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Resolution to the B! �K puzzle

Hsiang-nan Li,1,* Satoshi Mishima,2,† and A. I. Sanda3,‡

1Institute of Physics, Academia Sinica, Taipei, Taiwan 115, Republic of China
and Department of Physics, National Cheng-Kung University, Tainan, Taiwan 701, Republic of China

2Department of Physics, Tohoku University, Sendai 980-8578, Japan
3Department of Physics, Nagoya University, Nagoya 464-8602, Japan

(Received 11 August 2005; published 9 December 2005)
*Electronic
†Electronic
‡Electronic

1550-7998=20
We calculate the important next-to-leading-order contributions to the B! �K, �� decays from the
vertex corrections, the quark loops, and the magnetic penguins in the perturbative QCD approach. It is
found that the latter two reduce the leading-order penguin amplitudes by about 10% and modify only the
B! �K branching ratios. The main effect of the vertex corrections is to increase the small color-
suppressed tree amplitude by a factor of 3, which then resolves the large difference between the direct CP
asymmetries of the B0 ! ��K� and B� ! �0K� modes. The puzzle from the large B0 ! �0�0

branching ratio still remains.
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I. INTRODUCTION

The B factories have accumulated enough events,
which allow precision measurements of exclusive B
meson decays. These measurements sharpen the discrep-
ancies between experimental data and theoretical
predictions within the standard model, where some
puzzles have appeared. The recently observed direct CP
asymmetries and branching ratios of the B! �K, ��
decays [1],

ACP�B
0 ! ��K�� � ��11:5� 1:8�%;

ACP�B
� ! �0K�� � �4� 4�%;

B�B0 ! ����� � �5:0� 0:4� � 10�6;

B�B0 ! �0�0� � �1:45� 0:29� � 10�6;

(1)

are prominent examples. The expected relations
ACP�B

0 ! ��K�� 	 ACP�B
� ! �0K�� and B�B0 !

����� 
 B�B0 ! �0�0� obviously contradict the
above data. In this work we shall investigate the in-
dication of Eq. (1) and study whether they can be
accommodated in the perturbative QCD (PQCD) approach
[2,3].

To explain these puzzles, it is useful to adopt the
topological-amplitude parametrization [4] for these de-
cays. The most general parametrization of the B! ��
decay amplitudes is written as
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A�B0 ! ����� � �T
�
1�

P
T
ei�2

�
;

���
2
p
A�B� ! ���0� � �T

�
1�

C
T
�
Pew

T
ei�2

�
;

���
2
p
A�B0 ! �0�0� � T

��
P
T
�
Pew

T

�
ei�2 �

C
T

�
;

(2)

where T, C, P, and Pew stand for the color-allowed tree,
color-suppressed tree, penguin, and electroweak penguin
amplitudes, respectively, and �2 is the weak phase defined
later. The counting rules in terms of powers of the
Wolfenstein parameter �� 0:22 are then assigned to vari-
ous decay amplitudes [5–7]. The amplitudes in Eq. (2)
obey the counting rules in the standard model,

P
T
� �;

C
T
� �;

Pew

T
� �2: (3)

Therefore, the B0 ! �0�0 branching ratio is expected to
be of O��2� of the B0 ! ���� one. However, Eq. (1)
shows that the former is about of O��� of the latter.

The B! �K decay amplitudes are written, up toO��2�,
as

A�B� ! ��K0� � P0;���
2
p
A�B� ! �0K�� � �P0

�
1�

P0ew

P0
�

�
T0

P0
�
C0

P0

�
ei�3

�
;

A�B0 ! ��K�� � �P0
�
1�

T0

P0
ei�3

�
;

���
2
p
A�B0 ! �0K0� � P0

�
1�

P0ew

P0
�
C0

P0
ei�3

�
; (4)

where the notations T0 C0, P0, and P0ew bear the same
meanings as for the B! �� decays but with primes,
and the weak phase �3 is defined via the Cabibbo-
-1 © 2005 The American Physical Society
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Kobayashi-Maskawa (CKM) matrix element Vub �
jVubj exp��i�3� [8]. These amplitudes obey the counting
rules,

T0

P0
� �;

P0ew

P0
� �;

C0

P0
� �2: (5)

The data ACP�B
0 ! ��K�� 	 �11% imply a sizable

relatively strong phase between T0 and P0, which verifies
our prediction made years ago using the PQCD approach
[2]. Since both P0ew and C0 are subdominant, the approxi-
mate equality for the direct CP asymmetries ACP�B� !
�0K�� 	 ACP�B0 ! ��K�� is expected, which is, how-
ever, in conflict with the data in Eq. (1) dramatically.

It is then natural to conjecture a large P0ew [7,9–12],
which signals a new-physics effect, a large C0 [13–16], or
both [17,18] in the B! �K decays. The large C0 proposal
seems to be favored by a recent analysis of the B! �K,
�� data based on the amplitude parametrization [13]. Note
that the current PQCD predictions for the two-body non-
leptonic B decays were derived from the leading-order
(LO) formalism. While LO PQCD implies a negligible
C0, it is possible that this supposedly tiny amplitude may
receive a significant subleading correction. Hence, before
claiming a new-physics signal, one should at least examine
whether the next-to-leading-order (NLO) effects could
enhance C0 sufficiently. In this paper we shall calculate
the important NLO contributions to the B! �K, ��
decays from the vertex corrections, the quark loops, and
the magnetic penguins. The higher-power corrections have
not yet been under good control, and will not be considered
here. We find that the corrections from the quark loops and
from the magnetic penguins, being about 10% of the LO
penguin amplitude, decrease only the B! �K branching
ratios. The vertex corrections tend to increase C0 by a
factor of 3. This larger C0 leads to nearly vanishing
ACP�B� ! �0K�� without changing the branching ratios,
which are governed by P0. The B! �K puzzle is then
resolved.

The other NLO corrections, mainly to the B meson
transition form factors, can be eliminated by choosing an

appropriate renormalization scale ��
����������
��mb

q
, �� being a

hadronic scale and mb the b quark mass. This observation
follows the well-known Brodsky-Lepage-Mackenzie
(BLM) procedure [19], in which the scale � is determined
in the way that the vacuum polarization effects are ab-
sorbed into the coupling constant �s���. It has been dem-
onstrated with this procedure that NLO corrections to
many exclusive processes are minimized to some extent
[19]. Taking the simple pion form factor as an example, the
BLM scale has been found to be of the order of the
invariant mass of the hard exchanged gluon. The choice
of � proposed in the PQCD approach [20] is basically in
agreement with this procedure: the argument � of the
coupling constant is set to the invariant masses of internal
114005
particles, which are of O�
����������
��mb

q
� for the B meson transi-

tion form factors [21–23]. A general feature of the BLM
scale is that it is always much lower than the external
kinematic variable, implying that the smallness of the
coupling constant is not the only condition for the appli-
cability of perturbation theory.

As mentioned before, the observed branching ratio
B�B0 ! �0�0� 	 1:5� 10�6 is much larger than the LO
PQCD prediction �10�7 [3,24]. The prediction from
QCD-improved factorization (QCDF) has the same order
of magnitude [25]. Since this mode involves a subdominant
color-suppressed tree amplitude as shown in Eq. (2), a
larger C certainly helps to resolve the B! �� puzzle.
We also compute the NLO corrections to these decays and
find the similar reduction from the quark loops and the
magnetic penguins, which are about 10% of the LO pen-
guin amplitude P. Since P is subdominant, the B0 !
���� and B� ! ���0 branching ratios almost remain
the same. The enhancement of C from the vertex correc-
tions, leading to B�B0 ! �0�0� 	 0:3� 10�6, is still not
sufficient to account for the data. We point out that any new
mechanism, introduced to resolve this puzzle, must survive
the constraint from the tiny observed branching ratios [1],

B�B0 ! K0K0� � �0:96�0:25
�0:24� � 10�6;

B�B0 ! �0�0�< 1:1� 10�6:
(6)

The leading PQCD predictions for B�B0 ! K0K0� [26]
and for B�B0 ! �0�0� [27,28] have been consistent with
the experimental data. The proposals of the final-state
interaction [29] and of the charming penguin in soft-
collinear effective theory (SCET) [30] have not yet been
applied to the B0 ! �0�0 decay.

We review the LO PQCD predictions for the B! �K,
�� decays, including those for the mixing-induced CP
asymmetries in Sec. II. The vertex corrections, the quark
loops, and the magnetic-penguin amplitudes are computed
in Sec. III. We perform the numerical study in Sec. IV,
where the theoretical uncertainty is also analyzed.
Section V is the conclusion. The explicit factorization
formulas for the various topologies of decay amplitudes
are collected in the Appendix.
II. LEADING-ORDER PREDICTIONS

The effective Hamiltonian for the b! s transition is
given by [31]

Heff �
GF���

2
p

X
q�u;c

VqbV�qs

�
C1���O

�q�
1 ��� � C2���O

�q�
2 ���

�
X10

i�3

Ci���Oi���
�
; (7)

with the Fermi constant GF � 1:166 39� 10�5 GeV�2,
and the CKM matrix elements V. The four-fermion opera-
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tors are written as

O�q�1 � ��siqj�V�A� �qjbi�V�A;

O�q�2 � ��siqi�V�A� �qjbj�V�A;

O3 � ��sibi�V�A
X
q0
� �q0jq

0
j�V�A;

O4 � ��sibj�V�A
X
q0
� �q0jq

0
i�V�A;

O5 � ��sibi�V�A
X
q0
� �q0jq

0
j�V�A;

O6 � ��sibj�V�A
X
q0
� �q0jq

0
i�V�A;

O7 �
3

2
��sibi�V�A

X
q0
eq0 � �q0jq

0
j�V�A;

O8 �
3

2
��sibj�V�A

X
q0
eq0 � �q0jq

0
i�V�A;

O9 �
3

2
��sibi�V�A

X
q0
eq0 � �q

0
jq
0
j�V�A;

O10 �
3

2
��sibj�V�A

X
q0
eq0 � �q0jq

0
i�V�A;

(8)

with the color indices i; j, and the notations � �q0q0�V�A �
�q0���1� �5�q

0. The index q0 in the summation of the
above operators runs through u, d, s, c, and b. The effective
Hamiltonian for the b! d transition is obtained by chang-
ing s into d in Eqs. (7) and (8).

