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We discuss heavy quarkonium production through parton fragmentation, including a review of argu-
ments for the factorization of high-pT particles into fragmentation functions for hadronic initial states. We
investigate the further factorization of fragmentation functions in the nonrelativistic QCD (NRQCD)
formalism, and argue that this requires a modification of NRQCD octet production matrix elements to
include non-Abelian phases, which makes them gauge invariant. We describe the calculation of
uncanceled infrared divergences in fragmentation functions that must be factorized at next-to-next-to-
leading order, and verify that they are absorbed into the new, gauge-invariant matrix elements.
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I. INTRODUCTION

The production of bound states of heavy quark pairs
played a historic role in the development of the standard
model [1]. This subject has retained a continuing fascina-
tion, in part because it offers unique perspectives into the
formation of QCD bound states. The first step in quark-
onium production, the inclusive creation of a pair of charm
or bottom quarks, is an essentially perturbative process. In
particular, at high transverse momentum in hard-scattering
processes, the dominant mechanism for the production of
heavy quarkonium is the perturbative fragmentation of
lighter partons, especially the gluon [2].

A basic result of perturbative QCD for the production of
hadrons H at high transverse momentum from the scatter-
ing of initial-state particles A and B is the factorization of
universal fragmentation functions [3–6]

d�A�B!H�X�pT� �
X
i

d~�A�B!i�X�pT=z;��

�DH=i�z;mc;�� �O�m2
H=p

2
T�: (1)

Here,� represents a convolution in the momentum fraction
z. The cross section d�̂A�B!i�X includes all information
on the incoming state, including convolutions with parton
distributions when A and B are hadrons, at factorization
scale �. We exhibit the mc-dependence of the fragmenta-
tion function DH=i in anticipation of our interest in H as a
charm-anticharm bound state, for which the boundary
condition for evolution is naturally taken at � � O�mc�.

The actual transformation of a heavy quark pair into a
heavy quarkonium H with momentum fraction z from
parton i requires the introduction of fragmentation func-
tionsDH=i�z;��. This reasoning applies in principle to both
charm and bottom quarks. For definiteness, we will gen-
erally refer to the heavy quark mass by mc, and to the
produced hadrons as H � J= etc., of mass mH � 2mc.
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At moderate z only the evolution, that is, the
�-dependence, of the fragmentation function is comput-
able perturbatively, with the remaining information en-
coded in some initial function DH=g�z;�0�, where we
may take �0 �mH. The effective field theory nonrelativ-
istic QCD (NRQCD), however, has been invoked to sim-
plify the nonperturbative content of the fragmentation
functions DH=i�z;�0�, in terms of a few (or anyway finite
number of) nonperturbative matrix elements.

The logic behind the application of NRQCD to frag-
mentation functions is readily summarized. One applies
the NRQCD expansion in the relative velocity of the
produced quark pair, assuming that a bound state will
form only if this relative velocity is small to begin with.
One then argues that the formation of the bound state is not
affected by the exchange of soft gluons with other hard
partons, only by exchanges between the quark and anti-
quark, and with the vacuum [7]. NRQCD then specifies a
complementary factorization theorem, often written as

d�A�B!H�X�pT� �
X
n

d�̂A�B!c �c�n��X�pT�hOH
n i; (2)

where the OH
n are universal NRQCD production operators,

organized according to powers of the relative velocity of
the c �c state �n�, and their rotational and color quantum
numbers. We will encounter explicit forms below.

Next, accepting that both (1) and (2) hold at high-pT , the
fragmentation function and NRQCD matrix elements are
related by [8]

DH=i�z;mc;�� �
X
n

di!c �c�n��z; �;mc�hO
H
n i; (3)

where di!c �c�n��z; �;mc� describes the evolution of an off-
shell parton into a quark pair in state �n�, including loga-
rithms of �=mc. This formalism has been extensively
-1 © 2005 The American Physical Society
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applied to heavy quarkonium production [9–16]. At the
same time, it has been observed that the applicability of
NRQCD to production processes has not been fully dem-
onstrated [16,17].

In this paper we revisit the formation of heavy quarkonia
in fragmentation, with the aim of testing the relation (3).
We will, however, first outline the proof of Eq. (1) in
leptonic annihilation and hadronic scattering, emphasizing
that the arguments that apply to light quark bound states
apply as well to heavy quarks, with corrections suppressed
by powers of the mass of the quark divided by the trans-
verse momentum. While our arguments for the factoriza-
tion of fragmentation functions will not actually cover new
ground, we are aware of no other unified presentation of
the steps leading to (1) for hadronic scattering in non-
Abelian gauge theories.

Once we have established (1), we can test NRQCD
factorization in its more specific form, Eq. (3), which
will simplify our analysis considerably. We study the fac-
torization of the fragmentation functions into perturbative
coefficient functions times NRQCD matrix elements, with
evolution included in the former. We shed new light on the
necessary cancellation of infrared divergences in the per-
turbative calculation of coefficient functions. In particular,
we will show that, to carry out such a factorization, it is
useful to redefine conventional NRQCD production matrix
elements, with the addition of extra gauge links, or Wilson
lines, a process that we termed ‘‘gauge completion’’ in
Ref. [17]. This modification renders the matrix elements
gauge invariant.

Gauge completion is also necessary in order to absorb
certain infrared divergences, beginning at next-to-next-to-
leading order (NNLO), that were not covered by the origi-
nal arguments for NRQCD factorization. We should note
that our NNLO infrared effects will appear only at order�3

s
in inclusive heavy quark pair production cross sections of
the type calculated to order �2

s in [18] (see also the corre-
sponding two-loop decay cross sections in [19]). Indeed we
will encounter two-loop corrections with a quark pair and
an additional hard gluon in the final state. The calculation
is only possible, of course, because we restrict ourselves to
the infrared sector.

In any case, however, we are not yet able to prove Eq. (3)
to all orders in perturbation theory. The basic results of this
paper were outlined in [17]. Here, in addition to the argu-
ments on factorization, we will provide rather complete
details on the methods used to identify the relevant infrared
behavior, and on the necessary two-loop calculations.

II. FACTORIZATION OF FRAGMENTATION
FUNCTIONS

A. Long-distance dynamics in high-pT production

The analysis of hard-scattering cross sections begins
with the identification of leading regions in the momentum
space integrals of perturbative amplitudes and phase space
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[5,20,21]. Regions in this multidimensional space are con-
veniently classified in cut diagram notation, in which
graphical contributions to the amplitude are represented
to the left of the final state, and contributions to the com-
plex conjugate amplitude to the right. In the complex
conjugate graphs the roles of final and initial states are
reversed.

Because loop integrals are defined by contours in com-
plex momentum space, it is only at momentum configura-
tions where some subset of loop momenta are pinched that
the contours are forced to or near mass-shell poles that
correspond to long-distance behavior. These ‘‘pinch sur-
faces,’’ or subspaces, in turn can be classified according to
their reduced diagrams, found by contracting off-shell lines
to points.

The basic result is this. Any reduced diagram corre-
sponding to a pinch surface can be interpreted as a physical
process, in which each vertex can be assigned positions x�i
in space-time in such a way that, if xi and xj are connected
by line h carrying nonzero momentum ph, then

�x�ij 	 �xi 
 xj�
� � �xi 
 xj�

0��h ; (4)

where ��h � p�h =p
0
h is the four-velocity of particle h. At a

pinch surface, this relation can be imposed for every line
and vertex of the reduced diagram. Consistency then re-
quires that the sum of �xij’s around any loop vanishes.
This is enough to ensure that the reduced diagram does
correspond to a physical picture, in which on-shell lines
describe free, classical motion between the vertices. To this
physical picture for finite-energy lines, lines with vanish-
ing momenta may be attached in an arbitrary manner
[20,21].

The proof of the relationship between pinches in loop
momentum space and physical pictures described by (4) is
not difficult [20,22,23], but we shall not review it here. Its
consequences, however, are important and easily drawn.

Let us apply the above considerations to the production
of a hadron H, with momentum P, in the scattering of
particles A and B,

A�pA� � B�pB� ! H� ~P� � X: (5)

We will assume that PT is a large scale, of the order of the
center-of-mass energy, and far above the strong coupling
scale �QCD. The relevant reduced diagrams for this process
are illustrated in cut diagram notation by Fig. 1 when A and
B are a leptonic pair, and by Fig. 2 when A and B are
strongly interacting (partons or physical hadrons).

At the pinch surfaces, there is a single hard scattering,
labeled by a shaded circle, in the amplitude and its com-
plex conjugate. For dilepton annihilation, Fig. 1, the hard
scattering is the result of the decay of the (real or virtual)
electroweak boson formed in the annihilation process. For
the hadronic process, the hard-scattering results from the
-2



FIG. 2 (color online). Reduced diagrams for high-pT particle
production in hadronic collisions.

FIG. 1 (color online). Reduced diagrams for high-pT particle
production in leptonic annihilation.
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collisions of a single parton from each of the colliding
hadrons.1 Finite-energy partons emerge from the hard
scatterings and connect to subdiagrams of on-shell col-
linear lines, the jets, Ji. All finite-energy particles of the
final states are in one of these jets. In addition, zero-
momentum lines may be exchanged between the lines of
the jets, and interact arbitrarily in a cut ‘‘soft subdiagram’’
S, consisting entirely of such lines. In effect, there are no
final-state interactions involving finite momentum transfer
in the reduced diagram for these processes. Thus, the total
momentum of each jet is determined at the hard scattering,
and the distributions of jet energies are calculable in per-
turbation theory. The essential observation to obtain this
result is that, once the parent partons of the jets emerge
from the hard scattering, they separate at the speed of light,
and subsequently cannot interact locally in any physical
picture defined as above. The observed hadron H appears
in one of the jets.2

We will not attempt a full review of power-counting
analysis in the neighborhood of an arbitrary reduced dia-
gram of Figs. 1 and 2. It is worthwhile to recall, however,
that we may characterize these regions of momentum
space by introducing scaling variables, conventionally de-
noted �, which control the relative rates at which compo-
nents of loop momenta vanish near the pinch surfaces. In
the terminology of [20], a leading region is one for which a
vanishing region of loop momentum space near a pinch
surface produces leading-power behavior. Such behavior is
naturally associated with logarithmic singularities at the
corresponding pinch surface.
1There are, in fact, physical pictures corresponding to colli-
sions involving more than one parton from each hadron. These,
however, are suppressed by powers after summing over gauge-
invariant sets of diagrams [24].

2Here, we treat H as massless, on the scale of PT .
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For the pinch surfaces at hand, we assign to the jth jet a
lightlike vector in the jet direction, �n�j , �n2

j � 0, and an
opposite-moving vector n�j , n2

j � 0, normalized such that
�nj � nj � 1. For each jet, the combination of �nj and nj
define a two-dimensional transverse space, which we will
denote as?�j� . The fundamental leading regions are char-
acterized by a familiar scaling behavior for the loop mo-
menta internal to jet j,

loop l in jet j:

�nj � l� Ej; �nj � l� �Ej; l?�j� � �
1=2Ej�;

(6)

where Ej is the energy characteristic of jet j, which we take
to be of the order of the overall center-of-mass energy,
denoted Q. In a similar notation, the scaling for soft loop
momenta, internal to the soft subdiagram S or flowing
between S and any of the jets, is

soft loop: k� � �Q: (7)

In principle, the two scales � in Eqs. (6) and (7) need not be
the same. A complete discussion includes power counting
for subdivergences, as some lines approach the mass shell
faster than others [20,21].

B. Jet-soft factorization

Arguments for the factorization of soft gluons from jets
were given in some detail in Ref. [5] for e�e
 annihilation.
We review these arguments here, and discuss their exten-
sion to hadronic scattering. Jet-soft factorization is made
possible by the singularity structure of loop integrals near
pinch surfaces [4,25]. Many of these results have been
rederived in the language of soft-collinear effective theory
[26,27]. In graphical terms, the factorization is most clearly
illustrated for leptonic annihilation, as in Fig. 1.
-3



3In a covariant gauge, parton j is accompanied by a set of
collinear vector lines with scalar polarizations at the coupling of
jet J�R;C�j to the hard scattering [5]. These gluons may be factored
from the hard scattering and are included in the jet.
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1. The soft approximation in leptonic annihilation

In Fig. 1 let us consider a loop momentum ki, flowing
from the soft subdiagram into jet Jj, through the hard
scattering to another jet, and finally back to the soft subdia-
gram. We will examine poles in the integral near k�i � 0
due to the denominators of Jj. For definiteness, we assume
the ki loop is in the amplitude.

The soft momentum appears in propagator denomina-
tors of a set of lines in the jet function. Let rj be the
momentum of any such line at ki � 0. When momenta
are scaled as in Eqs. (6) and (7), any denominator in the jet
function is of the general form

�rj � ki�
2 � i� � r2

j � �2nj � rj �nj � ki � 2 �nj � rjnj � ki


 2rj? � ki?� � k
2
i � i�

� O��� � �O��� �O��2� �O��3=2��

�O��2� � i�

� r2
j � 2nj � rj �nj � ki �O��3=2� � i�;

(8)

where the second equality gives the scaling behavior of
each of the terms in order, according to (6) and (7). In the
third equality we exhibit the leading behavior, which de-
pends only on the single component �nj � ki of the soft
momentum ki. This approximation will hold so long as
the contour of momentum component �nj � ki is not pinched
in such a way as to violate the scaling of Eq. (7).

Within jet Jj, the soft loop momentum ki can always be
rerouted by shifts of the jet’s loop momenta. In this way we
may choose ki to flow on each jet line in a sense opposite to
the direction of the jet momentum Pj / �nj [minus sign in
Eq. (8)]. With this choice all singularities in the variable
�nj � ki are in the same (here upper) half-plane. Thus,
although the poles in �nj � ki due to jet lines are generally
quite close to the origin, they do not pinch the integration
contour. As a result, the presence of poles in the jet subdia-
grams does not take us outside the scaling region of Eq. (7).

