take this as our final value
for BK. While these two numbers agree within the quoted
statistical error, taking the jackknife difference shows that
the 3% difference between the nondegenerate and degen-
erate extraction is statistically well resolved.

This two-flavor, nondegenerate valence quark result is
roughly 10% smaller than recent quenched values obtained
with domain wall or overlap fermions [11,15,47,90] and
roughly 20% smaller than the quenched values reported in
[91,92] (Kogut-Susskind and overlap fermions, respec-
tively). We caution that there are as yet unquantified sys-
tematic errors in our determination of BK, most notably
nonzero lattice spacing and finite volume effects. Recent
quenched studies [11,47] find these to be on the order of
5% each, though they could differ in the dynamical case.

Of course, the quantity of direct relevance to experiment
is BK at the kaon mass, as quoted. However, in passing, we
also mention our value for this parameter in the chiral limit
B�K�MS; 2 GeV� as it provides a useful comparison with
phenomenological models [93–95], where calculations in
the chiral limit are often under better control. We find,
B�K�MS; 2 GeV� � 0:241�10�. This should be compared
with a value of 0.267(14), obtained in our previous
quenched study [15].

In summary: our study shows that the inclusion of sea
quarks and nondegenerate valence quarks tends to lower
the value of BK by roughly 10% and 3%, respectively,
which represents a very important step in estimating sys-
tematic uncertainties in BK. We note that some time ago
Nf � 2 staggered fermion calculations found no sea quark
effects on BK outside of quoted errors [96,97]. These
studies used unimproved staggered fermions which have
large lattice-spacing errors; thus we consider our new
determination to be more reliable. It also should be noted
that early Wilson fermion results [98], as well as the more
recent [99] suggest a small decrease in BK when including
the effects of dynamical quarks. In [100] the effect of sea
quarks on BK was estimated in chiral perturbation theory
from the difference of the chiral logs between the quenched
and dynamical theories. This comparison suggested that
the sea quark effects increase the value of BK, however it
assumed that the analytic terms remain the same between
including nondegenerate valence quarks.

b1 b2 b3 B�lat�
K

2) 0.51(15) 0.56(28) �1�96� � 10�3 0.524(30)
2) 0.713(70) 0.27(13) �1�59� � 10�3 0.554(18)
94) 0.853(49) 0.28(11) �3:9�47� � 10�2 0.546(16)
8) 0.25(13) 0.49(25) 20:370�86� 0.498(24)
98) 0.601(54) 0.25(12) 20:220�40� 0.533(15)
83) 0.784(36) 0.25(11) 20:193�31� 0.530(14)
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the quenched and dynamical theories and so, again, we
consider our determination to be more reliable.
TABLE XXX. The effective � for the plaquette action for an
ensemble of 404 quenched DBW2 configurations versus the
observable used in Eq. (73). In each case the operator chosen
is planar.

Observable Effective �P

1� 1 9.10 039(34)
2� 1 7.87 358(35)
2� 2 6.92 080(50)
3� 3 6.6815(13)
VI. CHIRAL SYMMETRY

In this section we will discuss our understanding of the
(relatively large) breaking of chiral symmetry observed in
this work, starting with our choice of gauge action. As
mentioned previously, the DBW2 gauge action has been
used successfully in the quenched approximation to im-
prove the chiral properties of domain wall fermions. To
give an example: when comparing the Wilson, Iwasaki,
and DBW2 actions for inverse lattice spacings of approxi-
mately 2 GeV, the residual masses for Ls � 16 are around
3 MeV, 0.3 MeV, and 0.03 MeV, respectively [12]. This
dramatic improvement can be ascribed to the interplay of
the positively weighted plaquette term and the negatively
weighted rectangle term leading to a strong suppression of
dislocations of the lattice. While we would like to exploit
this mechanism in the dynamical case, it is not a priori
obvious what form of bare gauge action we should take
such that, when combined with the effects of the fermion
determinant, we have an effective short-distance gauge
action with a similar form to that used in the quenched
approximation. Over large (physical) distance scales it is
well known that the effect of adding the determinant is to
smooth out the gauge field, and so, in order to perform a
dynamical simulation with the same lattice spacing as a
quenched simulation, we must increase the gauge cou-
pling. The question we are interested in here, however, is
how the inclusion of the fermion determinant modifies the
short-distance properties of the gauge field. One particular
worry, for example, is that the addition of the fermion
determinant may effectively induce a rectangle term of
the opposite sign to the one in the gauge action, leading
to reduced suppression of dislocations.