According to Eq. (7), the amplitude for a Bmeson decay
into the final state f through the �b! �s� �d� transition has the
general expression,

A�B! f� � V�ubVus�d�A
�u�
f � V

�
cbVcs�d�A

�c�
f

� V�tbVts�d�A
�t�
f : (9)

For f � �K, the amplitudes A�u�
�K, A�c�

�K, and A�t�
�K are

decomposed at LO into

A�u�
�K � fKFe �Me � f�FeK �MeK � fBFa �Ma;

A�c�
�K � 0;

A�t�
�K � ��fKF

P
e �MP

e � f�FPeK �MP
eK � fBF

P
a

�MP
a �; (10)

where fB (fK, f�) is the B meson (kaon, pion) decay
constant, Fe (Me) the color-allowed factorizable (non-
factorizable) tree emission contribution, FeK (MeK) the
color-suppressed factorizable (nonfactorizable) tree emis-
sion contribution, Fa (Ma) the factorizable (nonfactoriz-
able) tree annihilation contribution, and those with the
additional superscripts P the contributions from the pen-
guin operators. For f � ��, the amplitudes A�u�

��, A�c�
��,
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and A�t�
�� are decomposed at LO into

A�u�
�� � f�Fe �Me � fBFa �Ma;

A�c�
�� � 0;

A�t�
�� � ��f�F

P
e �MP

e � fBF
P
a �MP

a �;

(11)

where we do not distinguish the color-allowed and color-
suppressed contributions.

The factorization formulas for the various contributions
to each B! �K,��mode are collected in Tables I and II,
and in the Appendix, whose dependence on the Wilson
coefficients has been made explicit. We define the standard
combinations,

a1��� � C2��� �
C1���
Nc

;

a2��� � C1��� �
C2���
Nc

;

ai��� � Ci��� �
Ci�1���
Nc

; i � 3–10;

(12)

where the upper (lower) sign applies, when i is odd (even).
The coefficients a and a0 in Tables I and II, besides a1 and
a2 given above, are then written as

a01 � C1; a02 � C2;

a�q
0�

3 � a3 �
3
2eq0a9; a0�q

0�
3 � C4 �

3
2eq0C10;

a�q
0�

4 � a4 �
3
2eq0a10; a0�q

0�
4 � C3 �

3
2eq0C9;

a�q
0�

5 � a5 �
3
2eq0a7; a0�q

0�
5 � C6 �

3
2eq0C8;

a�q
0�

6 � a6 �
3
2eq0a8; a0�q

0�
6 � C5 �

3
2eq0C7:

(13)

With the amplitude A�B! f� being computed using
Eq. (9), we derive the two-body nonleptonic B meson
decay rates and CP asymmetries. The former are given by

��B! f� �
G2
Fm

3
B

128�
jA�B! f�j2; (14)

where mB is the B meson mass. The time-dependent CP
asymmetry of the B0 ! �0KS mode is defined as

ACP�B
0�t� ! �0KS�



B� �B0�t� ! �0KS� � B�B0�t� ! �0KS�

B� �B0�t� ! �0KS� � B�B0�t� ! �0KS�

� A�0KS cos��Mdt� � S�0KS sin��Mdt�; (15)

with the mass difference �Md of the two B meson mass
eigenstates, and the direct asymmetry and the mixing-
induced asymmetry,

A�0KS �
j��0KS j

2 � 1

1� j��0KS j
2 ; S�0KS �

2 Im���0KS�

1� j��0KS j
2 ; (16)

respectively. The B0 ! �0KS decay has a CP-odd final
-3



TABLE I. B! �K decay amplitudes, whose factorization formulas are presented in the
Appendix.

A�u�
��K0

���
2
p

A�u�
�0K�

Fe 0 Fe4�a1�

Me 0 Me4�a
0
1�

FeK 0 FeK4�a2�

MeK 0 MeK4�a
0
2�

Fa Fa4�a1� Fa4�a1�

Ma Ma4�a
0
1� Ma4�a

0
1�

A�t�
��K0

���
2
p

A�t�
�0K�

FPe Fe4�a
�d�
4 � � Fe6�a

�d�
6 � Fe4�a

�u�
4 � � Fe6�a

�u�
6 �

MP
e Me4�a

0�d�
4 � �Me6�a

0�d�
6 � Me4�a

0�u�
4 � �Me6�a

0�u�
6 �

FPeK 0 FeK4�a
�u�
3 � a

�d�
3 � a

�u�
5 � a

�d�
5 �

MP
eK 0 MeK4�a

0�u�
3 � a0�d�3 � a0�u�5 � a0�d�5 �

FPa Fa4�a
�u�
4 � � Fa6�a

�u�
6 � Fa4�a

�u�
4 � � Fa6�a

�u�
6 �

MP
a Ma4�a

0�u�
4 � �Ma6�a

0�u�
6 � Ma4�a

0�u�
4 � �Ma6�a

0�u�
6 �

A�u�
��K�

���
2
p

A�u�
�0K0

Fe Fe4�a1� 0

Me Me4�a
0
1� 0

FeK 0 FeK4�a2�

MeK 0 MeK4�a
0
2�

Fa 0 0

Ma 0 0

A�t�
��K�

���
2
p

A�t�
�0K0

FPe Fe4�a
�u�
4 � � Fe6�a

�u�
6 � Fe4��a

�d�
4 � � Fe6��a

�d�
6 �

MP
e Me4�a

0�u�
4 � �Me6�a

0�u�
6 � Me4��a

0�d�
4 � �Me6��a

0�d�
6 �

FPeK 0 FeK4�a
�u�
3 � a

�d�
3 � a

�u�
5 � a

�d�
5 �

MP
eK 0 MeK4�a

0�u�
3 � a0�d�3 � a0�u�5 � a0�d�5 �

FPa Fa4�a
�d�
4 � � Fa6�a

�d�
6 � Fa4��a

�d�
4 � � Fa6��a

�d�
6 �

MP
a Ma4�a

0�d�
4 � �Ma6�a

0�d�
6 � Ma4��a

0�d�
4 � �Ma6��a

0�d�
6 �
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state, and the corresponding factor,

��0KS � �e
�2i�1

P0 � P0ew � C
0e�i�3

P0 � P0ew � C0ei�3
; (17)

where the weak phase �1 is defined via Vtd �
jVtdj exp��i�1�. The time-dependent CP asymmetry of
the B0 ! ���� mode is defined by

ACP�B
0�t� ! �����



B� �B0�t� ! ����� � B�B0�t� ! �����

B� �B0�t� ! ����� � B�B0�t� ! �����

� A�� cos��Mdt� � S�� sin��Mdt�; (18)

with the direct asymmetry and the mixing-induced asym-
metry,
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A�� �
j���j2 � 1

1� j���j
2 ; S�� �

2 Im�����

1� j���j
2 ; (19)

respectively, and the factor,

��� � e2i�2
T � Pe�i�2

T � Pei�2
; (20)

where the weak phase �2 comes from the identity �2 �
180� ��1 ��3. In addition, the direct CP asymmetry for
a charged B meson decay B� ! f�B� ! �f� is defined by

ACP �
B�B� ! �f� � B�B� ! f�

B�B� ! �f� � B�B� ! f�
: (21)

The PQCD predictions for the branching ratios and the
CP asymmetries of the B! �K, �� decays in the naive
-4



TABLE II. B! �� decay amplitudes, whose factorization formulas are presented in the
Appendix.

A�u�
����

Fe Fe4�a1�

Me Me4�a
0
1�

Fa 0

Ma Ma4�a
0
2�

A�t�
����

FPe Fe4�a
�u�
4 � � Fe6�a

�u�
6 �

MP
e Me4�a

0�u�
4 �

FPa Fa6�a
�d�
6 �

MP
a Ma4�a

0�u�
3 � a0�d�3 � a0�d�4 � a0�u�5 � a0�d�5 ����

2
p

A�u�
���0

Fe Fe4�a1 � a2�

Me Me4�a
0
1 � a

0
2�

Fa 0

Ma 0���
2
p

A�t�
���0

FPe Fe4�a
�u�
3 � a

�d�
3 � a

�u�
4 � a

�d�
4 � a

�u�
5 � a

�d�
5 � � Fe6�a

�u�
6 � a

�d�
6 �

MP
e Me4�a

0�u�
3 � a0�d�3 � a0�u�4 � a0�d�4 � a0�u�5 � a0�d�5 �

FPa 0

MP
a 0���

2
p

A�u�
�0�0

Fe Fe4��a2�

Me Me4��a
0
2�

Fa 0

Ma Ma4�a
0
2����

2
p

A�t�
�0�0

FPe Fe4��a
�u�
3 � a

�d�
3 � a

�d�
4 � a

�u�
5 � a

�d�
5 � � Fe6�a

�d�
6 �

MP
e Me4��a

0�u�
3 � a0�d�3 � a0�d�4 � a0�u�5 � a0�d�5 �

FPa Fa6�a
�d�
6 �

MP
a Ma4�a

0�u�
3 � a0�d�3 � a0�d�4 � a0�u�5 � a0�d�5 �
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dimensional regularization (NDR) scheme are listed in
Tables III, IV, V, and VI. Using the LO and NLO Wilson
coefficients, we obtain the values in the columns labeled by
LO and LONLOWC, respectively. It is noticed that some of
the NLO Wilson coefficients, like C5, diverge at a low
scale. To derive the above tables, we have frozen the values
Ci��� at Ci��0 � 0:5� GeV, whenever� runs to below the
scale �0, since the renormalization-group (RG) evolution
is not reliable for �<�0. Note that �0 is also the scale,
which sets the starting point of the RG evolution of the
Gegenbauer coefficients in the meson distribution ampli-
114005
tudes [32]. We have kept the corrections in higher orders of
the electroweak coupling � to the Wilson evolution, which
were neglected in [33]. Because the effect of the NLO
Wilson coefficients is to enhance the penguin amplitude,
the branching ratios of the penguin-dominated B! �K
modes increase, and the magnitudes of the direct CP
asymmetries decrease a bit accordingly. As shown in
Eq. (2), the enhanced penguin amplitude P, being destruc-
tive to the color-allowed tree amplitude T, allows the B!
�� branching ratios to vary toward the direction favored
by the data. The larger subdominant penguin amplitude
-5



TABLE V. Topological amplitudes in units of 10�5 GeV for the B! �K, �� decays in the NDR scheme.

Topology LO LONLOWC �VC �QL �MP �NLO

P0 36:6ei2:9 50:6ei2:9 49:6ei2:9 52:1ei2:9 43:7ei2:8 44:1ei2:9

T0 6:9ei0:0 6:6ei0:0 6:6ei0:1 6:6ei0:0 6:6ei0:0 6:6ei0:1

C0 0:5e�i2:5 0:6e�i0:4 1:9e�i1:3 0:6e�i0:2 0:6e�i0:4 1:7e�i1:3

P0ew 5:8ei3:1 5:8e�i3:1 5:4e�i3:0 5:8e�i3:1 5:8e�i3:1 5:4e�i3:0

T 24:3ei0:0 23:5ei0:0 23:1ei0:0 23:6e�i0:1 23:5ei0:0 23:2ei0:0

P 4:7e�i0:4 6:5e�i0:4 6:3e�i0:3 6:7e�i0:3 5:7e�i0:4 5:6e�i0:4

C 0:8ei2:6 2:2ei0:2 4:8e�i1:1 2:3ei0:4 2:2ei0:2 4:3e�i1:1

Pew 0:7ei0:0 0:7ei0:0 0:7e�i0:1 0:7ei0:0 0:7ei0:0 0:7e�i0:1

TABLE IV. Direct CP asymmetries in the NDR scheme.