We now consider other possible sources of singularities
in the variable �nj � ki. Every virtual soft loop momentum
that attaches at least one jet to the soft subdiagram may be
routed so that it flows into no more than two jets. This is
because, once it reaches a second jet, it can be routed back
to the first through the hard-scattering subdiagram (where
it is neglected in the off-shell propagators and vertices).
The two jets determine distinct contour deformations for
the soft loop momentum. These deformations are guaran-
teed to be compatible, however, because we can always
specify them in a frame where the two jets in question, say
j and j0, are back to back. In this frame, we may identify
�nj � ki 	 k
i and �nj0 � ki � k�i , for example. The consis-
tency of the two contour deformations is then clear.
Momentum ki must also flow through the soft subdiagram.
Here, singularities are generically a distance O��� from the
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origin, except at lower-dimensional spaces. If such a sub-
space corresponds to a leading region, it may be treated
separately, by the same arguments [21]. Finally, we note
that, if ki is the momentum of an on-shell gluon (or decays
into a set of on-shell gluons), Eq. (8) always holds, unless
ki is itself collinear to the jet momentum. In this case, the
line carrying ki should be treated as part of the jet.

In summary, we have learned that the leading-power
behavior of the cross section from any leading region R
may be found by keeping only the �nj � ki component of soft
momenta ki within the jet subdiagram, and setting the
remaining components to zero. Similarly, in region R the
soft gluons couple to the jet subdiagram only through
the polarization component proportional to the jet direc-
tion, because at the pinch surface all other components of
the jet tensor vanish as a power of �.

Now we consider the subdiagram consisting of all lines
in jet Jj, connected to the hard subdiagram by parton j in
leading region R, not including the propagators of its
external soft lines.3 To be specific, we assume there are
m soft gluons connected to the jet in the amplitude, and
n
m in the complex conjugate amplitude. We introduce a
jet function J�R;C�j for leading region R, where C labels the
particular cut of the jet subdiagram. With a given cut C, of
course, the assignment of soft lines to the amplitude and its
complex conjugate is specified.

Our considerations lead us to a ‘‘soft approximation’’ for
the function J�R;C�j [5]. Within leading region R we may
make a replacement that isolates the leading soft-gluon
momentum and polarization components. In these terms,
the soft approximation may be defined by

J�R;C��1...�n
jML;a1...an

�k1 . . . kn; Pj�

� J�R;C��1...�n
jML;a1...an

�~k1 . . . ~kn; P�n�1
. . . n�n �n�1 . . . �n�n ; (9)

where we define, for any momentum ki,

~ki
� � ki � �njn�j (10)

as a vector with only the ‘‘opposite-moving’’ component of
momentum. (Of course, the definition of ~ki varies from jet
to jet.) The indices ai (�i) are the color (vector) indices of
the external soft gluons of momentum ki, while M;L are
the color indices of parent parton j, in the appropriate color
representation. Corrections to the soft approximation are
suppressed by powers of the scaling variable �, and hence
by the overall hard scale Q.

From the soft approximation Eq. (9), the coupling of soft
gluons to jet Jj is identical to the coupling of a set of
unphysical gluons to the jet, whose polarizations are pro-
-4



4This is the factorization effected in soft-collinear effective
theory by a redefinition for collinear fields [27].

5They are also essentially identical to those for lepton-hadron
scattering.
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portional to their momenta. Once we have made the soft
approximation, it becomes straightforward to apply the
non-Abelian Ward identities of QCD to the connections
of soft gluons to the jet [5]. This has a simple classical
analogy. In the rest frames of particles within jet Jj, the
classical fields due to particles in other jets, all of which are
separating with relative velocities �rel � c, reduce to pure
gauge fields, up to corrections of order ��rel 
 c� [28].

2. Factorization and the residual jet factor

Once we have used the soft approximation and the Ward
identities, the entire effect of the soft gluons external to the
jets is to produce, order by order, a product of eikonal
factors,

J�R;C��1...�n
jML;a1...an

�~k1 . . . ~kn; Pj�n�1
. . . n�n �n�1 . . . �n�n

� J�R;C�j �Pj�E
�j��m�1...�ny
MK;am�1...an

�
~km�1 . . .
 ~kn�

 E�j��1...�m
KL;a1...am

�~k1 . . . ~km�: (11)

Here, m is the number of soft gluons that couple to the jet
subdiagram in the amplitude, and n
m the number in the
complex conjugate amplitude. The eikonal factors E and
Ey reproduce all momentum and color dependence, but are
insensitive to the internal dynamics of the jet, and depend
only on the 4-velocity �nj, in the jet direction, and the color
representation of parton j. Specifically, they are given by

E�j� �1...�m
KI;a1...am

�~k1 . . . ~km�

�
X

perms

"
P
Ym
i�1

g �n�i
j T

�j�
ai


 �nj � �k1 � � � � � ki� � i�

#
KI

; (12)

where P implies ordering of the color matrices T�j�a accord-
ing to the permutation of soft-gluon connections. (As
above, soft momenta flow into the jet.) The function
J�R;C�j �Pj� in (11) represents what we will refer to as the
residual jet factor in region R with cut C. It is given by the
normalized color trace of the jet function with no external
soft gluons,

J�R;C�j �Pj� �
1

d�j�

X
L

J�R;C�j LL�Pj�; (13)

where d�j� is the dimension of the color representation of
parton j.

To apply the Ward identities that lead to Eq. (11), we
need only integrate over the opposite-moving components,
�nj � l of the jet loop momenta l. This is because the Ward
identities only require shifts in loop momentum equal to
the momenta that flow into the jet from the external lines.

In general, the residual jet function includes contribu-
tions from soft gluons for which the soft approximation
fails, but which remain internal to the jet. It is not necessary
that the soft approximation apply to every soft gluon.
Rather, for this analysis to hold it is only necessary that
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in every leading region we can find a set of soft lines for
which it holds, and for which we may apply Eq. (11).
Equation (11) is a general result for final-state jets in
arbitrary leading regions. We will see below how function
J�R;C�j can be identified as a contribution to a fragmentation
function.

At each (here nth) order, the factorized ~ki dependence in
the eikonal factor E in (12) is identical to the correspond-
ing dependence in the expansion of the ordered exponen-
tial,

��j��nj �0;1� � P exp
�

ig

Z 1
0
d� �nj � A�j�� �nj��

�
; (14)

where now P denotes path ordering, and where A�j� is the
gauge field in the matrix color representation of the parent
parton of the jet (quark, antiquark or gluon).4 At leading
power in �, and hence in the large momentum scaleQ, soft
gluons couple to jets only through the operators �nj � A,
restricted to the light cone along the jet directions. We will
see below how other operators arise at nonleading powers.

All of the reasoning above may be applied to the par-
ticular jet (J1 in Fig. 1) from which the observed hadron H
arises. The entire leading-power dependence on the masses
and relative momentum of the quarks, as well as on the
momentum fraction (z) of the pair, is in the functions
J�R;C�j �P� at each leading region. The influence of soft-
gluon emission on z can be neglected, precisely because
of the soft approximation (9). Thus, in each leading region,
the jet dynamics that produces an observed particle decou-
ples from soft gluons that could link it to the other jets in
the final state. In this way, fragmentation is seen to be
universal, depending only on the parent parton, the pro-
duced hadron, its momentum fraction z, and eventually a
factorization scale.

3. Hadronic scattering

The arguments for jet-soft factorization in hadronic
scattering are similar to those for leptonic annihilation,5

but special care must be taken because of the ‘‘initial-
state’’ jet subdiagrams JA and JB consisting of lines col-
linear to particles A and B in Fig. 2. As we shall see,
however, the factorization of fragmentation within a
final-state jet holds in this case as well, and is actually
somewhat more general than collinear factorization in
terms of parton distributions [5].

The essential difference between leptonic annihilation
and hadronic scattering may be seen by comparing Figs. 1
and 2. In the former, although the poles from jet subdia-
gram Jj in the soft momentum components �nj � ki are
-5
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closer to the origin than O��� in general, they are all in the
same half-plane. As a result, these momentum components
may be deformed away from the poles into a region where
the soft approximation holds.

For hadronic scattering, precisely the same reasoning
applies for soft momenta that flow only between final-state
jets, and/or through the hard scattering. It also applies for
soft loops that connect to an initial-state jet only via lines
whose large momenta flow directly from the initial state
into the hard interaction. In these connections, to what are
sometimes called ‘‘active’’ jet lines, all poles are again in
the same half-plane, and the same reasoning allows us to
deform contours as above to justify the soft approximation.

A difference arises, however, when soft lines connect to
the initial-state jets by ‘‘spectator’’ jet lines, whose mo-
menta flow into the final state without passing through the
hard scattering. In this case, to complete the soft loop
through the hard interaction, the momentum must flow
‘‘back’’ to a vertex at which spectator lines and active lines
connect, and then flow once again forward into the hard
scattering. Suppose this occurs for initial-state jet A. Both
spectator and active lines in A produce poles close to the
origin for a soft component �nA � ki, and these poles are in
opposite half-planes. The resulting pinch forces us into a
leading region where �nA � ki � ki? � �, which is gener-
ally referred to as a ‘‘Glauber region’’ [4,29]. In this region,
the scaling (7) does not hold, and the soft approximation
fails for this jet. Because the soft approximation fails, soft
gluons ‘‘resolve’’ the internal structure of the jet, and the
factorization arguments given above may not apply.

When the soft loop flows between an initial-state jet and
a final-state jet, however, only a single light-cone compo-
nent is pinched, associated with the initial-state jet. The
soft approximation may still be applied to the final-state
jet, giving eikonal factors as in Eqs. (11) and (12). The
eikonal factors associated with the outgoing jet then cancel
in a single-particle inclusive cross section, in the same way
that soft divergences cancel in jet cross sections.6 This
decoupling and cancellation of soft gluons enables us to
identify universal fragmentation functions, in terms of
universal matrix elements, in hadronic scattering as well
as leptonic annihilation, independent of the jet structure of
the particular hard scattering.

Finally, consider those soft loops that flow between the
two initial-state jets and/or through the hard scattering. In
general, such loops encounter Glauber pinches in two
light-cone components. For cross sections that are inclu-
sive in soft-gluon emission and in the fragmentation of the
forward jet remnants, these pinches nevertheless cancel in
the sum over final states. We then have collinear factoriza-
tion into independent parton distributions for incoming
hadrons A and B and a fragmentation function for hadron
6The argument for this cancellation in the case of hadronic
scattering is given in the first part of Sec. V of Ref. [30].

114012
H [5]. It is worthwhile noting, however, that, even when
these criteria are not satisfied, and the overall cross section
does not factorize into incoming parton distributions (as,
for example, in diffractive scattering in hadron-hadron
collisions [31]), the final-state jets still factorize from the
incoming jets and their soft exchanges, and the single-
particle cross section at high pT is still governed by a
universal fragmentation function.

C. Power corrections

Once we have determined that the leading-power con-
tributions factorize for the leading regions associated with
Fig. 2, we naturally turn our attention to power corrections
[32]. These may be classified by an expansion in non-
leading contributions to the integrand near the pinch sur-
faces. It is therefore an expansion in terms of ratios such as
f�k�=q2

j �
~k�, where the numerator f�k� represents any of the

terms involving soft momenta k that can be neglected at
leading power. These are the terms in Eq. (8) that scale as
�3=2 or higher, as well as nonleading terms from numerator
momenta. The denominator represents the squared mo-
mentum of the jet line qj, after the soft momenta k flowing
on jet line qj is replaced by ~k � nj� �nj � k� �O���,
Eq. (10). Although q2

j �
~k� is not large, the ratio f�k�=q2

j is
small in the leading region. (As we have seen, this may
require contour deformations.)

Keeping only �nj � k terms in the denominators, the nu-
merator terms f�k� are polynomials in the nj � k and ?�j�

components of soft-gluon momenta. In position space,
these vertices, connected to jet lines, correspond to opera-
tors that are local with respect to the n�j and?�j� directions,
but are relatively on the �n�j light cone. The gauge invari-
ance of the theory requires that these vertices, representing
the interactions of soft gluons with the jet functions, com-
bine to form gauge covariant operators. We may think of
these vertices as supplementing the leading-power �nj � A
vertices of the ‘‘soft approximation,’’ identified above with
the Wilson lines of Eq. (14). As above, the application of
Ward identities, or equivalently a redefinition of collinear
fields as in soft-collinear effective theory, organizes all
leading vertices into non-Abelian phase operators, but
now acting as color rotations on the nonleading vertices
as well as on the ‘‘parent’’ parton lines of the jet functions.
For the purposes of factorization at leading power in Q,
however, we need not enumerate these nonleading opera-
tors or vertices.

D. Fragmentation functions

So far, we have identified the leading regions in cut
diagrams that are associated with infrared dynamics in
single-particle inclusive cross sections. We have seen that
at each leading region the cross section breaks up into a
factor associated with the production of a parton (j above),
-6
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times a jet function J�R;C�j �P� that describes a contribution
to the formation of hadron H. In this section, we will show
that the jet functions identified above are in one-to-one
correspondence with leading regions for the standard frag-
mentation functions, DH=j.
114012
Fragmentation functions may be defined in terms of
expectation values [33]. For example, consider the produc-
tion of hadron H from a parent gluon at momentum frac-
tion z, taken, for definiteness along the 3-direction. The
relevant matrix element is then, in D � 4
 2" dimen-
sions,
DH=g�z;�� �

z2
2"

16�2
 2"��P�
Trcolor

Z
dx
e
i�P

�=z�x
h0jF���0����A�n �0;1��a
y
H�P

�; 0?�aH�P
�; 0?��

�A�
n �0;1�

 F���0
�; x
; 0?�j0i; (15)

where ayH is the creation operator for particle H at momentum P and F�� is the gluon field strength. The operator ��A� is
defined as in Eq. (14), but in the direction n� � 	�
, opposite to the direction of hadron H. Its fields are in the adjoint
matrix representation of color. The product of operators on the light cone requires renormalization and the introduction of a
scale �, as described in [33].

