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We show that low-lying eigenmodes of the Laplace operator are suitable to represent properties of the
underlying SU(2) lattice configurations. We study this for the case of finite temperature background fields,
yet in the confinement phase. For calorons as classical solutions put on the lattice, the lowest mode
localizes one of the constituent monopoles by a maximum and the other one by a minimum, respectively.
We introduce adjustable phase boundary conditions in the time direction, under which the role of the
monopoles in the mode localization is interchanged. Similar hopping phenomena are observed for
thermalized configurations. We also investigate periodic and antiperiodic modes of the adjoint
Laplacian for comparison. In the second part we introduce a new Fourier-like low-pass filter method.
It provides link variables by truncating a sum involving the Laplacian eigenmodes. The filter not only
reproduces classical structures, but also preserves the confining potential for thermalized ensembles. We

give a first characterization of the structures emerging from this procedure.
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I. INTRODUCTION

The question of what drives confinement and other non-
perturbative phenomena of QCD at strong coupling is a
long-standing one. In lattice gauge theory, the simulation
of these effects at the observational level of correlation
functions is well established. However, to extract the rele-
vant degrees of freedom of the QCD vacuum remains a
controversial problem which might not have a unique
answer. The desire behind such attempts is to provide
support for certain models like the instanton liquid or the
dual Abelian Higgs model and to estimate their basic
parameters.

Abelian and center projection have been used to focus
on objects like Abelian magnetic monopoles and center
vortices, respectively, which are thought of as localizing
certain embedded solutions that, strictly speaking, would
exist only in the presence of Higgs fields. Despite the
ambiguity in their definitions, these degrees of freedom
are used especially for confinement-related scenarios of the
QCD vacuum. Instantons as self-dual solutions, on the
other hand, can be conveniently related to chiral symmetry
breaking. Field excitations resembling instantons have in-
deed been observed as the result of cooling. It has been
objected that these methods modify the field configurations
in an uncontrolled way such that the observed excitations
could actually be fake and do not represent the relevant
nonperturbative fields. Other smoothing techniques also
reveal lumps of action which are usually interpreted as
instantons [1,2]. In order to relate these structures to con-
finement, some additional degrees of freedom seemed to be
necessary.

Fermionic modes capture chiral and topological aspects
of lattice gauge theory, provided a Dirac operator with
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good chiral properties is implemented. Via the index theo-
rem, the number of (left-handed minus right-handed) zero
modes gives the total topological charge. Using a definition
of the topological charge density based on the overlap
Dirac operator [3], nonzero modes are contributing to the
topological charge distribution, too. Analyzing the latter,
global coherent structures of lower dimension have been
identified [4].

It has become customary to use the localization of the
fermionic modes as a means to probe the vacuum structure.
A specific scaling law of the inverse participation ratio
(IPR, see below) of the low-lying fermionic modes with
respect to (w.r.t.) lattice spacing and volume seems to be
able to recognize the codimension of the underlying gauge
field structure [5,6]. However, to interpret the result, the
latter has to be subject to a model, for instance, one of those
mentioned above.

The fact that fermion zero modes are localized to clas-
sical objects in smooth backgrounds has led to a thorough
investigation of the local properties of zero and near-zero
modes also in equilibrium backgrounds. Their small “‘en-
ergy”’ eigenvalue should suppress contributions from large
momenta and hence these modes are less sensitive to UV
fluctuations. Very recently such a program has been carried
out using zero modes in the adjoint representation [7].

The trick of modifying the boundary conditions for the
fundamental fermions by a complex phase has been intro-
duced as a general tool in [8] guided by the knowledge of
calorons. These are instantons at finite temperature, i.e. on
R3 X S'. Calorons have become attractive over recent
years because—when taken with nontrivial holonomy
[9,10] (see below)—they account for a Polyakov loop
not in the center of the gauge group, as is the case on
average in the confined phase. Furthermore, calorons con-
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FIG. 1. Top: The action and topological density (not distin-

guishable, both normalized to one for a caloron and then multi-
plied by 400) and the Polyakov loop shown along the line
connecting the constituents in a large caloron on a 16 X 4
lattice. Bottom: The modulus of periodic (boldface line) and
antiperiodic (thin line) fermion zero modes for the same caloron.

tain (gauge independent) magnetic monopoles, see Fig. 1
(top panel), which realize the scenario of fractional charge
objects (also called instanton quarks [11]). For recent
progress on calorons, both in the continuum and on the
lattice, see [12].

The caloron zero mode with different boundary condi-
tions is correlated to different constituent monopoles [13];
see Fig. 1 (bottom panel).' In a similar way, the zero modes
on equilibrium configurations have been observed to lo-
calize to different locations on the lattice when scanning
through the boundary conditions [8]. This effect has been
reported even for symmetric lattices representing ‘‘zero
temperature’’ [14]. Given the intuition from calorons, one
expects these modes to detect carriers of topological
charge, including such of fractional charge. However, to
support this one would need additional evidence that the
underlying structures actually have fractional or integer
charge. A mechanism analogous to Anderson localization
in a random potential [15] has been proposed as an alter-
native explanation for the localization and hopping of the
fermionic modes.

'We thank Dirk Peschka for providing the fermion zero mode
for the (numerical) caloron.
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In this paper we are going to study the analytic power of
the low-lying eigenmodes of the gauge covariant Laplace
operator. They have been first discussed with the aim to fix
a particular gauge, the Laplacian gauge [16]. Recently they
have been investigated with respect to their localization
behavior [17] to shed additional light on the QCD vacuum.

Our interest concentrates on the local behavior of these
modes testing three ideas. The first idea is whether the
Laplacian modes are sensitive to the constituents of the
caloron. Unlike fermion zero modes, the Laplacian modes
are not incorporated in the Atiyah-Drinfeld-Hitchin-
Manin-Nahm [18,19] formalism? that describes the calo-
ron solutions analytically. So we investigate them numeri-
cally on the lattice, on which caloron configurations can be
put with very good control. We find indeed that the
Laplacian modes can detect the monopole constituents by
their extrema. Furthermore, we enforce adjustable phase
boundary conditions on the Laplacian modes as a function
of which they are hopping in a similar way as the fermion
modes do.

Most of our studies are concerned with eigenmodes of
the Laplacian in the fundamental representation. For com-
parison, we also explore adjoint modes, including those
with antiperiodic boundary conditions.

At this point we want to emphasize that the Laplacian
modes are advantageous compared to the fermionic modes
in that they have neither chirality nor doubler problems.
Hence, the straightforward translation of the continuum
Laplace operator to the lattice can be used for the purposes
we have in mind. We will mostly study the lowest “‘en-
ergy” eigenmode which has no topological origin (and
therefore is not expected to give information about the
topological charge).

The other idea is how Laplacian modes could be used to
reflect properties of equilibrium configurations. As we will
demonstrate, they do this in the ‘“conventional way” by
being pinned to some points on the lattice and hopping
between several such locations under a change of the
boundary conditions.

The relation between the localization mechanisms for
classical and thermalized backgrounds is not straightfor-
ward. As we will show, the lowest Laplacian eigenmode
for the caloron is similar to a modified wave (in contrast to
the exponentially localized fermion zero mode). Its mini-
mum, but even more the maximum for small calorons, is
not a perfect tool, whereas in the thermalized backgrounds
the maxima obviously determine the localization and di-
vide the set of boundary conditions into intervals.

The third main aspect of the present work is the intro-
duction of a general and hopefully powerful method to
apply a low-pass filter based on the Laplacian eigenmodes
to generic equilibrium configurations. We were inspired by
Gattringer’s earlier work who has constructed a smoothed

Zalthough the Greens function is
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field strength tensor based on fermionic modes [20]. Our
procedure is not limited to a particular observable, but aims
to reconstruct the link variables filtering out UV fluctua-
tions. It relies on the idea of truncating a sum involving the
Laplacian (““harmonic’’) modes which would give back the
original links exactly. The only free parameter (besides the
number of modes used in the truncation) is the phase angle
in the boundary condition. We will show that in order to
optimize the low-pass filter for our circumstances (con-
fined phase, nontrivial holonomy calorons), this angle
needs to be chosen halfway between periodic and antiperi-
odic boundary conditions.

For the filtered configuration we measure the Polyakov
loop, the topological charge and action density. Again, we
present the calorons as a testing ground and find, indeed,
that the self-dual monopole constituents are reproduced.
Qualitative agreement with the original configuration is
found already with a surprisingly small number of modes.

What is even more interesting is that this method ap-
proximately preserves the string tension when applied to
Monte Carlo configurations representing some finite tem-
perature below the deconfinement phase transition.
Apparently, the Laplacian modes capture enough of the
long-range disorder. This fact justifies the study of the filter
in more detail, especially the emerging tomography of the
configurations in equilibrium. The structure of the action
density of the filtered configurations includes narrow
peaks, for which we do not have a final interpretation
yet. They might be close to the gauge singularities found
in the Fourier-filtered Landau gauge fields [21]. Despite
the appearance of the peaks we will point out a similarity to
smearing/cooling in an early stage.

The paper is organized as follows. In the next section we
will give the definition as well as some properties of the
lattice covariant Laplacian and briefly summarize the
knowledge about calorons. Then we investigate low-lying
Laplacian eigenmodes in caloron backgrounds. In Sec. IV
we show the typical hopping of the Laplacian eigenmodes
in the background of thermalized configurations at finite
temperature. The new filter method and its features are
discussed in Sec. V. We end with some discussion and an
outlook. We will stick to the gauge group SU(2) throughout
this paper.

II. PRELIMINARIES

A. Definition and properties of the Laplace operator

We consider the gauge covariant Laplace operator
D
A = D [ULS s py + URP (18— py — 2878,],
un=1

ab=12 (D

in the background of a given configuration of lattice links
U,(x) in D = 4 dimensions and in the fundamental repre-

PHYSICAL REVIEW D 72, 114502 (2005)

sentation. It is a Hermitian (and nonpositive) matrix of size
N X N where N is the number of lattice sites times the
dimension of the representation (here two).

We use the ARPACK package [22] to solve for up to 200
(out of N > 10°) eigenvalues and eigenmodes in

- A;’f Z,g(y) = )t,,,gd)ﬁ,g(x) no sum in n and /.

