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glueball are evaluated and possible candidates are discussed.
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I. INTRODUCTION

The experimental state of knowledge about the tensor-
meson nonet 2�� is well established: the identified reso-
nances f2�1270�, f02�1525�, a2�1320� and K�2�1430� are
listed by the Particle Data Group [1] as the lightest tensor
states and correspond to the 2�� ground-state nonet (two
isoscalars, an isotriplet and two isodoublets, respectively).
We do not consider here the resonances f2�1430� and
f2�1565�, omitted from the summary table of [1]. Strong
decays of tensor states into two-body modes have been
measured by various experiments and the corresponding
averages (or fits) reported in Ref. [1] are precise and well
determined. Also the two-photon decays of the tensor
states T ! �� are well-known. Among the p-wave quark-
antiquark nonets (0��; 1��; 2��) the tensor mesons are
the ones which are experimentally best analyzed. Tensor
mesons have been studied using different theoretical meth-
ods: effective Lagrangian approaches based on vector- and
tensor-meson dominance [2–5], the naive quark model
with possible meson-glueball-mixing [6–10], current-
algebra approach [11], lattice QCD [12], QCD sum rules
[13], the 3P0 model [14,15], Chiral perturbation theory
(ChPT) [16–19], Regge model [20], dispersion-relation
technique [21], anti–de Sitter QCD [22], etc.

In the present paper we study the decays of the 2��

tensor nonet into two pseudoscalars T ! PP and into two
photons T ! �� within a chiral approach evaluated at the
tree-level. We extend the analysis to the kinematically
allowed strong decay modes into a pseudoscalar and a
vector-meson T ! PV and to the corresponding radiative
decay modes T ! P�.

The basic chiral Lagrangian for the tensor mesons is
presented in Refs. [16–19]. In particular, in Refs. [16,17]
the contribution of the tensor-meson resonances to the low
energy coupling constants is evaluated following the idea
suggested in the case of pseudoscalar, scalar, vector and
axial resonances [23]. In Ref. [19] the attention is focused
on the mass spectrum of the tensor mesons. Various decay
properties are analyzed in the framework of tensor-meson
dominance (TMD) in combination with vector-meson
dominance (VDM) [2–4]. A study on the phenomenologi-
cal properties of f2�1270� and f02�1525� is performed in
[9].
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Here we intend to study the decay properties of the full
tensor-meson nonet by performing a fit of the free parame-
ters in the chiral Lagrangian to the available data [1]. We
then turn our attention to some properties of the tensor
glueball with an expected mass of about �2:2 GeV [24].
We evaluate the two-pseudoscalar and two-vector decay
ratios as following from the simplest form of the interac-
tion Lagrangian and discuss some possible candidates.

In Refs. [25,26] the strong and radiative decays of the
scalar quarkonia nonet supplemented by an intruding glue-
ball state have been evaluated in a chiral approach. The
main difficulty of the previous study is a rigorous justifi-
cation of the chiral approach in the mass region between 1
and 2 GeV. At the same time the experimental situation
concerning the scalar sector is not yet complete [1]. The
tensor-meson sector offers a possibility to test a tree-level
calculation for p-wave states within a chiral approach in
the energy region above 1 GeV. The 2�� tensor glueball is
expected to have a mass �2:2 GeV [24] as predicted by
lattice calculation. Also, no significant mixing with the
ground-state quarkonia is expected, as the phenomenologi-
cal study of [10] confirms. The quarkonia-mixing between
the nonstrange nn and the strange ss component is small,
generating an almost ideally mixed nonet. Flavor mixing
driven by instantons, which is large in the pseudoscalar
sector, unknown but possibly large in the scalar one [26]),
does not affect the tensor mesons.

The interest in hadronic resonance physics at an energy
scale larger than 1 GeV is growing and the attempts to
describe mesonic states in chiral approaches become more
numerous. For instance, in [27] the radiative PV decays of
axial states (with mass around 1:3 GeV) were evaluated.
At higher energy scales the calculation of higher order
corrections or possible final state interaction poses a prob-
lem to a chiral approach. However, the chiral Lagrangian
with tree-level evaluations presents a useful phenomeno-
logical tool for the description of high-lying resonances.