Mode Data [1] LO LONLOWC �VC �QL �MP �NLO

B� ! ��K0 �0:02� 0:04 �0:01 �0:01 �0:01 0:00 �0:01 0:00� 0:00��0:00�

B� ! �0K� 0:04� 0:04 �0:08 �0:06 �0:01 �0:05 �0:08 �0:01�0:03��0:03�
�0:05��0:05�

B0 ! ��K� �0:115� 0:018 �0:12 �0:08 �0:09 �0:06 �0:10 �0:09�0:06��0:04�
�0:08��0:06�

B0 ! �0K0 0:02� 0:13 �0:02 0:00 �0:07 0:00 0:00 �0:07�0:03��0:01�
�0:03��0:01�

B0 ! ���� 0:37� 0:10 0:14 0:19 0:21 0:16 0:20 0:18�0:20��0:07�
�0:12��0:06�

B� ! ���0 0:01� 0:06 0:00 0:00 0:00 0:00 0:00 0:00� 0:00��0:00�

B0 ! �0�0 0:28�0:40
�0:39 �0:04 �0:34 0:65 �0:41 �0:43 0:63�0:35��0:09�

�0:34��0:15�

TABLE III. Branching ratios in the NDR scheme (� 10�6). The label LONLOWC means the LO results with the NLO Wilson
coefficients, and �VC,�QL,�MP, and�NLO mean the inclusions of the vertex corrections, the quark loops, the magnetic penguin,
and all the above NLO corrections, respectively. The errors in the parentheses were defined in the context.

Mode Data [1] LO LONLOWC �VC �QL �MP �NLO

B� ! ��K0 24:1� 1:3 17:0 32:3 31:0 34:2 24:1 24:5�13:6��12:9�
�8:1��7:8�

B� ! �0K� 12:1� 0:8 10:2 18:4 17:4 19:4 14:0 13:9�10:0��7:0�
�5:6��4:2�

B0 ! ��K� 18:9� 0:7 14:2 27:7 26:7 29:4 20:5 20:9�15:6��11:0�
�8:3��6:5�

B0 ! �0K0 11:5� 1:0 5:7 12:1 11:8 12:8 8:7 9:1�5:6��5:1�
�3:3��2:9�

B0 ! ���� 5:0� 0:4 7:0 6:8 6:6 6:9 6:7 6:5�6:7��2:7�
�3:8��1:8�

B� ! ���0 5:5� 0:6 3:5 4:1 4:0 4:1 4:1 4:0�3:4��1:7�
�1:9��1:2�

B0 ! �0�0 1:45� 0:29 0:12 0:27 0:37 0:29 0:21 0:29�0:50��0:13�
�0:20��0:08�

TABLE VI. Mixing-induced CP asymmetries in the NDR scheme.

Data LO LONLOWC �VC �QL �MP �NLO

S�0KS 0:31� 0:26 0:70 0:73 0:74 0:73 0:73 0:74�0:02��0:01�
�0:03��0:01�

S�� �0:50� 0:12 �0:34 �0:49 �0:47 �0:51 �0:41 �0:42�1:00��0:05�
�0:56��0:05�
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also increases the magnitudes of the direct CP asymme-
tries in the B! �� decays due to the stronger interference
with the dominant tree amplitudes.

As stated before, the LO PQCD predictions for the B!
�K branching ratios are consistent with the data, viewing
the range spanned by the columns LO and LONLOWC in
114005
Table III. However, the prediction for the B0 ! �0�0

branching ratio is too small compared to the measured
value. Those for the direct CP asymmetries of the B!
�K, �� decays, except ACP�B� ! �0K��, are all in good
agreement with the data as shown in Table IV. The LO
direct CP asymmetry of the B0 ! �0�0 mode differs in
-6
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sign from the result obtained in [3], because we have
employed the different pion distribution amplitudes (see
Sec. IV). It simply implies that the theoretical uncertainty
for the modes with tiny branching ratios is huge. Note that
the predictions from QCDF [25] for the direct CP asym-
metries usually have signs opposite to those from PQCD. It
has been realized that the set ‘‘S4’’ with nonuniversal
parameters, such as the different annihilation phases for
the B! PP, PV, and VP decays, must be adopted in order
for QCDF to accommodate the data [33–36]. The above
two discrepancies associated with the B0 ! �0�0 branch-
ing ratio and with the B� ! �0K� direct CP asymmetry
lead to the puzzles mentioned in the Introduction. We
prepare Table V for the various topological amplitudes,
whose definitions are referred to [6]. The values in the
columns LO and LONLOWC follow the power counting rules
in Eqs. (3) and (5) exactly, explaining why the B! �K,
�� puzzles appear.

After obtaining the values of the various topological
amplitudes, we compute the mixing-induced CP asymme-
tries through Eqs. (17) and (20). Since C0 is of O��2�
compared to P0, it is expected that the LO PQCD results
of S�0KS are close to that extracted from the b! c �cs
decays, Sc �cs � sin�2�1� 	 0:685, as shown in Table VI.
On the contrary, P is of O��� of T in the B0 ! ����

decays, such that a larger deviation of S�� from Sc �cs is
found. The LO PQCD results of S�� are consistent with the
data, but those of S�0KS are not. Moreover, PQCD predicts
�S�0KS 
 S�0KS � Sc �cs > 0, opposite to the observed val-
ues. This result is in agreement with those obtained in the
literature [15,37,38]. Hence, the measurement of the
mixing-induced CP asymmetries in the penguin-
dominated modes provides an opportunity of discovering
new physics. Currently, the data of S�0KS still suffer sig-
nificant errors. On the other hand, the NLO corrections and
the theoretical uncertainty, which concern the allowed
range of the PQCD predictions, need to be analyzed. A
more clear picture will be attained, after we complete these
analyses.
III. NEXT-TO-LEADING-ORDER CORRECTIONS

We explain the consistent power countings in �s and in
large logarithms, before computing the NLO corrections.
A PQCD formula of leading power in 1=mb is written
symbolically as

exp���0���s�LWC� � exp���0���s�L2
S � ��1���2

s�L2
S�

� exp���0�q ��s�LRG� �H
�0���s� ����0�; (22)

where the first, second, and third exponentials represent the
Wilson coefficient, the Sudakov factor, and the RG factor
[39], with the notations LWC 
 ln�mW=t�, LS 
 ln�xPb�,
and LRG 
 ln�tb�, xP being a fractional parton momen-

tum, t�
����������
��mb

q
a characteristic hard scale, and b the
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conjugate variable to the parton transverse momentum
kT , and �, �, and �q the corresponding anomalous dimen-
sions. The RG factor governs the evolution from t down to
1=b. The evolution from 1=b down to the cutoff �0, which
characterizes the meson distribution amplitude�, has been
neglected. This formula is complete at LO, since the hard
kernel H is evaluated to O��s�, and at next-to-leading
logarithm (NLL), since the Wilson coefficient, the
Sudakov factor, and the RG factor have been resummed
up to the next-to-leading logarithms �sLWC, �sLS, and
�sLRG, respectively, (�sL2

S is the leading logarithm). In all
our previous works we used the one-loop running coupling
constant �s, which is, strictly speaking, a NLO effect. This
effect takes into account the potential large NLO correc-
tions to the B meson transition form factors through the
BLM procedure (see the Introduction).

Next, we add subleading corrections to Eq. (22), which
include

(1) H�0���s� ! H�0���s� �H
�1���2

s�.—This is what we
are going to do in this section, where the NLO hard
kernel H�1� contains the vertex corrections, the
quark loops, and the magnetic penguin.

(2) exp���0���s�LWC� ! exp���0���s�LWC��
�1���2

s� �
LWC�.—The LO Wilson coefficient is replaced by
the NLO one, for which the corresponding anoma-
lous dimension is calculated to two loops:
��0���s� ! ��0���s� � �

�1���2
s�. According to our

counting rules, the NLO anomalous dimension leads
to the summation of the next-to-next-to-leading
logarithm (NNLL) �2

sLWC.
(3) exp���0���s�L

2
S � ��1���2

s�L
2
S� ! exp���0���s�L

2
S�

��1���2
s�L

2
S � ��2���3

s�L
2
S�.—This means the accu-

racy of the summation up to NNLL (�3
sL2

S).
Unfortunately, it requires a three-loop evaluation
of the corresponding anomalous dimension for the
Sudakov factor, which is not yet available in the
literature.

(4) exp���0�q ��s�LRG� ! exp���0�q ��s�LRG � ��1�q ��2
s��

LRG�.—Since LRG and LS are of the same order of
magnitude, and the NNLL Sudakov resummation is
not available, this NNLL piece of subleading cor-
rections (�2

sLRG) cannot be included consistently.
The power countings in �s and in various large loga-

rithms are independent in principle. Based on the above
classification, we shall extend Eq. (22) by considering the
subleading corrections from the first and second pieces.
With the one-loop running �s, the NLO corrections to the
hard kernel are complete (assuming that the corrections to
the form factors have been minimized by our choice of the
hard scale). It is not necessary to adopt the two-loop �s as
in [33], whose effect is next-to-next-to-leading order
(NNLO). Because of LWC 
 LS; LRG, the NNLL term
�2
sLWC is much more essential than those from the third

and fourth pieces. The LO PQCD results for the B! �K,
�� decays from using the NLO Wilson coefficients have
-7
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been listed in Tables III, IV, V, and VI. When investigating
the NLO corrections from the vertex corrections, the quark
loops, and the magnetic penguin to the hard kernel below,
we shall always use the NLO Wilson coefficients. After
obtaining the decay amplitudes A�B! f� up to NLO, we
employ Eq. (14) to evaluate the corresponding decay rates.

