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Tensor charge and anomalous magnetic moment correlation
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We propose a generalization of the upgraded Karl-Sehgal formula which relates baryon magnetic
moments to the spin structure of constituent quarks, by adding anomalous magnetic moments of quarks.
We first argue that the relativistic nature of quarks inside baryons requires the introduction of two kinds of
magnetisms, one axial and the other tensorial. The first one is associated with integrated quark helicity
distributions �i ���i (standard) and the second with integrated transversity distributions �i � ��i. The
weight of each contribution is controlled by the combination of two parameters, xi the ratio of the quark
mass to the average kinetic energy and ai the quark anomalous magnetic moment. The quark anomalous
magnetic moment is correlated to transversity, and both are necessary ingredients in describing relativistic
quarks. The proposed formula, when confronted with baryon magnetic moments data with reasonable
inputs, yields, besides quark magnetic densities, anomalous magnetic moments large enough not to be
ignored.
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I. INTRODUCTION

The Karl-Sehgal [1] formula (upgraded first by Cheng
and Li [2] and then by Di Qing [3] et al.), relating baryon
magnetic moments to the spin structure of the constituent
quarks, takes into account the relativistic nature of quarks
inside the parent nucleon. The upgraded formula by Di
Qing et al. is a model independent, field theoretical relation
which includes quark tensor charges in addition to the
longitudinal spin part of the formula. At the relativistic
level, the transverse spin structure is an independent struc-
ture, with respect to the longitudinal spin structure [4]. A
straightforward but however lengthy way to obtain the
formula is to expand quark field operators in nucleon
matrix elements of quark currents in terms of a complete
set of quark and antiquark wave functions. In performing
such an expansion, quark-antiquark pairs become operat-
ing if the baryon state is a Fock decomposition beyond the
q3 state jBi � c0jq3i �

P
�c�jq

3q �qia � � � � . Attempts
have been made to generalize the formula by taking into
account the contributions from quark-antiquark pairs in a
constituent quark model with valence q3 and sea q3q �q
mixing. It is found that pair creations only contribute
a small amount to the magnetic moment of the proton
(� 0:065 n:m: with n.m. the nucleon magneton) [3]. It is
worth noting that the inclusion of sea quarks by the authors
of Ref. [3] through the Fock space configuration is tenta-
tive to include quark interactions into the scheme. In this
paper, we reconsider the problem of introducing interac-
tions into the baryon magnetic moments formula by using a
standard approach in which the baryon has the standard q3

configuration. There are several possible sources of inter-
actions which contribute to baryon magnetic moments.
Exchange magnetic moments [5,6] (they are generic in
any interacting field theory), transition moments, and in-
dividual anomalous magnetic moments (a.m.m.) of quarks.
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Exchange magnetic moments contribute a nonadditive
piece to the baryon magnetic moments. This means that
this contribution will add an additional term not propor-
tional to the sum of individual quark magnetic moments. In
the chiral quark model, for instance, two-body exchange
moments (to consider only the leading) come from the
exchange of one Nambu-Goldstone boson with one photon
attached in all possible ways. A rough estimate of the size
of exchange moments yields 0.010 n.m. [5]. The exchange
correction, being connected with the exchange of charged
pions, requires the presence of u and d quarks in the baryon
and, hence, contributes only to the proton and the neutron.
Transition moments add a (yet small) piece to the process
�! �. Other contributions are due to anomalous mag-
netic moments of quarks. Such contributions, on the con-
trary, may be significant. The nonlinear chiral quark model,
for instance, may be used to estimate the order of
magnitude of the anomalous contribution. In fact, one
would expect an anomalous magnetic moment [7] of order
m2

i=�2
CSB � 10% (mi � 360 MeV, �CSB � 1 GeV)

with mi being the constituent mass of the quark, supposed
to be the effect of chiral symmetry breaking, and �CSB is
the chiral symmetry breaking scale. There are several
theoretical and experimental studies indicating quarks do
have non-negligible a.m.m. To fit the measured magnetic
moment of the baryon octet, it is found that quarks must
have a sizable a.m.m. In effect, the nonrelativistic constitu-
ent quark model for light hadrons, with measured anoma-
lous magnetic moments for the proton and the neutron,
respectively ap � 1:79 and an � �1:91 yields the rela-
tions

1
3 �4�u ��d� � 2:79; 1

3�4�d ��u� � �1:91 (1)