The paper is organized as follows. In the next section we
describe the chiral Lagrangian for the PP and �� decays of
tensor mesons. In Sec. III we perform a fit to the known
experimental widths and we discuss the ��, PV and P�
transitions. In Sec. IV we consider the decays of the
unmixed tensor glueball with a mass around 2.2 GeV and
-1 © 2005 The American Physical Society
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discuss some physical resonances. Finally, in Sec. V we
give our conclusions.
II. EFFECTIVE LAGRANGIAN FOR DECAYS OF
TENSOR MESONS

The effective Lagrangian describing the strong and elec-
tromagnetic decays of tensor mesons f2�1270�, f02�1525�,
a2�1320� and K�2�1430� is given by (see detailed discussion
in Refs. [3,16–19])

LT
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4
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Here and as follows the symbols h. . .i, �. . .	 and f. . .g denote
the trace over flavor matrices, the commutator and anti-
commutator, respectively.

The constants c8
TPP, c0

TPP, cT��, cTPV and cTP� define the
coupling of tensor fields to photons, pseudoscalar and
vector mesons. We indicate the strong decays of the octet
(coupling c8

TPP) and the singlet (coupling c0
TPP) states

separately. However, we do not expect a large violation
of the condition c8

TPP � c0
TPP predicted in the large Nc

limit.
We use the standard notations for the basic blocks of the

ChPT Lagrangian [28,29]: U � u2 � exp�iP
���
2
p
=F� is the

chiral field collecting pseudoscalar fields in the exponential
parametrization, D� denotes the chiral and gauge-invariant
derivative, u� � iuyD�Uuy is the chiral field, �
 �
uy�uy 
 u�yu, � � 2B�s� ip�, s �M� . . . , M �
diagfm̂; m̂;msg is the mass matrix of current quarks (we
restrict to the isospin symmetry limit withmu � md � m̂),
B is the quark vacuum condensate parameter and F is the
pseudoscalar meson decay constant.

The term D��;�� is the inverse propagator of the tensor
fields and is given by [16]:
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D��;�� � ���M2
T
��12�g
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� g��@�@� � g��@�@� � g��@�@��; (3)

where MT is the tensor nonet mass.
The tensors ���

P and ���
� are constructed with the use of

chiral and electromagnetic fields:

���
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where F��� � uyF��Qu� uF��Qu
y, F�� � @�A� �

@�A� is the stress tensor of the electromagnetic field and
Q � ediagf2=3;�1=3;�1=3g is the quark charge matrix.

The tensors V��, T ���	� and the dual tensors eV��,eF�� are defined as

V���@�V ��@�V�; T ���	��@�T ���@�T ��;eV���
1

2
"����V

��; eF���1

2
"����F

��:
(5)

We refer to [26,30,31] for the discussion of the term
LP

mix in the Lagrangian, which contains the pseudoscalar
masses and the pseudoscalar mixing. As a result, the
physical states are expressed in terms of the pseudoscalar
octet and singlet states P0 and P8:

	 � P8 cos
P � P0 sin
P;

	0 � P8 sin
P � P0 cos
P;
(6)

where the pseudoscalar mixing angle reads 
P � �9:95�

at tree level [26].
Here we restrict to the tree-level evaluation, we therefore

consistently use the corresponding tree-level result of

P � �9:95�. In the present approach we do not include
the neutral pion when considering mixing in the pseudo-
scalar sector, because we work in the isospin limit. This
mixing is small and can be safely neglected when studying
the decay of tensor resonances into two pseudoscalars.
Similarly, for all pseudoscalar mesons we use the unified
leptonic decay constant F, which is identified with the pion
decay constant F � F� � 92:4 MeV. A more accurate
analysis including higher orders should use the individual
couplings of the pseudoscalar mesons (for a detailed dis-
cussion see Refs. [28,29]).

The splitting of the nonet masses and the singlet-octet
mixing are generated by the Lagrangian LT

mix (see [19,32]).
As a result the physical isoscalar-tensor states f2 �
f2�1270� and f02 � f02�1525� are expressed in terms of
the octet T8 and singlet T0 components by the tensor
mixing angle 
T (covariant indices �� are suppressed):
-2
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f2 � T0 cos
T � T
8 sin
T;

f02 � �T
0 sin
T � T8 cos
T:

(7)

The expressions for the two-pseudoscalar decays are de-
rived from the Lagrangian of Eq. (1) and are listed in the
appendix. Note, that these decays have been discussed
previously in Ref. [6]. We also report the analytical ex-
pressions for the decay rates of the isovector a2 and iso-
doublet K�2 states in the appendix.