The expectation value in Eq. (15) may also be expressed as a sum over all states including hadron H,

DH=g�z; �� �

z2
2"

16�2
 2"��P�
Trcolor

X
N

Z
dx
e
i�P�=z�x



h0jF���0����A�n �0;1��yjH�P�; 0?�Ni

 hNH�P�; 0?�j�
�A�
n �0;1�F���0

�; x
; 0?�j0i: (16)
This form shows its close correspondence to a cross
section.

The leading regions of the expectation values (15) and
(16) are, in fact, very similar to those of leptonic annihila-
tion cross sections discussed above. Every leading region
includes in its reduced diagram a jet J�P� that provides the
particle of momentum P in the final state, in addition to a
jet in the opposite-moving direction n�, and possibly other
jets and arbitrary soft radiation (subject to the effective
phase space limitations imposed by renormalization at
scale �). At each such leading region R, the same argu-
ments as for leptonic annihilation lead to the precise analog
of Eq. (11), with exactly the same residual jet functions
J�R;C�j �P�. Because the cross section is otherwise inclusive,
the sum over final states results in the cancellation of all
soft and collinear singularities except for those associated
with J�R;C�j �P�. Therefore, we recognize a one-to-one
matching of every leading region in the fragmentation
function with a corresponding region in the total cross
section. This is the case for both leptonic and hadronic
initial states, because the residual jet functions are the same
in each case.

Strictly speaking, of course, the above discussion applies
only to perturbation theory, which requires that we impose
an infrared regulation, presumably dimensional regulari-
zation. Because our arguments extend to all orders in
perturbation theory, however, we may in principle intro-
duce an interpolating field with the quantum numbers of
hadron H, sum to all orders in that channel, and isolate the
S-matrix elements for H in the regulated theory. In this
sense our arguments demonstrate factorization for bound
state H in the regulated theory. We assume that the
continuation back to physical QCD in four dimensions
respects this result. This assumption is shared with
essentially all demonstrations of infrared safety and
factorization.

III. NRQCD FACTORIZATION AND GAUGE
COMPLETION

Having reviewed arguments for the factorization of
fragmentation functions, Eq. (1), up to corrections in
powers of mH=PT , we are ready to rephrase the question
of NRQCD factorization in terms of the fragmentation
functions themselves, as in Eq. (3). We begin with a further
examination of the leading regions of the fragmentation
functions, and we discuss evolution to the mass scale of the
heavy quarkonium mH. We then analyze the refactoriza-
tion, Eq. (3) of the gluon fragmentation function in terms
of NRQCD production operators, and propose a gauge-
invariant extension of the conventional operators.

A. Refactorization at the heavy quark mass

Our first goal is to separate logarithms associated with
evolution from dynamics at the scale of the heavy quark
mass. This can be done by invoking the evolution equations
for the gluon fragmentation functions in Eqs. (15) and (16),

�
d
d�

DH=g�z;�� �
X
i

Z 1

z

d



Pig

�
z


; �s���

�
DH=i�
;��;

(17)

with a sum over partons i, and similarly when the gluon is
-7



GOURANGA C. NAYAK, JIAN-WEI QIU, AND GEORGE STERMAN PHYSICAL REVIEW D 72, 114012 (2005)
replaced by a quark or antiquark.7 The solution to (17)
enables us to relate fragmentation at the conventional scale
PT with the mass scale of the produced hadron, H,

DH=g�z; PT� �
X
i

Z 1

z

d




Cgi

�
z


; PT;mH

�
DH=i�
;mH�;

(18)

where Cgi is a perturbative factor.
We will want to study the expansion in relative velocity

of the heavy quarks in the fragmentation function eval-
uated at a scale on the order of the heavy quarkonium mass.
It is natural, of course, to carry out this expansion in the rest
frame of the heavy quark pair. Since this is not the usual
frame in which to discuss fragmentation or the evolution
(17) associated with it, we will briefly discuss how evolu-
tion appears in this frame. Specifically, we need to show
that evolution logarithms factorize from the decay of an
off-shell gluon, with mass of order mH, as seen in the rest
frame of hadron H.

The transverse momentum of the observed heavy quark-
onium in the fragmentation function (15) is by definition
zero. Thus, the transformation to its rest frame is a boost in
the direction of its momentum as seen in the lab. For
convenience we take this momentum in the ‘‘plus’’ direc-
tion, as in (15). In both the lab frame and the quarkonium
rest frame, evolution then results from the strongly ordered
transverse momenta of partonic radiation.

To confirm Eq. (18), we should verify that we can
factorize soft gluons that connect partons with transverse
momenta k? � mH from those of lower transverse mo-
mentum. The former will appear in the evolution functions
Cgi, the latter in the fragmentation function at the scale of
mH. This separation of low- from high-k? gluons as seen in
the H rest frame follows exactly the same pattern as the
factorization of gluons from the jets in Sec. II above.

Consider a parton d of transverse momentum kd? �
mH and longitudinal momentum k�d � zdQ, as seen in the
lab frame (or the center-of-mass frame of the overall
collision), with Q the energy of the jet in that frame. In
the same frame and notation, the heavy quarkonium H has
transverse momentum k?;H � 0, and energy EH � zQ�
mH. A boost to the rest frame, where the energy ofH ismH,
leaves the transverse momentum kd? unchanged, while
transforming the plus and minus components of kd accord-
ing to

k�d � zdQ) zdQ
mH���
2
p
zQ

k
d �
k2
d?

2zdQ
)

k2
d?

2zdQ

���
2
p
zQ

mH
:

(19)
7The evolution kernels for heavy quarks may be chosen
identical to those for massless quarks in the case of parton
distributions [34]. A similar relation should hold here, although
we will not attempt a formal proof.
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Equivalently, the rapidity of parton d transforms according
to

�d �
1

2
ln
�

2�zdQ�
2

k2
d?

�
)

1

2
ln
�
z2
d

z2

m2
H

k2
d?

�
: (20)

By assumption, kd? � mH. Therefore, as long as z is not
itself small, that is, assuming thatH is one of the ‘‘leading’’
hadrons in the jet, the rapidity of parton d, which is large
and positive in the center-of-mass frame, is large and
negative in the rest frame of hadron H. In this frame, all
strongly ordered (in transverse momentum) partons are
moving in the direction opposite to the original jet direc-
tion. The soft approximation can now be applied to soft
gluons connecting the heavy quark pair that forms the
quarkonium to the strongly ordered gluons. The interac-
tions of these soft gluons may then be approximated by an
eikonal line in the direction n�, opposite to the jet’s
direction. The only difference from soft-jet factorization
in a cross section is that now the soft gluons’ transverse
momenta are smaller than mH. The result is exactly a
fragmentation function with upper limit mH on gluon
transverse momentum in convolution with a perturbative
function, as in Eq. (18), which is what we set out to show.

B. Long and short-distance dependence at the scalemH
To make contact with NRQCD applied to a fragmenta-

tion function, we explore further the sources of its long-
and short-distance behavior. This can be done as in the
discussion of cross sections and fragmentation functions
above, in Sec. II, although now we will carry out our
analysis in the rest frame of the heavy quarkonium. We
begin, as above, with the physical pictures associated with
pinch surfaces.

The relevant physical pictures for fragmentation into
hadron H are shown in Fig. 3. Since we are working in
infrared regularized perturbation theory, the heavy quarks
appear in the final states. We recall our discussion above,
however, in which we argued that in principle the reduction
of the bound-state pole does not modify factorization. We
will continue with this assumption.

A related point is that at the bound-state pole the relative
momenta of the quark pairs on either side of the cut need
not be the same. In principle, then, we should take the
relative momentum of the c �c pair in the amplitude, q
below, to be independent of the relative momentum, q0 of
the c �c0 pair to the right. This is the method employed in the
explicit calculations of Refs. [35–40], for example. Powers
of q and q0, however, are employed to identify operators in
NRQCD, terms linear in q corresponding to the lowest
order of the covariant derivative. Since we are interested
primarily in separating infrared poles from coefficient
functions, we will not distinguish between q and q0 below,
and simply calculate the fixed-order eikonal cross section
for a quark pair.
-8



FIG. 4 (color online). Topologically factored physical pictures
for heavy quarkonium production.

FIG. 3 (color online). Physical pictures for heavy quarkonium
production.
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As noted in the discussion of Sec. II D, the physical
pictures for fragmentation are similar to those for the
hadronic final-state interactions in leptonic annihilation.
The process begins with a short-distance subdiagram, rep-
resented by a shaded circle in Fig. 3. In this case, short
distance refers to virtualities at the order of mH. Lightlike
jets, Jj, develop from energetic (E�mH) ‘‘semihard’’
quarks, antiquarks or gluons, which emerge from the
hard scattering. These jets may be connected by a diagram
consisting entirely of soft quanta, S, to each other, and to
the Wilson line that is part of the construction of the
fragmentation function. In the case at hand, the heavy
quark pair also emerges from the hard scattering, and
soft quanta may connect to the jets and/or the Wilson
line. To prove NRQCD factorization, Eq. (3), it will be
necessary to show that all of this long-distance behavior
either cancels or matches entirely to NRQCD matrix
elements.

Considered abstractly, the connection to NRQCD is
made by ‘‘integrating out’’ degrees of freedom at the
mass scale mH in the calculation of the fragmentation
function. In practice, that is in perturbation theory, the
NRQCD operators On can be identified once we consis-
tently separate long- and short-distance contributions. As
the figure shows, a generic pinch surface in phase space
involves not only a truly short-distance part, but also a
variety of semihard jets. The question we must ask is to
what extent hadronization is affected by the presence of
these jets. In the original discussion of NRQCD factoriza-
tion given in Ref. [7], it was argued that, in the inclusive
sum over cuts inH production, all infrared divergences due
to soft exchanges between the heavy quarks and the extra
jets cancel in the inclusive sum, even while we fix the final
state of the quark pair to be a gauge singlet. Notice that,
even in the absence of semihard gluons, soft gluons may be
114012
exchanged with the Wilson line that is part of the definition
of the fragmentation function. Indeed, this Wilson line is
what remains of all exchanges of soft gluons between
the heavy quarks and partons at relative momenta greater
than mH.

In the absence of the soft-gluon connections between the
heavy quarks and semihard gluons, the remaining physical
pictures can be represented as in Fig. 4. In this case, all
collinear and soft divergences associated with the jets,
whose final states are summed over inclusively, cancel,
just as in leptonic annihilation. Soft singularities may,
and in general do, remain in the transition of the heavy
quarks from short distances to hadronization, but such soft
divergences are said to be ‘‘topologically factorized’’ [41],
and are readily factorized from the hard-scattering function
by a standard expansion in relative velocity, as we now
sketch.

In a topologically factorized diagram like Fig. 4, we can
expand the short-distance function around vanishing rela-
tive momentum, or equivalently relative velocity v of the
heavy quarks. Similarly, we may decompose each diagram
according to the color state (singlet or octet) of the heavy
quark pair, and may also expand in the momenta of any
light quanta (gluons or quark pairs) that also emerge from
the short-distance subdiagram. This leads precisely to an
expansion in terms of local operators, creating heavy quark
pairs in states n, labeled c �c�n�, where in general �n� also
labels the term in the expansion in relative velocity and
light parton quanta, so that the corresponding operator,
 y�0��0n�0�, which always includes a quark pair, may
also create light quanta. Each such operator will be accom-
panied by the sum of all hard subdiagrams, evaluated at
-9



FIG. 5. Lowest-order fragmentation function for g! c �c.
There are no interactions on the eikonal quark pair or the
Wilson line that corresponds to an eikonal gluon of four-
velocity l.
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zero relative velocity and at zero light parton momentum.
We will refer to this sum as the hard scattering, or coeffi-
cient, function for operator  y�0��0n�0�.

Combining the expansions from the amplitude and its
complex conjugate, we derive Eq. (3), with operators that
describe the creation of a heavy quark pair from the
vacuum, summing over all final states that include hadron
H. The general form of these operators [7] is

OH
n �0� �

X
N

y�0��n �0�jN;HihN;Hj 
y�0��0n�0�

� y�0��n �0��a
y
HaH� 

y�0��0n�0�; (21)

where the insertion of the creation operator ayH, which is
understood to act on out states to produce hadronH, and its
conjugate enables us to sum over the complete set of out
states between the creation and annihilation operators. The
first form defines the sum over final states appropriate to
quarkonium production, while the second form is a conve-
nient shorthand.

The following discussion is an attempt to analyze the
basic assumption that enables us to expand in v in this
manner. That is, we will begin with the general momentum
region illustrated by Fig. 3 and explore the reduction to the
simpler ‘‘topologically factorized’’ picture of Fig. 4, by
testing the cancellation of soft exchanges between the
heavy quarks and semihard gluons, or equivalently, the
Wilson line.

C. Operators and gauge completion

Our first observation, already described in [17], is that
matrix elements of the form (21) are not invariant under
operator-valued gauge transformations. In general, the
onium creation operators aH and ayH, which act on out
states, need not commute with gauge transformations car-
ried out at the origin, even though they are themselves
color singlets. As a result, it seems most natural to us to
modify the operators (21) to provide a form precisely
analogous to the gauge-invariant definitions of fragmenta-
tion functions in Eq. (15) above,

OH
n �0� ! y�0��n;c �0��

�A�y
l �0�cb�a

y
HaH�

��A�l �0�ba
y�0��0n;a �0�; (22)

in terms of ordered exponentials, defined as in Eq. (14). In
the (complex conjugate) amplitudes, (anti)time-ordering is
understood. We emphasize that such a redefinition is not
required for self-consistency. If one can demonstrate
NRQCD factorization in terms of operators in any specific
gauge, a gauge-dependent definition of the operator matrix
elements is admissible, as long as the gauge dependence is
not infrared sensitive. Indeed, this is the case for fragmen-
tation functions, because of the cancellation of infrared
divergences in final-state interactions at high PT , as ob-
served above. In the absence of a similar demonstration of
infrared finiteness for the refactorization (3) of fragmenta-
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tion functions in terms of NRQCD operators, however, it
seems natural to entertain (22) as a plausible replacement.
We now turn to the expansion in relative velocity, which
will enable us to test our suggestion.
IV. VELOCITY EXPANSION

A. Requirements for NRQCD factorization

To study the role of soft-gluon emission in heavy quark-
onium production, we will analyze infrared divergences in
the production amplitude for two heavy quarks, of total
momentum P and relative momentum, q:

P1 �
P
2
� q 	 p� q P2 �

P
2

 q 	 p
 q: (23)

That is, we study the process g! c �c�n0� � X with
c �c�n0� � c�p� q� �c�p
 q�. The lowest-order diagram
for this fragmentation function is shown in Fig. 5. It con-
sists of a single gluon splitting into the quark-anti-quark
pair.