@)

We allow for complex phase boundary conditions in the
timelike direction

de(xg + Ny) = ™ (xy). (3)
A way to implement this is by writing
@ (x) = e 2mnlNegp (x), 4)

which is now fully periodic but solves the Laplace equation
(2) with the replacement U, — U,e*™¢/Ns in A,
Effectively, this promotes the link to an element of U(2),
but does not change any contractible Wilson loop.
Correspondingly, the gauge field receives a constant iden-
tity component, which does not modify the field strength.
In the numerical computations we use ¢ and transform
back to ¢ by virtue of (4).

The spectrum of the Laplace operator is subject to two
symmetries. The charge conjugation [which is special for
SU@)]

W= €T A= Ay (5)

relates two modes with the same eigenvalue but opposite

boundary conditions, as indicated by the index —{. In

particular, the spectrum is two-fold degenerate for periodic

(¢ = 0) and antiperiodic (¢ = 1/2) boundary conditions.

Notice that ¢’ is automatically orthogonal to ¢. We will

therefore restrict ourselves to ¢ € [0, 1/2] without loss of

generality.

The authors of Ref. [17] have found a relation between
the lower and upper end of the spectrum,

X

Z\f*n,{ = (_1); (bn]g, )\Z\f*n,{ =4D — /\n,g.
(6)

We will refer to this symmetry as the staggered symmetry.
It is only for even numbers N, of lattice points in all
directions that it (obviously) preserves both the boundary
condition Eq. (3) and the periodicity in the spacelike
directions. Thus, even numbers N, will be used through-
out. This symmetry, since it flips the sign of ¢ at every
other point, is restricted to the discrete lattice (otherwise
the spectrum of the continuum Laplacian would be
bounded from above as well as from below).

B. Laplacian modes in vacuum backgrounds

In order to illustrate the interplay of the boundary con-
dition angle ¢ and the Polyakov loop
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Ny
P = [ Vsl x) ™

xg=1

with the spectrum of Laplacian modes, we now discuss the
latter for vacuum configurations. We choose all timelike
links to be identical and to belong to the Abelian subgroup
consisting of diagonal matrices U,(x) = expQmriaos/Ny)
which leads to a constant but adjustable Polyakov loop

I uP(X) = cos(2ma), (8)

whereas the spacelike links are set equal to the identity.
The Laplace equation in these backgrounds can be
solved by considering the upper and lower component
separately and a simple product ansatz (x) =
[1.exp(2miB,x,). The periodicity requirements give

Bi =n;/N;, By=(ny+ {)/Ny with integers n, €
[0, N, — 1]. The eigenvalues are
r
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FIG. 2.  Spectrum of the Laplacian in vacuum backgrounds
with traceless (o = 1/4, top panel) and trivial Polyakov loops
(o = 0, bottom panel) on a 16> X 4 lattice. Plotted are the 38
lowest eigenvalues as a function of the angle  in the boundary
condition. The numbers indicate the degeneracy of the bands.
The unit on the vertical scale is 0.152 = 2(1 — cos(27/16)), cf.
Eq. (9).
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—+ .
A, ¢ =2| 1 —cos2m E—i-g_a +Z 1 —cos2m i) |.
w N, N, ) & N,
)

One can immediately read off that the dependence on ¢ is
trigonometric and shifted by the Polyakov loop parameter
«, while the spatial part shifts the spectrum and contributes
to the degeneracy.

In Fig. 2 we give the vacuum spectra for « = 0 and @ =
1/4, which will be of particular interest below. We plot the
38 lowest modes” and indicate the degeneracy of the bands.
They are reflected at the boundary of the ““Brillouin zone™
(where the eigenmodes are at least two-fold degenerate as
they should be) and then cross each other.

Aspects of these spectra, especially the symmetry
around { = 1/4 for a = 1/4, will be reproduced by
Laplacian modes in calorons and, to some extent, in ther-
malized backgrounds.

C. Calorons—in the continuum and on the lattice

Calorons are (anti-)self-dual instanton solutions on R X
S'. We will be particularly interested in caloron solutions
with the so-called holonomy being maximally nontrivial
[9,10]. That is, trP /2 = cosQma,,) = 0, where P, is
the Polyakov loop at spatial infinity. These, rather than the
old Harrington-Shephard solutions [23] (with P, = *1,),
shall be of relevance for the confined phase, where the
trace of the Polyakov loop vanishes on average. The au-
thors of [24] have computed the contribution of calorons to
the effective potential driving the Polyakov loop to that
value.

The nontrivial holonomy gives rise to a symmetry break-
ing SU(2) — U(1). Therefore, it is plausible that calorons
can be described by a monopole and an antimonopole
(calorons of charge k consist of |k| monopoles and |k|
antimonopoles). Their masses are given by the eigenvalues
of the holonomy and are equal for maximally nontrivial
holonomy.

The moduli space of these solutions contains both small
and large calorons, where the size is compared to the
extension of the compact direction. Large calorons have
two almost static action density lumps, which are identical
for our choice of holonomy. They merge for small calorons
and this results in a strong time dependence of the action
density (just like for conventional instantons).

The (untraced) Polyakov loop acts like a Higgs field
(exponentiated to give an element of the gauge group). It
passes through 1, and — 1, near the core of the monopoles,
where the symmetry is restored; see Fig. 1 (top panel). This
dipole persists even for small calorons within the single
action density lump.

*In order to completely fill the three lowest-lying bands at

(=0

114502-4



LAPLACIAN MODES PROBING GAUGE FIELDS

The monopoles make up the topological charge with the
help of the so-called Taubes winding [25]: one of the
monopoles performs a full rotation in the unbroken U(1)
subgroup relative to the other monopole when completing
a full period in the timelike direction. For a gauge invariant
statement one has to connect the field strength at the differ-
ent monopole cores by a Schwinger line [26]. In the
periodic gauge that we use for the calorons [9] put on the
lattice, the link variables U, (x) are static at the P = 1,
monopole, while they rotate around the holonomy direc-
tion 75 at the 2 = —1, monopole.

The fermion zero mode in the caloron background fol-
lows the action density in that it has a maximum at one
constituent monopole [13] plus a zero near the other one
[27]. The first fact can be understood from the Callias
index theorem [28], which also explains why the zero
mode hops with the angle £, namely, to the other monopole
when the boundary condition is changed from periodic to
antiperiodic. When the phase { equals the holonomy pa-
rameter a,,, the zero mode ““sees’” both monopoles, decay-
ing with a power law instead of exponentially. The zero of
the zero mode is connected to the nontrivial caloron
topology.

On the lattice, calorons were first obtained by cooling
with twisted boundary conditions [29] or by stopping at an
action plateau [26]. The typical behavior of the action
density, the Polyakov loop, and the fermion zero mode
was confirmed. Furthermore, the Polyakov loop averaged
over the low-action region of the lattice was proposed to
play the role of the asymptotic holonomy in the infinite
continuum. As for generic equilibrium configurations, re-
cent smearing studies revealed clusters of topological
charge that—according to their content of Abelian mono-
poles and the corresponding behavior of the Polyakov
loop—have charges close to either =1 or *1/2, resem-
bling calorons and their constituents, respectively [30].

An alternative possibility to analyze calorons on the
lattice is to evaluate the discrete parallel transporters
from the continuum gauge field and to cool the emerging
lattice configuration by a few steps in order to adapt it to
periodic boundary conditions in space. This was first done
in [31] for the case of gauge group SU(3). Because of
lattice artifacts, the use of improved or even overimproved
cooling [32] is advantageous when aiming at large calo-
rons. We will mainly use this approach to generate caloron
backgrounds since it permits us to control the locations of
the constituent monopoles.

ITI. LAPLACIAN MODES IN CALORON
BACKGROUNDS

A. Eigenvalue spectra

The lowest-lying Laplacian eigenvalues in a background
of a small and a large caloron, both with maximally non-
trivial holonomy, are displayed in Fig. 3, top and bottom
panels, respectively. By construction, the trace of the
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Polyakov loop of these lattice configurations vanishes out-
side of the action density lumps of the constituent mono-
poles. Accordingly, the spectra of the Laplacian are similar
to those of a vacuum background with the corresponding
Polyakov loop with @ = 1/4 in Eq. (8) (see Fig. 2, top
panel). However, the zero in the vacuum spectrum at { =
1/4 is lifted, the degenerate bands are split, and some of the
level crossings are inevitably avoided. Such effects are
known from quantum systems at weak coupling (with the
Laplacian playing the role of a Schrodinger operator). In
this respect, the caloron backgrounds act like a small
perturbation.

In order to characterize the localization of the eigen-
modes by a global quantity, we will use the inverse par-
ticipation ratio (IPR)

1($) = Vol - 3 p(x),
: (10)

p(x) = |p[*(x), Vol = N;N,N;N,.

FIG. 3. Dependence of the 38 lowest-lying eigenvalues on the
boundary condition for a small caloron (top panel) and a large
caloron (bottom panel), both with maximally nontrivial holon-
omy on a 16% X 4 lattice.
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A constant profile has the minimal / = 1, whereas large
IPR’s signal strong localization (with the lattice é function
saturating the upper bound 7/ = Vol). For the IPR’s of
fermionic modes in caloron backgrounds we refer the
reader to Ref. [33].

In Fig. 4 we zoom in to a region of (almost) crossing
eigenvalues. In contrast to the vacuum spectrum, the ei-
genvalues of the second and third states are repelled from
each other. As a remnant of the crossing these modes
exchange their IPR’s around that £, which indicates that
in the next { region each mode is similar to the comple-
mentary mode in the previous region. Outside of the cross-
ing regions the IPR’s are hardly changing.

At some other crossing points the eigenvalues come very
close and the switch to the other eigenvalue branch is an
instantaneous one even within the enlarged resolution in .
The drastic changes in the IPR’s illustrate this again. One
might speculate whether some of the level crossings are
exact ones in the continuum limit. They may be governed
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FIG. 4. Zooming in to the eigenvalues number 2 to 8 (top
panel) and the corresponding inverse participation ratios (bottom
panel) for the small caloron shown in the previous Fig. 3 (top
panel). For comparison the IPR of the lowest mode (closest to
I = 1) is also shown.
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by the quantum number corresponding to the axial sym-
metry of the caloron. However, as the spatial volume
increases, N; — 0o, many bands will approach each other
to form a continuous spectrum and investigating the exis-
tence of a discrete eigenstate would require a more detailed
study.