A. Vertex corrections

It has been known that the vertex corrections, reducing
the dependence of the Wilson coefficients on the renor-
malization scale �, play an important role in a NLO
analysis. Since the nonfactorizable contributions are neg-
ligible [40], we concentrate only on the vertex corrections
to the factorizable amplitudes. For charmless B meson
decays, these corrections do not involve the end-point
singularities from vanishing momentum fractions in col-
linear factorization theorem (QCDF [25]). Therefore, there
is no need to employ the kT factorization theorem (PQCD
[2,3,39,41,42]) here. This claim can be justified by recal-
culating one of the nonfactorizable amplitudes, Me4, for
the B! �K decays in the collinear factorization theorem,
which is also free of the end-point singularity. It is found
that the results for Me4 from the two calculations (with
and without the parton transverse momentum kT in the
kaon) differ only by 10%. For more detail, refer to the
Appendix. After justifying the neglect of the parton trans-
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verse degrees of freedom, we simply quote the QCDF
expressions for the vertex corrections. An important re-
mark is that the light quark from the b quark transition is
assumed to carry the full momentum of the associated
meson in QCDF [25]. Strictly speaking, this light quark
carries the fractional momentum, whose dependence
should appear in the PQCD formalism for the vertex cor-
rections. Because it is indeed an energetic quark, the
assumption is reasonable.

The vertex corrections modify the Wilson coefficients in
Eq. (12) into [25]

a1��� ! a1��� �
�s���

4�
CF

C1���
Nc

V1�M�;

a2��� ! a2��� �
�s���

4�
CF

C2���
Nc

V2�M�;

ai��� ! ai��� �
�s���

4�
CF

Ci�1���
Nc

Vi�M�; i� 3–10;

(23)

withM being the meson emitted from the weak vertex. For
the B! �K decays, M denotes the kaon for the vertex
functions V1;4;6;8;10 and the pion for V2;3;5;7;9. In the NDR
scheme Vi�M� are given by [25]
Vi�M� �

8>>><
>>>:

12 lnmb
� � 18�

2
������
2Nc
p

fM

R
1
0 dx�

A
M�x�g�x�; for i � 1–4; 9; 10;

�12 lnmb
� � 6�

2
������
2Nc
p

fM

R
1
0 dx�

A
M�x�g�1� x�; for i � 5; 7;

�6�
2
������
2Nc
p

fM

R
1
0 dx�

P
M�x�h�x�; for i � 6; 8;

(24)

where fM is the decay constant of the meson M, and �A
M�x� [�P

M�x�] the twist-2 (twist-3) meson distribution amplitude
given in Sec. IV, x being the parton momentum fraction. The hard kernels are

g�x� � 3
�
1� 2x
1� x

lnx� i�
�
�

�
2Li2�x� � ln2x�

2 lnx
1� x

� �3� 2i�� lnx� �x$ 1� x�
�
; (25)

h�x� � 2Li2�x� � ln2x� �1� 2i�� lnx� �x$ 1� x�: (26)
The expressions of Vi�M� in the ’t Hooft-Veltman scheme
can be found in [43]. The factorization formulas for the
various B! �K, �� decay amplitudes are still the same
as in Tables I and II.

The dependence of the Wilson coefficients ai��� on the
renormalization scale � modified by the vertex corrections
is exhibited in Fig. 1 for both the real and the imaginary
parts. It is found that the � dependence of most of ai is
moderated by the vertex corrections (with the generation of
the imaginary parts). The � dependence of a6;8 is, how-
ever, not altered. It has been known that their dependence
will be moderated after being combined with the � depen-
dence of the chiral scale m0K��� associated with the kaon
[25]. The most dramatic changes arise from a2;3;10.
Because of the smallness of a3 (a10) compared to the
Wilson coefficient a4;6 (a9) for the QCD (electroweak)
penguins, the only significant effect appears in the color-
suppressed tree amplitude C0, which is governed by a2. For
other ai, the vertex corrections amount only up to 70% at

the scale��
����������
��mb

q
� 1:5 GeV. The above observation is

manifest in Table V: most of the topological amplitudes for
the B! �K,�� decays change a little, whileC0 and C are
enhanced by factors of 3 and 2 (viewing the values in the
columns LONLOWC and �VC), respectively.

It is then understood that the B! �K branching ratios,
dominated by the penguin contributions from a4;6, vary
only slightly under the vertex corrections, as indicated in
-8
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FIG. 1. Real parts of ai for the B! �K decays without the vertex corrections (dotted lines) and with the vertex corrections (solid
lines), and imaginary parts with the vertex corrections (dot-dashed lines) in the NDR scheme.
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Table III. However, the direct CP asymmetries of the
B� ! �0K� and B0 ! �0K0 modes, related to C0, are
modified significantly, as shown in Table IV: ACP�B� !
�0K�� has increased from�0:06 to�0:01, and ACP�B0 !

�0K0� 
 A�0KS has decreased from 0.00 to �0:07.
ACP�B0 ! ��K��, determined solely by the color-
allowed tree amplitude T0, does not change much. The
114005
effect from the vertex corrections on the LO PQCD pre-
dictions for the B! �� decays can also be understood by
means of the enhanced color-suppressed tree amplitude C:
the B0 ! �0�0 branching ratio increases by 30%, and the
direct CP asymmetry changes from �0:34 to �0:65. The
sign flip of the direct CP asymmetry is attributed to a huge
change of the strong phase of C caused by the vertex
-9
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corrections. The predicted B0 ! ���� and B� ! ���0

branching ratios, to which C remains subdominant, de-
crease only a bit. The NLO effect, though increasing jCj
by a factor of 2, is not enough to resolve the B! ��
puzzle. Perhaps, the penguin amplitude is also larger than
expected [30,44]. Nevertheless, the vertex corrections do
improve the consistency between the theoretical predic-
tions and the experimental data of the B! �� decays.

Though the vertex corrections have been included in
QCDF [25], they do not help resolve the B! �K puzzle.
We neglect the electroweak penguin P0ew for convenience
in the following explanation. Table V shows that the pen-
guin amplitude P0 is in the second quadrant, and the color-
allowed tree amplitude T0 is roughly aligned with the
positive real axis. The color-suppressed tree amplitude C0

is enhanced by the vertex corrections and becomes almost
imaginary. It then orients the sum T0 � C0 into the fourth
quadrant, such that T0 � C0 andP0 more or less line up (and
point to the opposite directions). This is the reason the
magnitude of ACP�B� ! �0K��, proportional to the sine
of the angle between T0 � C0 and P0, becomes smaller in
PQCD. The situation in QCDF is different, where P0 is
preferred to be in the third quadrant [40]. That is, the
predicted ACP�B0 ! ��K�� has a wrong sign. Then the
modified C0, still orienting T0 � C0 into the fourth quad-
rant, cannot reduce the magnitude of ACP�B� ! �0K��.
The three types of NLO corrections considered here have
been extended up to O��2

s�0� in QCDF recently [45],
which, however, make the QCDF predictions for
ACP�B

� ! �0K�� deviate more from the data. Another
O��2

s� piece from the b! sg�g� transition was included
into QCDF [46], which enhances the B! �K branching
ratios, but leaves their direct CP asymmetries intact. The
B! �K puzzle cannot be resolved in SCET either [47]:
the leading SCET formalism requires the ratio C0=T0 to be
real, so that C0, being parallel to T0, cannot orient the sum
T0 � C0 into the fourth quadrant, and that the magnitude of
ACP�B

� ! �0K�� remains large.
We have found that the color-suppressed tree amplitude

C0 could be enhanced a few times by the vertex corrections
in the standard model. It is then worthwhile to investigate
whether the mixing-induced CP asymmetry S�0KS in the
B! �0KS decays deviates from Sc �cs substantially under a
large C0 according to Eq. (17). A similar investigation of
the large C effect applies to S�� in the B0 ! ���� decays
according to Eq. (20). The results are collected in Table VI,
which indicates that the deviation is still small and positive.
It is known that the leading deviation caused by C0 is
proportional to cos�	C0 � 	P0 �, if neglecting P0ew.
Because the vertex corrections also rotate the orientation
of C0, it becomes more orthogonal to P0 as shown in
Table V, and �S�0KS is not increased much. The mixing-
induced CP asymmetry S��, depending only on T and P,
is insensitive to the vertex corrections, which mainly
affect C.
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B. Quark loops

For the B! �K and B! �� decays, the dominant
penguin amplitude P0 � jVtbV

�
tsjC4 and tree amplitude

T � jVubV
�
udjC2 are both of O��4� [13]. Hence, the

charm-quark loop amplitude, proportional to
�sjVcbV

�
csjC2 � �s�

2 in the former and to
�sjVcbV

�
cdjC2 � �s�

3 in the latter, could be an important
source of NLO corrections. Its effect is expected to be
larger in the B! �K decays. On the other hand, the up-
quark loop amplitude, proportional to �sjVubV

�
usjC2 �

�s�
5 [13] for B! �K, seems to be negligible. For B!

��, the up-quark loop amplitude, proportional to
�sjVubV

�
udjC2 � �s�

4 [13], might be comparable to the
charm-quark one. Therefore, we shall include both quark
loops in the following analysis. For completeness, we shall
also include the quark-loop amplitudes from the QCD-
penguin operators, whose contributions are proportional
to �sjVtbV�tsjCi � �s�4, i � 3; 4; 6. They have the order
of magnitude the same as or larger than the up-quark one,
and can influence the direct CP asymmetries of the B!
�K modes. The quark loops from the electroweak pen-
guins will be neglected due to their smallness. Note that the
CKM factors of these corrections differ among the loop
amplitudes and between the b! s�d� and �b! �s� �d�
transitions.

For the b! s transition, the contributions from the
various quark loops are given by
Heff � �
X

q�u;c;t

X
q0

GF���
2
p VqbV�qs

�s���
2�

C�q���; l2�

� ��s���1� �5�Tab�� �q0��Taq0�; (27)
l2 being the invariant mass of the gluon, which attaches the
quark loops in Fig. 2. For the b! d transition, the quark-
loop corrections are obtained by substituting d for s in
Eq. (27). The functions C�q���; l2� are written as
C�q���; l2� � �G�q���; l2� � 2
3�C2���; (28)
for q � u, c, and
-10
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C�t���; l2� �
�
G�s���; l2� �

2

3

�
C3���

�
X

q00�u;d;s;c

G�q
00���; l2��C4��� � C6����:

(29)

The constant term �2=3 in the above expressions arises
from the Fierz transformation of the four-fermion opera-
tors in D dimensions with the anticommuting Dirac matrix
�5 in the NDR scheme. The contribution proportional to
the Wilson coefficient C5, being purely ultraviolet, should
be combined with that from the magnetic penguin to form
the effective Wilson coefficient C8g � C5 [31]. Since our
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characteristic hard scale is of order
����������
��mb

q
� 1:5 GeV, the

b quark is not an active one, and does not contribute to
Eq. (29). Except for this difference, our expressions are
basically the same as in [25].