In the following, we will study infrared divergences in
soft-gluon corrections to this process, when the quark-
antiquark pair is created as a color octet, but is restricted
to a singlet in the final state. Otherwise, we sum over all
perturbative final states.

To form a heavy quarkonium, of course, these quarks
cannot be truly on-shell. Rather, they are off-shell by an
energy of order q2=mc, characteristic of a Coulomb bound
state [42]. These are nonperturbative effects, however,
while coefficient functions are calculated in perturbation
theory. The cancellation of divergences, and/or their
matching to matrix elements in soft-gluon corrections to
Fig. 5, is a necessary condition for NRQCD factorization.
Any remaining divergences would be a violation of facto-
rization. In our calculation below, we will find uncanceled
divergences at NNLO for conventional operators, which,
however, may be absorbed into gauge-completed NRQCD
operators.
-10



FIG. 6. Velocity expansion. The heavy solid lines represent
heavy quark propagators in the eikonal approximation.
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B. Expansion in the eikonal approximation

Because our calculation will be carried out with on-shell
quarks, we can use the eikonal approximation for the
coupling of soft gluons to the quarks in order to identify
infrared divergences in the cross section. Equivalently, we
may treat the quarks in heavy quark effective theory to
leading order in their mass. Yet another equivalent, and for
us particularly convenient, approach is to replace the
quarks by path-ordered exponentials, similar to Eq. (14)
above, but now with timelike velocities representing the
quark and antiquark.

The dimensions of the velocity in ordered exponential
(14) can be shifted by a change of variables in the parame-
ter �. For this reason, we are free to identify the quark
velocities directly with their momenta P1;2 � �P=2� q�.
At fixed (and unequal) values of P1 and P2, all infrared
divergences can be found by the eikonal approximation.
The eikonal approximation and hence infrared divergences
are completely independent of any spin projections that we
may make on the state of the quark pair. As a result, soft-
gluon emission separates from all dynamical factors that
involve the spins of the quarks, and enters as a multi-
plicative factor. We will come back to the limit P1 � P2

below.
We can classify the eikonal infrared-sensitive factors by

the color of the c �c pair at creation (the origin of the ordered
exponentials) and by their color in the final state. Gluon
emission, of course, will mix these states. For an NRQCD-
like factorization to hold, if we fix the color of the c �c pair
in the final state, infrared divergences either cancel or can
be matched with matrix elements [7]. Finite remainders
will be associated with coefficient functions, as in the NLO
calculations of Refs. [35–40].

In summary, we will study the infrared factor associated
with the creation of a c �c pair in an octet configuration, and
its evolution into a singlet in the final state. This infrared
factor may be written in the notation of Eq. (14) as

I �8!1��P1; P2� �
X
N

h0j��� �q�yP2
�0��IJ�Td�JK��

�q�y
P1
�0��KI

��A�yl �0�dbjNihNj�
�A�
l �0�bc��

�q�
P1
�0��LM

 �Tc�MN��
� �q�
P2
�0��NLj0i; (24)

where we have exhibited all color indices: those in adjoint
representation by a; b . . . , and those in the fundamental
representation by I; J . . . , to indicate the trace structure,
which imposes a color-singlet configuration in the final
state.

The operator �� �q� is the ordered exponential that repre-
sents the antiquark. It has the opposite sign on the coupling
compared to the quark operator, and has color matrices
ordered in the reverse sense to time ordering. In the nota-
tion of the standard definition, Eq. (14), we represent this
matrix ordering by �P , and define
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�� �q�P2
�0� � �P exp

"
ig
Z 1

0
d�P2 � A

�q��P2��

#
: (25)

Here A�q�� 	
P
aTaA�;a is the matrix-valued field in the

quark fundamental representation. For classical fields,
�� �q�n �0� is the Hermitian conjugate of ��q�n �0�. In Eq. (24)
and below, overall time ordering of the field operators is
understood in the amplitude, and anti-time-ordering in its
complex conjugate. For explicit computations, we restrict
the sum over final states N in Eq. (24) to soft-gluon
emission only.

The graphical rules for the interactions of gluons with
the ordered exponentials are exactly the same as the eiko-
nal approximation, and propagators and vertices are given
by

i
�� � k� i��

; �igsTa�
�; (26)

with the plus for antiquarks and the minus for quarks on the
vertex and with �� the timelike quark four-velocity. The
quark and antiquark eikonal propagators are represented as
heavy lines on the left-hand side of Fig. 6. In this notation,
Eq. (24) describes a product of color traces in the funda-
mental representation. Our ability to use the same notation
for velocities as for momenta is manifest since the combi-
nation of each eikonal vertex and propagator is scale
invariant. In the pair rest frame the relative velocity of
the members of the pair is proportional to the ratio
q2=m2

c � 4q2=P2.
In the spirit of NRQCD analysis, and because it leads to

some simplification, we will study corrections to Fig. 5 to
order q2, which is the first nontrivial order. At zeroth order
in q2, the quark and antiquark never separate, and all
infrared divergences cancel, since there are no color multi-
poles to which they can couple. We can see this in Eq. (24),
in which both the amplitude and complex conjugate am-
plitude reduce to unity in the limit P1 � P2 ! P=2. This is
easily proved by considering the A�x� field with the largest
time in the amplitude. This field may come either from the
quark exponential, ��q�P1

�0�, or the antiquark exponential

�� �q�P2
�0�. When P1 � P2, the only difference between these

two terms is the relative minus sign between the quark and
antiquark vertices. Every such pair of terms cancels pair-
wise. An identical argument applies to the complex con-
jugate amplitude, and there is therefore no overall q term,
and q2 can be reached only by expanding both the ampli-
tude and its complex conjugate to order q independently.
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The expansion to order q is straightforward, and has a nice interpretation in terms of fields. We start with the expansion
for the individual ordered exponentials,

q�
@
@p�

��q�p �0� � 
ig
Z 1

0
d�0�0P exp

�

ig

Z 1
�0
d�p � A�q���p�

�
�p�q�F��;a��

0p�Ta�P exp
�

ig

Z �0

0
d�p � A�q���p�

�


q�
@
@p�

�� �q�p �0� � 
ig
Z 1

0
d�0�0T

�
�P exp

�
ig
Z �0

0
d�p � A�q���p�

�
�p�q�F��;a��0p�Ta� �P exp

�
ig
Z 1
�0
d�p � A�q���p�

��
;

(27)

where the explicit minus sign on the left in the second expression anticipates that we will be expanding in the momentum of
the antiquark, P2 � p
 q. In both of these expressions, the time ordering is from right (earlier) to left (later), with an
(opposite) identical ordering of color matrices for the (anti)quark exponential. We have inserted an explicit T in the
antiquark expression, to remind ourselves that the operators and color matrices have the opposite ordering in this case. The
operator F��;a is the gluon field strength with tensor and color indices. Note the overall factor of �0, which reflects the
increasing separation of the quark and antiquark paths with increasing distance from the origin when q is changed by a
constant amount.

We now apply Eq. (27) to the amplitudes in Eq. (24). Expanding P1 and P2 about p 	 P=2 we find

q�
@
@q�
hNj��A�l �0�bc��

�q�
P1
�0��LM�Tc�MN��

� �q�
P2
�0��NLj0i

��������q�0

� 
ighNj��A�l �0�bc

�
P exp

�

ig

Z 1
0
d�p � A�q���p�

��
LM
�Tc�MN

Z 1
0
d�0�0

�
�P exp

�
ig
Z �0

0
d�p � A�q���p�

�

 �p�q�F��;a��
0p�Ta� �P exp

�
ig
Z 1
�0
d�p � A�q���p�

��
NL
j0i


 ighNj��A�l �0�bc
Z 1

0
d�0�0

�
P exp

�

ig
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NL
j0i: (28)

Here again, time ordering is understood for all field operators. The lowest order of the expansions of the left- and right-
hand sides of Eq. (28) are shown graphically in Fig. 6. On the right, the vertex associated with the field strength in the final
form is represented by �.

We next apply reasoning similar to that which led to the cancellation of the ordered exponentials at q � 0. Again,
consider the A-field with largest variable �, assuming that there is at least one such field with � > �0, that is, at least one
field at a larger time than the field strength p�q�F��. We recognize that, whenever we find such a field, there is a
cancellation between the cases when that field is associated with the quark and antiquark ordered exponentials. All fields at
times greater than that of the field strength cancel, and we have

q�
@
@q�
hNj��A�l �0�bc��

�q�
P1
�0��LM�Tc�MN��

� �q�
P2
�0��NLj0i

��������q�0

� 
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 �p�q�F��;a��0p�Ta�
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��
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j0i

� 
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0
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j0i: (29)
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In the last line we have used the cyclic nature of the color
trace and the antipath ordering of the antiquark exponential
to show that the two terms above are equal. Next, we note
that, were it not for the generator Tc, we could use the same
reasoning as above to show that the A-field of lowest �0

cancels between the quark and antiquark exponentials. The
nonvanishing remainder, therefore, is a commutator,


igAd��minp��Td; Tc� � gAd��minp�fdceTe

� 
igAd��minp��T
�A�
d �ecTe;

� Te�
igA�A���minp��ec; (30)

where �T�A�d �ec � 
ifdec is a generator in the adjoint rep-
resentation. In effect, the gluon field is converted from the
fundamental representation to the adjoint.

At any order in g, this procedure may be repeated until
all A-fields from the remaining ordered exponentials have
been converted from fundamental to adjoint representation
in Eq. (29). The final color trace in fundamental represen-
tation is trivial (and gives 1=2), and we derive the relatively
simple form,

q�
@
@q�
hNj��A�l �0�bc��

�q�
P1
�0��LM�Tc�MN��

� �q�
P2
�0��NLj0i

��������q�0

� 
ig
Z 1

0
d�0�0hNj��A�l �0�bc�p

�q�F��;a��
0p��



�
P exp

�

ig

Z �0

0
d�p � A�A���p�

��
ac
j0i

� 
ig
Z 1

0
d�0�0hNj��A�l �0�bc�p

�q�F��;a��
0p��

��A�p ��0�acj0i; (31)

in which all fields are in adjoint representation. There is
only a single ordered exponential, linking the gauge index
at the origin (c) with the field strength at the variable point
�0. Note that the index c of ��A�p is itself linked to the final
state by the auxiliary ordered exponential that we have
added in the l direction through gauge completion, as
described above and in Ref. [17].

To derive contributions of order v2, or equivalently
q2=m2

c � 4q2=P2, we will study the nonlocal matrix ele-
ment

I 2�p; q� 	
X
N

Z 1
0
d�0�0h0j��A�yl �0�bc0�

�A�
p ��0�

y
a0c0

 �p�q�F��;a0 ��
0p��jNi

 hNj
Z 1

0
d�0�0��A�l �0�bc

�p�q�F��;a��0p���
�A�
p ��0�acj0i: (32)

As above, (anti)time-ordering is implicit in the (complex
conjugate) amplitudes. This is the complete O�v2� result
for I �8!1�, Eq. (24), because, as we have seen above, at
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order O�v0�, the quark and antiquark eikonal lines in both
the amplitude or its complex conjugate cancel completely,
and thus decouple for soft radiation.

In the following, we will study the expansion of Eq. (32)
to NNLO. The explicit factor of �0 in Eq. (31) modifies the
eikonal propagators. To see this, we can formally evaluate
the �0 integral in Eq. (31) in terms of the Fourier transform
of the field strength, ~F��;a�k� 	

R
d4xF��;a�x� exp�
ik �

x�. With this convention, momentum k flows into the field
strength (and hence out of the eikonal lines). For a given
order in the expansion of the adjoint ordered exponential in
Eq. (31), the lower limit of the �0 integral is some value �m,
the maximum value of � in the ordered fields p � A�A���p�
from ��A�p . The relevant integral is then


 ig
Z 1
�m
d�0�0

Z d4k

�2��4
ei�

0�n�k�i�� ~F��;a�k�

� 
ig
Z d4k

�2��4
ei�m�n�k�i�� ~F��;a�k�



�
�m

i
n � k� i�



1

�n � k� i��2

�
; (33)

where we have integrated by parts. The second term gives a
squared eikonal propagator. The first (boundary) term in
brackets on the right-hand side gives the standard eikonal
propagator of Eq. (26), times a factor of �m, producing a
similar pattern in the next integral. The next integral will
again give a squared propagator plus a boundary term, until
the final � integral, for which the lower limit is zero and the
boundary term vanishes. The result for a specific diagram
is to replace the standard product of eikonal propagators by
a sum of terms, in each of which one of the propagators is
squared. Vertices for the operators p � A are unchanged.
The relevant graphical notations for vertices are shown in
Fig. 7. The three-point field-strength vertex may be repre-
sented as

U�
F;ac�p; q; k� � 
g	ac��p � k�q

� 
 �q � k�p��; (34)

and the four-point vertex as

W��
F;abc�p; q� � ig2fabc�p�q� 
 q�p��: (35)

In both cases, c represents the color factor of the field-
strength tensor of Eq. (31), while a and/or b are the color
indices of the gluon(s) that couple to the field strength.
Because the adjoint eikonal lines end at the field strength in
(31), corresponding to the color-singlet pair in the final
state, the three- and four-point vertices have only two and
three color indices, respectively.