From which we infer measurable quantities m
1�a :
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mu

1� au
� 338 MeV;

md

1� ad
� 322 MeV: (2)

On the other hand, to fit the hadron spectrum in the
constituent quark model required masses of the up and
down quarks to be of the order mu ’ md � 420 MeV.
Such values of masses suggest a sizable anomalous mag-
netic moment of the order au ’ 0:24, ad ’ 0:30, and a
small difference au � ad ’ 0:07 to recover the isospin
symmetry mu ’ md. Bicudo et al. [8] have shown in sev-
eral effective quark models that, in the case of massless-
current quarks, chiral symmetry breaking usually triggers
the generation of an anomalous magnetic moment for the
quark of the order of a ’ 0:28. In the same spirit, Singh [9]
has also proven that, in theories in which chiral symmetry
breaks dynamically, quarks can have a large a.m.m. On the
other hand, Köpp et al. [10] have provided a stringent
bound on the a.m.m. from high-precision measurements
at LEP, SLC, and HERA. In the second section, we will
give theoretical arguments showing that quark anomalous
magnetic moments and tensor charges are necessarily
correlated.

In the following, we assume we have derived an effec-
tive Lagrangian defined at the scale of low-energy
magnetic moments after having integrated all unwanted
fields. Constituent quarks have masses mi, i � u; d; s and
do have anomalous magnetic moments from the term
�aiQi�=�2mi� � ��� F�� in the effective Lagrangian.
Baryon magnetic moments ~�N are composed of a principal
contribution from quark electric charges and their spins
(quark-antiquark pairs neglected) and other collective con-
tributions such as exchange moments, transition moments,
and finally a contribution from the anomalous magnetic
moments of quarks. Dots represent contributions other than
from the spin of the quarks:

~� N � hPSj
X
i;�i

Qi

2

Z
dr3 ~r� � i ~� ijPSi � . . . : (3)

Qi, i � u; d; s are quark charges,  i� �i� constituent quark
(antiquark) fields, and jPSi is the baryon ground state with
momentum P and spin polarization S. The spin structure of
quarks is encoded in the axial and tensor charges, respec-
tively, denoted �i � �i ���i and �i � �i � ��i (the minus
sign accounts for the odd charge conjugation parity of the
transverse spin operator). The quark helicity density (anti-
quark) �i (��i) is defined in the parton infinite momentum
frame as �i �

R
dx	qi"�x� � qi#�x�
 with qi"�x�; �qi#�x��,

the probability of finding a quark with fraction x of the
baryon momentum and polarization parallel (antiparallel)
to the baryon spin. It can also be shown to be related to the
expectation value of the relativistic quark (antiquark) spin
operator in the baryon

hPSj
Z
dx3 yi

~� ijPSi � 2�i
~S: (4)
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Similarly �i is given by the formula

hPSj
Z
dx3 i ~� ijPSi � ~�i (5)

and can be shown to be related to the first moment of
the quark transversity distribution �i �

R
1
0 dx	q!i�x� �

q i�x�
 [11]. Similar expressions apply to the antiquark.
Unpolarized quark distribution (well known), quark helic-
ity distribution (known), and transversity distribution (un-
measured but calculated on lattice, and several other
models), provide together, a complete description of the
quark spin. To stress the difference between helicity and
transversity, recall that if quarks moved nonrelativistically
in the nucleon, �i�x� and �i�x� would be identical as only
large components of the fermion field are leading in which
case � �  y �0 ’  y and both definitions (4) and (5)
coincide. Another way of seeing this is that rotations and
Euclidean boosts (nonrelativistic case) commute and a
series of boosts and rotations can convert a longitudinally
polarized nucleon into a transversely polarized nucleon at
infinite momentum. So the difference between transversity
and helicity distributions reflects the relativistic motion of
quarks inside the nucleon.