The physical vector mesons ! and � are given by
(covariant index � understood):

! � V0 cos
V � V
8 sin
V;

� � �V0 sin
V � V
8 cos
V:

(8)

The vector-meson mixing angle 
V is found to be 39� in
[32] (the value we use), not far from the ideal mixing angle
of 
VI � 35:3�; this in turn means that !�

��������
1=2

p
�uu�

dd� � nn and �� ss. Here we describe vector mesons in
terms of vector fields. Alternatively, vector mesons can be
represented in terms of antisymmetric tensor fields which
is most convenient for constructing chiral Lagrangians
involving vector mesons and their couplings to pseudosca-
lar mesons, baryons and photons [29,30,32,33].
III. RESULTS

A. Two-pseudoscalar decays

In this section we perform a fit to the two-body pseudo-
scalar PP decays of tensor mesons, in particular, the ��,
KK, 		 modes for f2 � f2�1270� and f02 � f02�1525�, the
KK, 	�, 	0� modes for a2�1370� and the KK mode for
K�2�1430� (the K	 mode is not considered in the fit, see
below). The corresponding experimental results, as de-
duced from [1], are reported in Table I. In case of a
asymmetric error the largest value is used. The measured
partial decay width �K�2!K	=��K�2 �tot � 1:5�3:4

�1:0  10�3

does not allow this procedure, we therefore do not include
it in the fit directly but compare later.
TABLE I. Decay properties of tensor mesons.

Mode Experiment (MeV) Theory (MeV) �2
i

�f2!�� 157:0
 7:6 153.51 0.210
�f2!KK

8:5
 0:9 9.15 0.526
�f2!		 0:83
 0:20 0.80 0.023
�f02!�� 0:60
 0:16 0.55 0.102
�f02!KK

64:8
 7:6 41.64 9.288
�f02!		 7:5
 2:9 6.49 0.121
�a2!KK

5:2
 1:1 6.64 1.716
�a2!	� 15:5
 2:0 18.42 2.134
�a2!	0� 0:57
 0:12 0.80 3.652
�K2

2!KK
51:8
 3:2 49.08 0.722

�2
tot � � � � � � 18.496
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For the partial widths of the various states listed in
Table I we use the full widths reported in [1]. For
K�2�1430� an average over the neutral and the charged
K�2�1430� widths is performed, finding: ��K�2 �tot �

103:75
 3:85 MeV.
The free parameters entering in the expressions for the

T ! PP decays are the two decay strengths c8
TPP and c0

TPP
introduced in Eq. (1) and the tensor mixing angle 
T [see
Eq. (7)]. The tensor-meson masses are taken from Ref. [1]:
Mf2
� 1275:4
 1:2 MeV, Ma2

� 1318:3
 0:6 MeV,
MK�2

� 1429
 1:4 MeV (average over the neutral and
the charged states) and Mf02

� 1525
 5 MeV.
A �2 minimum is obtained for the following values:

c8
TPP � 0:0353 GeV; c0

TPP � 0:0410 GeV;


T � 28:78� with �2
tot � 18:496:

(9)

The singlet-octet ratio yTPP � c0
TPP=c

8
TPP � 1:161 is close

to unity, as expected from the strong coupling limit. The
tensor mixing angle 
T � 28:78� is not far from the ideal
mixing angle 
TI � 35:3�. In the chiral study of [32] the
value 
T � 32� is obtained, while in the phenomenologi-
cal study of [9] the slightly smaller tensor angle 
T �
28:17� is found.

The mixing matrices connecting the physical states f2,
f02 to the bare ones, T0 and T8, or to nn � 1=

���
2
p
�uu� dd�

and ss read explicitly:

f2

f02

� �
�

0:876 0:481
�0:481 0:876

� �
T0

T8

� �
�

0:993 0:113
0:113 �0:993

� �
nn
ss

� �
: (10)

The physical states are very close to pure nn and ss
configurations, which is particularly evident from the small
f02 ! �� partial decay widths. Contrary to the pseudosca-
lar sector and perhaps to the scalar one [26,34] a large
flavor mixing in the tensor nonet is not expected.

The fit results are summarized in Table I.
The description of the experimental data (�2

tot=N �
1:85) is good. The largest contribution to �2 comes from
an underestimate of the KK mode for the f02�1525�
resonance.

The theoretical prediction for the branching ratio K�2 !
K	 is

�K�2!K	=��K�2 �tot � 3:93 10�3; (11)

which within errors is in agreement with the corresponding
experimental value of 1:5�3:4

�1:0  10�3.

B. Two-photon decays

We now turn to �� decays of the isoscalar and neutral
isovector tensor states. The ratios �f02!��=�f2!�� and
�a2!��=�f2!�� do not depend on the strength cT�� in (1)
-3
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and numerically read

�f02!��=�f2!�� � 0:046; �a2!��=�f2!�� � 0:378;

(12)

where the tensor mixing angle 
T � 28:17� is used as fixed
by the fit [see (9)]. The corresponding experimental values
are [1]:

��f02!��=�f2!���exp � 0:031
 0:010;

��a2!��=�f2!���exp � 0:383
 0:057:
(13)

Again, the small value of �f02!��=�f2!�� is extremely
sensitive to the precise value of the tensor mixing angle.