In Fig. 5 the spectra of two extreme cases of charge-2
calorons [34] are shown. The four constituent monopoles
are maximally separated in the first example, whereas in
the second case the like-charge monopoles sit on top of
each other forming rings (see Figs. 5 and 7 of Ref. [35]).

In an overall view, the spectra are similar to those of
charge-1 calorons. However, the eigenvalues are shifted
upwards, especially for the second example (Fig. 5, bottom
panel). The band structure is different as well, with three
close eigenvalues at the bottom of that spectrum. The other
case (of maximally separated constituents in the charge-2
caloron) seems to have curves with different curvature
(seen in the middle of Fig. 5, top panel), which upon a
closer look turn out to have their minima slightly away
from ¢ = 1/4. Although these details are interesting, it is
not clear how one can infer, for instance, the topological
charge of the background configuration from these
features.

oo
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FIG. 5. Low-lying spectra (lowest 15 modes) for charge 2
calorons. Top: the case of pairwise well-separated constituents;
bottom: the case of like-charge constituent monopoles merged
forming double monopoles (rings, see the text and Ref. [35]).
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In all the gauge field backgrounds studied so far, the IPR
of the lowest eigenmode is close to / = 1. It means that this
mode is quite spread out. For the excited states the IPR
takes values up to I = 3.5.

B. Eigenmode profiles

In this subsection we study the local properties of the
Laplacian modes for a caloron background and show how
they can reveal the underlying monopole constituents.

The modulus || of the lowest mode for a large caloron
is plotted in Fig. 6 for different boundary conditions. This
figure should be compared to Fig. 1, top panel (for the
background field), and Fig. 1, bottom panel (for the fer-
mion zero modes). One can see that the lowest Laplacian
eigenmode with periodic boundary conditions has a maxi-
mum (located at x3 = 14) near the monopole with a posi-
tive Polyakov loop (at x3 = 12). Furthermore, it has a
minimum (at x3 = 6) near the monopole with a negative
Polyakov loop (at x3 = 4). Thus, it approximately local-
izes the two constituents by virtue of a minimum and a
maximum. However, both are not very pronounced and
occur with a shift of up to 2 lattice spacings (compared
to a time extent of N, = 4 lattice spacings) relative to the
locations of the action density lumps.

We have also investigated excited eigenstates of the
Laplacian and found that the first excited one has a higher
maximum, but both the minimum and the maximum are
now shifted in the opposite direction. Even higher states
seem to be rather sensitive to the finite spatial volume.

What can also be read off from Fig. 6 is that the mini-
mum and the maximum of the lowest mode move to the
other constituent upon changing the boundary condition
Jfrom periodic to antiperiodic. This symmetry can be under-
stood in the continuum. The caloron action density is
invariant under an antiperiodic gauge transformation that
exchanges the locations and masses of the constituent

0.01

4 8 12 16

FIG. 6. The modulus |¢| of the lowest Laplacian mode with
periodic (boldface line), antiperiodic (thin line), and intermedi-
ate (dashed line) boundary conditions along the line connecting
the constituents of a large caloron on 163 X 4, to be compared
with Fig. 1.
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monopoles and inverts the holonomy. The latter two re-
placements are ineffective for a caloron at maximally non-
trivial holonomy. Hence, for the Laplacian mode this gauge
transformation reflects the profile function at the caloron’s
center of mass (around x3 = 8). Furthermore, it replaces ¢
by { + 1/2 (due to the antiperiodicity), which by charge
conjugation is equivalent to 1/2 — /. Thus the periodic
mode turns into the antiperiodic one. This particular calo-
ron symmetry also explains the mirror symmetry of the
spectrum in Fig. 3 at { = 1/4.

In this respect the lowest Laplacian eigenmode resem-
bles the fermion zero mode. However, the interpolation
between the two extreme boundary conditions is different:
The minimum moves through the center of mass, whereas
the maximum decreases and goes through the “boundary”
at “infinity.” To demonstrate this we have included the
intermediate boundary condition { = 0.25 in the figure.

In order to clarify how finite volume effects influence
these findings, we have doubled both the spatial extension
of the lattice and the size of the caloron, which now has its
constituents at x; = x, = 16, x3 = 8 and 25. The lowest
eigenstate with periodic boundary condition, shown in
Fig. 7 (top panel), has a slightly more pronounced maxi-
mum, still shifted, to x; = 26. Around the maximum, the
modulus is actually close to spherically symmetric as ex-
pected since the constituents are quite well separated com-

T,
ZoZ
Z=

\

—
ZZS

q

FIG. 7 (color online). Space-space plots of the modulus of the
lowest eigenstate for a large caloron on a 323 X 4 lattice, with
periodic (top panel) and intermediate (bottom panel) boundary
conditions.
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pared to the typical scale N, = 4. The minimum is shifted
as well, namely, to x3 = 10.

This configuration also clarifies the behavior of the
minimum under the change of boundary conditions.
Figure 7 (bottom panel) shows that for an intermediate
boundary condition the minimum extends to a valley be-
tween the minimum locations corresponding to the peri-
odic and antiperiodic modes, respectively.

It is instructive to see what the lowest Laplacian eigen-
mode looks like in the background of a smaller caloron.
The configuration that we employ for this demonstration
has only one lump of action density, but has the typical
dipole behavior of the Polyakov loop, the latter being close
to —1, at x3 = 15 and close to 1, at x; = 18. The modulus
of the lowest Laplacian eigenmode has a strong gradient at
the location of the lump, too; see Fig. 8 (top panel). As a
matter of fact, the minimum (x; = 15) reflects the
Polyakov loop minimum quite well, while the maximum
(x3 = 23) is shifted far outwards.

The maximum is also less pronounced compared to the
one of the large caloron. Actually all the presented profiles
of the lowest Laplacian eigenmodes away from the mono-
poles become close to the value an entirely constant mode
would have on the corresponding lattice (0.0078 for 16% X
4, 0.0028 for 323 X 4). Therefore, the Laplacian modes
should be viewed as a wave with local modifications rather
than a localized state. The rationale behind that might be
the absence of an effective mass that would localize the

FIG. 8 (color online). Space-space (top panel) and space-time
plot (bottom panel) of the modulus of the lowest eigenstate with
periodic boundary conditions on the background of a small
caloron on a 323 X 4 lattice.

PHYSICAL REVIEW D 72, 114502 (2005)

modes exponentially. For the fermion zero modes, this role
is played by (the difference of the boundary condition and)
the eigenvalues of the holonomy.

Moreover, the maximum of the Laplacian mode is al-
most static, even for the small “instantonlike’ caloron, as
can be seen in Fig. 8 (bottom panel). The minimum, on the
other hand, shows up in a particular time slice, exactly
where the action density is maximal. This is another sign
that, from a practical point of view, the use of the minimum
is superior compared to the maximum when looking for
small calorons (or instantons). The time dependence of the
minimum becomes much weaker for large calorons as we
have observed (but not shown here), reflecting the more
static character of the solution. In the continuum,
Laplacian eigenmodes in nontrivial backgrounds will
have a zero of topological origin, like fermions do [27].

To summarize, the assignment of a maximum and a
minimum in the modulus of the lowest Laplacian eigen-
mode to the constituents in a caloron is similar to the
behavior of the fermion zero mode. Yet the profile is less
localized and shifted. For small calorons it is recommend-
able to use the minimum, as it was done in Ref. [36], to find

0.0003 " — — O /‘—_/
0.0002 | \ \ / /
0.0001 \ \ / /
o\ \ /
1 2 N 4 1
-0.0001 \ \ / /
e A
-0.0002 W
-0.0003 N Ve
00004 +
T 2 — 3 _ _ 4_ _ _i
-0.001
-0.002
-0.003
-0.004

FIG. 9. Components of the lowest eigenstate with periodic
boundary conditions, in both the fundamental (full lines, real
and imaginary parts of both components) and the adjoint repre-
sentation (dashed line, the 73 component as a dotted line), as
functions of x4 at the point x; = x, = 16, x3 = 8 showing the
Taubes winding (top) and the point x; = x, = 16, x3 =25
(bottom panel, no winding). Two pairs of lines fall on top of
each other in the lower plot: real and imaginary parts of the
second fundamental component and the first two adjoint com-
ponents.
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instantons on the lattice (in the continuum, the coincidence
of the minimum with the instanton center was shown
analytically in [37]). The shift observed in that reference
nicely agrees with our findings.

By inspecting the components of the Laplacian modes
one finds signatures of the Taubes winding. We plot the real
and imaginary part of ¢ZZ$’2 in Fig. 9, showing the time
dependence at both monopoles. At one monopole core the
components are fully static; see Fig. 9 (bottom panel). At
the other monopole, carrying the Taubes winding, they
oscillate over one period; however, they seem to contain
an additional constant part; see Fig. 9 (top panel).

The general picture of Laplacian modes described so far
passes over to the caloron examples of charge O = 2. The
periodic and antiperiodic modes possess maxima and min-
ima near the corresponding constituents. However, the ring
structure in the action density of two overlapping like-
charge monopoles is not resolved by the Laplacian modes,
in contrast to the fermion zero modes.

C. Adjoint representation

In this subsection we discuss (in short) the properties
of the lowest Laplacian eigenmode in the adjoint repre-
sentation. In the Laplacian, the fundamental links
U4(x) are simply replaced by the adjoint ones
tr(o4U ,(x)aB U (x))/2 with indices A, B running from 1
to 3. The eigenfunctions ¢4 (x) are real in this representa-
tion and so there is no continuous phase available to
modify the boundary conditions as this was possible in
the fundamental representation, Egs. (3) and (4).
Nevertheless, we have included the possibility of antiperi-
odic boundary conditions in the computations.

In caloron backgrounds we basically reproduce the find-
ings of [38], namely, that the constituent monopoles are
localized by minima in the modulus of the lowest-lying
adjoint Laplacian eigenmode with a periodic boundary

0.003

FIG. 10. The lowest adjoint eigenmodes (with a periodic
boundary condition) for the large and the small caloron on a
323 X 4 lattice. The dashed line shows the lowest adjoint eigen-
mode with an antiperiodic boundary condition for the large
caloron.