As an example, corresponding to Fig. 7(d), we have the
expression
-13



( a ) ( b ) ( c ) ( d )

FIG. 7. (a) Eikonal vertex; (b),(c) vertices for the field-strength; (d) line with eikonal and field-strength interactions.

(a) (b)

FIG. 8. Representative NLO contributions to g! c �c fragmen-
tation in eikonal approximation are found by all cuts of these
diagrams. In these figures, the parent gluon is contracted to a
point, represented by the dark circle, because it is off-shell by
order mc.
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gP�
0
U�
F;ac�P; q; k�

�
1


P � �k0 � k� � i�
1

�
P � k� i��2

�
1

�
P � �k0 � k� � i��2
1


P � k� i�

�
;

(36)

where we have chosen the sign of the infinitesimal imagi-
nary part appropriate to the amplitude. To avoid clutter in
and proliferation of figures, we will not introduce a graph-
ical notation for squared propagators, but simply assume
that the sum over terms is carried out in every diagram with
a field-strength operator at the largest time.

The three-point vertex, U�
F in Eq. (34) is just the mo-

mentum representation of the Maxwell term of the field
strength. It thus trivially decouples from scalar-polarized
gluons,

U�
F�p; q; k�k� � 0: (37)

This result will lead to considerable simplification in our
calculations; in particular, it eliminates, on a diagram-by-
diagram basis, collinear poles associated with the octet
eikonal line in the ‘ direction. This is because, in any
covariant gauge, collinear divergences are associated
with gluons whose polarization is proportional to their
momenta in the collinear limit [20].

In the next two sections, we apply these rules to study
the coupling of soft gluons to the heavy quark pair. We
begin at NLO, and then generalize to NNLO.

V. NEXT-TO-LEADING ORDER

Figures. 8(a) and 8(b) illustrate the origin of infrared
divergences in the fragmentation function at next-to-
leading order in �s to order v2. This infrared structure is
the same as the lowest-order contribution to I2, Eq. (32).
As in Fig. 6, the sum over gluon connections to quark and
antiquark on each side of the cut has been replaced by a
single field-strength vertex. Because the parent gluon is
off-shell by ordermc, we may contract it to a point to study
soft-gluon corrections. For this purpose, it is then equiva-
lent to study the matrix elements (24) to next-to-leading
order, and that is how we shall describe our calculation
114012
below. We emphasize, however, that there is a trivial map-
ping from the matrix elements to the fragmentation
functions.

The vertical lines in Fig. 8 represent the quark-antiquark
pair in the final state, and a projection onto a color singlet
(implemented by a color trace) is understood, along with a
sum over all connections of the gluon to the quark and
antiquark. The full set of diagrams is found by completing
the cut, which can be done in only one way for 8(a), where
the gluon must be in the final state. For Fig. 8(b), on the
other hand, there are two possibilities, one with a virtual
gluon correction and one with a real gluon. In fact, of the
two diagrams, only 8(a) can contribute to I �8!1�, Eq. (24).
If we require a color-singlet pair in the final state, Fig. 8(b)
requires interference between octet and singlet in the hard-
scattering functions. We consider this diagram because it
follows a pattern observed in the original arguments for
NRQCD factorization, given in Ref. [7], and because its
square contributes to I �8!1� at NNLO.

Let us begin with Fig. 8(a), which has a topologically
factorized form, in which the soft gluon connects only to
the heavy quarks, rather than to other finite-energy final-
state lines. (In this case, the only such line is the eikonal
line in direction l.) From the perturbative rules described
above, we immediately write down the following integral,
which is readily evaluated in D � 4
 2" dimensions,
-14



(a) (b) (c)

FIG. 9. (a),(b) Poles resulting from closing the minus loop
integral in cut diagrams corresponding to Fig. 8(b). (c) Cor-
responding representation of real gluon emission.
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��8a��P; q� � 16g2�2"
Z dDk

�2��D
1 	�k
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 �q��P � k� 
 �q � k�P��

 �q��P � k� 
 �q � k�P��
1

��P � k�2�2

�
16
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�s
�

~q2

P2

1


"
� � � � : (38)

Here we have suppressed color factors, including the factor
of 1=2 from the color trace mentioned above Eq. (31). The
infrared pole in this result is familiar from NLO calcula-
tions of fragmentation [35–37], in which it is matched to
the relevant NRQCD matrix element.

We now turn to the cuts of Fig. 8(b), which contribute
only to color interference terms. These diagrams, in which
the gluon connects the quark-antiquark pair with the eiko-
nal line, are not topologically factorized. Based on the
arguments of [7], we expect these to cancel, and they do.
This was verified explicitly in Ref. [38] for the case of
color-octet pairs in the final state. It will be instructive,
however, to see how this happens in our velocity-expanded
form to linear order in q with a color-singlet final state,
because the cancellation found here will be relevant to
NNLO.

We consider first the cut diagram with a virtual gluon
loop in the amplitude. For our purposes, the overall nor-
malization of the diagram is arbitrary, and we write

��8b�virtual � g2
Z dDk
�2��D

N�P; k; q; ‘�
1

�P � k� i��2
1

k2 � i�


1


‘ � k� i�
; (39)

with numerator factor

N�P; k; q; ‘� � 2�q � ‘�P � k� 
 P � ‘�q � k��

�
���
2
p
P0‘
�

���
2
p
k�q3 � q? � k?�: (40)

In this diagram, as in subsequent loop integrals, we will
integrate first the minus loop momentum, by closing con-
tours in the lower half-plane and picking up the relevant
poles. Certain regularities and cancellations are conven-
iently represented in this manner, reducing the number of
diagrams that must be computed explicitly. The result is
shown in Fig. 9. The double pole from the quark pair octet
eikonal denominator, �P � k� i��2, is always in the k


lower half-plane, while the pole of the exchanged gluon
is in the lower half-plane only when k� flows in the
direction indicated in the figure. Closing in the lower
half-plane, and neglecting the term odd in k?, we find
only terms proportional to q3,
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Z 1
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1

�k� � k2
?=2k��2

�
: (41)

These two terms correspond to the diagrams in Figs. 9(a)
and 9(b), where the straight line through the eikonal or
gluon line indicates the k
 pole chosen. Both of these
terms are logarithmically divergent by power counting in
the soft limit. As in the case above, however, they are
collinear finite. In fact, the first term on the right-hand
side is odd in k� and vanishes after symmetric integration.
The pole at k� � 0, which would correspond to an on-shell
intermediate state, has vanishing residue at order q.

In the second term of the right-hand side of Eq. (41), the
exchanged gluon is on-shell with positive plus momentum
flowing from the heavy quark pair to the eikonal lines. Its
contribution to the cross section, as illustrated in Fig. 9(b),
is real, and it is straightforward to verify that it cancels the
corresponding diagram for real gluon emission, illustrated
by Fig. 9(c), which has a standard flow of gluon momen-
tum (k� > 0) in the cut diagram. We will use the notation
shown in these figures to help organize our NNLO compu-
tations below.

At the level of NLO, we have found that one-loop
corrections indeed follow the expected pattern: they cancel
except when topologically factorized, and are thus consis-
tent with matching to conventional NRQCD matrix ele-
ments. The presence of the octet Wilson line in our gauge-
completed matrix elements does not change this pattern at
NLO, as observed in Ref. [38].

Before going on to the details of the NNLO calculations,
we make a comment on gauge independence. As defined,
the factorized fragmentation functions are gauge invariant,
-15
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since the eikonal and the pair creation operators
��A�‘  yKn of Eq. (22) are contracted to form a color-
singlet vertex. Also, as we have seen, because of Eq. (37),
there are immediate cancellations of many gauge terms
like k�k�=�k2�2 for a gluon of momentum k, because of the
field-strength vertices that appear when we expand in the
relative velocity of the quark pair. We can, of course,
decouple the eikonal gauge line entirely, by choosing an
‘ � A � 0 gauge. The gauge invariance of the matrix ele-
ments assures that the result would be the same. For our
purposes, however, the Feynman gauge is most convenient.

VI. THE FRAGMENTATION FUNCTION AT NNLO

In this section we study in detail the infrared behavior of
the gauge-completed gluon fragmentation function at
NNLO. Specifically, we will study nontopologically fac-
torized diagrams at order �2

s in Eq. (24). We will find
uncanceled infrared divergences for this set of diagrams,
corresponding to O�v2� contributions to the fragmentation
functions. We emphasize that the same infrared poles
[proportional to �2

s=�
"�] appear in cross sections, asso-
ciated with soft-gluon exchanges between the quark pair
and a recoiling gluon. For this reason, the gauge comple-
tion of matrix elements is necessary for factorization. At
the same time, we will observe that the infrared pole is
independent of the direction of the vector ‘�. This shows
that the gauge-completed fragmentation function is univer-
sal to NNLO. The same fragmentation function will match
infrared poles for the quark pair recoiling against a gluon in
any frame, or indeed (as we shall see), for any set of
recoiling jets at this order of soft-gluon exchange. We are
not yet able to show, however, that this redefinition is
universal at all orders in soft-gluon exchange.

A. The diagrams

The soft-gluon diagrams that we will evaluate are shown
in Fig. 10. Here, we compute only those contributions that
correspond to the transition of a color-octet pair to color
singlet in both amplitude and complex conjugate. For
(I) (II)

(IV) (V)

FIG. 10. Diagrams I–VI discussed in the text. We sum over all cuts
the hard vertex, the pair is created in an octet state.
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NRQCD factorization to hold, all infrared divergences
should either cancel or factorize into octet matrix elements.

We will discuss the diagrams of Fig. 10 one at a time. In
evaluating each diagram, k1 is defined as the momentum of
the gluon that attaches to the quark pair at the leftmost
vertex, and it is always chosen to flow left to right in the
diagrams. We label the momentum of the remaining gluon
line attached to the quark pair as k2, choosing it to flow
upward to the pair in each case. As observed in Sec. V, the
structure of the field-strength vertex automatically elimi-
nates collinear poles associated with soft gluons parallel to
the ‘ direction.

For the purposes of this section, momenta associated
with the quark eikonal lines, P, p � P=2 and q, will all be
scaled by the quark mass, mc. In the quarkonium rest
frame, then, we have P � �2; ~0�, p � �1; ~0� and q �
�0; ~v=2�.

B. Summary of results

In the remainder of this section, we have given the
calculations that confirm our claims above in substantial
detail. Since this discussion is of necessity rather detailed,
it may be useful to summarize our results at the outset.
Each of the diagrams in Fig. 10 contributes to the NNLO
infrared factor in three separate quantities: first, the inclu-
sive cross section for the production of a color-singlet
charm pair of total momentum P to order q2 in their
relative momentum, through the fragmentation of an off-
shell gluon; second, the fragmentation function for a gluon
to the same color-singlet pair; and third, the gauge-
completed production matrix element Eq. (22) for the
production of the color-singlet pair from a local color-octet
combination of quark and antiquark operators. The match-
ing of the cross section with the fragmentation function
was shown in Sec. II, and the matching of the fragmenta-
tion function (15) with the production matrix element (22)
in Sec. III. Notice, however, that these diagrams do not
appear in the conventional production matrix element (21).
Since all other diagrams are held in common between the
(III)

(VI)

of these diagrams that can produce a color-singlet quark pair. At
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(a)

(b)

FIG. 11. (a) Cuts of diagram II; (b) k
2 poles of IIA.
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two matrix elements (21) and (22), we can confidently
conclude that the modification of the matrix element is
necessary for matching at NNLO, at least in Feynman
gauge. Indeed, because the two sets of diagrams are ac-
tually the same in a light-cone ‘ � A � 0 gauge, this is a
quick way to see that the matrix elements without the ‘
eikonal lines are not gauge invariant.

In the following subsections, we identify the diagrams
by the numbers in Fig. 10. In view of the above, we
recognize that each of the quantities (cross section, gluon
fragmentation function, and production matrix element) is
proportional to the sum of these diagrams, multiplied by
infrared-safe factors. There is no question that, for indi-
vidual final states, these diagrams are infrared sensitive.
The question that we address in this calculation is whether,
when all the final states of all the diagrams are combined,
the infrared poles remain. As indicated above, the answer
is yes.

Discussing the diagrams one by one, the actual results
(in covariant gauge) are rather simple to summarize. The
infrared poles in dimensional regularization for diagrams
I, II, IV, V and VI all cancel. Only diagram III provides a
noncanceling pole, given by8

2 Re III � 
�2
s

1

3"
~v2

4
; (42)

with ~v the relative velocity. Multiplied by the appropriate
color factors, this pole will appear in the calculation of all
of the three quantities just discussed. Equation (42) is the
basic result of our calculation. Because it is nonzero, the
gauge completion of NRQCD matrix elements appears to
be necessary to extend this formalism to production pro-
cesses at NNLO. Conventional matrix elements simply
will not match the infrared poles that are encountered in
cross sections and fragmentation functions at this order.

Having said this much, the reader who wishes to avoid,
or delay, the details of the NNLO calculation may skip to
the final subsection of this section, where we discuss the
8The factor of 2 on the left is a convention in our calculation
below.
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applicability of this result to cross sections involving the
production of the pair with arbitrary numbers of hard jets,
and to the conclusions, for a brief recapitulation.

C. Ladderlike diagrams

Diagrams I and II have a ladder and crossed-ladder
structure. We discuss the calculation of infrared poles in
II in some detail; diagram I has a very similar structure. We
will show that the single IR pole of diagram II has an
imaginary residule.

The cuts of diagram II, that is the contributions from
various final states, are shown in Fig. 11(a). We begin with
diagram IIA, in which a single gluon appears the final state.
IIA is the complex conjugate of IIC, while IIB is real. Thus,
at the order to which we work, we need consider only the
real parts of each diagram.