In [3–5] a method is used to fix the strength of the two-
photon decays: the tensor-meson dominance (TMD) hy-
pothesis allows to determine the coupling of tensor mesons
to vector mesons and the subsequent application of vector
meson dominance (VMD) allows to deduce the two-photon
decay rates. In the present work we do not intend to
perform a systematic study of the TVV coupling (and
therefore of VMD). The decay into two vectors is generally
not kinematically allowed for a ground-state tensor meson.
The presence of a 4� decay mode for the state f2 is indeed
an indication of a contribution of virtual vector mesons,
which then decay into pions. The calculation of such
contributions is possible by taking properly into account
the finite widths of the resonances and the corresponding
virtual states, but, although being an interesting subject,
will not be analyzed in the present work. As indicated in
[3], the results obtained by applying VMD compare only
moderately to the data.

C. Vector-pseudoscalar decays

The isovector state a2 decays into �� [KK��892� is not
kinematically allowed], the isodoublets K�2 into KK��892�,
K� and K!. By fixing the strength parameter cTPV to
reproduce the decay rate of a2 ! �� we can predict the
other three rates (see Table II). The presented lowest-order
results for the decay of K�2�1430�, depending only on one
free parameter and on flavor-symmetry, are rather good.

D. Pseudoscalar-photon decays

The decay rates a
2 ! �
� andK�
2 ! K
� depend on
the coupling constant cTP�, but their ratio does not and
reads
TABLE II. T ! PV decays.

Quantity Experiment (MeV) Theory (MeV)

�a2!�� 75:0
 6:4 75.0 (fixed)
�K�2!�K��892� 24:5
 1:4 28.97
�K�2!K� 8:6
 1:0 7.40
�K�2!K! 2:86
 0:87 2.64
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�K�
2 !K
�

�a
2 !�
�
� 0:83; (14)

which we compare to the experimental value of

�K�
2 !K
�

�a
2 !�
�

 !
exp �

0:236
 0:056

0:287
 0:047
� 0:82
 0:29; (15)

which is in good agreement.
As already indicated in the previous subsection, we do

not intend to evaluate the radiative decays via vector-
meson-dominance. Note, however, that the final states
PV are in a d-wave, thus implying a fifth power of the
relative momentum (see the appendix) and therefore the
kinematical contribution dominates. A naive application of
VMD leads therefore to an overestimate of the P� width.

IV. DECAYS OF TENSOR GLUEBALL

A. PP and VV decay ratios

According to lattice QCD the lightest glueball has quan-
tum numbers JPC � 0�� and a mass of about 1:5 GeV
[24], which likely mixes with the nearby quarkonia states
generating the three scalar-isoscalar resonances f0�1370�,
f0�1500� and f0�1710�. This mixing scenario, although not
unique (see [34,35] and references therein), has been ana-
lyzed in various ways: at a composite level in the quantum
mechanical studies of [7,36,37], in the lattice study of [38]
and by means of a chiral approach [25,26]. Also, attempts
at a microscopic quark-gluon level as in [39] (and refer-
ences therein) have been performed.

Lattice QCD sets the tensor-glueball mass around
2:2 GeV [24]. A significant mixing with the tensor
ground-state mesons analyzed in the previous section can
be excluded due to the large mass difference (see the study
of [10]). On the other hand, a mixing with excited
isoscalar-tensor quarkonia states lying in the same energy
region is possible, but unfortunately very difficult to de-
duce: the experimental informations are scarce and the
application of theoretical methods is only partially reliable.

In the following we evaluate the two-pseudoscalar and
two-vector decay ratios for a hypothetical flavor-blind
composite state with a mass of about �2:2 GeV, where
glueball-quarkonia mixing is neglected: although one
should be aware of such an eventuality, an analysis of
mixing requires a certain amount of data to deduce the
wave-function contributions. Indeed, the possibility of a
small glueball-quarkonia mixing in the tensor sector can be
conceived, as we discuss in the next subsection.