The function G�c���; l2� for the loop of the massive
charm quark is given by

G�c���; l2� � �4
Z 1

0
dxx�1� x� ln

m2
c � x�1� x�l

2

�2 ;

(30)

mc being the charm-quark mass, whose real and imaginary
parts are
ReG�c���; l2� �
2

3

�
5

3
�

4m2
c

l2
� ln

m2
c

�2

�
�

2

3

�
1�

2m2
c

l2

�

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

���������������
1� 4m2

c

l2

q
ln

����������
1�

4m2
c

l2

q
�1����������

1�
4m2
c

l2

q
�1

�1< l2 < 0;

�2
���������������
4m2

c

l2 � 1
q

cot�1�
���������������
4m2

c

l2 � 1
q

� 0 � l2 < 4m2
c;

�2�1� 4m2
c

l2
� l2 � 4m2

c;���������������
1� 4m2

c

l2

q
ln

1�

����������
1�

4m2
c

l2

q
1�

����������
1�

4m2
c

l2

q 4m2
c < l2 <1;

(31)
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FIG. 3. Quark-loop contributions to the b! s [(a),(b)] and
b! d [(c),(d)] transitions for l2 � m2

B=4 with the solid, dotted,
and dot-dashed lines corresponding to the up-quark, charm-
quark, and QCD-penguin loops, respectively.
and

ImG�c���; l2� �
2�
3

�
1�

2m2
c

l2

� ������������������
1�

4m2
c

l2

s


�
1�

4m2
c

l2

�
;

(32)

respectively. For the loops of the light quarks u, d, and s,
we have the expressions similar to Eq. (30) but with mc
being replaced by mu, md, and ms, respectively. Because
their contributions are insensitive to the light quark masses,
we simply adopt the same massm for the three quark loops.
Varying m from mu � 4:5 MeV to ms 	 100 MeV, the
branching ratios change by less than 1%.

To picture the quark-loop effect, we display in Fig. 3 the
dependence of �VqbV�qs�d�=�VtbV

�
ts�d���C

�q�, q � u; c; t, on
the renormalization scale � for a given l2 � m2

B=4 in the
NDR scheme. The real part of the up-quark loop is indeed
negligible compared to that of the charm-quark loop in the
b! s transition as indicated in Fig. 3(a). However, in the
other transitions described by Figs. 3(b)–3(d), the up- and
charm-loop corrections are comparable as argued above.
The quark loops from the QCD-penguin operators are in
fact essential. Figures 3(a) and 3(c) [and also Figs. 3(b) and
3(d)] imply that the weak phases cause different � depen-
dences between the b! s and b! d transitions in the
cases of the up and charm loops, but not in the case of the
QCD-penguin loops.

The quark-loop amplitudes depend on the gluon invari-
ant mass l2, which is assumed to be an arbitrary constant
hl2i in the naive factorization assumption (FA). Since the
topology displayed in Fig. 2 is the same as the penguin one,
its contribution can be absorbed into the Wilson coeffi-
cients a4;6,
-11



TABLE VII. a4;6 including the quark loops and the magnetic penguin for l2 � m2
B=4 in the NDR scheme.

LONLOWC �QL (b! s) �QL (b! d) �MP

a4 (1.5 GeV) �0:0601 �0:0659� i0:0152 �0:0500� i0:0131 �0:0492
a6 (1.5 GeV) �0:0952 �0:1010� i0:0152 �0:0850� i0:0131 �0:0843

a4 (4.4 GeV) �0:0336 �0:0545� i0:0048 �0:0454� i0:0036 �0:0279
a6 (4.4 GeV) �0:0428 �0:0637� i0:0048 �0:0546� i0:0036 �0:0371

LONLOWC �QL ( �b! �s) �QL ( �b! �d) �MP

a4 (1.5 GeV) �0:0601 �0:0646� i0:0150 �0:0804� i0:0180 �0:0492
a6 (1.5 GeV) �0:0952 �0:0997� i0:0150 �0:1155� i0:0180 �0:0843

a4 (4.4 GeV) �0:0336 �0:0537� i0:0047 �0:0628� i0:0065 �0:0279
a6 (4.4 GeV) �0:0428 �0:0630� i0:0047 �0:0720� i0:0065 �0:0371
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a4;6��� ! a4;6��� �
�s���

9�

X
q�u;c;t

VqbV
�
qs�d�

VtbV
�
ts�d�

C�q���; hl2i�;

(33)

with the other ai unmodified. The resultant values of a4;6 at
� � 1:5 and 4.4 GeV are listed in Table VII. As � �
1:5 GeV, the quark-loop corrections do not change a4;6

much for b! s and �b! �s, while they are destructive
(constructive) to a4;6 for b! d ( �b! �d). As � �
4:4 GeV, these corrections are always constructive for
the different b quark transitions. Besides, the quark-loop
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corrections are mode dependent. For example, they cancel
between the u �u and d �d components of �0 � �u �u�
d �d�=

���
2
p

in the B� ! ���0 decays, but not in others.
The assumption of a constant gluon invariant mass in FA

introduces a large theoretical uncertainty as making pre-
dictions. In the more sophisticated PQCD approach, the
gluon mass is related to the parton momenta unambigu-
ously (see the Appendix). Because of the absence of the
end-point singularities associated with l2, l02 ! 0 in
Figs. 2(a) and 2(b), respectively, we have dropped the
parton transverse momenta kT in l2, l02 for simplicity.
The amplitudes in Eq. (9) become
A�u;c�
��K0 !A�u;c�

��K0 �M�u;c�
�K ; A�t�

��K0 !A�t�
��K0 �M�t�

�K; A�u;c�
�0K�

!A�u;c�
�0K�

�
1���
2
p M�u;c�

�K ;

A�t�
�0K�

!A�t�
�0K�

�
1���
2
p M�t�

�K; A�u;c�
��K� !A�u;c�

��K� �M�u;c�
�K ; A�t�

��K� !A�t�
��K� �M�t�

�K;

A�u;c�
�0K0 !A�u;c�

�0K0 �
1���
2
p M�u;c�

�K ; A�t�
�0K0 !A�t�

�0K0 �
1���
2
p M�t�

�K; A�u;c�
���� !A�u;c�

���� �M�u;c�
�� ;

A�t�
���� !A�t�

���� �M�t�
��; A�u;c;t�

���0 !A�u;c;t�
���0 ;

A�u;c�
�0�0 !A�u;c�

�0�0 �
1���
2
p M�u;c�

�� ; A�t�
�0�0 !A�t�

�0�0 �
1���
2
p M�t�

��;

(34)
where M�u�
f , M�c�

f , and M�t�
f denote the up-, charm-, and

QCD-penguin-loop corrections, respectively, and the mi-
nus sign for the final state �0K0 comes from the d �d
component in �0. The factorization formulas for M�u;c;t�

�K
and M�u;c;t�

�� are presented in the Appendix.
As indicated in Eq. (33), the quark-loop corrections

affect the penguin contributions, but have a minor impact
on other topological amplitudes. This observation is clear
in Table V: jP0j (jPj) has increased from 50.6 to 52.1 (6.5 to
6.7) in the NDR scheme. Since the B! �K decays are
penguin dominated, their branching ratios receive an en-
hancement (see Table III). The increase of the branching
ratios then reduces the magnitude of the direct CP asym-
metries in the B! �K modes slightly as shown in
Table IV. It is also easy to understand the insensitivity of
the mixing-induced CP asymmetry S�0KS to the quark-loop
corrections (see Table VI), viewing the small change in the
dominant amplitude P0 in Eq. (17). On the contrary, the
penguin contribution is subdominant in the B! �� de-
cays, so the branching ratios do not vary much. However,
the direct CP asymmetries ACP�B

0 ! ����� and
ACP�B

0 ! �0�0�, and the mixing-induced CP asymmetry
S��, directly related to the penguin amplitude, change
sizably.

C. Magnetic penguins

We then discuss the NLO corrections from the magnetic
penguin, whose weak effective Hamiltonian contains the
-12
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b! sg transition,

Heff � �
GF���

2
p VtbV�tsC8gO8g; (35)

with the magnetic-penguin operator,

O8g �
g

8�2 mb �si����1� �5�TaijG
a��bj; (36)

i, j being the color indices. The Hamiltonian for the b! d
transition is obtained by changing s into d in Eq. (35). The
topology of the magnetic-penguin operator is similar to
that of the quark loops. If regarding the invariant mass l2 of
the gluon emitted from the operator O8g as a constant hl2i,
the magnetic-penguin contribution to the B! �K, ��
decays can also be included into the Wilson coefficients,
similar to Eq. (33),

a4;6��� ! a4;6��� �
�s���

9�
2mB��������
hl2i

p Ceff
8g ���; (37)

with the effective Wilson coefficient Ceff
8g � C8g � C5 [31].

The resultant Wilson coefficients a4;6��� for � � 1:5 and
4.4 GeV have been presented in Table VII. The cancella-
tion between the real parts of the quark-loop corrections
and of the magnetic penguin is obvious, except in the case
of the b! d transition for � � 1:5 GeV.

In the PQCD approach the gluon invariant mass l2 is
related to the parton momenta, such that the corresponding
factorization formulas involve the convolutions of all three
meson distribution amplitudes. Because the nonfactoriz-
able contributions are negligible, we calculate only the
magnetic-penguin corrections to the factorizable ampli-
tudes, which modify only A�t�

f in Eq. (9):

A�t�
��K0 !A�t�

��K0 �M�g�
�K;

A�t�
�0K�

!A�t�
�0K�

�
1���
2
p M�g�

�K;

A�t�
��K� !A�t�

��K� �M�g�
�K;

A�t�
�0K0 !A�t�

�0K0 �
1���
2
p M�g�

�K;

A�t�
���� !A�t�

���� �M�g�
��;

A�t�
���0 !A�t�

���0 ;

A�t�
�0�0 !A�t�

�0�0 �
1���
2
p M�g�

��:

(38)

The explicit expressions for the magnetic-penguin ampli-
tudes M�g�

�K and M�g�
�� are referred to the Appendix. Since

an end-point singularity arises, as the invariant mass l2

approaches zero, we have employed the kT factorization
theorem, i.e., the PQCD approach in this case.