PHYSICAL REVIEW D 72, 114502 (2005)

condition. In other words, the single adjoint mode “‘sees”
monopoles of both kinds simultaneously. As Fig. 10 shows,
these minima have no shift problems and start to join for a
small caloron. That the lowest adjoint Laplacian eigen-
mode on an instanton background has a zero of second
order at the instanton location has been shown in the
continuum in [37]. Zeroes in this mode underlie the con-
struction of Abelian-projected monopoles in the Laplacian
Abelian gauge [39]. Thus, for calorons, these monopoles

x1

FIG. 11 (color online). The semiclassical configuration de-
scribed in the text. Top: isosurfaces of the topological density
(dark: positive values; light: negative values); bottom: isosurfa-
ces locating the minima of the modulus of the lowest adjoint
modes, both for periodic (pointlike; balls corresponding to the
constituents seen in the upper plot) and antiperiodic boundary
conditions (one-dimensional network).
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coincide with constituent
monopoles.

The lowest adjoint Laplacian eigenmode with an anti-
periodic boundary condition develops an extended static
zero sheet between the monopoles (similar to the lowest
fundamental eigenmode with intermediate boundary con-
ditions). The corresponding profile is shown in Fig. 10 as a
dashed line.

This feature can be of interest for detection purposes,
too. In order to illustrate this, we have investigated a
semiclassical case. The gauge field configuration has
been obtained by cooling down to a plateau with an action
of 1.92 instanton units and a topological charge of —1 [35].
As has been described in that reference, there is one self-
dual and three anti-self-dual monopoles, distinguished by
dark and light shading in Fig. 11 (top panel). The Polyakov
loop at one of the cores is found close to 1, and close to
—1, at the three others. Isosurfaces (at small value) of the
modulus of the lowest adjoint Laplacian eigenmode with
either boundary condition are shown in Fig. 11 (bottom
panel). As for the simple (dissociated) caloron, the periodic
mode has static minima at the monopole locations, whereas
the regions of small modulus of the lowest antiperiodic
mode form a network connecting them.

The lowest adjoint Laplacian eigenmode with a periodic
boundary condition actually reveals the Taubes winding in
a very clear manner, cf. Fig. 9. At the ‘“‘rotating”” monopole
(top panel) the 7 and 7, components rotate around the
holonomy subgroup generated by 73, whereas at the other
monopole (bottom panel) all components are static. For the
antiperiodic lowest mode all components perform half a
rotation everywhere (to account for the antiperiodicity)
with the 73 component being suppressed.

the (gauge independent)

IV. HOPPING OF THE LOWEST LAPLACIAN
MODE FOR THERMALIZED CONFIGURATIONS

In the last section we have shown that the lowest
Laplacian eigenmodes (fundamental and adjoint) reflect
certain properties of smooth classical gauge field back-
grounds. Now we explore these modes as an analyzing
tool for thermalized gauge field configurations and con-
centrate on how the dependence on boundary conditions
gives additional information.

As a set of thermalized background configurations we
take an ensemble of 50 configurations on a 16> X 4 lattice,
generated by Monte Carlo heat bath sampling with the
Wilson action at 8 = 2.2. It represents the confining phase
at finite temperature, namely, at 7 = 0.75T, (deduced from
o(0)a> = 0.22 for our B [40] and T,/\/o(0) = 0.709 for
SU(2) Yang Mills theory [41]).

Figure 12(a) shows a typical spectral flow of the 15
lowest-lying Laplacian modes with the boundary condition
angle /. The first outstanding feature to notice is that the

PHYSICAL REVIEW D 72, 114502 (2005)

eigenvalues themselves are much bigger* than for the
smooth backgrounds considered so far. This is most natu-
rally ascribed to the ultraviolet noise present in the back-
ground. The latter has also removed any remnants of the
vacuum (or caloron) band structure in this plot. Still, the
typical near-crossing points are present, where again the
IPR signals big rearrangements in Fig. 12(b); see e.g. the
behavior of the second and third modes around £ = 0.12.

Inspecting several independent configurations in the
confined phase, the lowest eigenvalue takes on its smallest
value around ¢ = 1/4 (in this respect the configuration in
Fig. 12 is not a typical one). This reflects the fact that the
average Polyakov loop is close to traceless. On the con-
trary, in the deconfined phase all low-lying eigenvalues
become minimal very close to { = 0 (and are much bigger
at { = 1/2) with the spectrum grossly similar to Fig. 2
(bottom panel), in accordance with the asymmetric
Polyakov loop distribution in that phase.

The main observation in the context of Laplacian modes
for thermalized backgrounds is the effect of “hopping” of
these modes with changing . The IPR of the lowest mode
already gives a hint of the existence of what we will call the
“Z intervals.” In the example of Fig. 12(b) there are three
such intervals, in between which the IPR has a minimum. It
means that the lowest mode delocalizes there in order to
rearrange itself. This is confirmed by the inspection of the
global maximum in Fig. 12(c): the value of the modulus at
the maximum is minimal at the two transition points { =
0.300 and £ = 0.415. The main feature of the { intervals is
the pinning down of the lowest mode to particular loca-
tions. That means that the coordinates of the global maxi-
mum have constant values within the { intervals and jump
at the transition points, as it is clearly visible in Fig. 12(d).

For some configurations we have observed two distinct
minima in the lowest eigenvalue as a function of {, which
turned out to be another signal for the existence of the {
intervals.

In the configuration discussed above the global maxi-
mum jumps over spatial distances of 8.5 and 12.7. We will
restrict ourselves for the moment to a spatial analysis, since
the Laplacian modes are almost static (see below and
Fig. 16). We have inspected 50 configurations with 31
boundary conditions and recorded the spatial jumps.
Most of them (160) are smaller than 2 lattice spacings,
which can be viewed as a discretization error, where coor-
dinates of the maximum change by 1 lattice spacing. We
have not considered these minimal jumps further.

There remained 120 jumps over at least 2 lattice spac-
ings. Their distribution is plotted in Fig. 13. It is still
dominated by small jumps; however, the jump distance
also reaches values almost as high as the maximally pos-
sible distance 13.9 = (16/2 - v/3). There seems to be no

*With our lattice spacing the eigenvalue unit in Fig. 12(a) is
1/a®> = 0.87 GeV.

114502-10



LAPLACIAN MODES PROBING GAUGE FIELDS
1.34

PHYSICAL REVIEW D 72, 114502 (2005)
14

1.0k

1.24%

12t ’,f'ﬂ"—__ ,’fﬂ\\

10

...
0 005 0.1 0.15 02 025 0.3 035 0.4 045 0.5

2 i i i i i i i 1
0 005 0.1 015 02 025 03 035 04 045 0.5

(a) (b)
0.05 . — i 16 '
glob. maximum —— <1
glob. minimum*100 ---#--- _
14}
0.04} ;
12 hessooodt _ |
i e
0.031 7 10}
P
oL 8t
N
0.02f s X ? &'”’S ;‘K&v-
L Wk 5 |
r’vﬁ‘. .?’“ :': 1:: Et‘ \ j
0.01} I VI L A ;
* H %
MM - e
ol ;

0 1 1 1 1 1 1 1 1 1
0 005 0.1 015 0.2 025 03 0.35 0.4 045 0.5

(c)

0 005 0.1 015 0.2 025 03 035 0.4 045 0.5

(d)

FIG. 12. Laplacian modes for a configuration in the confined phase. Plotted over the boundary condition { are (a) the 15 lowest-lying
eigenvalues in lattice units, (b) the IPR of the 6 lowest-lying modes (with corresponding symbols), (c) the value of the modulus of the
lowest eigenmode at its global maximum and minimum (multiplied by a factor 100), and (d) coordinates of the global maximum of that

mode, displaying the typical ¢ intervals.
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25 9

20 9
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FIG. 13.  Statistics of the spatial distance of jumps from 50
thermalized configurations (160 jumps occurred with spatial
distance between 1 and 2 lattice spacings but were not consid-
ered further).

correlation of this distance to the { value at which the jump
occurs. Instead, the fact that the jump distribution is rather
flat around half the linear extension of the lattice (here 8),
may point to a random distribution of pinning centers, as
suggested for the hopping of fermions in [14]. In order to
make such a statement more precise, one would need a
model also for the small jumps.

Having underlying calorons in mind, small jumps would
be related to small calorons (and larger calorons might
actually be suppressed in the same way as large instan-
tons). However, calorons of holonomy close to maximally
nontrivial (as expected for the confined phase) would
prefer one jump at { = 1/4. On the other hand, out of the
50 thermalized configurations we find only 11 configura-
tions with only one jump, but 16 with two, 15 with three,
and 8 with even four jumps, respectively, and the jumps are
scattered between / = 0 and £ = 1/2.
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In the last section we have argued that the minima of the  stable as the global maximum. Figure 12(c) shows that for
modulus of the lowest Laplacian mode are actually good  our example its value is changing smoothly only in a
markers for classical topological objects. In the thermal- certain fraction of the first { interval. For most values of
ized background, however, the global minimum is not as { the value is highly fluctuating and so is the location (not

2R 2 Z T[T

7 U TS
e e e o
e e
— ‘ AT IS
<3 ==

=2

——— 7~
7X ~\¢:».-~5

FIG. 14 (color online). “Hopping” of the modulus of the lowest Laplacian eigenmode. The rows represent different modes. First
row: periodic adjoint mode; second to fourth row: fundamental mode with { = 0.020, 0.355 and { = 0.480 representing the three {
intervals; fifth row: antiperiodic adjoint mode. The columns show different planes through the lattice. Left: plane through (x,, x4) =
(12, 1) with the maximum at (x;, x3) = (6, 6) occurring in the first interval as seen in the second row; middle: plane through (x,, x,) =
(4, 4) with the maximum at (x, x3) = (14, 14) occurring in the second interval as seen in the third row; right: plane through (x,, x;) =
(6, 3) with the maximum at (x, x3) = (6, 11) occurring in the third interval as seen in the fourth row, such that the plots contain the
respective global maximum. The vertical scale is 0.1 for the adjoint and 0.05 for the fundamental plots, respectively.
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FIG. 15. Value and location (* 1 lattice spacing) of all local
maxima that become global ones in some ¢ intervals.

shown). Furthermore, the number of local minima is typi-
cally an order of magnitude bigger than the number of local
maxima. Therefore, it is difficult to employ those minima
to eventually localize background instantons or calorons
within a thermalized gauge field.