To express baryon magnetic moments in terms of spin
degrees of freedom, we compute (3) using the field current
~ji � � i ~� i and assume the ground state of the baryon to
have a vanishing nonrelativistic orbital magnetic moment.
To this end, it is useful to decompose the quark current into
two distinct pieces using Gordon decomposition and to not
expand quark field operators in terms of a complete set of
quark and antiquark wave functions as in the previous cited
work. The convection current part and the spin current part
contribute differently, giving respectively,

xi�i

2�1� xi�

�
�i �

�i
xi

�
;

xi�i

2

�
�i �

�i
xi

�
; (6)

where xi � mi=hEii is the ratio of the constituent quark
mass to the average kinetic energy of the quark in the
baryon ground state. Adding antiquarks and denoting
~�N � hP " j ~�NjP "i, we get

�N �
X

i�u;d;s

�iWi � � � � ;

�i �
Qi

2mi
;

2
Wi

xi
�

1

�1� xi�

�
�i ���i �

�i
xi

�
�

�
�i � ��i �

�i
xi

�
:

(7)

Equation (7) is the upgraded Karl-Sehgal formula cited in
Ref. [3] but obtained in another rearrangement of terms.
Equation (7) is the weighted sum of two distinct combina-
tions 	�i ���i � ��i�=xi
 and 	�i ���i � ��i�=xi
. The
former combination shrinks to zero in the nonrelativistic
limit. The latter combination survives the nonrelativistic
limit and has the advantage that it is the only one which
-2
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will be affected by the anomalous magnetic moments of
quarks. Let us cite by the way a misuse of the Gordon
decomposition which occurred twice in literature [12,13].
In Gordon decomposing the magnetic moment, the spin
part takes the form ~�jspin /

R
1

2m ~r� @��
� ~�� � where ~��

is a vector whose components are �i�. The spatial deriva-
tive @i gives (after neglecting a total derivative) the termR

1
2m

� ~� 1 while the time derivative @0 gives a nonvanish-
ing contribution, as quark fields do depend on time. What
induced the above authors in error is probably the fact that
the quark field  � ~x; t� being interacting with gluons cannot
be expanded in terms of Dirac spinors in a free manner but
can still be expanded at a given time say t � 0, hence
 � ~x; 0�. We can proceed this way but after having per-
formed the time differentiation if Gordon decomposition
is to be used. In the appendix, we give a correct computa-
tion of the spin part.

II. TENSOR CHARGE AND ANOMALOUS
MAGNETIC MOMENT CORRELATION

Let us have a close look at formula (7). This formula has
an insufficiency. It leads to an absence of magnetism in the
ultrarelativistic limit due in part to the fact that it is the
average energy of the quark inside the baryon that builds
up the intrinsic magnetic moment and not the constituent
mass mi, i.e. x�i � �mi=hEi0i��1=mi� � 1=hEi0i which
goes to zero for infinite kinetic energy. The reduction
factor x is explicit in (7) and is simply the Lorentz-
Fitzgerald contraction length factor due to the relativistic
boost as the magnetic moment is a vector (space compo-
nents of a four vector). On the other hand, tensor charges in
the formula, being there to account for constituent quark
masses (the mass term m �  flips helicity and hence in-
volves transversity), should also disappear in this limit. We
have indeed �Njultra � ���i� �i� � 0. The absence of
magnetism in this limit suggests that formula (7) does
have a missing term and that this term is associated with
the anomalous magnetic moment of the quark. Why did we
say that the anomalous magnetic moment of the quark is
the missing term? Formula (7) is a relativistic formula
which describes how a magnetic photon couples to quarks
being spinning pointlike objects. It also says that this
coupling is decreasing with energy due to the reduction
factor. On the other hand, we know from quantum me-
chanics that particles of definite energy and momentum are
not localized in space-time. It then follows a possible
current in the Lagrangian of the form2
1The error made by cited authors is that they only retain the ~�
term.

2Differentiation of the field is nonzero only if the field has a
spatial and/or temporal extension. Pointlike objects have a
current without derivatives such as � �� for instance.
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@� � ��� �
m

: (8)

Perturbatively, for a photon to probe such a current, a quark
should radiate a field (gluon or Goldstone boson or what-
ever) at position x and reabsorbed at a distant position y,
once it interacts with the photon (vertex interaction and not
a self-energy interaction). In this process, the probing
photon sees the quark as an extended object or rather an
electric current circulating in the area of the extension.
This is what we call ‘‘anomalous’’ magnetism. The corre-
lation of the anomalous magnetic moment to the tensor
charge is suggested by the structure of the current (8)
which, as the mass term, flips helicity.