Neglecting phase space and flavor symmetry breaking,
the two-pseudoscalar ratios for a flavor-blind tensor glue-
ball G�� follow the well-known pattern:

��:KK:		:		0:	0	0 � 3:4:1:0:1: (16)

By introducing the glueball as a flavor-blind composite
field we write down the effective Lagrangian describing its
-4
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decays into two photons and two-vector mesons:

L G
eff � cGPPG��h�

��
P i � cGVVG��hV

�V �i: (17)

Fixing the tensor-glueball mass as MG2
� 2:2 GeV (in

accord with lattice) the PP ratios become

��:KK:		:		0:	0	0 � 1:0:79:0:17:0:0:001: (18)

Compared to the flavor ratios of (16), here the �� is
enhanced and 	0	0 is highly suppressed because of avail-
able phase space. The 		0 is still zero, since no flavor-
breaking term is present in (17).

Similarly, for the two-vector decay ratios one has due to
flavor-symmetry considerations

��:K�K�:!!:!�:�� � 3:4:1:0:1: (19)

Inclusion of the phase space correction changes the
VV-ratios (19):

��:K�K�:!!:!�:�� � 1:0:84:0:32:0:0:11: (20)

Note, in Sec. III A we did not consider the decays of the
ground-state tensor mesons into pair of vector mesons,
because such a decay is generally not kinematically al-
lowed. This kind of approach has been performed in [3,4],
where TMD is employed to deduce the TVV interaction.
This approach is the starting point of the analysis of [5],
where the two-vector and the radiative decays of a gluonic
state with a massM * 2 GeV are studied. Their results are
similar to (20), apart from the !� mode, large in [5] and
zero in our approach: the!�mode is zero (independent on
the choice of the vector mixing angle 
V), because a flavor
singlet cannot decay into a singlet and an octet (or a
mixture of those) because of U�3� flavor symmetry. This
phenomenon is completely analogous to the predicted zero
decay mode of a scalar (or a tensor) glueball into 		0. In
[26] a possible 		0 decay of the (unmixed) scalar glueball
is generated by a U�3� flavor-breaking contribution. We
also refer to the work of [20], where the flavor coefficients
for the tensor glueball into two vectors are reported
(leading-order results in the flavor-symmetry limit): the
		0 and the !� modes are forbidden because of U�3�
flavor symmetry. A breaking of this symmetry is possible,
but then also the other modes are affected [20,26]. For
completeness we consider such a possibility of the U�3� !
SU�3� breaking when the nonet of vector mesons is splitted
into octet and singlet states. Then we have different cou-
plings of the tensor glueball to octet (c8

GVV) and singlet
(c0
GVV) states:

L GVV
eff � c8

GVVG��hV
�octetV �octeti � c0

GVVG��V
�0V�0:

(21)

The decay amplitudes are reported in Table VIII in the
appendix: the !� mode is now allowed and the corre-
sponding amplitude is proportional to �1� c0

GVV=c
8
GVV	,
114021
therefore is a higher order correction to the large Nc limit
with c0

GVV � c8
GVV . No large violation from this limit is

expected, as the two-pseudoscalar decay modes confirmed
(resulting in yTPP � c0

TPP=c
8
TPP � 1:161, see Sec. II). For

c0
GVV=c

8
GVV � 1:56 we still have a small !� mode with

!�=�� � 0:1. For c0
GVV=c

8
GVV � 1:56 the ratios read

��:K�K�:!!:!�:�� � 1:0:84:0:58:0:1:0:16; (22)

therefore still in qualitative agreement with (20).
In order to get!�=�� � 1 as in [5] we have to increase

the value of the ratio c0
GVV=c

8
GVV up to � 2:79, implying a

large (and unnatural) difference between the octet and the
singlet decay parameters. For c0

GVV=c
8
GVV � 2:79 we have

��:K�K�:!!:!�:�� � 1:0:84:1:41:1:00:0:32: (23)

The !! mode has also been modified, being very large in
this scenario.

In the end, a strong !� mode is possible only by
introducing a consistent violation from the large Nc limit,
corresponding to a flavor-undemocratic tensor-glueball
decay. Although such an eventuality cannot be excluded
(see [26] for the discussion in the scalar sector, where
however the ‘‘undemocracy’’ is a result of a flavor-
symmetry breaking term, affecting also the kaonic decay
modes, and not the octet-singlet splitting) is at the present
state of knowledge not verifiable and in disagreement with
other results, where large Nc is, although broken, still
approximately valid.

B. Discussion of fJ�2220� as a tensor-glueball candidate

Limiting our study to the mass region M * 2 GeV, the
following isoscalar-tensor states are listed in [1]: f2�2010�,
f2�2150�, fJ�2220� (J � 0 or 2, which still needs to be
settled), f2�2300� and f2�2340�.