In Fig. 14 we inspect the lowest mode locally. As can be
seen immediately, the modulus of the lowest mode is quite
smooth which justifies the expectation that these modes do
not possess UV fluctuations. Horizontally in the figure we
have plotted 3 lattice planes that contain the locations of
the global maximum taken in the different { intervals. The
precise { values representing the intervals are chosen by
the demand for a maximal IPR. Following the maxima one
can see that they either remain as local maxima or dis-
appear in the other { intervals. In other words, the hopping
effect comes about by local maxima turning into global
ones in particular £ intervals, as visualized in Fig. 15.

For comparison we show in the first and fifth rows of
Fig. 14 the lowest adjoint mode with periodic and anti-
periodic boundary conditions, respectively. These modes
are correlated to the fundamental ones with the closest
boundary conditions. Hence the adjoint Laplacian modes
are also subject to hopping (when one allows for antiperi-
odic boundary conditions).

When compared to the classical backgrounds the max-
ima in thermalized backgrounds are more pronounced, i.e.
more localized [compare the scales in Fig. 12(c) and
Fig. 6]. Accordingly, the IPR’s are higher, varying between
I =4 and I = 11 for the lowest fundamental mode [cf.
Fig. 12(b)]. Moreover, the regions outside the lumps now
have a lower modulus. This can be quantified by the
average of |¢|, which for the thermalized background is
lower than the classical one (and rises at the points of
transition). For the lowest adjoint mode the IPR is even
higher, I = 21 and I = 53 for periodic and antiperiodic,
respectively, an effect which has already been observed in
[17].

PHYSICAL REVIEW D 72, 114502 (2005)

FIG. 16 (color online). Time dependence of the maxima in the
three intervals, i.e. at { = 0.020, { = 0.355, and { = 0.480 with
()C],Xz) = (6, 12), (X],)Cz) = (14, 4), and (X],)Cz) = (6, 6), from
top to bottom, respectively. The vertical scale is 0.05 as in the
corresponding space-space plots of Fig. 14.

Thus, the overall behavior of the lowest Laplacian eigen-
modes in equilibrium background fields is again analogous
to the behavior of fermionic zero modes [8].° Still the
lowest Laplacian mode seems to be broader than the fer-
mionic counterpart, which is probably also the reason why
the maxima are quite static; see Fig. 16.

At this point it is desirable to discuss more quantitatively
the feature of localization of the Laplacian modes. We have
found it useful to add to the IPR measurements done so far
a description suggested by Horvath [42]. It compares how
quickly clusters (in our case of large modulus of the
Laplacian mode) grow in size and how much—at the

SReference [8] deals with SU(3) gauge fields (on a 20° X 6
lattice), which should not differ in the general picture.
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FIG. 17. Characterization of the cluster(s) occupied by Laplacian modes: accumulated norm (smooth curves) together with the
relative size (step curves) as a function of the space-time filling fraction of the mode. The upper row shows (a) the lowest fundamental
Laplacian mode with ¢ inside the first interval (the mode is localized), (b) at the first transition (where it has turned to global), and
(c) inside the second interval (less global). The lower row shows the lowest adjoint Laplacian mode with (d) periodic boundary
conditions and (e) antiperiodic boundary conditions (both are highly localized).

same time—they gain in norm, when their total volume
increases by lowering the lower cutoff in the cluster defi-
nition. The size of the cluster has been defined here as the
diagonal of the enclosing 3D cube (since the modes are
almost static) divided by the diagonal of the 3D lattice.
According to this description, a profile is called localized
when small clusters already accumulate a large norm
fraction.

For the Laplacian modes we find mostly one big cluster.
As Fig. 17 shows, the adjoint modes are always local, but
the fundamental modes are sometimes rather global, de-
pending on the boundary condition . This is the case, for
instance, for ¢ = 0.300 (first transition point) and ¢ =
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0.355 (second ¢ interval), cf. Figs. 17(b) and 17(c).
There the cluster already has its maximal size, i.e. has
percolated through the lattice, although the accumulated
norm is around three quarters only.

Thus this analysis supports the view of Laplacian modes
being close to wavelike (as has already been argued in the
caloron background). Hence they should be able to reflect
the background gauge field quite well everywhere on the
lattice. This is an advantage for Laplacian gauge fixing and
the filter method proposed in the next section.

To end this section about Laplacian modes in equilib-
rium backgrounds, we want to mention a possibility to
connect the behavior of Laplacian modes in thermalized
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FIG. 18. Scatter plots of the Polyakov loop (horizontal) at lattice sites where the modulus of the Laplacian modes (vertical) with
£ = 0.02 (close to periodic, stars) and { = 0.48 (close to antiperiodic, circles) is large. Left: original configuration; right: the Polyakov

loop measured on the configuration with 5 smearing steps applied.
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FIG. 19. Comparison of contours of constant Polyakov loops (dashed curves) after smearing and of the unsmeared Laplacian modes
at large modulus (70% and 90% of the maximum, solid curves), in lattice planes where the latter become maximal. Left: the periodic
mode vs a positive Polyakov loop (0.7 and 0.9) in (x,, x4) = (12, 1); right: the antiperiodic mode vs a negative Polyakov loop ( — 0.7

and —0.9) in (x,, x4) = (6, 3).

and classical backgrounds. It involves the smoothing of the
gauge field background by applying smearing (for instance
5 steps) to it. Then the maximum decreases in modulus
(and can move or join with local maxima), whereas the
minimum value increases. More importantly, the number
of local minima decreases drastically and from some stage
on it should be possible to use the minima as markers of the
(gradually emerging) topological structure. However, such
an approach mixes two techniques to suppress UV fluctua-
tions and it would be more convincing to interpret directly
the Laplacian modes of the original configuration.

Interestingly, we have found an interrelation of the pin-
ning of the Laplacian modes to a gluonic observable,
namely, the Polyakov loop. The maximum of the modulus
of the periodic mode is correlated to a positive Polyakov
loop, whereas the maximum of the antiperiodic mode
prefers negative values; see Fig. 18 left. Of course, this
expresses only an overall tendency, because there is a
mismatch between the smoothness of the Laplacian mode
and the roughness of the Polyakov loop. To make this
statement quantitative one can measure the sum over the
Polyakov loop weighted with |¢|> of the periodic and
antiperiodic modes (the horizontal coordinate of the ““cen-
ter of mass™ of that figure). This gives weighted averages
of 0.206 and —0.1154 for the two cases, respectively, while
the ordinary Polyakov loop average is 0.005.

We have smeared the gauge field, which also results in
smoothing the Polyakov loop; then we compared the latter
to the Laplacian modes of the original configuration. The
mentioned tendency becomes more pronounced, see
Fig. 18 right, and is now locally visible. As Fig. 19 shows,
the smeared Polyakov loop provides a collection of pinning
centers for the modes to settle down at Polyakov loops near
1, and —1,, respectively. Hence the Laplacian modes on
the unsmeared configuration know about the Polyakov
loop landscape, which only emerges after smearing.

The direction of this correlation agrees with the findings
in classical solutions (compare Fig. 1 top panel and Fig. 6),
which seems to suggest calorons as ‘“‘underlying” the

thermalized gauge fields. However, it can also be inter-
preted within the Anderson localization scenario, with the
Polyakov loop localizing the candidate ‘“‘minima of a
random potential”’ to be occupied by the scalar or fermi-
onic modes.

V. A NEW FILTER METHOD

In the following we will introduce a new low-pass filter
based on the Laplacian modes. It uses an exact representa-
tion of the links in the form of a sum of the latter, which, by
truncation, should remove UV noise and find the ‘“‘under-
lying IR structures.” Hence, the spirit of our method is
close to a Fourier decomposition or a (gauge invariant)
high momentum cutoff.

Technically, our approach is similar to the one in [20],
where the field strength was given in terms of a sum over
fermionic modes. A similar mode truncation for the
overlap-based topological charge has been used in [43]
and studied in more detail in [44,45]. However, we will
obtain directly the link variables, and in this ‘“‘recon-
structed”” configuration any observable can be measured.

A. Derivation and properties

We combine the definition of the gauge covariant
Laplace operator, Eq. (1), with a decomposition into its
eigenmodes:

N
—AY =D At (0$0). (11)
n=1
Aty = x + [t one immediately obtains

N
Ut () = = 3 At ()0 (x + ). (12)
n=1

The corresponding formula for U;Q aty = x — f is fully
equivalent to Eq. (12), while

ab 1 . a b
0% = 2 Z A (X)), (), (13)
n=1
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N
0= Zl Al ()P (y) Vy#xxxp (14

could be used as a check for the approximation to be
discussed now. Notice that the eigenfunctions enter these
expressions in a combination that is invariant under a
multiplication of the eigenfunctions with a complex phase.
More generally, at a level with degeneracy k the expres-
sions are invariant under a change of the basis [a global
U(k) rotation acting on the index n].

The idea of the filter is to truncate the sum in Eq. (12) at
a rather small number N of eigenmodes. When doing so,
the question arises of how to relate the r.h.s. of Eq. (12) to a
unitary link variable. We remind the reader that in the
cooling method staples are added. This gives a quaternion,
which becomes an element of SU(2) upon multiplying by a
real number. We will use the same projection. However, the
nontrivial task here will be to arrive at a quaternion in the
first place. We will show now that the charge conjugation
symmetry of the Laplacian helps to resolve this issue.

For the ¢ terms in the sum we use the abbreviation

U (),p = B8 (0B (x + ). (15)
The charge conjugation symmetry (5) implies
uh (X),—¢ = euﬂ(x)f;{e_l, e=io,  (16)

For ¢ = 0 (periodic) and { = 1/2 (antiperiodic) these
contributions are automatically included in the sum in
Eq. (12) (as every level is two-fold degenerate with eigen-
modes ¢ and ¢'). To make use of this relation for general
{, we take the average of the link formula (12) over { and

_Z:

N1 —
M=

s
Il

U,u(x) = [An,{u,u(x)n,{ + AZ,—ZM;L(X)”,*{]

a7

I
I

N —

M2

3
I
—

A el (x), ¢ + eu#(x);ge_l].