After dropping terms that are linear in ki?, i � 1; 2, the
integral becomes
IIA �

16ig4

�2��2D
1

Z �
dDk1

Z 1
dDk2	��k

2
1�

1

k2
2 
 i�

��P � ‘��q � k1� 
 �q � ‘��P � k1����P � ‘��q � k2� 
 �q � ‘��P � k2��

�P � k1�
2�P � k2 
 i��2�
‘ � k2 
 i���‘ � �k1 
 k2� 
 i��

�
16ig4q2

3

�2��2D
1

Z �
dDk1

Z 1
dDk2	��k

2
1�

1

k2
2 
 i�

k�1
�k
1 � k

�
1 �

2�k
2 � k
�
2 
 i��

2�
k�2 � k
�
1 
 i��

: (43)
The first expression gives IIA in terms of P � �2; ~0�,
normalized as in the perturbative expansion of Eq. (32),
but suppressing color factors. In particular, as in the NLO
case, we divide by �1=2�2 to compensate for the traces in
quark representation. Here and below, ��mc is an ultra-
violet cutoff for real soft-gluon radiation.
Again as in the one-loop examples, we do the minus
integrals first, closing the k
2 contour in the upper half-
plane. This gives two terms, one from the quark-pair
eikonal, another from the gluon propagator,

IIA � IIA�k
0
2� � IIA�k

2
2�; (44)

represented in Fig. 11(b). Again as in the one-loop ex-
ample, we readily verify that the gluon pole term, com-
bined with the corresponding gluon pole of IIC, cancels
-17
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FIG. 12. Cuts of diagram IV.
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the entire contribution of diagram IIB, where both gluons
appear in the final state. For the remaining contribution we
find after the minus integrations

IIA�k
0
2� �

16g4q2
3

�2��2�D
1�


Z
dD
2k1?dD
2k2?

Z
dk�2

k�2
�2k�2

2 � k
2
2?�

2


Z �

0
dk�1

4k�2
1

�2k�2
1 � k

2
1?�

2�k�2 
 k
�
1 � i��

:

(45)

In this expression it is clear that we may extend the k1?

upper limit to infinity without changing the infrared be-
havior of the integral. Then, performing both transverse
integrals, and changing variables to x 	

���
2
p
k�1 and y �

k�2 =k
�
1 , we find

IIA�k
0
2� � 4

�
�s
�

�
2
�4��2"�2�1� "�q2

3

Z ��
2
p

�

0
dx

1

x1�4"


Z 1

1

dy
y

�y2�1�"�y
 1� i��
: (46)

This integral is infrared regularized for " < 0, that is in
more than four dimensions. The pole is found from the
identity

1

x1�N"
�

1


N"
	�x� �

�
1

x

�
�
�O�"�; (47)

with a residue that is given by the " � 0 limit of the
remaining expression. The y integral has no pole, because
for " < 0 the poles from y! 0� and y! 0
 cancel. The y
integral at " � 0 is then found to be

lim "!0

Z 1

1

dy
y

�y2�1�"�y
 1� i��
� 
i�: (48)

We conclude that, although IIA�k
0
2�, and hence the complete

diagram II is infrared divergent, its divergence is imagi-
nary, and does not contribute to the fragmentation function,
which is real. Essentially identical considerations apply to
the uncrossed ladder diagram, I.
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D. Diagrams with three gluons on the quark-pair
eikonal

The diagrams with three gluons connected to the quark
lines are IV, V and VI of Fig. 10. We first consider diagram
IV, which involves the commutator term of the field
strength. Diagrams V and VI both have an additional
eikonal vertex at which a gluon couples to the quark pair
in an octet color state.

1. Diagram IV

The relevant cuts of diagram IVare shown in Fig. 12. As
in the case of the ladder diagrams in the previous subsec-
tion, diagram IVB, which is real, cancels against the �k1 

k2�

2 � 0 pole of IVA found by closing k
2 in the upper half-
plane. We thus need only evaluate the real part of IVA from
the double pole at P � k2 � 2k0

2 � 0. The imaginary part,
of course, cancels against the complex conjugate diagram.

In the same normalization as above, the numerator mo-
mentum factor for diagram IV is independent of k2, and is
given by (after dropping terms linear in k1?)
nIV � �P � k1q� 
 q � k1P���q�P� 
 P�q��l�

� 4�
q2
3k
�
1 
 �1=2�q2

?�k
�
1 � k



1 ��; (49)
and the full contribution of diagram IV is given by the real
part of
IVA� IVB � IVA�k
0
2�

� 
32
�
�s
�

�
2 1

�4�2�1
2"

Z �

0

dk�1
2k�1

Z 1

1

dk�2
Z
dD
2k1?

Z
dD
2k2?



q2

3k
�
1 
 �1=2�q2

?�k
�
1 � k

2
1?=2k�1 �

�k�1 � k
2
1?=2k�1 �

2�
2�k�2 
 k
�
1 ��k

�
2 � k

2
1?=�2k

�
1 �� 
 �k2? 
 k1?�

2 
 i��2
: (50)

As in the previous diagrams, we change variables to y � k�2 =k
�
1 . In addition, we rescale the transverse integrals as �i 	

ki?=�
���
2
p
k�1 �. The �i integrals are finite, but we find that an explicit infrared pole appears from the limit k�1 ! 0. After the

�2 integral, the diagram becomes
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IVA�k
0
2� � 4

�
�s
�

�
2
22"�3"
1��1� "�

Z �

0

dk�1
k�1�4"

1

Z
d2�1
"��1

�
q2

3

�1� �2
1�

2 �
q2
T

2�1� �2
1�

�


Z 1

1

dy

�
�2
1 
 y�1
 �

2
1� � y

2 � i��1�"
: (51)
The y integral is readily carried out [after changing varia-
bles to y0 � y
 �1=2��1
 �2

1�], and we verify that the
residue of the infrared single pole in " is imaginary. The
real contribution of diagram IV to the fragmentation func-
tion is then infrared finite.

2. Diagram V

As for diagram IV, we will find the infrared pole of the
real part of VA and VB, given in Fig. 13, and once again the
latter, with two gluons in the final state, cancels against the
�k1 
 k2�

2 pole in the former, when the k
2 contour is
closed in the upper half-plane.

The Feynman rules for the field-strength vertex lead to a
sum of terms (in this case two) in which each of the
denominators on the octet ordered exponential in
Eq. (31) is squared, just as in Eq. (36). Thus, diagram
VA has two terms. The momentum numerator factor,
which depends only on k1, is the same for both. We choose
to route the k1 momentum across the gluon to the ‘-eikonal
line on the bottom of the diagram, so that the rightmost
quark-pair eikonal carries momentum k2 to the right, and
the exchanged gluon k2 
 k1 up. The VA integral is then
given by
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VA �
i25=2g4

�2��2D
1

Z �
dDk1

Z 1
dDk2	��k

2
1�


1

�k2 
 k1�
2 
 i�

nVA�k1; k2�

k�1 
 k
�
2 
 i�



�
1

�k
1 � k
�
1 �

4�k�2 � k


2 
 i��

�
1

�k
1 � k
�
1 �

3�k�2 � k


2 
 i��

2

�
; (52)

which exhibits the squaring of poles to the right of the
field-strength vertex in the diagram. The momentum nu-
merator nVA is

nVA � �P � k1q�
 q � k1P���P � k1q�
 q � k1P���P � ‘=2�

�
���
2
p
�
4q2

3k
�
1 k


1 
q

2
?�k

�
1 � k



1 �

2� 2�q? � k1?�
2�:

(53)

After performing the k
i integrals of VA and VB, and
noting the cancellation of the exchange gluon pole, we
are left with the contributions of the k0

2 pole
V�k
0
2� �

�
�s
�

�
2 8

�4�2�1
2"

Z
0

dk�1
2k�1

Z 1

1

dk�2
Z
dD
2k1?

Z
dD
2k2?

1

�k�1 � k
2
1?=2k�1 �

3


�
2q2

3k
2
? 
 q

2
?�k

�
1 � k

2
1?=2k�1 �

2 
 2�q? � k1?�
2�

�2�k�2 
 k
�
1 
 i���
k

�
2 
 k

2
1?=2k�1 � 
 �k2? 
 k1?�

2 
 i��

�
1

�k�1 
 k
�
2 
 i���k

�
1 � k

2
1?=2k�1 �

�
2

�2�k�2 
 k
�
1 ��
k

�
2 
 k

2
1?=2k�1 � 
 �k2? 
 k1?�

2 
 i��

�
: (54)
(VA) (VB)

FIG. 13. Cuts of diagram V.
We rescale k�2 and both of the transverse momenta as y �
k�2 =k

�
1 and �i � ki?=

���
2
p
k�1 , which again isolates an over-

all infrared divergence at the lower limit of the k�1 integra-
tion. The result can be expressed as

V�k
0
2� � 8

�
�s
�

�
2 2
2"

�4��1
2"

Z
0

dk�1
k�1�4"

1

Z
d2
2"�1


4q2

3�
2
1 � q

2
?�1� �

2
1� 
 4�q? � �1�

2

�1� �2
1�

3 JV��1�;

(55)

where the function JV is defined by
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JV��1� � 

Z 1

1

dy
Z
d2
2"�2

�
1

�1� �2
1��1
 y
 i����y
 1��y� �2

1� � ��2 
 �1�
2 � i��



1

��y
 1��y� �2
1� � ��2 
 �1�

2 � i��2

�
: (56)

Performing the �2 integral we find

JV��1� � 
�
1
"��1� "�

Z 1

1

dy
�

1

"
1

�1� �2
1��1
 y
 i���y

2 � y��2
1 
 1� 
 �2

1 � i��
"



1

�y2 � y��2
1 
 1� 
 �2

1 � i��
1�"

�
: (57)
The 1=" pole in the first term in square brackets comes
from the term in which the squared denominator on the
quark eikonal is outside the loop, and this pole is of
ultraviolet origin. The corresponding k2 virtual loop inte-
gral, as in the one-loop example of Fig. 8(b), Eq. (39), is
infrared finite, and hence may be absorbed into a coeffi-
cient function in the NRQCD expansion. At the same time,
the remaining, k1, integral of this term is analogous to the k
integral in Fig. 8(a), Eq. (38), and its infrared divergence is
topologically factorized in the NRQCD expansion. Next,
comparing the second term in brackets to Eq. (51), we see
that it is the same as the y integrand in that case, and when
combined with the k�1 integral in Eq. (55) gives a purely
imaginary infrared pole. In summary, the infrared sensi-
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tivity of diagram V is fully consistent with the NRQCD
expansion.

3. Diagram VI

Diagram VI, with cuts shown in Fig. 14, is treated in a
similar way to the previous two diagrams with three gluons
connected to the eikonal quark-pair line. In this case the k1

line is again connected to the leftmost (field-strength)
vertex, while we route momentum k2 
 k1 from the gluon
eikonal (‘) to the other field-strength vertex. Once again
the pole from the k2 
 k1 line of diagram VIA cancels the
two-gluon final state, diagram VIB.

The corresponding integral for VIA is
VIA �
i25=2g4

�2��2D
1

Z �
dDk1

Z 1
dDk2	��k

2
1�

1

�k2 
 k1�
2 
 i�

1

�k�1 � k


1 �

2

nVIA�k1; k2�

k�1 
 k
�
2 
 i�



�
1

�k�2 
 k
�
1 � k



2 
 k



1 
 i��

2�k�2 � k


2 � i��

�
1

�k�2 
 k
�
1 � k



2 
 k



1 
 i���k

�
2 � k



2 � i��

2

�

� 

i25=2g4

�2��2D
1

Z �
dDk1

Z 1
dDk2	��k2

1�
1

�k2 
 k1�
2 
 i�

1

�k�1 � k


1 �

2

nVIA�k1; k2�

k�1 
 k
�
2 
 i�


d
dk�2

�
1

�k�2 
 k
�
1 � k



2 
 k



1 
 i���k

�
2 � k



2 � i��

�
: (58)

The first equality exhibits the squaring of poles to the right of the field-strength vertex in the diagram. In the second, we
note that the term in square brackets is a derivative with respect to k�2 , and that the expression is simplified by an integration
by parts in that variable.

The momentum numerator factor is

nVIA � �P � k1q� 
 q � k1P���P�=2��P � �k1 
 k2�q� 
 q � �k1 
 k2�P��‘� � 2
���
2
p
q2

3�k
�
1 
 k



1 ��k

�
1 
 k

�
2 � � � � � ; (59)

where the terms linear in the ki? will not contribute, and are omitted in the second equality.
In the second form of Eq. (58), the k
2 integral has three simple poles. After the k
2 and k
1 integrals, using the

cancellation of the exchange gluon pole, we have
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FIG. 14. Cuts of diagram VI.
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VI � VIA� VIB
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�
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�
: (60)
(a) (b) (c)

FIG. 16. IIIA poles.
Carrying out our by-now standard rescalings and perform-
ing the �2 transverse integration, we find

VI � 
4
�
�s
�

�
2
q2

3�2��
2"�"
1

Z
0

dk�1
k�1�4"

1


Z
dn
2�1

1
 �2
1

�1� �2
1�

3

Z 1

1

dy�1
 y�



�
1

�2�y
 1�2 
 i��1�"



1

�2�y
 1��y� �2
1� 
 i��

1�"

�
: (61)

The two y integrals both give finite and purely imaginary
contributions at " � 0, so that once again the sum of
contributions to the fragmentation function from the cuts
of diagram VI is infrared finite. We have now shown that,
of the six classes of diagrams generated from Fig. 10, all
but diagram III are consistent with standard NRQCD fac-
torization. We now turn to this diagram, which is the most
complex to compute.

E. Three-gluon rescattering contribution

Diagram III is distinguished by its three-gluon
coupling. It connects a subdiagram analogous to
Fig. 8(a), Eq. (38), which was infrared divergent but topo-
logically factorized, with the eikonal line ‘. It describes a
process in which the soft gluon that transforms the color-
octet pair to a color-singlet pair rescatters on the adjoint
114012
eikonal to lowest order by exchanging a gluon. We recall
that the gluon eikonal represents the influence of the re-
mainder of the high-pT process. We are thus testing the
possible dynamical influence of this process on the soft
hadronization itself. We shall find that it is a nontrivial
influence, with a noncanceling infrared divergence.
Nevertheless, the residue of the infrared poles will be
rotationally invariant, and hence consistent with an
NRQCD factorization in terms of our modified matrix
elements.