In [5] the decays of a flavor-blind tensor glueball have
been evaluated for f2�2010� and f2�2300�. In [20] the
analysis of Regge-trajectories for the tensor states leads
to the interpretation of f2�2010� and the f2�2300� as domi-
nant ss states (note, that a different naming scheme from
[1] is used in [20]). According to [20] all the isoscalar-
tensor states, with the exception of fJ�2220� and a broad
tensor state around 2 GeV (not listed in [1]), can be
interpreted as quarkonia. The broad state (�� 500 MeV)
around 2 GeV (mass between 1:7 and 2:5 GeV) found in
the analysis of [20] and denoted as f2�2000�, but not listed
in the compilation of [1], is interpreted as the tensor
glueball (see also [40]). The debated issue of the full width
of the glueball in the scalar sector [7,25,26,36,38] is one of
the main questions in the tensor sector as well. Another
possible candidate for the tensor glueball is the very narrow
state fJ�2220� (�tot � 23�8

�7 MeV), also not lying on the
Regge trajectories explored in [20]. This possibility is
‘‘opposite’’ to the broad tensor glueball discussed above
(see also the discussion in the end of [20], and references
-5
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therein). This narrow resonance is in line with the inter-
pretation of a narrow glueball [35] [we also refer to the
note of Doser in [1] on fJ�2220�].

The branching ratio ���=�KK � 1:0
 0:5 [1] is com-
patible with (18). The absence of a �� signal is also in line
with a narrow gluonic state. If the glueball is broad, also its
vector-vector decay modes are expected to be broad.
Therefore in virtue of vector-meson dominance, the two-
photon signal is also expected to be large. The general idea
that the two-photon signal should be small for a glueball is
indeed valid only for a narrow glueball. However, the 		0

mode [zero according to the leading-order results ex-
pressed in (18)] has been seen, while the 		 mode has
not. More precise branching ratios are needed to analyze
fJ�2220� quantitatively, but this resonance has some in-
triguing characteristics to be considered as a tensor-
glueball candidate.

The properties discussed up to now hold for an unmixed
tensor glueball. When considering fJ�2220� as a glueball
candidate mixing is therefore neglected. In the pseudosca-
lar meson sector the physical states 	 and 	0 are close to
octet and singlet states, i.e. far from nn and ss, a fact
notoriously connected with the UA�1�-QCD anomaly. A
strong mixing among nn and ss is generated, possibly by
instantons. A mixing with a pseudoscalar glueball would
then be expected to be large, if the JPC � 0�� glueball had
a mass in the energy sector below 1 GeV (but lattice places
it higher than 2 GeV).

The scalar sector is more controversial: a strong
glueball-quarkonia mixing is the starting point of the phe-
nomenological works [7,26,36,37] and has also been veri-
fied by lattice simulation [38,41]. A strong nn-ss
quarkonia mixing (possibly driven by instantons [42])
has been considered in [25,26]. In the NJL model ([43]
and references therein) theUA�1� anomaly is introduced by
the t’ Hooft interaction term, which affects the pseudosca-
lar and the scalar mesonic sectors. A gluonic interaction
seems therefore enhanced for the JPC � 0�� and JPC �
0�� states, although in the scalar sector further confirma-
tion is needed. On the other hand, no evidence of enhanced
nn-ss quarkonia mixing is found in other nonets [32];
according to [20], this fact holds also for the excited tensor
mesons. The physical states are close to the bare light
quark configurations nn and ss. Following this observa-
tion, one can argue that a glueball would not mix strongly
in this case (this point of view is not accepted by [8], where
the state fJ�2220� is studied but is considered as a broad
resonance). It is important to stress that such a reasoning is
qualitative and needs quantitative theoretical analysis,
while at the same time a better experimental understanding
of fJ�2220� is required.
V. CONCLUSIONS

In this paper we first studied the decay properties of the
ground-state tensor-meson nonet: the starting point has
114021
been a chiral approach for the two-pseudoscalar decays,
where a fit has been performed to deduce the free parame-
ters of the employed Lagrangian (1). The tree-level results
are in good agreement with the experimental data. When
defining the chiral tensor-pseudoscalar coupling we split
the tensor-meson octet from the singlet: the singlet decay
strength turns out to be slightly larger than the octet one.
Such a octet-singlet separation is necessary to obtain ac-
ceptable results for the fit because of the precision of the
experimental data. As a result of the fit the tensor mixing
angle and the two-photon decay ratios have been deduced
and are in agreement with other approaches and with data.

We then turned our attention to the pseudoscalar-vector
and pseudoscalar-photon decay modes for tensor mesons,
where the simplest coupling respecting CPT invariance
has been considered. The corresponding theoretical results
are in good agreement with data.