The effect of the magnetic penguin is just opposite that
of the quark-loop corrections as indicated in Tables III, IV,
and V: it decreases all the B! �K, �� branching ratios,
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except those of the tree-dominated B0 ! ���� and
B� ! ���0 modes, and intends to increase the magnitude
of most of the direct CP asymmetries. The mixing-induced
CP asymmetry S�0KS is stable under the magnetic-penguin
correction for the same reason. The magnitude of S��
decreases due to the smaller penguin pollution. Because
the quark-loop corrections are smaller than the magnetic
penguin, the pattern of their combined effect is similar to
that of the latter. In summary, the above two pieces of NLO
corrections reduce the LO penguin amplitudes by about
10% in the B! �K, �� decays, and the B! �K and
B0 ! �0�0 branching ratios by about 20%. The direct CP
asymmetries are not altered very much, which are mainly
affected by the vertex corrections, as shown by the sim-
ilarities between the columns �VC and �NLO in
Table IV.
IV. THEORETICAL UNCERTAINTY

In this section we explain in detail how to derive the
results in Tables III, IV, V, and VI, and discuss their
theoretical uncertainty. The PQCD predictions depend on
the inputs for the nonperturbative parameters, such as
decay constants, distribution amplitudes, and chiral scales
for pseudoscalar mesons. For the Bmeson, the model wave
function has been proposed in [21]:

�B�x; b� � NBx2�1� x�2 exp
�
�

1

2

�
xmB

!B

�
2
�
!2
Bb

2

2

�
;

(39)

where the Gaussian form was motivated by the oscillator
model in [48], and the normalization constant NB is related
to the decay constant fB through

Z 1

0
dx�B�x; b � 0� �

fB
2
���������
2Nc
p : (40)

There are certainly other models of the B meson wave
function available in the literature (see [49,50]). It has been
confirmed that the model in Eq. (39) and the model derived
in [51] with a different functional form lead to similar
numerical results for the B! � transition form factor
[52].

The twist-2 pion (kaon) distribution amplitude �A
��K�,

and the twist-3 ones �P
��K� and �T

��K� have been parame-
trized as

�A
��K��x� �

f��K�
2
���������
2Nc
p 6x�1� x��1� a��K�1 C3=2

1 �2x� 1�

� a��K�2 C3=2
2 �2x� 1� � a��K�4 C3=2

4 �2x� 1��;

(41)
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�P
��K��x� �

f��K�
2
���������
2Nc
p

�
1�

�
30
3 �

5

2
�2
��K�

�
C1=2

2 �2x� 1�

� 3
�

3!3 �

9

20
�2
��K��1� 6a��K�2 �

�

� C1=2
4 �2x� 1�

�
; (42)

�T
��K��x� �

f��K�
2
���������
2Nc
p �1� 2x�

�
1� 6

�
5
3�

1

2

3!3

�
7

20
�2
��K� �

3

5
�2
��K�a

��K�
2

�
�1� 10x� 10x2�

�
;

(43)

with a�1 � 0, the mass ratio ���K� � �mu �

md�s��=m��K� � m��K�=m0��K� and the Gegenbauer polyno-
mials C�n�t�,

C1=2
2 �t� �

1

2
�3t2 � 1�; C1=2

4 �t� �
1

8
�3� 30t2 � 35t4�;

C3=2
1 �t� � 3t; C3=2

2 �t� �
3

2
�5t2 � 1�;

C3=2
4 �t� �

15

8
�1� 14t2 � 21t4�: (44)

In the above kaon distribution amplitudes the momentum
fraction x is carried by the s quark. For both the pion and
kaon, we choose 
3 � 0:015 and !3 � �3 [53]. Because
we did not employ the equations of motions for the twist-3
meson distribution amplitudes [25], we are allowed to
include the higher Gegenbauer terms, which are in fact
important. However, we drop the derivative term with
respect to the transverse parton momentum kT in �T

��K�.
It has been observed that the contribution from this deriva-
tive term to the B! � form factor is negligible [54].

In our previous works we adopted the models of the pion
and kaon distribution amplitudes derived from QCD sum
rules in [53]. Fixing the B meson decay constant fB 	
190 MeV from lattice QCD (see [55]), the shape parameter
of the B meson wave function was determined to be !B 	
0:4 GeV [21] from the B! � form factor FB�� �0� 	 0:3 in
light-cone sum rules [56,57]. The chiral scales were chosen
as m0� 	 1:3 GeV for the pion and m0K 	 1:7 GeV for
the kaon [2]. The renormalization scale�was set to the off
shellness of the internal particles, consistent with the BLM
procedure. The resultant PQCD predictions [2] have been
confirmed by the observed B! �K branching ratios and
B0 ! ��K� direct CP asymmetry. The consistency indi-
cates not only that the above inputs are reasonable, but that
the short-distance QCD dynamics has been described cor-
rectly in PQCD.

In this paper we employ the updated models of the pion
and kaon distribution amplitudes in [58]. Since the updated
Gegenbauer coefficient a�2 � 0:115 is smaller than the
previous one 0.44 for the twist-2 pion distribution ampli-
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tude [53], FB�� �0� reduces compared to that obtained in
[24]. To compensate this reduction, we increase the B
meson decay constant up to fB � 210 MeV, which is
consistent with the recent lattice result [59], in order to
maintain the B! �K, �� branching ratios. For the same
reason, the penguin annihilation amplitudes, which involve
the �-K or �-� timelike form factor, decrease. The mag-
nitude of the resultant direct CP asymmetries of the B!
�K, �� decays, which is not compensated by the overall
decay constant fB, then becomes smaller than in [24] as
shown in the column LO of Table IV. The smaller B0 !
��K� direct CP asymmetry is in better agreement with
the data, implying that the data could be covered by the
theoretical uncertainty at LO of PQCD.

All the above nonperturbative inputs suffer uncertain-
ties, and it is necessary to investigate how these uncertain-
ties propagate into the predictions for nonleptonic Bmeson
decays. Here we shall constrain the shape parameter !B
and the Gegenbauer coefficients of the twist-2 pion distri-
bution amplitude �A

� using the experimental error of the
semileptonic decay B! �l�. The sufficient uncertainties
will be assigned to the Gegenbauer coefficients of the
twist-2 kaon distribution amplitude �A

K. The other inputs,
such as the B meson decay constant, the twist-3 distribu-
tion amplitudes, and the chiral scale associated with the
pion and the kaon will be fixed. On one hand, the consid-
ered sources of theoretical uncertainties have been repre-
sentative enough. On the other hand, it is impossible to
constrain all the inputs with the currently available data.

The spectrum of the semileptonic decay B! �l� in the
lepton invariant mass q2 has been measured [60]:

R
8
0�d�=dq2�dq2

�total

� �0:43� 0:11� � 10�4; (45)

with the total decay rate �total � �4:29� 0:04� �
10�13 GeV [61]. Assuming that the above error is uniform
in the region 0< q2 < 8 GeV2, we derive the uncertainty
� of �d�=dq2�jq2�0 by solving the equation 8� � 0:11�
10�4�total, where we take only the central value of �total for
simplicity. With the allowed range of jVubj � �3:67�
0:47� � 10�3 [61], � is translated into the uncertainty of
the B! � form factor,

FB�� �0� � 0:24� 0:05; (46)

whose central value comes from our choice of the inputs.
Equation (46) is consistent with 0:23� 0:04 extracted in
[62] from a global fit to the above CLEO data, lattice QCD
results of FB�� �q

2�, etc. A numerical analysis indicates that
FB�� �0� is more sensitive to !B than to the Gegenbauer
coefficients of �A

�.
Therefore, we propose the following:
(1) The shape parameters for the distribution ampli-

tudes,
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!B � �0:40� 0:04� GeV;

a�2 � 0:115� 0:115; a�4 � �0:015;

aK1 � 0:17� 0:17; aK2 � 0:115� 0:115;

aK4 � �0:015; (47)

that is, the Gegenbauer coefficients can vary by
100%. We do not consider the uncertainty from
the coefficients a�4 and aK4 , to which our predictions
are insensitive. Note that the first Gegenbauer coef-
ficients aK1 	 0:10� 0:12 and aK1 	 0:05� 0:02
have been found to be smaller in [63,64], respec-
tively. A hint on the effect from the evolution of the
meson distribution amplitudes from 1=b down to the
cutoff �0 (see Sec. III) can also be obtained through
the above variation of the Gegenbauer coefficients.

(2) The CKM matrix elements,

Vud � 0:9734; Vus � 0:2200;

jVubj � �3:67� 0:47� � 10�3; Vcd � �0:224;

Vcs � 0:996; Vcb � 0:0413; (48)

where we consider only the representative source of
theoretical uncertainties from jVubj [61]. This
source is essential for estimating the uncertainty of
the predicted direct CP asymmetries. Vcb �
�41:3� 1:5� � 10�3 [61] has a smaller uncertainty,
and the other matrix elements have been known
more precisely. The unitarity condition VtbV�ts�d� �
�VubV�us�d� � VcbV

�
cs�d� is then employed as evalu-

ating the penguin contributions.
(3) The weak phases,

�1 � 21:6�; �3 � �70� 30��; (49)

where the range of the well-measured �1 with
sin�2�1� � 0:685� 0:032 [65] has been neglected,
and the range of �3 is hinted by the determinations
[65,66],

�3 � 68�14
�15 � 13� 11 �Belle;Dalitz�;

70� 31�12�14
�10�11 �BaBar;Dalitz�;

63�15
�13 �CKM fitter�;

64� 18�UT fit�: (50)

We fix the other parameters, such as the meson decay
constants fB � 210 MeV, fK � 160 MeV, f� �
130 MeV, the meson masses mB � 5:28 GeV, mK �
0:49 GeV, m� � 0:14 GeV, the charm-quark mass mc �
1:5 GeV, and the B meson lifetimes �B0 � 1:528�
10�12 s, �B� � 1:643� 10�12 s [1]. We also fix the chiral
scales m0� � 1:3 GeV and m0K � 1:7 GeV, where the
value of m0� (m0K) is close to that (larger than 1:25�
0:15 GeV) obtained in the recent sum-rule analysis [67].
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The resultant B! �;K transition form factors,

FB�� �0� � 0:24�0:05
�0:04; FBK� �0� � 0:36�0:09

�0:07; (51)

respect Eq. (46) from the measurement, and are consistent
with the estimation from light-cone sum rules [64]. If
further including the variation of m0K as a source of
theoretical uncertainties, we just enlarge the range of the
B! �K branching ratios, but not of the other quantities.
We have tested the dependence of our predictions on the
cutoff �0, which is found to be weak.

The above inputs lead to Tables III, IV, V, and VI, where
the theoretical uncertainties are displayed only in the col-
umns�NLO. The errors (not) in the parentheses represent
those from (all sources) the first source of uncertainties. It
indicates that the nonperturbative inputs, i.e., the first
source, contribute to the theoretical uncertainties more
dominantly in the B! �K decays than in the B! ��
decays, because the former depend on the less controllable
parameters associated with the kaon. We also observe that
ACP�B

0 ! ��K�� and ACP�B
� ! �0K�� always in-

crease or decrease simultaneously, when varying the non-
perturbative inputs. Hence, the B! �K puzzle cannot be
resolved by tuning these parameters. After including the
uncertainties, the predicted B0 ! �0�0 branching ratio
and mixing-induced CP asymmetry S�0KS are still far
from the data.