Before doing any integrals, diagram IIIA is of the form

IIIA�q� �
16ig4�4"
Z dDk1

�2��D
dDk2

�2��D
2�	�k2

1�nIII�k1; k2�


1

�P � k1� i��
2�P � k2
 i��

2


1

�k2
2
 i����k2
 k1�

2
 i���l � �k1
 k2�
 i��
;

(62)
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with a numerator factor nIII that we shall define below. As
usual, we choose the rest frame of heavy quarkonium,
P� � �2; 0; 0; 0�, and we will perform the k
2 integral by
closing the contour in the upper half-plane.

The basic pattern for diagram III in Fig. 10 is similar to
those above: the two-gluon cut in Fig. 15, IIIB, cancels the
pole in k
2 from the exchanged gluon in IIIA that is
attached to the octet eikonal line ‘. As for diagrams V
and VI, we choose the momentum of this gluon as k1 
 k2,
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flowing down. There are two additional poles in diagram
IIIA when we close the k
2 integral in the upper half-plane,
as shown in Fig. 16. After the cancellation with IIIB, only
the contributions from poles (b) and (c) remain.
1. The numerator and the k2
2 pole

The numerator factor nIII is
nIII � �P � k1q� 
 q � k1P���P � k2q� 
 q � k2P��‘��g���
k1 
 k2�� � g���2k1 
 k2�� � g���2k2 
 k1���

� 2�
2�k�1 � k
�
2 ��q

2k10k20 
 �q � k1k20 � q � k2k10�q0 � q � k1q � k2� � 4�l � qk20 
 q � k2l
0��q � k2k10 
 q � k1k20�

� 4�l � qk10 
 q � k1l
0��q � k1k20 
 q � k2k10��: (63)

This is a fairly complex expression, but is clearly symmetric in k1 and k2.
When we take the contribution of the k2

2 pole, Fig. 16(b), we find
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: (64)
This is an antisymmetric expression in k1 and k2, except for
the imaginary contribution at k�1 � k�2 . As a result, once
again all infrared poles in IIIA�k

2
2� are imaginary and do not

contribute to the fragmentation function.

2. The k0
2 � 0 double pole

We are left with the evaluation of the pole of diagram
16(c), the double eikonal pole at k0

2 � 0 as the only poten-
tial source of infrared singularities in the fragmentation
function that are not topologically factorized in the usual
sense. As we have anticipated, we will find an infrared pole
in dimensional regularization. Since the calculation is a
substantial one, we will give most of the details. To make it
a bit more manageable, we first set q? � 0 in the numera-
tor (63), and extend the result to nonzero transverse mo-
mentum in the appendix.

At zero q?, the momentum numerator factor (63) sim-
plifies to

nIII�q3; q? � 0� � 2q2
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1 k
�
2 ��: (65)

We are now ready to pick up the pole in k
2 corresponding
to the diagram of Fig. 16(c), with the result
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: (66)

As above, we work in D � 4
 2" dimensions, and we rescale the transverse and k�2 momenta as

�1 �
k1?���
2
p
k�1
; �2 �

k2?���
2
p
k�2
; y �

k�2
k�1
; (67)

which again isolates the infrared pole in the k�1 integral,
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(68)

To do the �2 integration, we introduce a Feynman parametrization,
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After the �2 integration we get
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We represent the above equation as
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where I�1���1� organizes a set of terms in which the pole at y � 1 has been canceled by the numerator, and I�2���1�
summarizes a set in which the factor 1

1
y remains. To effect this separation, we rewrite 1
 3y � 3�1
 y� 
 2 in the first
term in brackets of Eq. (70) and to combine the second and third terms we use
x�1
 y�y� �1
 x�y2 � y�y
 x�. After
these manipulations, we have
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where we have completed the squares in the denominators. For the 1=�1
 y� terms we have

I�2���1� �
Z 1

1

dy
1
 y
 i�

Z 1

0
dx
�

��1� "�
1

��y� x��2
1 
 1�=2�2 
 x2��2

1 � 1�2=4� i��1�"


 ��2� "�
y�y
 x��1
 �2

1�

��y� x��2
1 
 1�=2�2 
 x2��2

1 � 1�2=4� i��2�"

�
: (73)

The y integral for I�1�, Eq. (72), is straightforward. We change variables to y0 � y� x��2
1 
 1�=2 and note that in the

numerator y�y
 x� � y02 � x2��4
1 
 1� 
 y0x�2

1, where the last term vanishes because it is odd in y0. In this way, we find

I�1���1� �

����
�
p

2

Z 1

0
dx
�
�
3� �1� "���2

1 � 3����1=2� "�
1

�
x2��2
1 � 1�2=4� i��1=2�"

� 2�2
1��

2
1 � 3���3=2� "��x2��2

1 � 1�=4�
1

�
x2��2
1 � 1�2=4� i��3=2�"

�
: (74)
The x integration is now trivial, and using the expansion
�
1� i��
" � e
i�" � �1
 i�"�, we isolate the imagi-
nary pole in I�1�, and a corresponding finite real part,

I�1���1� � 
i�
1

"
�1
 i�"�

�
�2

1

�1� �2
1�

2

�
� � � � : (75)

The real term in this expression, when substituted into
Eq. (71), gives a real, single pole, contribution to the
fragmentation function from the k�1 integral. This is the
generic mechanism we are after.

The complete result at q? � 0, of course, requires
I�2���1�, which is a bit more complicated, because of the
extra denominator 1=�1
 y
 i��. We give the detailed
calculation of I�2� in Appendix A 1, where we show that

I�2���1� � i�
1

"
�1
 i�"�

�
2�2

1

�1� �2
1�

2

�
� � � � : (76)

Substituting Eqs. (75) and (76) in Eq. (71), we find that the
remaining, �1, integration is convergent because �1 of
order unity corresponds to k1? of order k�1 . Thus, the
transverse momentum integration of the real gluon con-
verges at a scale far below the fixed quark mass, and is
effectively independent of the phase space cutoff.
Performing the �1 integral, and adding the contribution
from the complex conjugate of the diagram, we find for the
leading, real 1

" divergent term,

2 Re IIIA�k
0
2pole��q3� � 
�2

s
1

3"
q2

3 �q? � 0�: (77)

The leading imaginary double pole, of course, cancels in
the full fragmentation function.

We evaluate the corresponding q?-dependent pole in the
appendix. We note that all q3  q? interference terms
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vanish because they are linear in the ki? integrations.
Combining Eq. (77) for q? � 0 with the result Eq. (A24)
from the appendix for the q2

? term, we obtain a rotationally
invariant result:

2 Re IIIA�k
0
2 pole��q� � 
�2

s
1

3"
~q2 � 
�2

s
1

3"
~v2

4
: (78)

This is the full result for diagram III and hence, as dis-
cussed in Sec. VI B above, for the entire NNLO infrared
pole term in the cross section and fragmentation function,
matched by the gauge-completed production matrix ele-
ments at the same order.

F. Rotational invariance and universality

The significance of rotational invariance is that the
infrared pole is independent of the relative orientation of
the pair’s relative velocity ~v and the gluon eikonal direc-
tion l. The complete result shows, first, that the gauge-
invariant redefinition of the NRQCD matrix element is
necessary, but also shows that once this is done the factor-
ized form is consistent with universality of the
factorization.

As we have emphasized above, the same reasoning
applies to cross sections in which the pair recoils against
a gluon jet. In fact, the matching of cross sections with our
matrix elements is even more general, as a result of the
rotational invariance of Eq. (78). This follows from the
nature of the gluon rescattering diagrams that give this
result, in which two soft gluons attach to the pair, leaving
only a single soft gluon to attach to the other jet. At the
same time, the exchange of soft gluons at NNLO between
the heavy quarkonium pair and each hard jet in the final
state will give the same pole factor, given by Eq. (78), up to
the effect of color.

Because the momentum factors are the same for the pole
found by coupling the soft gluons to each final-state jet, we
easily show that the complete color factor turns out to be
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independent of the number and directions of the jets, and of
the color representations of their parent partons. We outline
the proof as it applies to leptonic annihilation cross sec-
tions, where all jets are in the final state. The result follows
from gauge invariance.

Recalling the discussion of Sec. II, we suppose that we
are at a leading region of phase space where there is an
arbitrary number of jets, of momenta pj, j � 1 . . . n. At
any leading region, in the absence of soft-gluon exchange,
the cross section factorizes into a product of jet subdia-
grams Jj�pj�bj;aj , contracted in color indices aj and bj with
a hard-scattering function ha0;aj in the amplitude, and a
corresponding function in the complex conjugate ampli-
tude. In addition to the final-state jets, the short-distance
function h is also contracted with the parent parton (gluon
above) of the heavy quark pair, through color index a0.
Concentrating just on the amplitude, the fragmentation
function is thus proportional to the combination
M bn...b1;a0
�

X
a1...an

"Yn
j�1

Jj�pj�bj;aj

#
ha0;a1...an : (79)
We suppress the function associated with the jet in which
the pair appears.

We now consider the effect of adding soft gluons at
NNLO in this leading region, and we again discuss the
case when the quark-antiquark pair is an octet at short
distances and a singlet in the final state. This requires
that two gluons attach to the pair. Recalling the factoriza-
tion property of jet-soft interactions derived in Sec. II, the
infrared behavior of each set of diagrams where soft gluons
couple to jet j can be replaced by diagrams in which the
soft gluons attach to an eikonal line in the direction of pj.
Once again only soft-gluon diagrams like III in Fig. 10,
with a three-gluon coupling, can give rise to a real infrared
pole in the cross section. In the set of such diagrams, the
single exchanged gluon attaches to the n jets one at a time.

We denote the color index of the exchanged gluon by e,
and the flavor of the parent parton of jet j by fj. At fixed
values of the pair relative velocity ~v � 2 ~q, the effect of this
insertion is to multiply M of Eq. (79) by the same pole
term IIIA�k0;pole��q�, Eq. (78), that we have determined
above for the fragmentation function at NNLO. This factor
is independent of the jet to which the exchanged gluon
attaches.

The effect of the exchanged gluon’s color, of course,
differs from jet to jet, but is still quite simple after it has
been factorized. The short-distance color tensor is multi-
plied by the matrix through which the soft gluon couples to
the eikonal line in the pj direction, that is the color gen-
erator T�fj�. In summary, the structure of the NNLO pole
term in the cross section is
114012
M�NNLO�
bn...b1;a0

�q� � IIIA�k0;pole��q�
Xn
l�1

X
a1......an

"Yn
j�1

Jj�pj�bj;aj

#


X
a0l

ha0;a1...a0l...an
�T�fl�e �a0l;al : (80)

We now observe that multiplication by the color generator
for a given external line of the short-distance function h is
equivalent to an infinitesimal color rotation of the corre-
sponding external line. The sum of color rotations on all its
external lines vanishes by the gauge invariance of the
theory. The sum of color rotations on all the final-state
jets, therefore, is the negative of a color rotation on the
parent gluon of the pair,

Xn
l�1

X
a0l

ha0;a1...a0l...an
�T�fl�e �a0l;al � 


X
a00

ha00;a1...an�T
�f0�
e �a00;a0

:

(81)

The sum of the color factors associated with attaching a
single soft gluon to all recoiling jets is therefore indepen-
dent of the number and/or flavor of the final-state jets. The
same argument can be applied to the color factors of the
fragmentation function, with the same result. The gauge-
completed matrix element is therefore universal up to
NNLO, for arbitrary numbers of hard jets in the final state.
VII. CONCLUSIONS

We have investigated the proposal of NRQCD factoriza-
tion in production processes at large transverse momentum
(pT), and have demonstrated that factorization holds to
NNLO in production from an octet pair, after a redefinition
of the nonperturbative matrix elements in the effective
theory. We have seen, in fact, that this matrix element is
universal at NNLO for high-pT quarkonium production
with arbitrary final states. Many questions remain, how-
ever, and it is unclear to us whether the pattern we have
found, uncanceled infrared divergences that can be ab-
sorbed into universal gauge-completed matrix elements,
will survive at higher orders. On the other hand, the very
nontrivial organization of the NNLO infrared divergences
into a single power of ~q2 is encouraging.

So far our analysis has involved infrared structure asso-
ciated only with electric dipole couplings, at momentum
scales that are characteristically of order mv. Such a
higher-order analysis will also require study of the lower
momentum scale characteristic of binding energies mv2,
which, as we have observed above, do not enter into our
NNLO octet-to-singlet calculations [43]. Finally, our study
of fragmentation at large pT strongly suggests that the
low-pT cross sections for quarkonium production deserve
a fresh look [44].
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In summary, the calculations and reasoning presented in
this paper have, we believe, demonstrated that further
investigation is crucial to provide a theoretical grounding
for the analysis of the production of heavy quarkonia.
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APPENDIX

The appendix provides more details on the evaluation of
the infrared pole in diagram IIIA. The integrals presented
here are all reasonably straightforward, and are complex
114012
only because of the rather large numbers of terms.
Nevertheless, because they can be performed ‘‘by hand,’’
we feel an interested reader who wishes to reconstruct the
calculation in detail may find the following relatively ex-
tensive presentation useful.

1. The integral I�2� of diagram IIIA with q? � 0

We continue here with the detailed evaluation of the real
�2
s"

0 contribution from the function I�2���1� of Eq. (73).
Compared to the case considered above, I�1���1�, I�2���1�
differs primarily by having an extra 1=�1
 y� denomina-
tor, which requires an additional Feynman parametrization.