So far this manipulation is exact, but seems artificial.
However, it will help in the truncation of the sum.
Parametrizing the matrix in the brackets we have

a b d° ="\ _( u v
S ) 8

For a matrix of this form® the inverse is the same as the
Hermitian conjugate up to a factor, which is the determi-
nant |u|> + |v|?> and positive for all practical purposes.
Hence, the matrix obtained by truncating the sum is an
element of SU(2) up to the square root of the determinant
by which we will divide.

An alternative way to arrive at a unitary link is to use the
unitary matrix in the singular value or polar decomposi-

(18)

®Equation (18) is actually the most general quaternion pa-
rametrized by Reu - 1, + Imu - io3 + Rev - io, + Imv - io.
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tion. It agrees with our procedure under special circum-
stances, for instance, if the matrix to start with has a real
determinant as is the case for / = 0 and / = 1/2. In our
point of view the inclusion of both { and — ¢ is very natural
since these boundary conditions contain the same informa-
tion of the Laplacian mode (same eigenvalue and charge
conjugated eigenmode).

To summarize, there is an exact formula for the link
variables in terms of the Laplacian modes, namely,
Eq. (17). It is this sum we truncate to obtain the filtered
links

B N
0,0, = (— S Ay (@, + eum;:,ge-l]) ,

n=1 det=1

Mdet=1 = M/VdetM, (19)
where the operation (...)ge—; forces the link variable to
have a unit determinant’ (and we have dropped the factor
1/2).

Equation (19) is our final proposal for a low-pass filter
acting on lattice configurations. It is a mapping from the
original links U, (x) to the filtered ones U u(X)y ¢ via the
Laplacian eigenmodes with the phase { in the boundary
condition as a free parameter. The quality of the filter is
controlled by N, where N = N reproduces the original
configuration exactly (with no determinant correction nec-
essary). Formally, the filtered links U M(x) look like com-
posite fields, as they are produced by bilinears in ¢,
Eq. (15).

Our approximation keeps the full gauge covariance,
because if a gauge transformation g(x) acts on ¢(x) from
the left, then g (x + ) acts on ¢*(x + ) from the right
(and the determinant is gauge invariant) resulting in
g(x)UM(x)gT(x + [i) as it should be.

It is instructive to investigate the extreme case of N = 1,
i.e. the contribution from the lowest mode only. Then the
filter gives—independent of the starting configuration—a
pure gauge U, (x), but with a Polyakov loop given by {.

The best way to understand this is by going into
Laplacian gauge [16], that is, to rotate the lowest mode
to have only an upper nonvanishing component, which is
real. Then the matrices u M(x) would have only a real 11-
component, and adding the charge conjugate and normal-
izing by the square root of the determinant makes all U , (x)
equal to minus the identity. However, for the nontrivial
boundary conditions of Eq. (3) one has to slightly rethink
this procedure. The simplest way to define the gauge fixing
then is to demand the form (real, 0)” for the (always
periodic) ¢(x). By transforming back to ¢(x), Eq. (4),
and plugging this into Eq. (15) the same considerations

"We have used the positive root in Eq. (19) for all links. One
can, in principle, also work with a local choice of the positive or
the negative root, but we do not see a reason to introduce a Z,
freedom here.
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hold, with the only exception that u%=%~"(x) receives an
additional factor exp(—2mi{/N,). After charge conjuga-
tion and normalizing, the filtered links become U,(x) =
—exp(—2mi{T3/N,). Hence the filtered Polyakov loop is

gfj)(fc)N:L ;= cos@ml) V& (20)

These considerations did not use that ¢(x) is the ground
state. Thus every eigenmode alone gives vanishing action
and a Polyakov loop as above. Since the superposition in
Eq. (19) is nonlinear, we expect N = 2 to be the first
nontrivial filter with nonvanishing action.® As we will see
in the next section, the trace of the Polyakov loop will start
to fluctuate in this case, but on average is still close to the
value of Eq. (20).

Let us add a few remarks on the possible stability of the
filtered links U, (x)y,, under variations of N. From the
normalization of ¢,(x) it follows that the entries of
u,(x) are roughly O(1/N’). The prefactor A, is rising
slightly with n, such that one can expect the terms in the
sum to be of the same order of magnitude.

The only exception to this argument is the caloron
background at { = 1/4, where the lowest Laplacian eigen-
value is strongly suppressed w.r.t. the other eigenvalues. As
a result, the lowest mode practically does not contribute to
the filtered links. Here the situation is analogous to the
fermionic filter in [20], where the zero mode does not
contribute.

Actually, the staggered symmetry of the Laplacian can
be used to improve the convergence. Relation (6) between
low and high modes immediately gives

Wy ()N =g = ~Uu(X) ¢ (21)

Therefore, the inclusion of the upper end of the spectrum
does not change the contributions to the filtered links
locally. It is merely reweighting the terms in the sum (19)

—\, — 4D — 2, (22)

With this insertion one has to sum in Eq. (19) only over half
the spectrum to obtain the original link. Now each subse-
quent term u,,(x), has a smaller weight. In particular, the
weight of the ground state is the biggest.

The price to pay is to include the upper end of the
spectrum of the Laplacian, which a priori contradicts the
meaning of a low-pass filter. We decided not to include the
highest modes and to stick to Eq. (19). Nevertheless, we
have checked the consequences of such a modification for
the results presented below. The changes are quite small
apart from the case of reconstructing the caloron back-
ground from N = 2 modes at { = 1/4, the case discussed
above. Therefore, it seems that the local information

8This is true unless ¢ =0 or ¢ = 1/2 for which the two-fold
degeneracy makes N = 3 (equivalent to N = 4) the first non-
trivial case.

PHYSICAL REVIEW D 72, 114502 (2005)

TABLE I. Behavior of the determinant used to project to an
SU(2) element in the truncated sum (19), depending on the
number N of modes. The background is the large caloron on
16® X 4 with ¢ = 1/4.

N 1 4 10 50 200
min,log;, det —15.3 —12.1 —8.5 —6.1 —4.1
max,log;, det —11.9 —-8.6 -7.6 =55 -39

u,(x), is more important for the filtered links than the
relative weights A, of the eigenfunctions. One might
speculate whether eigenmodes other than the lowest ones
could be used and whether the weights could be chosen
arbitrarily (constant or random).

B. Classical objects seen through the filter

In this subsection we test the filter in a controlled
environment, namely, for calorons as smooth config-
urations.

First we want to study a technical detail, namely, how
big the determinant is that appears in (19) to scale up the
sum to an SU(2)-valued link. In other words, how much of
the link is captured by the superposition of a finite number
of modes (in a naive sense without inspecting any structure
in the links).

From Table I one can read off that this determinant is
small (the correction factor is large) when only a few
modes are taken. This is to be expected from the smallness
of the ¢,(x) that are square normalized on the entire
lattice. The determinant grows with N. Of more relevance
is that the minimum and the maximum of the determinant,
taken over the lattice, approach each other, such that all
links appear “‘equally well filtered.”

The most important question in the caloron context is
whether the filtered links produce the action density lumps
of the two constituent monopoles including the typical
structure in the Polyakov loop. In Fig. 20 we give the
observables corresponding to Fig. 1 (top panel) in the
filtered configuration with different ¢ and N.

For the chosen N < JN, the boundary condition pa-
rameter governs the average Polyakov loop. In the inter-
mediate case { = 1/4 the average Polyakov loop trace is 0
with extrema of nearly *1 at the monopole cores; see
Fig. 20(b). In the periodic case { = 0 the Polyakov loop
is almost everywhere 1, with a dip resembling P = —1, at
the corresponding monopole; see Fig. 20(a). The antiperi-
odic case (not shown) is complementary, P =~ —1, with a
signal at the other monopole.

This picture stays the same when more modes are taken
into account.” The Polyakov loop for the periodic case
develops a stronger dip then, but is still very close to 1,

? Although, of course, in the limit N — N the Polyakov loop
is the original one for all {.
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FIG. 20.

Action density, topological density, and a Polyakov loop computed from filtered links in the background of the large caloron

of Fig. 1. (a) Periodic boundary condition ¢ = 0 with N = 4 modes (action and topological density multiplied by 30), (b) { = 1/4
with N = 4 modes (scale 100), and (c) more modes N = 150 (scale 400 just as in the original plot of Fig. 1, top panel).

TABLE II.

Quality of the reconstruction of a large caloron from the filter with a different

number of modes. Both, local quantities (interpolated) and global quantities converge to the

original values within some error margin.

N 4 10 100 150 200 Original
X3 at lumps 4.0 3.7 4.1 4.3 3.7 44
13.0 133 12.9 12.8 133 12.6
Action density 0.014 0.010 0.0023 0.0037 0.0026 0.0032
Top. density 0.013 0.010 0.0019 0.0035 0.0026 0.0032
Pol. loop +0.84 +0.80 *1.00 *0.99 *0.99 *0.97
Total action 24 22 1.62 1.34 1.63 1.07
Total top. charge 0.98 0.99 1.00 1.00 1.00 1.00
Average Pol. loop —2X 107 —4X107% —0.02 0.0001 —0.0002 |—0.0003

anywhere else. For the intermediate case the average stays
close to 0. Locally it agrees almost perfectly with the
original configuration; see Fig. 20(c) for N = 150 vs
Fig. 1 (top panel). To make this more quantitative we
give the values of the Polyakov loop at the action density
lumps (see below) and on average in Table II.

The findings for the reconstructed action and topological
charge are analogous. In order to compare the two, we have
computed them with the help of an O(a*)-improved field
strength tensor [46]. The periodic case sees only one
monopole,'® while the intermediate case is able to detect
both (Fig. 20). We conclude that the boundary condition
{ = 1/4 s the appropriate one when one wants to describe
calorons with maximally nontrivial holonomy through the
filter, as is also clear from the discussion of the contribution
of a single mode in the last section.