A more transparent comparison between the predictions
and the data is made by considering the ratios of the
branching ratios. The following three ratios of the B!
�K branching ratios have been widely studied in the
literature,

R �
B�B0 ! ��K��

B�B� ! ��K0�

�B�

�B0

� 0:85� 0:06;

Rc � 2
B�B� ! �0K��

B�B� ! ��K0�
� 1:00� 0:08;

Rn �
1

2

B�B0 ! ��K��

B�B0 ! �0K0�
� 0:82� 0:08;

(52)

whose values are quoted from [1]. We have confirmed that
these ratios depend on the nonperturbative inputs weakly.
Therefore, their deviation from the standard-model predic-
tions could reveal a signal of new physics, such as a large
electroweak penguin amplitude. Table III shows that for
�3 � 70�, the ratio R increases slightly from 0.90 to 0.92,
when the NLO Wilson coefficients are adopted, beyond
which the various NLO corrections do not change R much.
The ratio Rc (Rn) decreases from 1.20 (1.25) to 1.14 (1.14),
when the NLO Wilson coefficients are adopted, and settles
down at this value as indicated by the column �NLO. The
different types of NLO corrections cause only small fluc-
tuations. Comparing the columns LO and �NLO, the
consistency between the PQCD predictions and the data
has been improved.
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FIG. 4. Dependence of R, Rc, and Rn on �3 from NLO PQCD with the bands representing the theoretical uncertainty. The two
dashed lines represent 1� bounds from the data.
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Varying the weak phase �3 and the inputs, we find that
the PQCD predictions for R and Rn are in good agreement
with the data in Eq. (52), which is obvious from Fig. 4.
However, the predictions for Rn exhibit a tendency of
overshooting the data, which is attributed to the smaller
PQCD results for the B0 ! �0K0 branching ratio. A
smaller Gegenbauer coefficient a�2 of �A

� enhances Rn.
That is, when using the updated pion distribution ampli-
tudes from [58], the consistency of the predictions for Rn
with the data deteriorates. A smaller !B enhances Rn. This
is the reason we do not lower !B in order to compensate
the reduction from the smaller a�2 . Note that m0K has an
effect on the electroweak penguin amplitude, i.e., on the
B0 ! �0K0 branching ratio. Hence, we have also studied
the dependence of Rn on the chiral scale m0K. A smaller
mK

0 indeed reduces Rn, but does not help much: choosing
m0K � 1:3 GeV causes only a few percent reduction of Rn.
It has been known that the B0 ! �0K0 branching ratio can
be significantly increased by rotating the electroweak pen-
guin amplitude P0ew away from the penguin amplitude P0

(their values in Table V are roughly parallel to each other).
Therefore, we cannot rule out the possibility that P0ew

acquires an additional phase from new-physics effects
[9,68,69]. However, our theoretical uncertainty is repre-
sentative, and the actual uncertainty could be larger, such
that the discrepancy is not serious at this moment. We do
not discuss the ratios relevant to the B! �� decays,
because the PQCD predictions for the B0 ! �0�0 branch-
ing ratio are currently far below the measured values.

V. CONCLUSION

The LO PQCD has correctly predicted the direct CP
asymmetry ACP�B0 ! ��K��, but failed to explain an-
other one ACP�B� ! �0K�� [2]. Phenomenologically, the
substantial difference between ACP�B

� ! �0K�� and
ACP�B

0 ! ��K�� has led to the conjecture of new physics
[7,9]. However, the difference can also be attributed to a
large color-suppressed tree amplitude C0 as pointed out in
[13]. Theoretically, an examination of NLO effects is al-
ways demanded for a systematic approach like PQCD.
Since C0 itself is a subdominant contribution, it is easily
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affected by subleading corrections. Hence, before claiming
a new-physics signal in the B! �K data, one should at
least check whether the NLO effects could enhance C0

sufficiently. This is one of our motivations to perform the
NLO calculation in PQCD for the B! �K, �� decays
here. Another motivation comes from the mixing-induced
CP asymmetries in the penguin-dominated modes, some of
which also depend on the color-suppressed tree ampli-
tudes. To estimate the deviation of S�0KS from Sc �cs within
the standard model, one must compute C0 reliably.

In this paper we have calculated the NLO corrections to
the B! �K, �� decays from the vertex corrections, the
quark loops, and the magnetic penguin in the PQCD ap-
proach. The results for the branching ratios and CP asym-
metries in the NDR scheme have been presented in
Tables III, IV, V, and VI, and discussed in Sec. III. It has
been shown that the corrections from the quark loops and
from the magnetic penguin come with opposite signs and
sum to about 10% of the LO penguin amplitudes. Their
effect is to reduce the B! �K branching ratios, to which
the penguin contribution is dominant, by about 20%. They
have a minor influence on the B! �� branching ratios,
and CP asymmetries. The vertex corrections play an im-
portant role in modifying direct CP asymmetries, espe-
cially those of the B� ! �0K�, B0 ! �0K0, and
B0 ! �0�0 modes, by increasing the color-suppressed
tree amplitudes a few times. The larger color-suppressed
tree amplitude leads to nearly vanishing ACP�B� !
�0K��, resolving the B! �K puzzle within the standard
model. Our analysis has also confirmed that the NLO
corrections are under control in PQCD.

The NLO corrections, though increasing the color-
suppressed tree amplitudes significantly, are not enough
to enhance the B0 ! �0�0 branching ratio to the measured
value. A much larger amplitude ratio jC=Tj � 0:8 must be
obtained in order to resolve this puzzle [13]. Nevertheless,
the NLO corrections do improve the consistency of our
predictions with the data: the predicted B0 ! ����

(B0 ! �0�0) branching ratio decreases (increases).
Viewing the consistency of the PQCD predictions with
the tiny measured B0 ! K0K0 and B0 ! �0�0 branching
-16
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ratios, we think that our NLO results for the B! ��
decays are reasonable. In SCET [30], the large jC=Tj
comes from a fit to the data, instead of from an explicit
evaluation of the amplitudes. The amplitude C was indeed
found to be increased in SCET by the NLO jet function (the
short-distance coefficient from matching SCETI to
SCETII) [70], if the parameter set ’’S4’’ in QCDF [25]
was adopted. The large measured B0 ! �0�0 branching
ratio was then explained. However, we emphasize again
that the same analysis should be applied to the B! ��
decays for a check. Hence, the B! �� puzzle still re-
quires more investigation.

The tendency of overshooting the observed ratio Rn has
implied a possible new-physics phase associated with the
electroweak penguin amplitude P0ew. This additional phase
can render P0ew orthogonal to the penguin amplitude, and
enhance the B0 ! �0K0 branching ratio. We have also
computed the deviation �S�0KS of the mixing-induced
CP asymmetry, and found that the NLO effects push it
toward the even larger positive value. Therefore, it is
difficult to understand the observed negative deviation
without physics beyond the standard model.
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APPENDIX: FACTORIZATION FORMULAS

We first define the kinematics for the B! M2M3 decay,
where M2 (M3) denotes the light pseudoscalar meson in-
volved in the B meson transition (emitted from the weak
vertex). In the rest frame of the B meson, the B (M2, M3)
meson momentum P1 (P2, P3), and the corresponding
spectator quark momentum k1 (k2, k3) are taken, in the
light-cone coordinates, as

P1 �
mB���

2
p �1; 1; 0T�; k1 � �0; x1P

�
1 ;k1T�;

P2 �
mB���

2
p �1; 0; 0T�; k2 � �x2P�2 ; 0;k2T�;

P3 �
mB���

2
p �0; 1; 0T�; k3 � �0; x3P�3 ;k3T�;

(A1)

where the light meson masses have been neglected. We
also define the ratio r2 � m02=mB (r3 � m03=mB) associ-
ated with the meson M2 (M3), m02 (m03) being the chiral
scale.

The factorization formulas for the B! M2M3 decay
amplitudes appearing in Tables I and II are collected
below:
Fe4�a� � 16�CFm2
B

Z 1

0
dx1dx2

Z 1
0
b1db1b2db2�B�x1; b1�f��1� x2��A

2 �x2� � r2�1� 2x2���P
2 �x2� ��T

2 �x2���

� Ee�t�he�A;B; b1; b2; x2� � 2r2�
P
2 �x2�Ee�t

0�he�A
0; B0; b2; b1; x1�g; (A2)
Fe6�a� � 32�CFm2
B

Z 1

0
dx1dx2

Z 1
0
b1db1b2db2�B�x1; b1�fr3��A

2 �x2� � r2x2��P
2 �x2� ��T

2 �x2�� � 2r2�P
2 �x2��

� Ee�t�he�A;B; b1; b2; x2� � 2r2r3�
P
2 �x2�Ee�t

0�he�A
0; B0; b2; b1; x1�g; (A3)
Fa4�a� � 16�CFm2
B

Z 1

0
dx2dx3

Z 1
0
b2db2b3db3f�x3�A

2 �x2��A
3 �x3� � 2r2r3�P

2 �x2�f��P
3 �x3� ��T

3 �x3�� � x3��P
3 �x3�

��T
3 �x3�g��Ea�t�he�A;B; b2; b3; x3� � ��1� x2��

A
2 �x2��

A
3 �x3� � 2r2r3f�2�P

2 �x2� � x2��
P
2 �x2� ��

T
2 �x2��g

��P
3 �x3��Ea�t0�he�A0; B0; b3; b2; x2�g; (A4)
Fa6�a� � 32�CFm
2
B

Z 1

0
dx2dx3

Z 1
0
b2db2b3db3f�2r2�

P
2 �x2��

A
3 �x3� � r3x3�

A
2 �x2���

P
3 �x3�

��T
3 �x3���Ea�t�he�A;B; b2; b3; x3� � �r2�1� x2���P

2 �x2� ��T
2 �x2���A

3 �x3�

� 2r3�
A
2 �x2��

P
3 �x3��Ea�t

0�he�A
0; B0; b3; b2; x2�g; (A5)
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M e4�a
0� � 32�CF

���������
2Nc
p

Nc
m2
B

Z 1

0
dx1dx2dx3

Z 1
0
b1db1b3db3�B�x1; b1��

A
3 �x3�f��1� x3��

A
2 �x2� � r2x2��

P
K�x2�

��T
K�x2���E0e�t�hn�A;B; b1; b3� � ���x2 � x3��A

2 �x2� � r2x2��P
2 �x2� ��T

2 �x2���E0e�t0�hn�A0; B0; b1; b3�g;

(A6)

Me6�a
0� � 32�CF

���������
2Nc
p

Nc
m2
Br3

Z 1

0
dx1dx2dx3

Z 1
0
b1db1b3db3�B�x1; b1�f��1� x3��

A
2 �x2���

P
3 �x3� ��

T
3 �x3��

� r2�1� x3���P
2 �x2� ��T

2 �x2����P
3 �x3� ��T

3 �x3�� � r2x2��P
2 �x2� ��T

2 �x2����P
3 �x3� ��T

3 �x3���

� E0e�t�hn�A;B; b1; b3� � �x3�A
2 �x2���P

3 �x3� ��T
3 �x3�� � r2x3��P

2 �x2� ��T
2 �x2����P

3 �x3� ��T
3 �x3��

� r2x2��P
2 �x2� ��T

2 �x2����P
3 �x3� ��T

3 �x3���E0e�t0�hn�A0; B0; b1; b3�g; (A7)