To study this we solve for the short-distance effective
gauge action using the Schwinger-Dyson equations, fol-
lowing the approach of [51]. Briefly summarizing: for an
ansatz of the effective gauge action of

S � ��S�; (72)

a set of operators, Oi, and some variation of the gauge
fields, �, the Schwinger-Dyson equations read

h�Oii � �hOi
�S
��i��: (73)

Calculating h�Oii and hOi
�S��i for the same number of
independent operators as there are independent terms in the
ansatz for the gauge action, this equation may be solved to
give ��. In the following we use

S� � 1�
1

3

X
l

Re Tr
UlG�
l �; (74)

where Ul denotes a specific link and G�
l the sum of the

(forward) staples of type � for link l, and the variation
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�al Ul � �i
a�aUl (75)

for observables

Oa;i
l � Im Tr
�aUlG

i
l�; (76)

and then sum Eq. (73) over a and l.
Some idea of the utility of this method can be gained by

studying quenched configurations. Obviously, should the
ansatz of the gauge action include the terms that constitute
the action used to generate the ensemble, then this is
precisely the result this method will give. However, in
Table XXX we show the results of applying this method
using a quenched ensemble of 404 configurations of size
163 � 32 generated with the DBW2 action with
� � 1:04—corresponding to an inverse lattice spacing of
� 2 GeV—and solving for the effective plaquette gauge
action. Using an observable based on the simple plaquette
staple we get an answer of�P � 9. An ensemble generated
with this plaquette gauge action would have a much finer
lattice spacing than the one we are studying; our interpre-
tation of this result is that, at the short distances probed by
this observable, lattices generated with the DBW2 action
are much smoother than those of the same lattice spacing
generated with the plaquette action. As can be seen also, as
the size of the observable used to calculate the effective �P
is increased to the 2� 1 planar rectangle; 2� 2 square and
then 3� 3 square, the calculated value of �P decreases
towards, presumably, the value that would generate one
ensemble with the same lattice spacing as the one we are
studying (� � 6).

Table XXXI shows the results of applying this method to
each of our dynamical ensembles, using relatively local-
ized observables. In each case we see that the short-
distance properties of the gauge field are dominated by
the bare form of the gauge action: the effective gauge
action, up to some very small deviations, is identical to
this bare gauge action. We may therefore qualitatively
understand the larger observed chiral symmetry breaking
for the dynamical lattices versus quenched lattices as being
due to the smaller value of the (bare) � used in the gauge
action leading to reduced suppression of dislocations; the
effects of the determinant seem only to become significant
for larger distance observables.
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TABLE XXXII. Residual mass versus valence Ls for the msea � 0:04 ensemble.

mval Ls � 8 Ls � 12 Ls � 16 Ls � 24 Ls � 32

0.04 4:787�37� � 10�3 1:347�20� � 10�3 5:75�21� � 10�4 2:13�17� � 10�4 1:30�15� � 10�4

TABLE XXXI. The effective, short-distance, gauge action solved for using the Schwinger-
Dyson equation with an anzatz for the form of plaquette (�1), rectangle (�1�2), and the two
hypercubic, five-link, loops (�5;1 and �5;2). Up to small corrections the results are equal to the
bare input parameters.