As a further step of our study on tensor states we
considered the tensor glueball, described by a flavor-blind
composite field with an independent coupling to two-
pseudoscalar mesons (the approach is analogous to the
analysis in the scalar sector performed in [25,26]). The
two-pseudoscalar ratios are then presented, where the mass
of 2:2 GeV as obtained on the lattice, has been used. The
two-vector decay ratios are then also analyzed. The full
strength for the tensor-glueball decays is unknown and
represents the most interesting and debated issue for glue-
ball decays (not only in the tensor sector). A narrow tensor
glueball is discussed in [35], while a broad tensor glueball
in [20].

We discussed the narrow resonance fJ�2220� (��
30 MeV) as a possible unmixed tensor-glueball candidate;
however, the total spin and the nature of this state are still
controversial [1,8,20]. The possibility that glueball mixing
is small in the tensor sector has been discussed, but further
and more quantitative studies are needed in this direction.
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APPENDIX: EXPRESSIONS FOR THE DECAY
WIDTHS

The generic two-pseudoscalar decay expression of a
tensor state reads (see also Refs. [3,6,16]):

�TP1P2
� �TP1P2

P5
TP1P2

60�M2
T

g2
TP1P2

(A1)

where PTP1P2
� �1=2�M2

T;M
2
P1
;M2

P2
�=2MT is the three mo-

mentum of the final states (pseudoscalar mesons) in the rest
-6
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frame of the decaying initial state (tensor meson) and
��x; y; z� � x2 � y2 � z2 � 2xy� 2xz� 2yz is the
Källen triangle function. The �TP1P2

takes into account
the average over spin of the initial state and the sum over
TABLE III. T ! PP coefficients.

T P1P2 �TP1P2
~gTP1P2

f2�1270� �� 6 y��
3
p cos
T �

1��
6
p sin
T

f2�1270� KK 8 y��
3
p cos
T �

1
2
��
6
p sin
T

f2�1270� 		 2 y��
3
p cos
T �

1��
6
p sin
TzP

f02�1525� �� 6 � y��
3
p sin
T �

1��
6
p cos
T

f02�1525� KK 8 � y��
3
p sin
T �

1
2
��
6
p cos
T

f02�1525� 		 2 � y��
3
p sin
T �

1��
6
p cos
TzP

a2�1320� KK 1 1
a2�1320� �	 1 �

���
2
p

sin�P
a2�1320� �	0 1

���
2
p

cos�P
K2�1430� �K 3=2 1
K2�1430� 	K 1 � 1��

6
p �cos
P � 2

���
2
p

sin
P�

TABLE IV. T ! PV coefficients.

T PV �TPV ~gTPV

f02�1525� KK� 4
���
3
p

cos
T
a2�1320� �� 2 2
a2�1320� KK� 2 1
K2�1430� �K� 3 1
K2�1430� 	K� 2

���
3
p

cos
P
K2�1430� K� 3 1
K2�1430� K! 2

���
3
p

sin
V
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final isospin states with averaging over initial isospin states
(symmetry factors included), gTP1P2

is the effective TP1P2

coupling constant which is defined for different modes as
LTP1P2
� �gf2��f

��
2 � gf02��f

0��
2 �@� ~�@� ~�� �gf2KK

f��2 � gf02KK
f0��2 �@�K

y@�K � �gf2		f
��
2 � gf02		f

0��
2 �@�	@�	

�
ga2KK���

2
p @�K

y ~a��2 ~@�K � ~a��2 @� ~��ga2�	@�	� ga2�	0@�	
0�

�
gK�2�K���

2
p �K���y2 @� ~� ~ @�K � h:c:� � gK�2	K�K

���y
2 @�K@�	� h:c:� (A2)
where ~� and ~a2 are the triplets of pions and tensor a2

mesons, K � �K�; K0� and Ky � �K�; K0� are the dou-
blets of kaons,K�2 � �K

��
2 ; K�02 � and K�y2 � �K

��
2 ; K�02 � are

the doublets of tensor K�2 mesons.
The results for the parameters involving in Eq. (A1) are

reported in Table III. We introduce the notations: ~gTP1P2
�

gTP1P2
=c8

TPP is the coupling constant scaled by c8
TPP, the

parameter y � c0
TPP=c

8
TPP is the ratio of the singlet and

octet couplings, zP � �1� 3 cos2�P�=2, where �P �

P � 
IP and 
IP is the ideal mixing angle with sin
IP �
1=

���
3
p

.