Adding anomalous magnetic moments of quarks to for-
mula (7), this one generalizes to (see the appendix)

�N �
X

i�u;d;s

�iWi � � � � ;

2
Wi

xi
�

1

�1� xi�

�
�i ���i �

�i
xi

�

� �1� ai�
�
�i � ��i �

�i
xi

�
:

(9)

There is another way of seeing that quark anomalous mo-
ments are missing. Let us rearrange formula (7) as follows:

2Wi � Ai��i ���i� � Bi��i � ��i�: (10)

Parameters Ai and Bi are expressed in terms of xi:

Ai
xi
�

1

1� xi
� 1; Bi � �

1

1� xi
� 1: (11)

Being functions of only one common parameter xi, Ai and
Bi are not independent parameters. Hence, these parame-
ters could not distinguish between the contribution to
baryon magnetic moments coming from helicities and the
contribution coming from transversities, while these are
supposed to be independent contributions in a relativistic
regime. In general, one may imagine that having two
different spin structures in relativistic physics, namely
the longitudinal spin �i;��i and the transverse spin
�i; ��i, quarks necessarily would carry two different mag-
netisms, respectively, of the form �iAi��i ���i� and
�iBi��i � ��i�.

3 So, in the relativistic case, the most gen-
eral contribution to the baryon magnetic moments of
quarks and antiquarks would be of the form (10) but where
Ai and Bi are two independent parameters. Identifying
3Hereafter we will call the first, axial magnetism [although it is
not the axial charge �i ���i (sum) which is involved but�i ���i
(difference)] and the second, tensorial magnetism.
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coefficients of axial and tensorial magnetic densities in
both (9) and (10), we get two independent parameters:

Ai
xi
�

1

1� xi
� 1� ai; Bi � �

1

1� xi
� 1� ai:

(12)

We understand that the introduction of an anomalous mag-
netic moment is a necessary requirement of relativity,
otherwise parameters Ai and Bi would be dependant pa-
rameters (i.e. depend only on one parameter xi) which
means that helicity and transversity would no longer be
two different spin structures in relativity. On the other,
it becomes also clear in this approach that the quark
anomalous magnetic moment is correlated to the quark
transversity. Such a correlation is manifest at the ultrarela-
tivistic at which the Wi function in (9) takes the form

2Wi � ai��i�ultra; (13)

where ��i�ultra �
2
3�

NR
i � 2

3 �NR
i is the ultrarelativistic

limit according to the solution of Eqs. (18). This limit
makes it explicit that quark anomalous magnetic moments
together with tensor charges dominate the ultrarelativistic
regime.
III. BARYON MAGNETIC MOMENTS ANALYSIS

To include all baryons in the proton scheme, we assume
SU(3) flavor symmetry. This enables us to write all baryon
magnetic moments in terms of Wi associated to the proton:

��p� � �uWu ��dWd ��sWs;

��n� � �uWd ��dWu ��sWs;

���� �
�u ��d

6
�Wu � 4Wd �Ws�

�
�s

3
�2Wu �Wd � 2Ws�;

����� � �uWu ��dWs ��sWd;

���0� �
�u ��d

2
�Wu �Ws� ��sWd;

����� � �uWs ��dWu ��sWd;

���0� � �uWd ��dWs ��sWu;

����� � �uWs ��dWd ��sWu;

���0 ! �0� � �
��u ��d��Wu � 2Wd �Ws�

2
���
3
p :

(14)

A consequence of the SU(3) symmetry is that magnetic
moments can be written with 4 parameters, instead of the 6
parameters�i andWi. Denoting the four parameters c0, c3,
114014
c8, and r, we get

��p� � c0 � 2c8 � 2c3;

��n� � c0 � 2c8 � 2c3;

���� � c0 � �3r� 1�c8;

����� � c0 � �3r� 1�c8 �

�
1�

1

r

�
c3;

���0� � c0 � �3r� 1�c8;

����� � c0 � �3r� 1�c8 �

�
1�

1

r

�
c3;

���0� � c0 � �3r� 1�c8 �

�
1�

1

r

�
c3;

����� � c0 � �3r� 1�c8 �

�
1�

1

r

�
c3;

���0 ! �0� � �
�3� 1

r�c3���
3
p ;

(15)

where

c0 � ��u ��d ��s��Wu �Wd �Ws�=3;

c3 � ��u ��d��Wu �Wd�=4;

c8 � ��u ��d � 2�s��Wu �Wd � 2Ws�=12;

r �
Wu �Wd

Wu �Wd � 2Ws
:

(16)

We have a system of four equations (once coefficients cs; r
are fixed) but six independent variables. To solve it
we need two assumptions. To this end, we first rewrite
the system in terms of only five (new) variables
�u=�d;�u=�s;�iWi � ~Wiand then making the standard
assumption �u=�d � �2, we end up with a soluble sys-
tem ( four equations and four variables). Putting f �
�3rc0�=�c3 � 3rc8�, we get

~Wu �
4

9

c3

r
�f� 1� 3r�;

~Wd � �
2

9

c3

r
�f� 1� 3r�;

~Ws � �
1

9

9rc8 � c3

r
�f� 2�;

�s

�d
�
c3 � 3rc8

2c3
� 2

c3 � 3rc8

2c3
:

(17)

It remains to fix one of the parameters, say�u to get access
to the Ws

i from the experimental data csi ; r. Parameters xi
which appear in Eq. (18) remain undetermined. To fix them
we call for Melosh-Wigner rotation reductions of nucleon
spin which are due to quarks being relativistic particles
-4
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inside baryons.4 Indeed, we have following relations be-
tween Pauli and Dirac spinors:

�us0 �k��3�5us�k� � MA�
y
s0�3�s;

�us0 �k��
0�3�5us�k� � MT�

y
s0�3�s;

MA;MT being the known Melosh [14–16] rotations. These
rotations are shown to verify identities which in terms of
spin densities take the form

�1� xi��
NR
i � �i � �i; �NR

i ��i � 2�i: (18)

The second expression is obtained if one assumes, in
addition, that quark momentum distributions of the nu-
cleon ground state are spherically symmetric, that is
hk2
?i � 2hk2

3i. These relations serve to extract parameters
xi from knowledge of naive quark model spin densities
�NR
i and relativistic spin densities �i.

IV. NUMERICAL APPLICATIONS

Thus far, we have the experimental data [17] for seven
magnetic moments [���0� is not available] and one tran-
sition moment ���0 ! �0�. Various calculations esti-
mated collective contributions to be small. They are
however shown to be necessary in order to satisfy sum
rules which are consequences of SU(3) symmetry. In doing
so, one gets a best fit to the baryon magnetic moments and
avoids introduction of artificial errors as in the Karl analy-
sis of Karl-Sehgal equations. These corrections to mag-
netic moments however concern only the proton, the
neutron, and the transition �0 ! �0 and are accounted
for by adding a constant to their magnetic dipole moments:

��p� � � � � � V; ��n� � � � � � V;

���0 ! �0� � � � � �
1���
3
p V:

The following numeric values [18]

c0 � 0:054 n:m:; c3 � 1:046 n:m:;

c8 � 0:193 n:m:; r � 1:395 n:m:;

correspond to a best fit with �2=d:o:f � 1:3. We will base
our numeric analysis of baryon magnetic moments on
these values. Parameter V � 0:266� 0:01 n:m: serves to
predict ���0� but is of no relevance to Ws

i as it describes
only collective effects. Inserting these values into (17), we
4We have already invoked reduction of magnetic moments as a
consequence of the Lorentz boost. Here it is, rather, the reduction
of the spin which matters, as we know the value of the spin
before and after the reduction, hence the value of the reduction
factor xi.
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get

~W u � 2:04; ~Wd � 0:37; ~Ws � 0:12;
�s

�d
� 0:66:

To estimate xi, we use Eq. (18) and write (xu � xd � x)

x �
9

10
��u ��d� �

1

2
�

9

10
�gA � 	� �

1

2
� 0:60; (19)

where values �NR
u � 4=3, �NR

d � �1=3 have been used
together with the Bjorken sum rule gA � �u� �d � 1:27
and the result from the HERMES collaboration [19] 	 �
� �u�� �d � 0:05. Remember that, in changing variables
from Ws

i to ~Ws
i � �iW

s
i , we reduced the number of vari-

ables by one unit and were able to solve the system of
equations. The price we paid is the unknown parameter �u
(other�i are linked to this one) still present in our formula,

2
~Wi�B�
�ixi

�
1

�1� xi�

�
�i ���i �

�i
xi

�

� �1� ai�
�
�i ���i �

�i
xi

�
: (20)