Dynamical mass �1�1 �1�2 �5;1 �5;2

0.02 9.7384(36) �1:11 392�53� 2:99�56� � 10�3 6:35�77� � 10�3

0.03 9.7388(43) �1:11 523�50� 3:35�67� � 10�3 6:18�93� � 10�3

0.04 9.7471(44) �1:11 531�54� 2:15�73� � 10�3 7:5�10� � 10�3
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While the chiral symmetry breaking observed for the
ensemble studied here is small enough to be a negligible
correction to the physical quantities we are calculating, it is
still interesting to know how the residual mass varies both
with the size of the fifth dimension and the gauge coupling.
A reasonable estimate of the former may be made by
calculating the residual mass for different valence values
of Ls. Table XXXII shows this for fifth dimension of extent
8 to 32 for the msea � 0:04 ensemble at the dynamical
point. For Ls � 12 the residual mass is calculated on 45
configurations, leaving 100 trajectories between configu-
rations starting from trajectory 1005 (we skip trajectories
1805 and 1905 due to the hardware error mentioned in
Sec. IV). Figure 36 shows these dynamical results and
compares them with the residual mass on three quenched
ensembles: Wilson � � 6:0 [10], Iwasaki � � 2:6 [9], and
DBW2 � � 1:04 [12]; all of which have inverse lattice
4 8 12 16 20 24 28
L

s

1e-05

0.0001

0.001

0.01

am
re

s

Wilson; 2 GeV
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FIG. 36 (color online). The residual mass versus Ls for msea �
0:04, compared with that measured on three quenched ensem-
bles: Wilson � � 6:0, Iwasaki � � 2:6, and DBW2 � � 1:04;
all of which correspond to a�1 � 2 GeV.
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spacings� 2 GeV. As can be seen, while the residual mass
in the dynamical simulation is much larger than that in the
comparable quenched DBW2 calculation, it is still smaller
than the value when using the Wilson gauge action in the
quenched approximation.

We also have made a few exploratory studies using
stronger couplings for the DBW2 gauge action in dynami-
cal simulations [101], namely, � � 0:75 and 0.70. For both
these simulations we usedM5 � 1:8, Ls � 12 on 163 � 32
lattices, as with the rest of this work. Table XXXIII gives
values of the input quark mass, number of configurations
collected, the rho meson mass, and the value of the residual
mass. As for each value of the coupling we used only one
value for the dynamical quark mass, the latter two quanti-
ties are quoted in the valence chiral limit. While the
residual mass at � � 0:70 is not prohibitively large, cau-
tion should be taken; we may also look at the spectral flow
of the Hermitian Wilson-Dirac operator. A transfer matrix
in the fifth dimension for domain wall fermions may be
written in terms of this operator, with the success of the
domain wall fermion mechanism being dependent on the
existence of a gap in the spectral flow for negative Wilson
masses. Figure 37 shows a typical spectral flow for the� �
0:8 ensembles, while Fig. 38 shows typical spectral flows
for all the gauge couplings we have studied. As can be
seen, the gap in the spectral flow rapidly closes as we move
to stronger gauge coupling. This is, perhaps, the main
challenge for the domain wall fermion/overlap approach:
the computational cost of lattice generation falls so quickly
as the lattice spacing increases that the extra cost of domain
wall fermions versus other approaches could easily be
TABLE XXXIII. Parameters and results for the stronger cou-
pling dynamical studies.

� mf m� �2=dof mres # conf.

0.70 0.026 0.830(5) 1.4 0.0094(1) 32
0.75 0.022 0.667(7) 0.8 0.00 405(7) 41
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amortized by working on slightly coarser lattices.
However, for the current formulation, the domain wall
mechanism begins to fail as we move to lattice spacings
significantly coarser then a�1 � 2 GeV. There have been
some preliminary attempts to modify the gauge and/or
fermion action in such a way that the domain wall mecha-
nism persists at stronger couplings [101]. These have so far
met with limited success, but this is clearly a direction of
research which has not been exhausted.