Ma4�a0� � 32�CF

���������
2Nc
p

Nc
m2
B

Z 1

0
dx1dx2dx3

Z 1
0
b1db1b3db3�B�x1; b1�f��1� x2��A

2 �x2��A
3 �x3�

� r2r3f�1� x2���P
2 �x2� ��T

2 �x2����P
3 �x3� ��T

3 �x3�� � x3��P
2 �x2� ��T

2 �x2����P
3 �x3� ��T

3 �x3��g�

� E0a�t�hn�A;B; b3; b1� � �x3�
A
2 �x2��

A
3 �x3� � r2r3f4�

P
2 �x2��

P
3 �x3� � �1� x3���

P
2 �x2� ��

T
2 �x2��

� ��P
3 �x3� ��

T
3 �x3�� � x2��

P
2 �x2� ��

T
2 �x2����

P
3 �x3� ��

T
3 �x3��g�E

0
a�t
0�hn�A

0; B0; b3; b1�g; (A8)

Ma6�a
0� � 32�CF

���������
2Nc
p

Nc
m2
B

Z 1

0
dx1dx2dx3

Z 1
0
b1db1b3db3�B�x1; b1�f��r2�1� x2���

P
2 �x2� ��

T
2 �x2���

A
3 �x3�

� r3x3�
A
2 �x2���

P
3 �x3� ��

T
3 �x3���E

0
a�t�hn�A;B; b3; b1� � �r2�1� x2���

P
2 �x2� ��

T
2 �x2���

A
3 �x3�

� r3��2� x3��A
2 �x2���P

3 �x3� ��T
3 �x3���E0a�t0�hn�A0; B0; b3; b1�g; (A9)
where we have adopted the notations x2 
 1� x2 and
x3 
 1� x3, and ignored the mass difference between
mB and mb. FeKi and MeKi are obtained by choosing M2

(M3) to be the kaon (pion) in Fei and Mei, respectively.
The invariant masses A, B, A0, and B0 of the virtual

quarks and gluons involved in the above hard kernels are
functions of x1, x2, and x3, as in Table VIII. The hard scales
are chosen as

t � max�
���������
jA2j

q
;
���������
jB2j

q
; 1=bi�;

t0 � max�
����������
jA02j

q
;
����������
jB02j

q
; 1=bi�;

(A10)

with the index i � 1; 2 for Fe4;e6, i � 2; 3 for Fa4;a6, and
i � 1; 3 for the nonfactorizable amplitudes.
TABLE VIII. The invariant masses A

A B

Fe4;e6
�����
x2
p

mB
����������
x1x2
p

mB

Me4;e5;e6 i
������������������������
x2�x3 � x1�

p
mB

����������
x1x2
p

mB

Fa4;a6 i
�����
x3
p

mB i
����������
x2x3

p
m

Ma4;a5;a6

������������������������
�x1 � x3�x2

p
mB i

����������
x2x3

p
m
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The evolution factors E�0�e and E�0�a are given by

Ee�t� � �s�t�a�t� exp��SB�t� � S2�t��;

Ea�t� � �s�t�a�t� exp��S2�t� � S3�t��;

E0e�t� � �s�t�a0�t� exp��SB�t� � S2�t� � S3�t��jb2�b1
;

E0a�t� � �s�t�a
0�t� exp��SB�t� � S2�t� � S3�t��jb2�b3

;

(A11)

where a�0� represent the combination of the Wilson coef-
ficients appearing in Tables I and II. The Sudakov expo-
nents associated with the various mesons are written as

SB�t� � exp
�
�s�x1P

�
1 ; b1� �

5

3

Z t

1=b1

d ��
��
�q��s� ����

�
;

(A12)
, B, A0, and B0 in the hard kernels.

A0 B0�����
x1
p

mB
����������
x1x2
p

mB������������������������
x2�x1 � x3�

p
mB

����������
x1x2
p

mB

B i
�����
x2

p
mB i

����������
x2x3

p
mB

B

���������������������������������
1� x2�x3 � x1�

p
mB i

����������
x2x3

p
mB
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S2�t� � exp
�
�s�x2P

�
2 ; b2� � s��1� x2�P

�
2 ; b2�

� 2
Z t

1=b2

d ��
��
�q��s� ����

�
; (A13)

with the quark anomalous dimension �q � ��s=�. The
formula for the exponential S3 is the same as S2 but with
the kinematic variables of meson 2 being replaced by those
of meson 3. The explicit expression of the exponent s can
be found in [20,71,72]. The variable b1, conjugate to the
parton transverse momentum k1T , represents the transverse
extent of the B meson. The transverse extents b2 and b3

have a similar meaning for mesons 2 and 3, respectively.
For the running coupling constant �s� ���, we employ
the one-loop expression, and the QCD scale ��4�QCD �

0:250 GeV. The Sudakov exponential decreases fast in
the large b region, such that the long-distance contribution
to the decay amplitude is suppressed.

RESOLUTION TO THE B! �K PUZZLE
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The hard functions are written as

he�A;B; b1; b2; xi� � �
�b1 � b2�K0�Ab1�I0�Ab2�

� 
�b2 � b1�K0�Ab2�I0�Ab1��

� K0�Bb1�St�xi�; (A14)

hn�A;B; b1; b3� � K0�Ab3��
�b1 � b3�K0�Bb1�I0�Bb3�

� 
�b3 � b1�K0�Bb3�I0�Bb1��; (A15)

where St resums the threshold logarithm ln2x appearing in
the hard kernels to all orders. It has been parametrized as
[73]

St�x� �
21�2c��3=2� c�����

�
p

��1� c�
�x�1� x��c; (A16)

with c � 0:3.
The factorization formulas for M�q�

�K, q � u; c; t, in-
volve the convolutions of all three meson distribution
amplitudes:
M�q�
�K � �16m2

B
C2
F���������

2Nc
p

Z 1

0
dx1dx2dx3

Z 1
0
b1db1b2db2�B�x1; b1�f��1� x2��

A
��x2��

A
K�x3�

� r��1� 2x2���
P
��x2� ��

T
��x2���

A
K�x3� � 2rK�

A
��x2��

P
K�x3� � 2r�rK��2� x2��

P
��x2� � x2�

T
��x2���

P
K�x3��

� E�q��tq; l2�he�A;B; b1; b2; x2� � �2r��P
��x2��A

K�x3� � 4r�rK�P
��x2��P

K�x3��E�q��t0q; l02�he�A0; B0; b2; b1; x1�g;

(A17)

with the evolution factor,

E�q��t; l2� � ��s�t��2C�q��t; l2� exp��SB�t� � S��t��: (A18)

The hard scales are chosen as

tq � max�
���������
jA2j

q
;
���������
jB2j

q
;
���������
x2x3

p
mB; 1=bi�; t0q � max�

����������
jA02j

q
;
����������
jB02j

q
;
�������������������
jx3 � x1j

q
mB; 1=bi�; (A19)

with the index i � 1; 2. The additional scales
���������
x2x3

p
mB and

�������������������
jx3 � x1j

p
mB, compared to those appearing in Eq. (A10),

come from the gluon invariant masses l2 � �1� x2�x3m
2
B and l02 � �x3 � x1�m

2
B in Figs. 2(a) and 2(b), respectively. The

formulas for M�u;c;t�
�� are derived from Eq. (A17) by substituting the mass ratio r� for rK, and the distribution amplitudes

�A
� and �P

� for �A
K and �P

K, respectively.
The magnetic-penguin amplitude is written, for the B! �K modes, as [74]

M�g�
�K � 16m4

B
C2
F���������

2Nc
p

Z 1

0
dx1dx2dx3

Z 1
0
b1db1b2db2b3db3�B�x1; b1�f���1� x2�f2�

A
��x2� � r��3�

P
��x2�

��T
��x2�� � r�x2��P

��x2� ��T
��x2��g�K�x3� � rK�1� x2�x3�A

��x2��3�P
K�x3� ��T

K�x3��

� rKr��1� x2���P
��x2� ��T

��x2���3�P
K�x3� ��T

K�x3�� � rKr�x3�1� 2x2���P
��x2� ��T

��x2��

� �3�P
K�x3� ��

T
K�x3���Eg�tq�hg�A;B;C; b1; b2; b3; x2� � �4r��

P
��x2��K�x3� � 2rKr�x3�

P
��x2�

� �3�P
K�x3� ��

T
K�x3���Eg�t

0
q�hg�A

0; B0; C0; b2; b1; b3; x1�g; (A20)
with the evolution factor Eg�t�,

Eg�t� � ��s�t��
2Ceff

8g �t� exp��SB�t� � SK�t� � S��t��:

(A21)
Since the terms proportional to rKr� develop the end-point
singularities as the invariant mass of the gluon from O8g
vanishes (x3 ! 0), we have kept the transverse momentum
k3T . This is the reason the Sudakov factor associated with
-19
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the kaon appears. The hard function is given by
hg�A;B;C; b1; b2; b3; xi� � �St�xi�K0�Bb1�K0�Cb3�
Z �=2

0
d
 tan
J0�Ab1 tan
�J0�Ab2 tan
�J0�Ab3 tan
�; (A22)

with the virtual quark and gluon invariant masses,

A �
�����
x2
p

mB; B � B0 �
���������
x1x2
p

mB; C � i
����������������������
�1� x2�x3

q
mB; A0 �

�����
x1
p

mB; C0 �
����������������
x1 � x3
p

mB: (A23)

The hard scales t�0�q are the same as in Eq. (A19) with the index i � 1; 2; 3.
At last, we present the factorization formula for the nonfactorizable amplitude Me4 with the parton transverse degrees

of freedom in the kaon being neglected. This formula is employed to justify the approximate equality of an amplitude
without the end-point singularity evaluated in collinear and kT factorization theorems. Dropping the parton transverse
momentum k3T , the corresponding change is to remove the factor m2

B in Eq. (A6) and the integration
R
b3db3. We also

replace the hard functions by [75]

hn�A
�0�; B�0�; b1; b3� !

m2
B

B�0�2 � A�0�2
K0�A�0�b1� � K0�B�0�b1� for A�0�2 � 0;

i�
2 H

�1�
0 �

������������
jA�0�2j

p
b1� � K0�B

�0�b1� for A�0�2 < 0;

 !
(A24)

where A�0� and B�0� have been defined in Table VIII. Without k3T , the conjugate variable b2 in the Sudakov exponent S��t� is
set to b1.
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