Remarkably, the filter with the number of modes as low
as N = 4 already has quite some knowledge about the
classical structures. Although the action density lumps
are a bit spiky and their locations are not perfect as re-
corded in Table II [notice also the different scales for the

1()Increasing N makes the other monopole visible, but with a
height much lower than that of the first monopole. Thus this
choice of ¢ reproduces the equal mass constituents quite badly.

action and topological density used in Fig. 20(b) vs
Fig. 20(c) and Fig. 1 (top panel)], they clearly reflect the
constituent structure with opposite Polyakov loops. The
two lumps are almost self dual (cf. third and fourth row in
Table II). Furthermore, the adopted definition of the topo-
logical charge works quite well for the filtered links and
gives a total topological charge close to 1. We stress that
the filtered configurations have not undergone further cool-
ing and their approximate self-duality is a remnant of the
original configuration passed on by its lowest-lying
Laplacian modes.

The inaccuracies of the N = 4 case are cured by in-
creasing the number N of modes used in the filter, however,
not systematically. The quite perfect case N = 150 used
for the plot in Fig. 20(c) is contrasted by N = 200, where
some of the observables are further away from the original
configuration. We interpret this as a limitation on the
precision of the filter. Away from the ultimately exact limit
N = N, the filter will reproduce the classical background
only within some error and hence it is not useful to take
more than a few hundred modes into account (at least for
this example). This does not spoil the use of the filter at all,
since its intended application will be mainly to thermalized
configurations (see below). There it is not the aim to
reproduce the rough background to a high precision, but
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FIG. 21 (color online).

Polyakov loop “evolution” with increasing number N of modes for a thermalized configuration in a fixed

lattice plane (the one of Fig. 25). (a) N = 2, (b) N = 10, (c¢) N = 100, and (d) the original configuration. The vertical axes are from —1

to 1.

to keep only a minimal structure of it such that it still
captures the physical randomness.

We note in passing that the Taubes winding inside
caloron configurations as well as the ring structure for
the charge 2 example are displayed by the filtered configu-
rations, too.

C. Are the filtered fields confining?

The next two subsections are devoted to the application
of the filter to thermalized configurations. One of the main
issues here is whether the filtered links still give rise to
confinement.

To this end we have measured the Polyakov loop corre-
lator on the ensemble of 50 configurations on a 16 X 4
lattice created at 8 = 2.2. The Polyakov loop as the de-
confinement order parameter has average 0 and therefore
we choose ¢ = 1/4 in the construction of the filter,
Eq. (19). Indeed, the filtered Polyakov loop {trP/2) aver-
aged over the lattice has an expectation value compatible
with O (with 50 configurations giving standard deviations
from 0.015 for N = 2 to 0.083 for N = 100 whereas the
original standard deviation is 0.025). This again confirms
that the average Polyakov loop for small N follows the one
of the trivial case N = 1. In a way, we adapt the Polyakov
loop average by a parameter in our filter and then look at
correlations in fluctuations on top of it.

Figure 21 shows how the Polyakov loop looks locally
(for a fixed configuration and lattice plane). When taking
more modes into account, the Polyakov loop deviates
further and more often from the average 0. Figure 22 makes
this statement more quantitative. It displays the distribution
of Polyakov loops for one filtered configuration.'' As is
clear from the discussion so far, the distribution for N = 2
is quite narrow and broadens with growing N. At N = 100
itis very close to the one of the original distribution and the

Haar measure /1 — (trP/2)>.

Figure 23 shows the logarithm of the Polyakov loop
correlator, related to the interquark potential, measured at
the filtered ensembles with N =2 to N = 100 together

""We thank A. Wipf for suggesting to show the N dependence
of the local Polyakov loop distribution.
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FIG. 22.  Distribution of Polyakov loops over the lattice sites
for one configuration when filtered with the intermediate bound-
ary condition ¢ = 1/4 for N = 2 (narrow distribution around 0,
divided by 15 to fit in the same plot) and N = 100 (solid line)
compared to the original configuration (dashed line) and the
Haar measure (dotted line).
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FIG. 23.  Polyakov loop correlator plotted on an inverse loga-

rithmic scale over the distance for different N compared to the
original one.
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TABLE III.
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Observables to characterize the filter when acting on equilibrium configurations.

The string tension is computed from 50 configurations, the other two observables are for the
example configuration characterized locally in Figs. 21 and 25.

N 2 4

10 50 100 Original

o/10° MeV? 1.732(31)  1.447(25)
Wilson action 66 84
Max. # clusters 37 50

1.299(17)

1.385(13)
106 177
70 79

1.574(25)
234
104

1.509(70)
2131
342

with the unfiltered one. There is clear evidence that the
filtered Polyakov loop correlator decays exponentially with
the distance, in roughly the same window as the original
one does. The potential after filtering has no sign of a
Coulomb regime since the filter has washed out short range
fluctuations as it should. The filtered curves are also shifted
vertically. The value at zero distance represents the width
of the Polyakov loop distribution. It approaches the origi-
nal one from below, because the filtered distributions are
narrower, as was shown in Fig. 22.

In order to cast the confining behavior into numbers we
have performed an exponential fit ¢ exp(— &) in the range
between 3 and 6 lattice spacings.'? The slope & is directly
proportional to the string tension o = /N,a*. We will
use the corresponding string tension of the original con-
figurations'? as the reference observable. The lower end of
the fit region was taken such that the numerical value of &
for the original configuration is stable when compared with
a fit over 1 to 6 lattice spacings including a Coulomb part.
Towards large distances the fit was limited by statistical
errors. The obtained values for the string tension and
estimates of its error are given in Table III. Although the
approach of the filtered string tensions for the number of
modes between N = 2 and 100 to the original one is again
not monotonic, the latter is reproduced within 15% (for
N = 4 modes, the reproduced string tension is almost
perfect).

A priori it is not obvious whether the Polyakov loop
fluctuations in the filtered and the original configurations
are correlated or whether the filter creates independent
fluctuations (a pointwise scatter plot of the two respective
Polyakov loops against each other shows a correlation
setting in not below N = 50 modes). A similar question
has been investigated in [48] concerning two Wilson loops
W,(C) and W,(C)."* There the correlation (W,(C)W,(C))
(i.e. between different Wilson loops along the same curve
C) was compared to (W;(C)XW,(C)) representing the hy-
pothetic independence of the Wilson loops (and decaying

"2Qur lattice spacing is 0.21 fm provided o(0) = (440 MeV)?.

3The obtained value of the string tension (for the original
configurations, see Table III) is equivalent to 0.780(0) whereas a
parametrization o = +/1 — (T/T,)*c(0) [47] would predict
0.660(0).

'“We thank J. Greensite for urging us to perform the following
test.
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FIG. 24. A test for whether the original and filtered configu-
rations contain correlated fluctuations disordering the Polyakov
loop. Correlators C(r) (lower line) and C;,4(r) (upper line), see
text.

exponentially with the area of C). Adopting this idea to our
case we have to compare

C% = jl) = HuPEuPE) - ePy@uPy()  (23)

to
Cina(IZ = 3I) = HuP@uPEXuPy(HuPy(G)). (24)

We did this for N =4 and show in Fig. 24 that the
correlator C(r) becomes independent of the distance r
rather quickly. Cj4(r) of course decays exponentially
with the sum of the string tensions of the original and the
filtered case. We conclude that the fluctuations disordering
the Polyakov loop for the original and the filtered configu-
ration are not independent but rather correlated.

D. Structures found by the filter

Finally, we give a first description of the vacuum struc-
tures that appear when the filter is applied to an individual
configuration from an equilibrium ensemble, representing
finite temperature in our case.

The behavior of the Polyakov loop was shown in the
previous section (Fig. 21). The total action of the filtered
configuration behaves like N'/3 in a range from N = 2 to
N = 100 eigenmodes. The interpretation of this particular
dependence is not obvious, but the overall picture is clear:
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FIG. 25 (color online).  Left column: “evolution” of the action
density with a growing number of modes in the filter, (a) N = 4,
(c) N =10, (e) N = 50, and (g) N = 100. Chosen is the lattice
plane (x,, x4) = (6,4) which contains the global maximum for
N = 10 sitting at (x;, x3) = (10, 13). For comparison the action
densities for the same configuration after 5 steps of smearing (b),
after 2 steps of cooling (f), and for the original configuration (h)
are presented with uniform scale. In the second row a compari-
son is made between the action density (c) and the topological
density (d), both after filtering with N = 10.

the more modes are included in the filter, the more fluctua-
tions occur and contribute to the total action. In the ex-
ample we use (cf. Figs. 21 and 25) the action in the first
nontrivial case N = 2 is 66 in instanton units,15 compared
to a total plaquette action of 2131 for the original configu-
ration. The first number should be read as the minimal
content that survives the filter. The only way to achieve an
“even smoother configuration’ would be to apply the filter
to the already filtered configuration.

The global maximum of the action density is only
weakly varying with N, meaning that there are peaks of
about the same height at every stage of the filter. From

50On the lattice, an instanton has an action of 272 correspond-
ing to the continuum action 87%/g? since a factor 8 = 4/g? is
pulled out of the lattice action.
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FIG. 26. Relative number of action density clusters as a func-
tion of the lower threshold for a filtered configuration at different
N.

Fig. 25, showing the action density in a fixed lattice plane
for different N, it is evident that these peaks are quite
narrow. This effect is counterintuitive, but has also been
observed for caloron backgrounds in the last section. The
peaks look the same in a space-time plane, too, i.e. they are
not static. The figure also shows that at least some of the
peaks are stable w.r.t. N, that is, they stay as local maxima.
Their width is not changing much either.

In order to more quantitatively describe the filtered
structure we have performed a cluster analysis. Lowering
the threshold we have recorded the number of clusters and
their respective volume, size, and accumulated action. The
number of clusters first rises and after reaching a plateau
decreases again due to cluster mergings, while the peaks
remain.

As shown in Fig. 26, the corresponding curves fall al-
most on top of each other, when the number of clusters is
taken relative to its maximum at that N (see Table III). That
suggests that the difference in the filtered action for differ-
ent N is due to the different number of clusters. Otherwise
they are rather similar. Other indications for that are the
volume, the size, and the action per cluster, which—plot-
ted as a function of the threshold—fall on top of each other
as well.