VII. CONCLUSIONS

We have presented a large-scale lattice QCD calculation
using two flavors of dynamical domain wall fermions with
small quark masses on lattices with large volumes. Domain
wall fermions possess exact chiral symmetry in the limit
Ls ! 1 even at finite lattice spacing—a symmetry fun-
damental to much of the physics of QCD. The �3� 5000
Monte Carlo trajectories in this work obtained with light
dynamical quarks and small residual quark mass,
mstrange=2 & msea 	mres & mstrange, represent a substantial
computational undertaking that took almost two years to
complete.

The first results to come from this endeavor are both
interesting and encouraging. The decay constants f� �
134:0�42� and fK � 157:4�38� agree with experiment
well within �5% statistical errors. Their ratio, determined
to 1% statistical accuracy, fK=f� � 1:175�11�, slightly
underpredicts the experimental value [1.223] obtained
from the Particle Data Group. This agreement is not fully
understood since our data does not well represent NLO
chiral perturbation theory as discussed in Sec. V. Future
simulations with more sea and valence quark points and
improved statistics are needed to resolve the issue. Thus,
the agreement with experiment should not be considered
significant at this point.

The Kaon B parameter is the hadronic matrix element of
the �S � 2 weak interaction operator that governs neutral
kaon mixing. It is required to determine the level of indi-
rect CP violation in the kaon system that is predicted in the
standard model. We find that inclusion of sea quarks tends
to decrease the value of BK relative to our comparable
quenched calculations [15,47] by about two (statistical)
standard deviations, or roughly 10%. Nondegenerate va-
lence quark effects further lower the value by 3%. At a
renormalization scale of 2 GeV in the continuum MS
scheme, we find BMSK � 0:495�18� (statistical error only)
which is significantly lower than previously reported
quenched values and could impact the extraction of the
phase of standard model Cabibbo-Kobayashi-Maskawa
quark-mixing matrix if this value accurately describes the
chiral, infinite volume and continuum limits.

Besides physical results, two important and closely re-
lated theories, the low-energy effective theory of domain
wall fermions and (partially) quenched chiral perturbation
theory, are strongly supported by the pattern of explicit
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chiral symmetry breaking in our calculations. In quenched
calculations the pion mass squared, when fit to a simple
linear function of the quark mass, significantly overshot the
chiral limit mf � �mres. Through careful study, it was
shown that this effect could be explained by a prediction
of quenched chiral perturbation theory, that is to a loga-
rithmic singularity unique to the chiral approximation.
When accounting for this term, m2

� was shown to vanish
at the correct chiral limit. In the two-flavor case this
offending logarithm does not appear. Such a logarithm
appears only at higher order [see Eq. (36)] and does not
effect the chiral limit. The net result is that a simple linear
extrapolation of m2

� should come closer to the true chiral
limit. That this indeed happens was demonstrated in
Fig. 21 and Table XVIII.

These initial results, obtained from two-flavor calcula-
tions with three relatively heavy sea quark masses, on a
single volume and lattice spacing, and fifth dimension
Ls � 12, while encouraging, may still suffer significant
systematic uncertainties. We stress that the use of next-to-
leading order partially quenched chiral perturbation theory
was crucial in our analysis of m2

� and BK, where it worked
reasonably well. The analysis for the decay constant was
more problematic. This lead us to quote results for f� and
fK from linear fits, i.e. the NLO analytic terms were
included but not the logarithms. In addition, while the
number of trajectories in our study is large from a historical
perspective, large-scale autocorrelations which can only be
114505
detected in longer runs may still be present. In fact, here as
in all dynamical simulations, the number of trajectories
studied is determined at least as much by the amount of
available computer resources as by established scientific
criteria. All of these issues must be further addressed by
future calculations. The proven scaling behavior of domain
wall fermions gives us confidence that the results presented
here provide a solid foundation on which to build.
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