One looks at the above formula as a family of parametric
sheets (magnetic sheets) in the 3-dimensional space of
coordinates �i ���i, �i, ai, the parameter being �i. To
continue, we select one magnetic sheet which corresponds
to �u � 2:38 n:m: (mu ’ 263 MeV). This value is ob-
tained from the nonrelativistic form of (22) with vanishing
anomalous magnetic moments [18]5

�u �
2 ~Wd � ~Wu

gA � 2	
� 2:38 n:m: (21)

To investigate Eq. (20) further, we make the approximation
au ’ ad � a [this is suggested by the estimation we did in
(2)]. Subtracting u quark contribution from d quark con-
tribution in (20) and plugging in the experimentally mea-
sured quantity 2	� gA � ��d �� �d� � ��u � ��u�, we
get

2

x�u
�2 ~Wd � ~Wu� �

1

�1� x�

�
gA � 2	�

�d� �u
x

�

� �1� a�
�
gA � 2	�

�d� �u
x

�
:

(22)

All parameters in the above equation are fixed except the
values of tensor charges, and the average over the up and
5The constituent quark mass mi (or equivalently �i) is a free
parameter in our approach. It is not fixed by baryon magnetic
moments data. The best way to estimate its order of magnitude is
to take the nonrelativistic limit of our formulas.
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TABLE I. Strange quark anomalous magnetic moments in
model B for ratios xs ’ 0:8–1 and for various models.

xs ’ 0:8 xs ’ 1
�s � 0:33�u � 0:86 �s as as

QS �0:01 1.41 0.9
VSQMM �0:024 1.17 0.76
LATT �0:046 0.91 0.58
Chiral quark potential [30] �0:133 0.38 0.20

MUSTAPHA MEKHFI PHYSICAL REVIEW D 72, 114014 (2005)
the down quark anomalous magnetic dipole moment a.
Tensor charges are not measured yet, but are estimated in
various models. Using tensor charges from various mod-
els6 such as chiral soliton (NJL) [20–22], lattice (LAT)
[23], Melosh-Wigner (M-W) [24], valence sea quark mix-
ing model (VSQMM) [1], quark soliton model (QS) [25],
Bag model (BAG) [26,27], the constituent quark model
with Goldstone boson effects (CQ) [28], and QCD sum
rules (SR) [27], we compute anomalous magnetic moments
a � au ’ ad of quarks, averaging over models, and also
axial magnetic densities. Our results are as follows:

au ’ ad ’ 0:38; �u �� �u ’ 0:78;

�d � � �d ’ �0:39:
(23)

We may use the above axial magnetic densities �u �� �u �
0:83; �d �� �d � �0:44 to infer sea quark polarizations

��u ’ 0:03; � �d ’ �0:05; (24)

to compare with those obtained in the latest publication
which used a standard nonrelativistic zero anomalous mag-
netic moment approach [18] � �u ’ �0:01, � �d ’ �0:06.

Predictions for the strange quark suffer from lack of
experimental information. To get an order of magnitude
of the anomalous magnetic moment of the strange quark,
we consider the following hypotheses, usually applied
not only to strange quarks but to all flavors simultaneously
[29].

Hypothesis A.—Strange antiquarks in a polarized
baryon are generated entirely by the perturbative splitting
of gluons g! s�s. In such a case, it is reasonable to expect
��s � �s that is a vanishing axial magnetism, �s � ��s �
0. In this case ~Ws of (20) takes the simpler form:

2
~Ws�B�
�s

�

�
1� as �

1

�1� xs�

�
�s: (25)

Hypothesis B.—Strange antiquarks in a polarized baryon
reside entirely in a cloud of spin-zero strange mesons. In
this case, strange antiquarks have no net polarization, i.e.,
��s � 0, so that �s ���s � �s � ��s. Equation (20) be-
comes, in this case,

2
~Ws�B�
�sxs

�
1

�1� xs�

�
�s ���s �

�s
xs

�

� �1� as�
�
�s ���s �

�s
xs

�
: (26)

We cannot extract xs from Melosh-Wigner rotation as we
did for the light quarks simply because there is no trans-
formation relation between ��s�� �s� and �NR

s ��
NR
s �. But, the
6If tensor charges for quarks get measured accurately, then one
may use formula (22) to extract precise values of quark anoma-
lous magnetic moments and vice versa.

114014
strange quark, being heavier than the up and the down
quarks, gets less kinetic energy, so we may take for illus-
tration xs ’ 0:8–1. Our results for the strange quark are
displayed in Table I.