The expression for the PV decay width reads [6]:

�TPV � �TPV
P5
TPV

10�
g2
TPV; (A3)

where �TPV and ~gTPV � gTPV=cTPV are given in Table IV.
The effective couplings gTPV are defined as

LTVP�
gf02KK����

2
p �f0���	�2 i@�Ky ~K����h:c:��

ga2�����
2
p ~a���	�2

� �@� ~� ~~���	�
ga2KK����

2
p �i@�K

y ~a���	�2 ~ ~K����h:c:�

�
1���
2
p ~K�y���gK�2�K�i@� ~� ~�gK�2	K�i@�		K

����	�
2

�h:c:�
1���
2
p K����	�y2 �gK�2K�

~~��� ~

�gK�2K! ~!��	i@�K�h:c: (A4)

The T ! �� decay width reads (see also Refs. [3,16]):

�T�� �
�
20
M3
Tg

2
T��; (A5)

where � � e2=4� � 1=137. The couplings ~gT�� �
gT��=cT�� are given in Table V.

The T ! P� decay width reads

�TP� �
2

5
�P5

TP�g
2
TP�; (A6)

where PTP� � �M2
T �M

2
P�=2MT is the three-momentum

of final states, gTP� is the coupling constant from the tree-
level Lagrangian

L TP� � ~F��fga2��a
����	�
2 i@��

�

� gK�2K�K
�����	�
2 i@�K

�g � h:c: (A7)

The factors �TP� and scaled couplings ~gTP� � gTP�=cTP�
are given in Table VI.

The decay width of the tensor-glueball G into P1P2 pair
reads

�GP1P2
� �GP1P2

P5
GP1P2

60�M2
G

g2
GP1P2

; (A8)
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TABLE VI. T ! P� coefficients.

T P ~gTP�

a
2 �1320� �
 1
K�
2 �1430� K
 1

TABLE VII. G! P1P2 coefficients.

P1P2 �GP1P2
~gGP1P2

�� 6 1
KK 8 1
		 2 1
	0	0 2 1

TABLE V. T ! �� coefficients.

T ~gT��

f2�1270� 4
3
��
6
p �2

���
2
p

cos
T � sin
T�

f02�1525� 4
3
��
6
p ��2

���
2
p

sin
T � cos
T�

a0
2�1320� 4

3
��
2
p

TABLE VIII. G! VV coefficients.

V1V2 �GV1V2
~gGV1V2

�yGVV � 1	 ~gGV1V2
[any yGVV]

�� 6 1 1
K�K� 8 1 1
!! 2 1 cos2
VyGVV � sin2
V
!� 1 0 sin2
V �1� yGVV�
�� 2 1 sin2
VyGVV � cos2
V
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where the corresponding parameters �GP1P2
and the cou-

pling constants ~gGP1P2
� gGP1P2

=cGP1P2
are given in

Table VII. The couplings gGP1P2
arise from the tree-level

Lagrangian

L GP1P2
� G��fgG��@� ~�@� ~�� 2gGKK@�K

y@�K

� gG		@�	@�	� gG	0	0@�	0@�	0g (A9)

are, as expected, equal to each other for all the modes, apart
from the forbidden 		0 one.

The decay rate of the glueball into two vectors following
from the nonderivative coupling [see Eqs. (17) and (21)]
reads:

�GV1V2
� �GV1V2

PGV1V2

8�M2
G

FGV1V2
g2
GV1V2

(A10)

where

FGV1V2
� 1�

P2
GV1V2

3

�
1

M2
V1

�
1

M2
V2

�
�

2

15

P4
GV1V2

M2
V1
M2
V2

:

(A11)

In the case of derivative coupling, the function FGV1V2

changes (see Ref. [3]) but the factors �GV1V2
and gGV1V2

do not. As it was mentioned before we consider two
114021
specific scenarios: (i) the case of U�3� symmetry when
the octet �c8

GVV� and singlet �c0
GVV� couplings degenerate

c8
GVV � c0

GVV � cGVV ; (ii) the case of the broken U�3�
symmetry to SU�3� one. For convenience we put c8

GVV �
cGVV and introduce the breaking parameter yGVV �
c0
GVV=c

8
GVV which is equal to one at large Nc limit [or in

case of the U�3� invariance]. The couplings gGV1V2
arise

from the three-level Lagrangian

L GV1V2
� G��fgG�� ~�� ~�� � 2gGK�K�K

�y
� K

�
�

� gG!!!�!� � gG!�!��� � gG������g:

(A12)

The parameters occurring in Eq. (A10) are given in
Table VIII. Again we rescale gGV1V2

by the coupling
c8
GVV as ~gGV1V2

� gGV1V2
=c8

GVV . In the last two columns
of Table VIII we present the results for the couplings
~gGV1V2

for the U�3� symmetric case and for the case of
the broken U�3� symmetry.
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