In Table III we give for each N the maximal number of
clusters. The latter appears at a threshold of roughly a third
of the global maximum, where all clusters together have
accumulated a few percent of the lattice volume and
roughly 15% of the action. It is interesting to note that
the maximal number of action density clusters roughly
agrees with half the total action (in instanton units, see
Table III third and second row). A lower bound for the
estimated action per peak is thus 0.3. More realistic is to
assign part of the remaining action below the threshold to
the peaks (sitting in their tails). From Fig. 26 we read off
that at a threshold of 0.01 (around 1/15 of the global
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maximum) the number of clusters starts to fluctuate be-
cause the region of action density noise has been reached.
At that threshold the accumulated action of the clusters is
roughly 60% of the full one. This results in an average
action per peak of 1.2 in instanton units. Hence, from an
action density point of view, this estimate is compatible
with an interpretation of the peaks as (possibly fractional)
instanton lumps.

Indeed, the local maxima of the action density are often
accompanied by local extrema in the topological charge
density. This is visualized for N = 10 in Fig. 25(d).
However, the topological charge density does not equal
the action density at the peaks. For the global maximum at
N = 10 the ratio of both quantities is 0.87, but for other
local maxima no signature of (anti-)self-duality was found.
Moreover, the total topological charge of generic configu-
rations expressed in terms of the filtered links is not close
to an integer. In this respect, the configuration, although it
is filtered, is not smooth enough to make the
O(a*)-improved field strength definition of the topological
charge work. Fermionic definitions via the index should be
used to determine whether the filter preserves the total
topological charge.

The peaks seem to have nothing to do with the maxima
of the modulus of the Laplacian mode in that background,
but with the determinant used as the normalization factor
in Eq. (19). Obviously this determinant is given in terms
of eigenmodes (and eigenvalues) of the Laplacian, too,
thus it also contains information about the gauge back-
ground.

Another interesting question is whether the new filter is
related to smearing and cooling. In Fig. 25 we compare the
corresponding action densities to the filtered ones, where
the number N of modes was chosen such that the total
actions are comparable. For instance, 2 cooling steps result
in an action of 172, which therefore compares to N = 50
(see Table III, second row), and 5 smearing steps result in
84, which compares to N = 4. As the third and the first
rows of Fig. 25 show, the corresponding peaks seem to
agree locally, which is a nontrivial correlation, because
both methods lower the total action by a smoothing proce-
dure, but in completely different ways. In contrast, 5
cooling steps lead to an action of 56, which seems to be
comparable to N = 2. The action density, however, looks
very different. It is clear that for more cooling steps the
correlation to the filter has to break down, since cooling
typically drives towards action plateaus of a few instanton
units and finally removes the string tension. This is avoided
in the filter method.

More work has to be done to better understand the
(N-dependent) spiky structures induced by the filter.

VI. DISCUSSION AND OUTLOOK

We have investigated Laplacian eigenmodes in both
classical and thermalized gauge configurations with re-
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spect to their capability to analyze certain properties of
the background. Our localization studies for classical back-
grounds lead to the conclusion that there is an analogy to
fermionic (near-zero) modes. In caloron backgrounds they
detect the monopoles by a minimum and a maximum and
hop between these constituents upon changing the bound-
ary condition angle {. We conclude that such a localization
is merely due to information about the gauge background
in the covariant derivative, which is modified by the angle
{ in the same way, and does not depend much on the spin of
the analyzing field.

Yet, there is some difference between fermionic and
Laplacian modes. This concerns, for instance, the behavior
under intermediate boundary conditions. For the caloron
fermionic zero mode one lump grows at the expense of the
other, while the Laplacian ground state develops a valley.
Also the precision of the localization is lower than for the
fermions: the maximum of the modulus is less pronounced
and static even for a time-dependent action density of the
background. For the minimum these problems do not
occur, but the locations of both, minimum and maximum,
deviate from the constituents. Moreover, the modulus of
the mode approaches the average value away from those
structures and hence the IPR’s are rather small. That is why
the Laplacian modes resemble modified waves rather than
exponentially localized discrete states (in continuum
language).

The wave character also applies to the Laplacian modes
in the adjoint representation, where the underlying struc-
tures (constituent monopoles or instantons) are detected by
minima only.'® We expect them to become zeros in the
continuum, which is natural from the point of view of the
Laplacian Abelian projection. For antiperiodic adjoint
modes these minima form even two-dimensional sheets
between the constituent monopoles. We have illustrated
this for a semiclassical background, too. Signatures of the
Taubes winding can be found in both representations.

In thermalized backgrounds, there is clear evidence that
the lowest mode changes its global maximum with the
boundary conditions. Different intervals in the boundary
condition angle { emerge, where different local maxima
take over the role of the global maximum. We have ob-
served up to 4 jumps per configuration and the correspond-
ing lattice locations seem to be close to randomly
distributed. These locations are also visited by excited
Laplacian modes and those in the adjoint representation.

The corresponding global minima are not stable under
the boundary condition (and the number of local minima is
large). Therefore they could not be used as a practical tool
for localization. Thus, a straightforward interpretation of
Laplacian modes on thermalized backgrounds in terms of
classical objects is not possible. In this context it would be

For adjoint fermions there are more zero modes, with maxima
at the constituents [7].
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interesting to study the effect of quantum fluctuations on
the Laplacian modes by heating a classical background.

Actually, the IPR is basically insensitive to minima.
Another observation that questions the use of the IPR is
that, in most cases we studied, it is proportional to the value
at the global maximum. This large value apparently domi-
nates the sum in the IPR definition and therefore the latter
gives no new information. In addition to the IPR measure-
ments we have performed a cluster investigation.
Somewhat unexpectedly we have found that the fundamen-
tal Laplacian mode can even be characterized as a global
structure (depending on ¢).

Apart from the weaker localization and their more static
nature, the Laplacian modes behave again similar to fer-
mionic modes. A natural next step is to clarify whether
Laplacian and fermionic modes on the same configuration
see the same locations. In order to eventually go beyond a
purely empirical description it is desirable to sort out and
measure the relevant gluonic features in the gauge field
backgrounds, for instance, the topological charge density.

Smoothing techniques like smearing could be used for
this purpose, although they have the disadvantage to mod-
ify the gauge background. Then the Laplacian modes
become similar to those in classical backgrounds: they
level off thereby lowering (and joining or slightly moving)
the lumps and smoothing the minima.

We have pointed out an interesting relation of the un-
smeared Laplacian mode to a gluonic observable after
smearing: the smeared Polyakov loop provides pinning
centers, some of which the Laplacian mode occupies.
Such a finding in itself is in accordance with both hypoth-
eses, calorons underlying the thermalized configuration
and Anderson localization. More work has to be done to
better assess the real mechanism.

Another interesting question is whether the Laplacian
modes reveal signatures of the deconfinement phase tran-
sition. As a first signal we have seen a qualitative differ-
ence in the { dependence of the spectrum. Of course, the
Laplacian modes should also be investigated at zero tem-
perature, to see to what extent the properties described in
this paper remain.

Laplacian eigenmodes are the natural ingredients for a
Fourier-like filter. We have described a new method to
reconstruct the link variables by truncating a sum over
Laplacian modes. Because of the use of eigenmodes one
might view this technique as a nonlocal smoothing. It is
actually not too expensive; the computation of N = 10
modes on a 16> X 4 lattice including the reconstruction
of the links takes a minute on a 1.7 GHz PC. It should
be stressed that the filtered links allow for the measure-
ment of any quantity and that the procedure is not biased
towards any particular degree of freedom in the QCD
vacuum.

The striking properties of the filter are that it reproduces
classical structures, in particular, self-duality, and pre-
serves the string tension (within 15%) when applied to
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equilibrium configurations. The number of Laplacian
modes can be kept remarkably low; typically'’ 4 out of
more than 10° eigenmodes start to reproduce the men-
tioned features qualitatively. Because the filter keeps the
relevant long-range disorder, we claim a “low mode domi-
nance’’ in the confining properties of lattice gauge theory.

The filter has a lower limit, namely N = 2 modes. It
might well be that the content of action density and
Polyakov loop fluctuations for this case is minimally re-
quired to keep the long-range physics. For the same reason
it is clear that the observed similarity of the filter with
smearing and cooling is limited, for instance, to early
stages of cooling.

Apart from the number of modes, the only filter parame-
ter is the phase in the boundary condition. We have shown
that it influences the quality of the filter and that in the
confined phase (at finite temperature) it is best set to the
intermediate value / = 1/4.

Concerning the tomography of the filtered configura-
tions we have not yet reached a final understanding. The
filtered Polyakov loop is narrowly distributed around 0 and
approaches the original distribution for N =~ 100. In the
emerging action density isolated peaks appear, both for
caloron and equilibrium configurations. This seems coun-
terintuitive, taking into account that the filter uses the
lowest Laplacian modes. One should keep in mind, though,
that the contribution of the high end of the spectrum is
almost the same as for the low end (due to the staggered
symmetry).

It seems that the peaks are correlated to the normaliza-
tion factor (inverse square root of the determinant) that has
to be applied to project the filtered link back to SU(2). This
mechanism as well as a possible relation to the structures
found by Fourier-filtering in the Landau gauge [49] and to
singular gauge fields [50] has to be clarified.

In this context it might be helpful to improve the filter
procedure. First of all, the lattice Laplace operator could be
replaced by an improved version. The second opportunity
is to interpolate the eigenmodes. This leads to filtered links
on finer lattices (similar to inverse blocking [51,52]),
which can be subject to blocking. A prerequisite for this
idea is that not only the modulus but also the components
of the lowest-lying eigenmodes are fairly smooth. This is
actually the case in the Laplacian gauge.

There are some possibilities to generalize our method or
to apply it in another physical context. The obvious appli-
cations are to zero temperature and to the deconfined
phase, respectively. For the latter we have checked that
filtering with = 1/4 results in no string tension; however,
one might be forced to fix ¢ in a different way. The quality
of the filter in this phase could be checked by virtue of the
spatial string tension.

""This number, referringto 8 = 2.2 ona 163 X 4 lattice, might
depend on the lattice volume and the coupling constant.
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The generalization to higher gauge groups is not com-
pletely trivial. We have used the charge conjugation sym-
metry [relying on the pseudoreal nature of SU(2)] in the
derivation of the filtered links becoming unitary. For gauge
groups SU(N) the singular value decomposition seems to
be the only alternative.

Fermionic modes could also be used to reconstruct the
gauge field, provided one is able to project out the spin
indices to arrive at an exact formula for the links. This
variant of the filter will be more expensive, but might be
advantageous concerning topological properties of the
gauge field background.
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