We do not display results in model A, because they gave
unrealistic values for the strange quark anomalous mag-
netic moments. On the other hand, we note that only the
chiral quark potential model seems to give acceptable
values as ’ 0:20–0:38 while the lattice model producing
a too small value for the tensor charge yields a too high
unacceptable anomalous magnetic moment as ’ 0:91. It
leads however to a moderately reasonable value as ’ 0:58
for strange quarks nearly at rest xs ’ 1.
V. CONCLUSION

Magnetic moments of the nucleon are static properties
(nucleon at rest). The quarks inside the nucleon are never-
theless strongly bound relativistic objects. Being relativis-
tic, the spin structure of quarks involves, in general, both
quark helicity distributions and quark transversity distri-
butions. Transversity distributions encode relativistic ef-
fects of quarks inside the nucleon. We have shown in this
study that since relativity requires existence of two inde-
pendent spin structures, one longitudinal and the other
transverse, the existence of two independent magnetisms
then follows, which we may call, respectively, axial and
tensorial. The contribution of each component is weighted
by two independent parameters, namely 0 
 xi 
 1, the
ratio of the quark constituent mass to the quark average
kinetic energy, and the anomalous magnetic moment ai.
Hence the quark anomalous magnetic moment ai is
strongly correlated to the tensor charge �i and this corre-
lation is made more explicit in the ultrarelativistic limit.
The upgraded Sehgal-Karl-Chen formula relating baryon
magnetic moments to the quark spin is a relativistic for-
mula which necessarily includes quark tensor charges, but
according to the above considerations such a formula is
lacking essential ingredients which are quark anomalous
magnetic moments correlated to tensor charges. To get a
consistent formula for baryon magnetic moments, we do
add the missing part. We then confront our formula with
baryon magnetic moments data using reasonable inputs
such as �u=�d � �2, nonrelativistic limit to extract the
quark mass mu ’ 263 MeV, Melosh-Wigner rotation re-
-6
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ductions of nucleon spin to estimate xu; xd, and tensor
charges from various model computations. Anomalous
magnetic moments of the u, d, and s quarks are evaluated,
au ’ ad ’ 0:38, as ’ 0:20–0:38, and turn out to be large
enough to not be ignored in any reliable analysis. Axial
magnetic densities �i � ��i for the up and down quarks, or
equivalently sea antiquark polarizations, are also extracted
and are different from values obtained in the standard
analysis of baryon magnetic moments. Our values are ��u ’
0:03, � �d ’ �0:05 to be compared with values obtained in
an approach without quark anomalous magnetic moments
nor quark tensor charges ��u ’ �0:01, � �d ’ �0:06.
APPENDIX

To prove the anomalous part of formula (9), we Fourier
transform the anomalous part of the magnetic moment
operator. We consider only one flavor and no antiquark to
simplify notations,

~�Njanomalous � �
aQ
2
hP"j

Z @
@ ~q

� � � �k0�
~��

2m
 �k�q��

d3p

�2
�3
jq�0jP "i;

with ~q � ~k� ~k0, ~p � � ~k� ~k0�=2 and ~�� is a vector whose
components are �i�. Then write

��i�q� � �� ~q� ~��i � i ~�q0;

�ij �2ijk �k;

�io � �i�i:

Differentiate each term of the above expression:
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i
@
@ ~q
� � � ~�q0 �

��������q�0
� i

~k� � ~� 

k0

�
m
k0

� ~��5 � � ~��5�0 

�
m
k0
 y ~� � � ~� ;

�
@
@ ~q
� � ~q� � ~� �

��������q�0
� 2 � ~� :

To get the second term in the first equation, we used the
identity

~�� ~� � ~k� � � ~� � ~k� ~�
2

� i� ~�� ~k��0�5:

Using the definition of the tensor and axial currents,

hPSj
Z
dx3 yi

~�
2
 ijPSi � �i

~S;

hPSj
Z
dx3 � i ~� ijPSi � ~�i;

we get the following for the anomalous part:

�Njanomalous �
aQ
4m
hP"j

Z m
k0
 y ~� � � ~� �

d3k

�2
�3
jP"i

� aQhP"j
~S

2k0
�

1

2m

�
1

2
~�
�
jP"i

�
axQ
4m

�
��

�
x

�
�
ax�

2

�
��

�
x

�
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