To simplify the y integral, we eliminate the explicit y2

numerator factor by using the identity y2 
 yx � �y02 

x2��2

1 � 1�2=4� 
 x�y
 x��2
1, where the term in brackets

cancels a power in the denominator and where, as above,
y0 � y� x��2

1 
 1�=2. This gives the slightly simpler form
I�2���1� �
Z 1

0
dx
Z 1

1

dy
1
 y
 i�

�
���1� "� 
 �1
 �2

1���2� "��
1

��y� x��2
1 
 1�=2�2 
 x2��2

1 � 1�2=4� i��1�"

� ��2� "�
x�y
 x��2

1�1
 �
2
1�

��y� x��2
1 
 1�=2�2 
 x2��2

1 � 1�2=4� i��2�"

�
� ���1� "� 
 �1
 �2

1���2� "��l
�2���1� � ��2� "��2

1�1
 �
2
1�j
�2���1�; (A1)

where the second equality serves to define l�2���1� and j�2���1�. Consider the first y integral of Eq. (A1),

l�2� �
Z 1

1

dy
1
 y
 i�

Z 1

0
dx

1

��y� x��2
1 
 1�=2�2 
 x2��2

1 � 1�2=4� i��1�"
: (A2)

Introducing an additional Feynman parameter, x0, and expanding the square of the second denominator we get

l�2� � 

��2� "�
��1� "�

Z 1

0
dx
Z 1

0
dx0x0"

Z 1

1

dy
1

�x0�y2 � xy��2
1 
 1� 
 x2�2

1� � �1
 x
0��y
 1� � i��2�"

: (A3)

The y integration is now easily performed, and gives

l�2� � 

��3=2� "�

��1� "�

����
�
p
�
1� i��
3=2
"

Z 1

0
dx
Z 1

0

dx0

x01=2
"


1

�x0x2��2
1 � 1�2=4� �1
 x0��x��2

1 
 1�=2� 1� � �1
x
0�2

4x0 �
3=2�"

: (A4)

To isolate the infrared pole of this expression, it is useful to change variables to u � x2 and v0 � �1
 x0�=u. Also using
�
1� i�� � ei�, we have

l�2� � 

��3=2� "�
2��1� "�

����
�
p

e
i��3=2�"�
Z 1

0

du

u1�"

Z 1=u

0

dv0

�1
 uv0�1=2
"


1

��1
 uv0���2
1 � 1�2=4� v0�

���
u
p
��2

1 
 1�=2� 1� � uv02
4�1
uv0��

3=2�"
: (A5)

The u and v0 integrals in (A5) are finite for " < 0, characteristic of an infrared pole. The 1=" pole comes from u! 0,
and is isolated using (47). Its residue is purely imaginary. There is a corresponding real contribution to I�2� at " � 0,
however, found from the expansion of the exponential. The v0 integral is trivial at " � 0 and u � 0, and we find
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l�2� � i�
1

"
�1
 i�"�

1

�1� �2
1�
�O�i"0�: (A6)

This term will contribute at the level of �2
s=" in the fragmentation function after the integrals over �1 and k�1 .

An identical procedure can be used to evaluate the second term, j�2���1� in Eq. (A1),

j�2� �
��5=2� "�
2��2� "�

����
�
p

e
i��5=2�"�
Z 1

0

du

u1��

Z 1=u

0
dv0�1
 uv0�1=2
"


��2

1 � 1�=2�
���
u
p
v0=�2�1
 uv0��

��1
 uv0���2
1 � 1�2=4� v0�

���
u
p
��2

1 
 1�=2� 1� � uv02
4�1
uv0��

5=2�"
; (A7)

with the same denominator as in Eq. (A5). The relevant singular behavior of this expression is

j�2� �
��5=2� "�
4��2� "�

����
�
p

e
i��5=2�"�
Z 1

0

du

u1�"

Z 1
0
dv0

1� �2
1

���2
1 � 1�2=4� v0�5=2�"

: (A8)

Isolating the imaginary pole and the accompanying real finite part in the same way as for l�2�, we get

j�2� � i�
1

"
�1
 i�"�

1

�1� �2
1�

2 �O�i"0�: (A9)

Finally, substituting the results for l�2� and j�2� into Eq. (A1), we find

I�2���1� � i�
1

"
�1
 i�"�

2�2
1

�1� �2
1�

2 � � � � ; (A10)

which is the result quoted in Eq. (76).

2. Transverse momenta for q in diagram IIIA

When q3 � 0, the numerator for diagram III is

nIII�q3 � 0; q?� � 2�q2
?�k

�
1 � k

�
2 ��k

�
1 � k



1 ��k

�
2 � k



2 � 
 2�q? � k1?�

2�k�2 � k


2 � 
 2�q? � k2?�

2�k�1 � k


1 �

� 2�q? � k1?��q? � k2?��k
1 � k


2 ��: (A11)

Diagram IIIA�k
0
2� with q3 � 0 is given by

IIIA�k
0
2��q?� �

4

�4��1
2"

�
�s
�

�
2
�4"

Z �

0

dk�1
2k�1

Z
dD
2k1?

Z
dk�2

Z
dD
2k2?

1

k�1 
 k
�
2 
 i�

1

�k�1 �
k

1?
2

2k�1
�2



�
d
dk
2

�
nIII�q3 � 0; q?�

�2�k�2 
 k
�
1 ��k



2 


k
1?

2

2k�1
� 
 �k2? 
 k1?�

2 
 i���2k�2 k


2 
 k2?

2 
 i��

��
k
2 �
k

�
2

: (A12)

Defining as above the scaled variables, �1 � k1?=�
���
2
p
k�1 �, �2 � k2?=�

���
2
p
k�2 � and y � k�2 =k

�
1 , this integral becomes
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IIIA�k
0
2��q?� � 
4

�2�2�2"

��2�1
2"

�
�s
�

�
2 Z dk�1

k�1�4�
1

Z
d2
2"�1

1

�1� �2
1�

2

Z
dy

1

1
 y
 i�


Z
d2
2"�2

�
1

4

�1� y��1� �2
1�q

2
? 
 4�q? � �1�

2 � 4�q? � �1��q? � �2�

�y2 � �2
2 � i����1
 y��y� �

2
1� 
 ��1 
 �2�

2 
 i��

� y

�1� �2

1��q? � �2�
2 � �q? � �1��q? � �2���2

1 
 y�

�y2 � �2
2 � i��

2��1
 y��y� �2
1� 
 ��1 
 �2�

2 
 i��

� �1
 y�

�1� �2

1��q? � �2�
2 � �q? � �1��q? � �2���

2
1 
 y�

�y2 � �2
2 � i����1
 y��y� �

2
1� 
 ��1 
 �2�

2 
 i��2

�
; (A13)

which is analogous to Eq. (68) for the q2
3 terms in the numerator.

To perform �2 integration we can again introduce a Feynman parameter x as in (69). The change of variables �02 �
�2 
 x�1 completes the square in the denominator, and the integral results in the rather lengthy expression

IIIA�k
0
2��q?� � 
4

�
�s
�

�
2 22"�4"

�1
3"

Z dk�1
k�1�4"

1

Z
d2
2"�1

1

�1� �2
1�

2

Z 1

0
dx


Z 1

1

dy
�
x
�



��1� "�
2

�1� �2
1�q

2
?

�y2 � xy��2
1 
 1� 
 x2�2

1 � i��
1�"

� ��2� "�

�q? � �1�

2�x2�1� �2
1� 
 x��

2
1 
 y��

�y2 � xy��2
1 
 1� 
 x2�2

1 � i��
2�"

�

�
1

1
 y
 i�

�
��1� "�

4

�1� y��1� �2
1�q

2
? 
 4�1
 x��q? � �1�

2

�y2 � xy��2
1 
 1� 
 x2�2

1 � i��
1�"

� y�1
 x�
�



��1� "�
2

�1� �2
1�q

2
?

�y2 � xy��2
1 
 1� 
 x2�2

1 � i��
1�"

� ��2� "�

�q? � �1�

2�x2�1� �2
1� 
 x��

2
1 
 y��

�y2 � xy��2
1 
 1� 
 x2�2

1 � i��
2�"

���

	 4
1

�1
3"

�
�s
�

�
2
22"�4"

Z dk�1
k�1�4"

1

Z
d2
2"�1

1

�1� �2
1�

2 �I
�3���1� � I

�4���1��; (A14)

where in the second relation we define I�3���1� to include the terms without the 1=�1
 y� denominator, and I�4� to include
the remaining terms, all with this denominator. The infrared poles of I�3���1� are identified in the same way as those of the
corresponding q2

3 integral, I�1���1�, Eq. (72), while those of I�4���1� are found in the same way as for I�2���1�, Eq. (73).
For I�3� the y integration is elementary, and we find

I�3���1� �
����
�
p Z 1

0
dxx

�
��1=2� "�

2

�1� �2
1�q

2
?

�
x2�1� �2
1�

2 � i��1=2�"


 ��3=2� "�

�q? � �1�

2�x2�1� �2
1� 
 x�

2
1 
 x

2��2
1 
 1�=2�

�
x2�1� �2
1�

2 � i��3=2�"

�
: (A15)

The overall infrared pole in this expression is easily identified as arising from the limit x! 0. It comes entirely from the
middle term in the numerator of the second fraction,

I�3���1� � 2�i
�q? � �1�

2�2
1

�1� �2
1�

3

�1
 i�"�
"

: (A16)

Once again the pole is purely imaginary with, however, an associated finite real part. Finite corrections are all imaginary.
To evaluate I�4���1�we again introduce a Feynman parameter x0, which enables us to do the �2 integral just as for I�2� in

Appendix A 1, giving
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I�4���1� � 

Z 1

0
dx
Z 1

0
dx0x0"

Z 1

1

dy
�

��2� "�
4

�1� �2
1�q
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? 
 4�1
 x��q? � �1�

2

�x0�y2 � xy��2
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 1� 
 x2�2

1� � �1
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 1� � i��2�"

�
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 1���2� "�

�1� �2
1�q

2
?

�x0�y2 � xy��2
1 
 1� 
 x2�2

1� � �1
 x
0��y
 1� � i��2�"


 y�1
 x�xx0��3� "�
�q? � �1�

2�x�1� �2
1� 
 �

2
1�

�x0�y2 � xy��2
1 
 1� 
 x2�2

1� � �1
 x
0��y
 1� � i��3�"


 y2�1
 x�xx0��3� "�
�q? � �1�

2

�x0�y2 � xy��2
1 
 1� 
 x2�2

1� � �1
 x
0��y
 1� � i��3�"

�
: (A17)

These integrals are precisely of the form of those in I�2�, but to limit the rather large number of terms, we introduce the
y-independent quantities

P � 1
2�x��

2
1 
 1� � �1
 x0�=x0� M2 � x2�2

1 � �1
 x
0�=x0: (A18)

In this notation, the denominators of Eq. (A17) are

x0�y2 � xy��2
1 
 1� 
 x2�2

1� � �1
 x
0��y
 1� � x0�y2 � 2Py
M2�: (A19)

After the y integral, I�4���1� can be written as a sum of five terms,

I�4���1� � 
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i�"
Z 1

0
dx
Z 1

0
dx0
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��3=2� "�

4

�1� �2
1�q

2
?

x02�P2 �M2�3=2�"



��3=2� "�
4

�2x
 1�P
�1� �2

1�q
2
?

x02�P2 �M2�3=2�"


 ��3=2� "��1
 x�
�q? � �1�

2

x02�P2 �M2�3=2�"

 ��5=2� "�x�1
 x�P

�q? � �1�
2�x
 �1
 x��2

1�

x02�P2 �M2�5=2�"



��3=2� "�

2
x�1
 x�

�q? � �1�
2�M2 
 2P2 � "M2�

x02�P2 �M2�5=2�"

�
	 


����
�
p

ie
i�"��3=2� "��i�1���1� � i�2���1� � i�3���1� � i�4���1� � i�5���1��; (A20)
where the final line is the notation we will use for the five
terms, taken in order, with i�1� the first, and i�5� the last.

The infrared pole of each of the i�i� can be found by the
straightforward, if slightly tedious, application of the fol-
lowing steps: (i) reexpress P and M2 in terms of x, x0 and
�2

1 using (A18); (ii) change variables as above to u � x2

and v0 � �1
 x0�=u; (iii) identify the residue of the sin-
gular u
1
" behavior, where it is present. In fact, of the five
terms, only i�1�, i�3� and i�4� are singular at " � 0. Their
poles are determined from

i�1���1� �
�1� �2

1�q
2
?

8

Z 1

0

du

u1�"


Z 1

0
dv0

1

�v0 � �1� �2
1�

2=4�3=2
; (A21)

i�3���1� � 

�q? � �1�

2

2

Z 1

0

du

u1�"


Z 1

0
dv0

1

�v0 � �1� �2
1�

2=4�3=2
; (A22)
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i�4���1� �
3�q? � �1�

2

8
�2

1��
2
1 
 1�

Z 1

0

du

u1�"


Z 1

0
dv0

1

�v0 � �1� �2
1�

2=4�5=2
: (A23)

The remaining two terms behave as u
1=2 for u! 0 and
are hence of order "0 and imaginary.

The contributions of the poles in Eqs. (A21)–(A23) are
also purely imaginary because of the overall factor of
i�
in (A20), and will enter the fragmentation function as an
imaginary double pole, which therefore cancels. Cor-
respondingly, all real terms of order "0 from the u, v0

and �1 integrals contribute only at the level of an imaginary
single pole. A real single pole in the final result can only
result from a relative factor 
i", which is found as above
from the expansion of e
i�".

The final result for IIIA�k0��q?�, defined by Eq. (A11)
and (A12), is therefore found from: (iv) isolating the finite
real part from the expansion of the overall factor of e
i�"

in (A20); (v) performing the remaining �1 integration at
" � 0; and finally (vi) replacing the final k�1 integral by
-29
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1=�
4"�, according to Eq. (47). In this way, we obtain

2 Re IIIA�k
0
2pole��q?� � 
�

2
s

1

3"
q2
? �q3 � 0�; (A24)
114012
matching Eq. (77) for the q2
3 term. There are no terms

linear in q3 and q?, and the complete result is thus rota-
tionally invariant.
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